А. В. Бологский, Г. А. Мухачев, В. К. Щуки

ТЕРМОДИНАМИКА
И
ТЕПЛОПЕРЕДАЧА

ИЗДАНИЕ ВТОРОЕ,
ПЕРЕРАБОТАННОЕ
И ДОПОЛНЕННОЕ

Допущено Министерством высшего и среднего специального образования СССР в качестве учебника для студентов авиационных специальностей высших учебных заведений.

МОСКВА «ВЫСШАЯ ШКОЛА» 1975
Болгарский А. В. и др.

Учебник состоит из 2-х частей. В первой части излагаются основные законы термодинамики, термодинамические процессы, реальные газы и пары, даются основные положения химической термодинамики. Во второй части главное внимание уделено явлениям теплообмена в авиационной и ракетной технике, процессам теплопередачи при больших скоростях газа, вопросам теплообмена в вакууме и др.

По сравнению с 1-м изданием книга основательно переработана, сокращены некоторые параграфы и разделы, не имеющие отношения к авиационной и ракетной технике. Введены новые разделы «Термодинамика плазмы» и «Термодинамика неориентированных процессов».

Предназначается в качестве учебника для студентов авиационных вузов.

Б 30302—413
001(01)—75 131—75

ПРЕДИСЛОВИЕ

Предлагаемая книга построена в соответствии с учебной программой по термодинамике и теории теплообмена для авиационных вузов и отражает специфику задач, стоящих перед будущими авиационными специалистами.

В первой части учебника излагаются основные законы термодинамики, термодинамические процессы, реальные газы и пары, рассматриваются циклы двигателей внутреннего сгорания, газотурбинных установок и реактивных двигателей; даются основные положения химической термодинамики, необходимые для построения теории горения.

Во второй части учебника наряду с общими положениями учебного процесса теплообмена главное внимание уделено явлениям теплообмена в авиационной и ракетной технике: процессам теплоотдачи при больших скоростях газа, вопросам теплообмена в вакууме, в условиях подвода инородного газа в пограничный слой и т. п.

В переработанном издании, несмотря на необходимость дополнить книгу новым материалом, авторы стремились существенно не изменять ее объема. С этой целью из методических соображений был пересмотрен и уточнен текст книги и из него были удалены некоторые подробности и вопросы, касающиеся смежных дисциплин.

Во втором издании учебника в первой части более подробно рассмотрены вопросы трактовки первого и второго законов термодинамики, реальных газов; значительно переработаны разделы химической термодинамики, дифференциальных уравнений термодинамики, паровых и парогазовых циклов; включены разделы, посвященные экспергетическому методу исследования, термодинамике плазмы, термодинамике необратимых процессов.

Вторая часть учебника дополнена разделами о теплообмене при наличии инерционных массовых сил в системе и в химически реагирующих потоках.

Раздел «Термодинамика» переработан и подготовлен ко второму
изданию доц. Г. А. Мухачевым, а раздел «Теория теплообмена» проф. В. К. Щукиным.

Авторы выражают свою глубокую признательность чл.-кор. АН СССР И. И. Новикову за критические замечания и советы, сделанные к первому изданию книги, а также коллективу кафедры Харьковского авиационного института, возглавляемой проф. А. И. Борисенко, за всестороннее обсуждение рукописи учебника при подготовке его к первому и второму изданиям.

Авторы благодарны за критические замечания и советы чл.-кор. АН СССР Г. Н. Кружилину и кафедрам «Теплотехники» Куйбышевского и Уфимского авиационных институтов и Университета дружбы народов им. Патриса Лумумбы. Авторы благодарят сотрудников кафедры ТОТ Казанского авиационного института Н. К. Арсланова, Н. С. Идиатуллина за замечания и советы, а также Л. В. Игнатьеву за помощь в оформлении учебника.

Авторы заинтересованы в широкой оценке опыта создания краткого учебника, а также в дальнейшем его улучшении и просят читателей присылать свои отзывы о книге по адресу: Москва,ул. Неглинная, 29/14, Издательство «Высшая школа».

Авторы
Часть первая
ТЕРМОДИНАМИКА

ВВЕДЕНИЕ

Все явления и процессы в природе представляют собой различные формы движения материи. Ф. Энгельс говорит: «Движение, рассматриваемое в самом общем смысле слова, т. е. понимаемое как форма бытия материи, как внутренне присущий материи атрибут, обнимает собой все происходящие во Вселенной изменения и процессы, начинающаяся с простого перемещения и кончая мышлением».

Каждое тело, каждая небольшая масса материи обладает определенным запасом внутренней энергии, определяющим то или иное состояние этой материи; этой энергией данное тело может обмениваться с другими телами и этот обмен представляет собой те процессы, которые происходят в природе.

В процессах и явлениях природы энергия тел преобразуется из одного вида в другой. Горение топлива — преобразование химической энергии в теплоту; в паровом котле эта теплота передается от продуктов сгорания воды, которая превращается в пар, теплота пара в паровой турбине превращается в механическую работу, в генераторе электрического тока механическая работа превращается в электрическую энергию, которая передается потребителям.

У потребителя происходит обратное превращение: в электромоторах электрическая энергия превращается в механическую работу, в осветительных приборах — в световую (лучистую) энергию, в электронагревателях — в тепло и т. п.

Все виды энергии имеют огромное значение в жизни человека, и поэтому законы их взаимопрервращения требуют самого тщательного изучения, так как только знание этих законов позволяет с наибольшей эффективностью и с наиболее высоким коэффициентом полезного действия использовать энергию в жизни.

Наука, занимающаяся изучением законов взаимопреобразования и передачи энергии, называется термодинамикой. Следовательно, термодинамика в наиболее общем смысле представляет собой науку об энергии. Исторически термодинамика возникла в результате изучения взаимопрервращения теплоты и работы в тепловых машинах; этот раздел термодинамики называется технической тер-
модинамикой. Изучением химических процессов с термодинамической точки зрения занимается химическая термодинамика.

Термодинамика рассматривает тела, состоящие из большого количества молекул (системы), и в ее классическом виде не принимает во внимание поведение и свойства отдельных молекул, взаимодействие между ними, энергетические превращения внутри тел. С точки зрения современной физики классическая термодинамика явно недостаточна, несмотря на ее большое значение в описании многочисленных явлений и общих выводов, которые делаются на основании законов, составляющих фундамент этой науки. Здание, воздвигнутое на этом фундаменте, приводит к важным результатам в отношении физических свойств систем и процессов в них.

Оценкой поведения отдельных молекул занимается молекулярно-кинетическая теория вещества, которая обосновывает результаты термодинамики. Поведением систем, состоящих из большого числа частиц, занимается статистическая физика, которая определяет свойства систем (тел) математическими методами, основанными на теории вероятности.

И молекулярно-кинетическая теория вещества, и статистическая физика являются теоретической базой термодинамики.

* * *

XVIII век был веком идеалистических представлений о природе; изучение ее велось чисто метафизическими методами без учета взаимосвязанности и обусловленности явлений, без ясности представления о сущности материи. Явления природы объяснялись не движением материи, а перетеканием в ней особых невесомых жидкостей: нагрев и охлаждение тел объяснялись перетеканием теплорда, а горение — перетеканием флогистона, электрические явления — перетеканием особой электрической жидкости и т. п. Попытки материалистического объяснения явлений природы существовали и раньше; лучшие умы еще в Древней Греции утверждали, что все в природе состоит из атомов. В XVII веке Бэкон высказал предположение о том, что теплота вызывается движением атомов. Генеральный ученый-материалист М. В. Ломоносов в 1740—1750 гг. дал понятие о материи, находящейся в вечном движении. Он утверждал, что все явления в природе представляют собой различные формы движения материи. О теплote он писал «...Совершенно очевидно, что достаточное основание теплоты заключается в движении, а так как движение не может происходить без материи, то необходимо, чтобы достаточное основание теплоты заключалось в движении материи...».

В этот же период времени М. В. Ломоносов впервые формулирует единый всеобщий закон сохранения материи и энергии — закон Ломоносова.

«Все перемены в натуре случающиеся такого суть состояния, что сколько чего у одного тела отнимется, столько присовокупится

6
к другому. Так ежели где убудет несколько материи, то умножится в другом месте. Сей всеобщий естественный закон простится и в самые правила движения: ибо тело, движущее своей силой другое столько оныя у себя теряет, сколько сообщает другому.

Только через 16—20 лет после Ломоносова французский химик Лавуазье подтвердил закон сохранения материи, и только через 100 лет был окончательно утвержден закон сохранения энергии.

В период 1840—1850 гг. ряд ученых приходит к частичному утверждению закона сохранения и превращения энергии и, наконец, к признанию этого закона трудами Майера, Джоуля, Гельмгольца, русских академиков Г. И. Гесса и Э. Х. Ленца.

М. В. Ломоносов был первым ученым-материалистом, который четко и ясно сформулировал закон сохранения материи и энергии, как единый фундаментальный закон природы.

Во второй половине XIX века было окончательно установлено, что превращение энергии из одного вида в другой всегда происходит по определенным эквивалентам, т. е. исчезновение некоторого количества одного вида энергии обязательно вызывает возникновение определенного количества другого вида энергии.

Закон сохранения и превращения энергии представляет собой основу, на базе которой развивалась термодинамика, и поэтому он называется первым законом или первым началом термодинамики.

Наблюдения за работой паровых машин показали неравномерность превращения теплоты в механическую работу и обратно. Эти наблюдения привели гениального французского инженера Сади Карно к опубликованию в 1824 г. труда «Размышление о движущей силе огня и о машинах, способных развивать эту силу». В этой работе С. Карно изложил основы второго закона термодинамики, окончательно установленного в 1850 г. Клаузиусом и Томсоном. Строго систематически второй закон термодинамики был основан Л. Больцманом, М. Смолуховским, профессором Киевского университета Н. Н. Шиллером.

Отечественные ученые внесли большой вклад в дело развития основ термодинамики; были проведены большие работы по изучению теплофизических свойств веществ. В первую очередь следует отметить работы профессора А. Г. Столетова и его современника М. П. Авенариуса, работавших в области изучения веществ в критическом состоянии. Важные работы по вопросу об упругости насыщенных паров смесей жидкостей были проведены Д. П. Коноваловым и Л. Г. Богдаевским, им же принадлежат серьезные работы по теории соответственных состояний.

Исторически термодинамика развивалась как теория тепловых машин, т. е. изучались только взаимопереобразования теплоты и механической работы. Этот путь был продиктован потребностями развивающейся промышленности, нуждавшейся в мощных двига-
телях с высоким коэффициентом полезного действия. Исследование работы тепловых двигателей было основано на применении метода круговых процессов (циклов).

Теплота, необходимая для работы тепловых двигателей, получалась до последнего времени путем сжигания в воздухе твердого, жидкого или газообразного горючего (топлива) при сравнительно невысоких температурах горения (2000—2500° К), при которых расчет процессов превращения химической энергии в теплоту был весьма простым: можно было ограничиться экспериментальными данными о количестве теплоты, выделяемой при сгорании 1 кг горючего (теплотворность).

Расчет процессов горения весьма усложнился, когда в практике стали использоваться значительно более высокие температуры горения (3000—4000° К), которые, например, встречаются в ракетных двигателях. Возникла необходимость более тщательных и точных расчетов преобразования химической энергии топлива (горючее + окислитель) в теплоту продуктов сгорания, вследствие чего энергетикам потребовалось основательное изучение новой области термодинамики, а именно химической термодинамики, в которой основные законы термодинамики применяются к процессам, происходящим при превращении химической энергии исходных веществ (топлива) в теплоту (продуктов горения).

При изучении этих процессов метод круговых процессов (циклов), широко применяемый в технической термодинамике, должен быть дополнен или заменен методом термодинамических потенциалов.

После Великой Октябрьской социалистической революции в нашей стране широкое развитие получили исследования в области термодинамики и других теоретических основ теплотехники. Особо следует отметить большие работы таких научных учреждений, как Всесоюзный теплотехнический институт им. Ф. Э. Дзержинского, Центральный котлотурбинный институт им. И. И. Ползунова, Энергетический институт им. Г. М. Кржижановского АН СССР, Московский энергетический институт, Центральный аэрогидродинамический институт и ряд других. Были проведены экспериментально обоснованные расчеты рабочих процессов двигателей внутреннего сгорания, газовых течений и разработаны теории расчета газотурбинных и ракетных двигателей. Проводились обширные исследования теплофизических свойств большого количества рабочих тел (вода, ртуть, холодильные агенты, жидкое зарядочное и окислители). Водой пар, имеющий широкое применение в теплоэнергетике, исследовался весьма тщательно в больших диапазонах давлений и температур. Здесь следует выделить работы М. П. Вукаловича, В. А. Кириллина и И. И. Новикова в МЭИ и работы Д. А. Тимрота и Н. Б. Варгафтика в ВТИ; в результате всех этих исследований дались обширные расчетные диаграммы и таблицы, разработаны новые методы расчета.

Знания, которые давала существующая до сего времени классическая термодинамика, оказалось недостаточно для изучения новых
сложных тепловых процессов и исследований новых рабочих тел, применяющихся в современной технике.

В 50-х годах текущего столетия был разработан новый раздел термодинамики — термодинамика необратимых процессов. Исследования, проводимые методами термодинамики необратимых процессов, позволяют изучать медленные необратимые процессы (теплопроводность, диффузию и др.), исследовать термоэлектрические и термодиффузионные процессы, процессы молекулярного переноса. Термодинамика необратимых процессов позволяет значительно расширить и уточнить области применения термодинамических исследований.

Открытие нового состояния вещества — плазмы, которая, вероятно, в ближайшем будущем будет широко применяться в некоторых областях техники благодаря ее замечательным свойствам, например электропроводности, настоятельно требует скорейшего и тщательного изучения ее теплофизических свойств; должен развиваться новый раздел термодинамики с новыми методами исследования — термодинамика плазмы.

Мало изучены вопросы термодинамических свойств и процессов реагирующих газовых смесей; между тем повышение температур в камерах сгорания и других аппаратах заставляет такие явления изучать весьма основательно.

Также необходимо более широкое термодинамическое изучение газовых потоков, течения диссоциированных газовых смесей, ионизированных газов и др.
ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА

ГЛАВА I
ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА И ЕЕ СОСТОЯНИЕ

§ 1. Основные положения и определения

Предметом термодинамики является изучение законов взаимных превращений различных видов энергии, связанных с переходами энергии между телами, чаще всего в форме теплоты и работы. Феноменологическая или классическая термодинамика не связана с представлением о микроструктуре вещества, не интересуется поведением и свойствами отдельных молекул, в ней не детализируются энергетические превращения, происходящие внутри тела, не дифференцируются также виды энергии, присущие телу в данном его состоянии.

В термодинамике объектом исследования являются макроскопические тела, состоящие из большого числа материальных частиц (молекул, атомов, электронов и т. п.), а в более общей постановке и поля (электрическое, магнитное, гравитационное).

Под термодинамической системой понимают макротело или совокупность тел, выделенных из материального мира и являющихся объектами исследования.

Система имеет определенные границы, отделяющие ее от окружающей среды. Эти границы могут быть как реальными (газ в резервуаре, граница раздела фаз), так и чисто условными в виде контрольной поверхности.

Система может быть либо гомогенной (однородной), обладающей одними и теми же свойствами, либо гетерогенной, состоящей из нескольких разнородных частей (веществ) или веществ в различных агрегатных состояниях. Гомогенные части гетерогенной системы, отделенные от остальной ее части видимыми границами (поверхностями раздела), называются фазами.

При термодинамическом методе исследования, выделяя термодинамическую систему из окружающей среды, можно оценить те воздействия, которые окружающая среда произведет на систему, либо сама система (вследствие происходящих в ней изменений) на окружающую среду.

Эти воздействия сводятся к обмену энергией и веществом.

Независимая система, которая совершенно не взаимодействует с окружающей средой, называется изолированной.
Если система не обменивается с окружающей средой энергией в форме теплоты, то такую систему называют теплоизолированной, или адабатной.
Если энергообмен между системой и окружающей средой происходит в форме теплоты и механической работы, то такая система называется термомеханической.
Система, изолированная от окружающей среды таким образом, что не может обмениваться с ней веществом, называется закрытой, обменивающейся веществом — открытой. Процессы превращения теплоты в работу и процессы превращения работы в теплоту, реализуемые в тепловых машинах, осуществляются термодинамической системой так называемым рабочим телом, которое изменяет в этих процессах свое физическое состояние.
В термодинамике постулируется, что изолированная система с течением времени всегда приходит в состояние термодинамического равновесия и никогда самопроизвольно выйти из него не может.
Макроскопическое равновесие устанавливается в результате движения материальных частиц системы, но это же движение в состоянии равновесия и обеспечивает его существование. Так, равновесное давление существует лишь при непрерывной подаче импульсов молекул к стенке, а постоянная температура в газе обусловлена постоянством средней кинетической энергии движущихся молекул.
Если система переходит из одного состояния в другое, то процесс перехода представляет собой термодинамический процесс.
Под термодинамическим процессом понимают все возможные изменения состояния системы, которые возникают в ней под влиянием внешних воздействий.*
Все процессы, происходящие в термодинамической системе, можно разделить на равновесные и неравновесные.
Равновесными процессами называются такие процессы, когда система в ходе процесса проходит ряд последовательных равновесных состояний.
Если процесс протекает настолько медленно, что в каждый момент времени успевает установиться равновесие, то такой процесс носит название квазистатического. В ходе квазистатического процесса система и окружающая среда в каждый момент времени находятся в квазиравновесных состояниях.
Квазистатические процессы обладают свойством обратимости, т.е. в них может быть изменено направление процесса на обратное.
Неравновесными процессами называются такие процессы, при протекании которых система не находится в состоянии равновесия.

* В ряде случаев в изолированной системе возможно возникновение процесса в результате неравновесного поля какого-либо потенциала, например химического, который вызывает перемещение вещества из одной части системы в другую.
В неравновесном процессе различные части системы имеют различные температуры, давления, плотности, концентрации и т. д. Процесс перехода системы из неравновесного состояния в равновесное называется релаксацией, а время перехода в состояние равновесия — временем релаксации.

Равновесным состоянием термодинамической системы называется такое состояние, которое не изменяется во времени. Отметим, что неизменность параметров в состоянии равновесия не обусловлена каким-либо внешним воздействием или процессом.

В отличие от равновесного состояния стационарное состояние предусматривает постоянство во времени параметров во всех частях системы, но это постоянство должно поддерживаться с помощью каких-либо процессов.

Каждое равновесное состояние макротела или термодинамической системы характеризуют определенные физические величины — равновесные параметры состояния. (В принципе, и в неравновесном состоянии термодинамическая система будет иметь определенные параметры, как например, энергию системы.) Параметры состояния, описывающие поведение макроскопической системы, могут быть подразделены на внешние и внутренние.

Внешние параметры характеризуют положение (координаты) системы во внешних силовых полях и ее скорость.

Внутренние параметры определяют внутреннее состояние системы. К ним относятся давление, температура, объем и др.

Внутренние параметры в свою очередь подразделяют на интенсивные и экстенсивные.

Интенсивные те величины которых не зависит от размеров (мас- са) системы. Например, давление и температура системы не изменяются, если мы разделим систему на несколько частей. К интенсивным параметрам можно отнести и удельные параметры, отнесенные к единице количества вещества (удельный объем, удельная теплоемкость и т. д.).

Экстенсивные параметры те, которые зависят от количества вещества в системе. К ним можно отнести общий объем системы, массу и т. д.

В термодинамике существует подразделение параметров на термические (давление, температура, удельный объем) и калорические — энергетические параметры (удельная энергия, удельная теплоемкость, удельные скрытые теплоты фазовых переходов).

Равновесное состояние термодинамической системы должно определяться совокупностью внешних и внутренних параметров. Если система переходит из одного состояния в другое, то в процессе перехода изменяются как внешние параметры, характеризующие окружающую среду, так и внутренние, характеризующие изучаемую систему. Для характеристики конкретных условий, в которых находится данная система (вещество), или процесса, идущего в системе, необходимо прежде всего знать такие распространенные внутренние параметры, как абсолютное давление, абсолютная температура, удельный объем или плотность.
§ 2. Термические параметры

Давление. Абсолютным давлением называется сила, действующая по нормали к поверхности тела и отнесенная к единице площади этой поверхности.

Согласно молекулярно-кинетической теории материи, абсолютное давление газа, пара или жидкости является результатом ударов хаотически и непрерывно движущихся молекул и определяется как

\[p = n \frac{\bar{m} \bar{v}^2}{3} = \frac{2}{3} \frac{N_A}{\mu \nu} \frac{m \bar{v}^2}{2}, \]

где \(n \) — число молекул вещества в 1 м³; \(m \) и \(\bar{v}^2 \) — масса молекулы и ее средняя квадратичная скорость; \(N_A = 6,0228 \cdot 10^{23} \) — число Авогадро (число молекул в 1 кг/моль вещества); \(\mu \) — молекулярный вес вещества; \(\mu \cdot \nu \) — объем 1 кмоль, т. е. \(\mu \) кг вещества.

Уравнение (1.1) называют основным уравнением кинетической теории газов. Оно устанавливает связь между молекулярными величинами, такими, как масса и скорость молекул, и величиной давления, характеризующей газ как целое, и непосредственно замеряемой в опыте. Так как давление газа определяется средней кинетической энергией его молекул в поступательном движении и их числом в единице объема, то \(p \) можно рассматривать как статистическую величину.

Соотношение (1.1) получено для простой модели, где молекулы газа можно рассматривать как твердые упругие шарики незначительного размера; силы притяжения между которыми отсутствуют, а силы отталкивания появляются только при непосредственном столкновении молекул друг с другом или молекулами стенок сосуда.

Движение молекул подчиняется законам классической механики Ньютона. Значительно разреженный газ, молекулы которого обладают перечисленными свойствами модели, называют (в молекулярной теории) идеальным газом. Если давление измеряется как сила в ньютонах*, действующая на 1 м² поверхности, то единица для измерения давления имеет размерность

\[1 \text{n/m}^2 = 1 \text{кг/(сек}^2 \cdot \text{м}). \]

Вследствие большого разнообразия давлений, применяемых в технике, от самых малых (давление в конденсаторах паровых турбин, в вакуумной технике и т. п.) до весьма больших (давление в прессах и т. п.) необходимо использовать кратные единицы измерения давления, из которых наиболее часто встречаются

\[1 \text{кн/м}^2 = 1000 \text{н/м}^2, \]

\[1 \text{бар} = 10^5 \text{н/м}^2 = 10 \text{н/см}^2. \]

Давление иногда измеряется высотой вертикального столба жидкости; наиболее часто применяют для этого ртуть (ртутный барометр).

* «Ньютон» — сила, сообщающая телу с массой 1 кг ускорение 1 м/сек².
метр, ртутный манометр) и воду (водяной манометр). Подсчет для воды дает следующее: 1 м³ воды имеет массу 1000 кг и, следовательно, на площадь в 1 м² оказывает приблизительно давление

$$1000 \times 9.81 = 9810 \text{ Н/м}^2.$$

Для ртути, имеющей при 0° С плотность в 13,596 раз большую, чем вода, во столько же раз увеличивается давление.

В табл. 1.1 приведены соотношения для основных единиц измерения давления.

| Таблица 1.1 |
|---|---|---|---|---|---|
| Бар | Ньютон на квадратный метр, Н/м² | Ньютон на квадратный метр, атм | Техническая атмосфера, атм | Миллиметры ртути столба, мм рт. ст. | Миллиметры водяного столба, мм вод. ст. |
| 1 бар | 1 | 10⁵ | 0,987 | 1,02 | 750 | 10 200 |
| 1 Н/м² | 10⁻⁶ | 1 | — | — | — | — |
| 1 атм | 1,013 | 101 300 | 1 | 1,033 | 760 | 10 330 |
| 1 атм | 0,981 | 98 100 | 0,968 | 1 | 735,6 | 10 000 |
| 1 мм рт. ст. | 0,00133 | 133 | 0,00136 | 0,00136 | 1 | 13,6 |
| 1 мм вод. ст. | 9,81 • 10⁻⁵ | 9,81 | 9,68 • 10⁻⁵ | 10⁻⁴ | 0,0736 | 1 |
| 1 кГ/м² | 9,81 • 10⁻⁵ | 9,81 | 9,68 • 10⁻⁵ | 10⁻⁴ | 0,0736 | 1 |

При замере давлений жидкостными приборами следует иметь в виду, что вследствие расширения жидкости при нагревании ее объем увеличивается и, следовательно, увеличивается столб жидкости, что приводит к неправильным показаниям приборов. При таких замерах необходимо высоту столба приводить к 0° С. Такое приведение производится по формуле

$$h_0 = h (1 - \alpha t),$$ \hspace{1cm} (1.2)

где h_0 — показания барометра (манометра), приведенное к 0° С; h — высота столба жидкости, наблюдаемая при $t^°$ С; α — объемный коэффициент расширения жидкости (для ртути $\alpha = 0,000172$).

Для измерения давления в технике применяются приборы, определяющие не абсолютное, т.е. полное давление, а разность между абсолютным и атмосферным (барометрическим) давлениями.

Приборы, служащие для измерения давлений больше атмосферного, называют манометрами. Они показывают избыточное давление над атмосферным. Этот избыток давления называется манометрическим давлением (избыточным). Для измерения давлений меньше атмосферного применяют вакуумметры, показывающие, насколько абсолютное давление меньше атмосферного. Эту недостачу давления до атмосферного называют вакуумом.

Методы измерения давления проще всего рассматривать на жидкостных приборах. На рис. 1.1 представлено измерение давления посредством жидкостного прибора.
Если давление в резервуаре больше атмосферного (рис. 1.1, а), то жидкость в правом колене трубки установится выше, чем в левом, и разность уровней будет равна h мм. Ниже сечения $c-d$ жидкость в трубке находится в равновесии, следовательно, и в правом и в левом колене трубки в сечении $c-d$ давления на жидкость одинаковы, а отсюда можно написать, что

$$p_a^f = p_b^f + gph,$$

где p_a — абсолютное (полное) давление газа в резервуаре; p_b — атмосферное давление по барометру; ρ — плотность пьезометрической жидкости; f — внутреннее сечение трубки; $g = 9,80665 \text{м/с}^2$ — нормальное ускорение свободного падения; gph — вес столба жидкости сечением f и высотой h.

![Diagram](image)

Рис. 1.1

При сокращении на f получается

$$p_a = p_b + gph,$$

где $gph = p_m$ — давление столба жидкости высотой h, выраженное в тех же единицах, в каких даны давления p_a и p_b. При этом последнее уравнение получит вид

$$p_a = p_b + p_m. \quad (1.3)$$

Таким образом, показание манометра определяет избыток давления в резервуаре над атмосферным, а абсолютное давление определяется формулой (1.3).

Если давление в резервуаре меньше атмосферного, то уровень жидкости будет выше в левом колене (рис. 1.1, б) и равенство давлений на поверхности жидкости в сечении $c-d$ будет выражаться уравнением

$$p_a + gph = p_b,$$

а так как $gph = p_v$, где p_v — давление, создаваемое столбом жидкости высотой h, то

$$p_a = p_b - p_v. \quad (1.4)$$

Следовательно, абсолютное давление газа в резервуаре в данном случае равно разности показаний барометра и вакуумметра, причем p_v определяет вакуум в резервуаре.
Температура. Состояние термического равновесия термодинамических систем связано с внутренним интенсивным параметром — температурой. В термически равновесном состоянии системы температура во всех ее точках одинакова.

Температура как мера нагревотности термически равновесного макротела определяет не только тепловое равновесие, между телами, находящимися в тепловом контакте, что соответствует равенству температур этих тел, но и направление перехода теплоты.

Количественное определение температуры связано с использованием любого зависящего от степени нагревотности свойства тела. Так, для измерения температур может быть использовано тепловое расширение жидкостей (рутные, спиртовые термометры) или газов (газовые термометры). Часто применяются термометры сопротивления, в которых используется изменение при нагревании электрического сопротивления металлической нити, а также термопары, в которых измеряется напряжение термокана, развивающегося при нагревании спая двух металлов.

За основную единицу измерения температуры принимают градус, имеющий разную величину в различных температурных шкалах.

Международная практическая температурная шкала Цельсия (°C) за основные опорные (реперные) точки принимает точку таяния льда при нормальном атмосферном давлении (760 мм рт. ст.) \(t_n = 0°C \) и точку кипения воды при том же давлении \(t_k = 100°C \). Разность показаний термометра в этих двух точках, деленная на 100, представляет собой 1° по шкале Цельсия. Определяемая по этой условной шкале температура представляет собой так называемую эмпирическую температуру.

Согласно молекулярно-кинетической теории материальной термодинамической температура \(T \), измеряемая в градусах Кельвина (°К), равна

\[
T = \frac{2}{3k} \frac{m\bar{w}^2}{2},
\]

где \(m \) — масса молекулы; \(\bar{w} \) — средняя квадратичная скорость молекулы; \(k = 1,3805 \cdot 10^{-23} \) дж/град — константа Больцмана.

Согласно уравнению Больцмана (1.5) средняя кинетическая энергия молекулы пропорциональна температуре и не зависит от массы молекулы. Это уравнение выведено на основании модели идеального газа, в котором молекулы движутся хаотически, так что температура есть величина пропорциональная средней кинетической энергии движения молекул идеального газа. Абсолютный нуль температуры (\(T = 0, t = -273,15°C \)) должен соответствовать такому состоянию тела, при котором прекращается поступательное движение молекул идеального газа.

Температура, отсчитываемая от этого абсолютного нуля, называется абсолютной температурой, а сама шкала температур называется шкалой Кельвина.
Величина градуса по шкале Кельвина принимается равной градусу по стоградусной шкале и

\[T^\circ K = t^\circ C + 273,15^\circ C. \] (1.6)

ХI Генеральная конференция по мерам и весам и ГОСТ 8550—61 решили определять термодинамическую шкалу температур посредством тройной точки воды, где в равновесном состоянии находится лед, вода и водяной пар, и приписать ей значение \(T = 273,16^\circ K \). Во всех формулах термодинамики необходимо подставлять абсолютную температуру по шкале Кельвина.

В Англии, в США и в некоторых других странах для измерения температуры принята шкала Фаренгейта \((^\circ F)\), в которой за 0° принята температура таяния смеси льда с поваренной солью, а температура кипения воды равна 212° F; при этом температура таяния льда в этой шкале получается равной 32° F и, следовательно, разность температура кипения воды и таяния льда по шкале Фаренгейта равна \(212^\circ - 32^\circ = 180^\circ F \).

Таким образом, \(1^\circ F \) равен \(100/180 = 5/9^\circ C \).

На основании изложенного можно написать формулы пересчета температур из одной шкалы в другую:

\[t^\circ C = \left(t^\circ F - 32 \right) \frac{5}{9}; \quad t^\circ F = \frac{9}{5} t^\circ C + 32. \]

Шкала Фаренгейта, отсчитанная от абсолютного нуля, называется шкалой Ранкина \((^\circ R)\). В этой шкале \(t_0 = 0^\circ C, T_0 = 273,15^\circ K \) соответствует 491,67° R, а \(t_k = 100^\circ C, T_k = 373,15^\circ K \) равно 671,67° R.

Плотность и удельный объем. Плотностью \((kz/m^3)\) называется количество вещества, заключенное в единице объема. Следовательно, если \(m \) кг занимают объем \(V \) м\(^3\), то плотность его

\[\rho = \frac{m}{V}. \] (1.7)

Величина, обратная плотности, называется удельным объемом \((m^3/kg)\) и определяет объем, который занимает 1 кг массы газа

\[v = \frac{1}{\rho} = \frac{V}{m}. \] (1.8)

§ 3. Термическое уравнение состояния идеального газа

Для химически однородной термодинамической системы (газ, жидкость, изотропное твердое тело) при отсутствии внешних полей (гравитационного, электрического, магнитного) число независимых параметров, однозначно определяющих равновесное состояние системы, будет равно двум из трех \((\rho, v, T) \), так как любой из этих трех параметров является однозначной функцией двух заданных.

Например, если принять за независимые переменные \(v \) и \(T \), то \(\rho \) можно выражать как функцию \(v \) и \(T \), т. е. \(\rho = \rho (T, v) \); если же
за независимые переменные принять p и T, то удельный объем $v = v (p, T)$.

Уравнение, устанавливающее связь между давлением, температурой и удельным объемом среды постоянного состава, называется термическим уравнением состояния.

Это уравнение в общем виде может быть записано

$$ f (p, v, T) = 0. \quad (1.9) $$

Уравнение (1.9) в пространстве отображает поверхность, которая характеризует всевозможные равновесные состояния химически однородной термодинамической системы.

Эта поверхность называется поверхностью состояния или термодинамической поверхностью, причем каждому состоянию системы будет соответствовать определенная точка на термодинамической поверхности.

Если один из параметров системы является величиной постоянной, то переменных величин будет только две и точки, изображающие состояние системы, будут лежать на плоскости, пересекающей термодинамическую поверхность перпендикулярно к оси координат, на которой берется постоянная величина. Такие системы координат на плоскости называют диаграммами состояния вещества. Наиболее часто применяются диаграммы состояния с координатами p и v, p и T, v и T, дающие возможность наглядно проследить изменение состояния данной системы.

Термодинамика ничего не говорит относительно функциональной формы уравнения состояния, и нахождение уравнений состояния конкретных систем есть задача не только термодинамики, но молекулярной и статистической физики. Можно отметить, что для каждого вещества характер функциональной связи индивидуален и термодинамические свойства описываются конкретным для данного вещества уравнением состояния.

Даже для газов, свойства которых изучены наиболее полно, по сравнению с жидким и твердым телом, вопрос построения уравнения состояния окончательно не решен. Теория уравнения состояния в настоящее время хорошо разработана лишь для «идеального» газа, разреженных газов, имеющих небольшую плотность, и в меньшей степени для плотных газов.

Наиболее простой вид имеет уравнение состояния идеального газа. Это уравнение, первое полученное Клапейроном путем объединения уравнений, характеризующих газовые законы Бойля—Мариотта и Гей-Люссака, обычно дается в виде

$$ \frac{p v}{T} = \text{const.} \quad (1.10) $$

Обозначая константу через R, уравнение (1.10) представим в виде

$$ p v = R T. \quad (1.11) $$

Уравнение (1.10) называется уравнением Клапейрона и представляет собой уравнение состояния идеального газа, записанное для 1 кг.
В системе координат $p \cdot v \cdot T$ уравнение (1.11) представляет собой гиперболический параболоид, причем плоскости $T = \text{const}$ пересекают поверхность его по равнобоким гиперболам, а плоскости $p = \text{const}$ и $v = \text{const}$ — по прямым линиям.

Через R в уравнении (1.11) обозначена так называемая удельная газовая постоянная, отнесенная к массе газа, равной 1 кг. Ее размерность определяется следующим образом:

$$R = \frac{\rho v}{T} = \frac{n \cdot m^3}{m^2 \cdot kg \cdot grad} = \frac{dzh}{kg \cdot grad}. \quad (1.12)$$

Газ, точно подчиняющийся уравнению состояния (1.11), называется в термодинамике идеальным газом.

Всякий реальный газ при малой плотности и при не слишком низких температурах ведет себя как идеальный, и его свойства с высокой точностью описываются уравнением Клапейрона, поэтому можно считать, что идеальный газ есть предельный случай реального газа при $p \to 0$ ($v \to \infty$).

Так как поведение многих технически важных газов и их смесяй в условиях работы ряда тепловых машин не дает значительных отклонений в свойствах, описываемых уравнением Клапейрона, то расчет двигателей внутреннего сгорания, газотурбинных установок, жидкостно-ракетных двигателей существенно упрощается. Некоторые принципы построения уравнения состояния реальных газов рассматриваются в гл. IX.

Умножая обе части уравнения (1.11) на молекулярный вес, получим уравнение состояния для 1 моль газа

$$pV_\mu = \mu RT, \quad (1.13)$$

где V_μ — объем, занимаемый 1 моль газа.

Из этого уравнения определяется универсальная газовая постоянная, отнесенная к 1 моль (килограмм-мольу) газа

$$\mu R = pV_\mu/T.$$

На основании закона Авогадро моль любого газа при определенных давлениях и температуре имеет одинаковый объем. Следовательно, величина μR имеет одинаковое постоянное значение для всех газов. Из физики известно, что при температуре $T_0 = 273,15^\circ K$ и давлении $p_0 = 101 332 \text{ н.м}^2$ (нормальные физические условия) объем моля газа равен 22,4146 m^3.

Подставляя значения температуры, объема и давления в уравнение, находим универсальную газовую постоянную

$$\mu R = \frac{101 332 \cdot 22,4146}{273,15} = 8314,3 \text{ дж/(моль·град).} \quad (1.14)$$

Уравнение состояния для 1 моль идеального газа

$$pV_\mu = 8314,3 \text{ T}. \quad (1.15)$$
Это уравнение называется уравнением Клапейрона—Менделеева, так как именно Д. И. Менделеев ввел в уравнение состояния идеального газа универсальную газовую постоянную.

Газовая постоянная, отнесенная к 1 кг любого газа, равна

$$R = \frac{\mu R}{\mu} = \frac{8314.3}{\mu}.$$ \hspace{1cm} (1.16)

В табл. 1-2 даны значения газовой постоянной для наиболее часто применяемых газов.

<table>
<thead>
<tr>
<th>Газ</th>
<th>Химическая формула</th>
<th>Молекулярный вес</th>
<th>Газовая постоянная, дж/(кг·град)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Водород</td>
<td>H₂</td>
<td>2,016</td>
<td>4124,5</td>
</tr>
<tr>
<td>Гелий</td>
<td>He</td>
<td>4,003</td>
<td>2077,3</td>
</tr>
<tr>
<td>Метан</td>
<td>CH₄</td>
<td>16,043</td>
<td>518,3</td>
</tr>
<tr>
<td>Водяной пар</td>
<td>H₂O</td>
<td>18,016</td>
<td>461,5</td>
</tr>
<tr>
<td>Азот</td>
<td>N₂</td>
<td>28,016</td>
<td>296,8</td>
</tr>
<tr>
<td>Кислород</td>
<td>O₂</td>
<td>32,0</td>
<td>259,9</td>
</tr>
<tr>
<td>Углекислота</td>
<td>CO₂</td>
<td>44,01</td>
<td>188,9</td>
</tr>
<tr>
<td>Воздух</td>
<td></td>
<td>28,97</td>
<td>237,0</td>
</tr>
</tbody>
</table>

Уравнение состояния «идеального газа» в курсах физики выводится методами кинетической теории газов с использованием соотношений (1.1) и (1.5), из которых

$$p = nkT = \frac{kN_A T}{V}.$$ \hspace{1cm} (1.17)

Таким образом, давление идеального газа при данной температуре определяется только числом молекул в единице объема и не зависит от рода молекул.

Очевидно, что при $p \to 0$ межмолекулярные взаимодействия перестают играть роль и тогда свойства газа определяются только числом молекул в единичном объеме. Поэтому при $p \to 0$ для всех газов справедливо уравнение Клапейрона—Менделеева, так как газы потеряли свою «индивидуальность».

С молекулярно-кинетической точки зрения вклад в реальность определяется как объемом самих молекул, так и силами межмолекулярного взаимодействия.

В практических расчетах довольно часто приходится определять плотность того или иного газа при различных давлениях и температурах; это, например, необходимо при расчетах расхода газа через газопровод при заданном сечении газопровода и скорости газа или, наоборот, для определения необходимого сечения газопровода при заданных параметрах газа и его часовым расходе и т. п. Для получения удобного расчетного уравнения напишем уравнение (1.11) в виде

$$p = \frac{RT}{\varrho} = \rho RT.$$ \hspace{1cm} (1.18)
Пусть нам известна плотность газа \(\rho_0 \) при \(\rho_0 \) и \(T_0 \).
Уравнение состояния для этих условий, записанное в форме (1.18), имеет вид
\[
\rho_0 = \rho_0 R T_0.
\] (1.19)

Для любых произвольных значений \(\rho \) и \(T \) уравнение имеет вид (1.18).

Разделив уравнение (1.19) на (1.18), получим
\[
\rho = \rho_0 \frac{\rho}{\rho_0} \cdot \frac{T_0}{T}.
\] (1.20)

Заменяя величины \(\rho \) и \(\rho_0 \) обратными, т. е. принимая
\[
\rho = \frac{1}{\nu}, \quad \rho_0 = \frac{1}{\nu_0},
\]
получаем
\[
\nu = \nu_0 \frac{\rho_0}{\rho} \cdot \frac{T}{T_0}.
\] (1.21)

Если известны \(\rho_0 \) и \(\nu_0 \) для определенных значений \(\rho_0 \) и \(T_0 \), то неизвестными в этих уравнениях являются \(\rho \) и \(\nu \), которые и могут быть вычислены для любых заданных давлений и температур.

В формулы (1.20) и (1.21) значения абсолютных давлений можно подставлять в любых одинаковых единицах измерений, но температуры следует подставлять обязательно в градусах Кельвина (° К).

Значения \(\rho_0 \) и \(\nu_0 \) для некоторых газов при нормальных физических условиях приводятся в табл. 1-3.

<table>
<thead>
<tr>
<th>Газ</th>
<th>(\rho_0, \text{ кг/м}^3)</th>
<th>(\nu_0, \text{ м}^3/кг)</th>
<th>Газ</th>
<th>(\rho_0, \text{ кг/м}^3)</th>
<th>(\nu_0, \text{ м}^3/кг)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Азот</td>
<td>1,251</td>
<td>0,799</td>
<td>Осмис углерода</td>
<td>1,250</td>
<td>0,800</td>
</tr>
<tr>
<td>Водород</td>
<td>0,090</td>
<td>11,14</td>
<td>Углекислота</td>
<td>1,977</td>
<td>0,505</td>
</tr>
<tr>
<td>Гелий</td>
<td>0,179</td>
<td>5,50</td>
<td>Воздух</td>
<td>1,293</td>
<td>0,773</td>
</tr>
<tr>
<td>Кислород</td>
<td>1,429</td>
<td>0,700</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Кроме данных, приведенных в табл. 1-3, плотность газа и его удельный объем можно вычислить из соотношений, полученных на основании закона Авогадро для нормальных физических условий, а именно:

\[
\mu \nu_0 = 22,4146 \text{ м}^3
\]

или
\[
\frac{\mu}{\rho_0} = 22,4146 \text{ м}^3,
\]

откуда находим
\[
\rho_0 = \frac{\mu}{22,4146} \text{ кг/м}^3, \quad \nu_0 = \frac{22,4146}{\mu} \text{ м}^3/кг
\] (1.22)
§ 4. Газовые смеси

В практике чаще приходится встречаться не с чистыми газами, а с их механическими смесями; одной из самых важных смесей является воздух, представляющий собой смесь азота и кислорода (с небольшой примесью аргона, углекислоты и водяного пара). Большое значение имеют такие газовые смеси, как природный газ (метан и другие углеводороды, углекислота, окись углерода и др.), продукты сгорания топлив (углекислота, азот, водяной пар и т. п.).

Для проведения расчетов с газовыми смесями необходимо установить параметры, характеризующие их состояние.

Пусть имеется смесь из n идеальных газов. Температура газовой смеси T, давление ее p, объем V; массы газов, находящихся в смеси, равны соответственно $m_1, m_2, ..., m_n$; числа молей отдельных компонентов смеси $M_1, M_2, ..., M_n$.

Если смесь находится в равновесии, то, несомненно, температуры всех газов одинаковы и равны температуре смеси T. В равновесном состоянии молекулы каждого газа рассеяны равномерно по всему объему смеси, т. е. имеют свою определенную концентрацию и, следовательно, свое давление p_i, называемое парциальным (см. (1.17)). По закону Дальтона давление смеси идеальных газов равно сумме давлений компонентов смеси

$$\sum p_i = p.$$ \hspace{1cm} (1.23)

Общая масса всей газовой смеси равна сумме масс компонентов

$$\sum m_i = m.$$ \hspace{1cm} (1.24)

Качественно состав газовой смеси может быть оценен различными способами.

Наиболее простой способ — это определение массового состава смеси, т. е. для каждого газа находим его долю в общей массе смеси — массовую долю

$$g_1 = \frac{m_1}{m}, \quad g_2 = \frac{m_2}{m}, \ldots, \quad g_n = \frac{m_n}{m}.$$ \hspace{1cm} (1.25)

Ясно, что $\sum g_i = \sum \frac{m_i}{m} = 1$.

Можно найти и мольный состав смеси. Действительно, зная молекулярные веса, находим количество молей каждого компонента

$$M_1 = \frac{m_1}{\mu_1}; \quad M_2 = \frac{m_2}{\mu_2}; \ldots; \quad M_n = \frac{m_n}{\mu_n}.$$ \hspace{1cm} (1.26)

Следовательно, вся газовая смесь содержит в себе M молей, причем

$$M = \sum M_i.$$ \hspace{1cm} (1.27)
Имея эти данные, находим мольный состав смеси — молевые доли

$$y_1 = \frac{M_1}{M}, \quad y_2 = \frac{M_2}{M}, \ldots, \quad y_n = \frac{M_n}{M},$$

(1.28)

причем $\sum y_i = 1$.

Молекулярный вес смеси можно определить следующим образом:

$$\mu = \frac{m}{M},$$

или

$$\mu = \frac{\sum m_i}{\sum M_i}.$$

(1.29)

Полученное значение μ называется кажущимся молекулярным весом смеси. Эта величина имеет большое значение в расчетах с газовыми смесями.

Если молекулярный вес смеси найден, то из зависимости (1.16) можно найти газовую постоянную смеси \mathbf{R}.

Наиболее часто смесь задается по объемному составу, поэтому необходимо ввести понятие о парциональном объеме компонента.

Пусть имеется газовая смесь из двух компонентов. Молекулы одного газа представлены вертикальными черточками, а другого — горизонтальными (рис. 1.2). На рис. 1.2, а молекулы рассеяны по всему объему. Если молекулы первого газа собраны в одной части объема, а молекулы другого газа — в другой, как это показано на рис. 1.2, б, то уменьшение объема газа при $T = \text{const}$ вызывает пропорциональное увеличение давления (закон Бойля—Мариотта). Подбирая соответствующим образом доли от общего объема, можно добиться того, чтобы каждый газ достигает давления смеси. Объемы, которые занимают эти газы, называют парциональными, приведенными к давлению смеси. Сумма парциональных объемов равна объему смеси (закон Амага)

$$\sum V_i = V.$$

(1.30)

Отсюда может быть определен объемный состав смеси, причем объемная доля каждого компонента выражается отношением

$$r_1 = \frac{V_1}{V}, \quad r_2 = \frac{V_2}{V}, \ldots, \quad r_n = \frac{V_n}{V}.$$

(1.31)
Так как каждый компонент смеси подвергался сжатию при постоянной температуре, то для \(i \)-го компонента смеси можно написать уравнение

\[
p_iV = pV_i,
\]
откуда

\[
p_i = \frac{V_i}{V} p = r_i p. \tag{1.32}
\]

Эта формула позволяет определять парциальные давления компонентов смеси, если известен объемный состав смеси.
Так как при одинаковых давлениях и температурах мольные объемы газов одинаковы, то можно написать для \(i \)-го газа

\[
V_i = V_M m_i,
\]
а для всей смеси

\[
V = V_M m.
\]

Из этих уравнений находим

\[
\frac{V_i}{V} = \frac{m_i}{M}.
\]

Следовательно, мольные доли численно равны объемным долям

\[
y_i = r_i. \tag{1.33}
\]

Таким образом, объемный состав смеси одинаков с мольным составом.
Молекулярный вес смеси может быть вычислен по объемному составу смеси. Для \(i \)-го газа можно его массу вычислить по зависимости

\[
m_i = \mu_i M_i,
\]
а для всей смеси

\[
m = \mu M.
\]

Суммируя массы всех компонентов и приравнивая их массе смеси, получим

\[
\mu M = \sum \mu_i M_i,
\]
или, разделив уравнение на \(M \),

\[
\mu = \sum \frac{M_i}{M} \mu_i,
\]
а так как

\[
\frac{M_i}{M} = r_i,
\]
то

\[
\mu = \sum r_i \mu_i. \tag{1.34}
\]

На основании закона Авогадро молекулярные веса в этом уравнении можно заменить их плотностью, так как

\[
\frac{\mu}{\rho} = \frac{\mu_1}{\rho_1} = ... = \frac{\mu_n}{\rho_n}. \tag{1.35}
\]
Замена дает возможность получить уравнение для определения плотности газовой смеси, если известен объемный состав смеси

\[\rho = \sum r_i \rho_i. \]

(1.36)

Если газовая смесь задана массовым составом, то парциальное давление \(i \)-го газа можно вычислить из уравнения состояния, так как

\[p_i V = m_i R_i T. \]

Следовательно,

\[p_i = m_i R_i \frac{T}{V}. \]

Суммируя парциальные давления компонентов, находим давление смеси

\[p = \sum m_i R_i \frac{T}{V}, \]

или

\[\frac{pV}{T} = \sum m_i R_i. \]

Но, с другой стороны, для смеси можно написать уравнение состояния

\[pV = mRT. \]

Из последних уравнений находим значение газовой постоянной смеси

\[R = \sum \frac{m_i}{m} R_i = \sum g_i R_i. \]

(1.37)

Если найдена газовая постоянная смеси, то молекулярный вес смеси определяется из зависимости (1.16).

Если для газовой смеси найдены значения молекулярного веса и газовой постоянной, то в расчетах эту газовую смесь можно рассматривать как однородный газ, подчиняющийся уравнению состояния идеального газа.

ГЛАВА II

ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТЕРМОДИНАМИЧЕСКИХ СИСТЕМ

§ 1. Энергия

Неотъемлемым свойством материи является движение.

Мерой движения материи является энергия. Поэтому увеличение или уменьшение энергии системы означает изменение в ней движения в количественном и качественном отношении.

Следовательно, энергия как мера движения всегда проявляется в качественно своеобразном виде, соответствующем данной форме
движения, а количественно же она отражает единство всех форм движения, их взаимную превращаемость и неразрушимость дви-жения как атрибута материи.

Из этого положения следуют закон эквивалентных превращений энергии и закон сохранения и превращения энергии.

Принцип эквивалентности можно сформулировать следующим образом. Если различные виды энергии взяты в таких количествах, что они вызовут одно и то же изменение состояния данной закрытой системы, то они эквивалентны.

Количественные соотношения между различными видами энергии носят название эквивалентов.

Всеобщий закон сохранения и превращения энергии трансформируется в термодинамике в «первое начало» или «первый закон термодинамики». Его положения будут рассмотрены в главе IV.

Во всей современной физике и ее различных приложениях исключительно важную роль играет так называемый закон взаимо-
звязи массы и энергии.

В последние годы его справедливость при исследовании различных ядерных реакций была многократно подтверждена.

Закон взаимосвязи между массой и энергией предложен А. Эйштейном в виде соотношения

\[E = mc^2, \] (2.1)

gде \(E \) — полная энергия тела, имеющего массу \(m \); \(c \) — скорость света, равная \(3 \cdot 10^8 \text{ м/сек} \).

Масса тела, движущаяся со скоростью \(w \), определяется по фор-
mуле

\[m = \frac{m_0}{\sqrt{1 - w^2/c^4}}, \] (2.2)

где \(m_0 \) — масса покоящегося тела.

Таким образом,

\[E = \frac{m_0 c^2}{\sqrt{1 - w^2/c^2}}. \] (2.3)

При этом в отличие от классической механики энергия покоящегося тела \(E_0 \) при \(w = 0 \) отлична от нуля

\[E_0 = m_0 c^2. \]

Если \(\frac{w}{c} \) мало, то \(\frac{1}{\sqrt{1 - w^2/c^2}} \approx \frac{w^2}{2c^2} \) и для малых скоростей

\[E = mc^2 + \frac{1}{2} m_0 w^2 = E_0 + \frac{1}{2} m_0 w^2. \] (2.4)

Наличие энергии покоя в современной физике подтверждается многочисленными экспериментами.

Например, электрон и позитрон имеют одинаковую массу покоя, но отличаются знаком электрического заряда. Эксперименты пока-
зывают, что при встрече этих двух частиц вместо них возникают два гамма-кванта излучения. Энергия гамма-квантов равна $2mc^2$, т. е. сумме энергии покоя этих двух частиц. Согласно закону сохранения энергии электрону и позитрону следует приписывать энергию покоя, равную m_0c^2.

Закон взаимосвязи массы и энергии означает, что масса и энергия растут или уменьшаются пропорционально c^2.

Можно считать доказанным, что все известные поля (грavitационное, электрическое, магнитное) обладают энергией и пропорциональной ей массой. Можно утверждать, что масса и энергия — свойства движущейся материи, и они взаимосвязаны.

Таким образом, масса материального объекта представляет собой его свойство, которое обязано наличию у этого объекта энергии, и масса объекта является мерой количества содержащейся в нем энергии.

В той мере, как мы сформулировали задачи термодинамики и объект ее исследования — макротело, мы можем определить и границы применения этой науки.

В термодинамике полная энергия макросистемы равна

$$E = E_{кин} + E_{пот} + U,$$ (2.5)

где $E_{кин}$ — кинетическая энергия системы как целого; $E_{пот}$ — потенциальная энергия системы во внешних силовых полях; U — внутренняя энергия.

Величины $E_{кин}$ и $E_{пот}$ определяются в соответствии с законами механики. Кинетическая энергия системы, имеющей массу m и скорость v, равна $m\frac{v^2}{2}$. Изменение потенциальной энергии системы равно работе, совершаемой над системой при перемещении ее из одного места силового поля в другое. Внутренняя энергия U — это энергия, заключенная в системе. Внутренняя энергия системы есть сумма всех видов энергий движения взаимодействия частиц, составляющих систему.

Внутренняя энергия состоит из кинетической энергии поступательного, вращательного и колебательного движения молекул, потенциальной энергии взаимодействия молекул, энергии внутримолекулярных и внутримолекулярных движений частиц, из которых состоят атомы и др.

Не дифференцируя внутреннюю энергию системы на эти составляющие, можно говорить о том, что внутренняя энергия является функцией внутренних параметров состояния: температуры, давления, состава системы и однозначно определяет состояние системы, т. е. является функцией состояния.

Если бы внутренняя энергия в одном и том же состоянии имела два значения, то ΔU можно было бы отнять от системы, причем никаких изменений в системе бы не произошло. Полученный источник энергии позволил бы построить так называемый вечный двигатель первого рода.
Вследствие того, что внутренняя энергия является функцией состояния, \(\Delta U \) не зависит от процесса изменения состояния системы, а определяется лишь значениями ее в конечном и начальном состояниях.

\[
\Delta U = U_2 - U_1. \tag{2.6}
\]

Так как состояние однородной системы определяется двумя независимыми переменными, то, выбрав переменные \(T \) и \(V \), получим

\[
U = U (T, V), \tag{2.7}
\]

т. е. \(U \) является однозначной функцией термических параметров \(T \) и \(V \).

Внутренняя энергия — величина аддитивная и для сложной системы определяется суммой внутренних энергий ее частей \(U = \sum U_i \).

Внутренняя энергия системы всегда известна с точностью до некоторой аддитивной постоянной, определение которой теряет смысл, если чаще всего нас интересует изменение внутренней энергии.

Если термодинамическая система находится в состоянии равно- весия и отсутствует внешнее поле сил, то полная энергия системы совпадает с внутренней \(E = U \).

§ 2. Работа и теплота

Изменение количества энергии в теле (сistemе) может произойти только в том случае, если оно вступит во взаимодействие с другими телами, передавая им часть своей энергии или воспринимая от них часть их энергии. Таким образом, количество энергии в макротеле может меняться только при осуществлении процесса энергообмена с другими телами. Эта передача энергии может осуществляться двумя известными нам путями — посредством работы или теплообмена между телами. Оба способа передачи энергии не являются равноценными. Если затрачиваемая работа может пойти на увеличение любого вида энергии, то теплота без предварительного преобразования в работу пойдет только на увеличение внутренней энергии термодинамической системы.

Хотя теплота \(Q \) и работа \(L \) имеют одну и ту же единицу измерения, как и энергия (джоуль), они не являются видами энергии, а представляют собой два способа передачи ее и, следовательно, могут проявляться только в ходе процесса передачи теплоты или работы.

Поэтому определенному состоянию системы не соответствует какое-либо значение \(L \) или \(Q \).

При механическом взаимодействии тел или системы и окружающей среды тело, находящееся под более высоким давлением, оказывает силовое воздействие на тело с более низким давлением. Это силовое воздействие внешне проявляется в виде работы одного тела над другим и представляет собой передачу части энергии пер-
вого тела второму до наступления равновесия, т. е. до выравнивания давлений.

В случае, если имеют место немеханические воздействия на систему (гравитационные, электрические, магнитные), то в рассматриваемых явлениях силовые поля вызывают эффекты механического перемещения и тогда понятие о передаче энергии в форме работы становится более общим.

Работу сил давления при изменении объема системы называют деформационной работой. Работа деформации в квазистатическом процессе определяется следующим образом.

Пусть газ находится в цилиндре с поршнем, двигающимся без трения (рис. 2.1), давление в окружающей среде p, а площадь поршня f, следовательно, сила, действующая на поршень, равна $(p + \delta p / 2)$, где δp — изменение давления при переходе поршня в новое положение.

При бесконечно малом перемещении поршень продвигается на dx, и, поскольку сила действует в направлении перемещения, элементарная работа равна

$$dL = \left(p + \frac{\delta p}{2} \right) f \cdot dx.$$ \hspace{1cm} (2.8)

При бесконечно малом перемещении можно пренебречь величиной второго порядка малости $f \cdot \frac{\delta p}{2} dx$ и тогда

$$dL = pf \cdot dx,$$ \hspace{1cm} (2.9)

а так как $f \cdot dx$ представляет собой бесконечно малое увеличение объема, то

$$dL = p \cdot dV.$$ \hspace{1cm} (2.10)

Для конечного квазистатического процесса

$$L = \int_{V_1}^{V_2} p \cdot dV,$$ \hspace{1cm} (2.11)

где пределы 1,2 представляют собой начальный V_1 и конечный V_2 объемы газа.

В уравнении (2.10) величину p можно рассматривать как общую силу (потенциал), разность которой у среды и системы вызывает процесс, а величину V как общую координату, т. е. величину, изменяющуюся под влиянием этого потенциала.

Таким образом, работа сил давления в элементарном процессе равна произведению обобщенной силы на дифференциал обобщенной координаты.

По аналогии с таким представлением элементарная работа перемещения электрического заряда равна $P \cdot d\varphi$, где P — потенциал
электрического поля, а φ — заряд; работа сил поверхностного натяжения — $\sigma d\Omega$, где σ — поверхностное натяжение, Ω — поверхность.

Следовательно, в общем случае элементарная работа

$$dA = X_i \cdot dy_i,$$

(2.12)

где X_i — обобщенная сила, а y_i — обобщенная координата.

При передаче энергии в форме теплоты взаимодействие между телами (системой и окружающей средой) происходит в результате разности температур.

На основании исследований советских ученых К. А. Путилова, А. И. Бачинского и др. выявились понятие о теплоте как части внутренней энергии, рассматриваемой в момент перехода при контакте от одного тела к другому в результате неупорядоченных соударений молекул атомов, фотонов и других частиц в месте контакта. Этот переход может иметь место лишь в случае наличия разности температур обоих объектов.

Калориметрическим путем можно определить количество теплоты, полученное (отданное) телом, тепловые эффекты химических реакций, эффекта реакций горения топлив, тепловые эффекты фазовых переходов и т. д.

Во всех этих случаях элементарное количество теплоты можно определить как произведение теплоемкости вещества на элементарную разность температур

$$dQ = mc \cdot dt,$$

(2.13)

где m — масса, а c — теплоемкость тела.

Таким образом, теплота и работа представляют собой две единственно возможные формы передачи энергии от одного тела к другому.

Количество энергии, передаваемое от одного тела к другому в форме теплоты и работы, зависит от процесса и вследствие этого теплота и работа являются функциями процесса.

Суммарное количество теплоты и работы определяет количество энергии, переданное в процессе энергообмена от одного тела к другому.

В процессе обмена энергией количество теплоты Q будет соответствовать вполне определенному количеству работы.

В системе СИ, когда теплота и работа выражаются в джоулях, $J = A = 1$.

Из принципа эквивалентности теплоты и работы следует, что теплота и работа являются двумя эквивалентными формами передачи энергии.

§ 3. Энталпия

Одной из энергетических характеристик термодинамической системы является тепловая функция или энталпия.

Если термомеханическую систему (рис. 2.1) рассматривать как состоящую из макротела (газа) и поршня с грузом $P = pf$, уравно-
вешивающего давление газа p внутри сосуда, то такая система называется расширенной.

Энтальпия или энергия расширенной системы E равна внутренней энергии газа U плюс потенциальная энергия поршня с грузом $E_{\text{пот}} = pfx = pV$

$$J = E = U + pV.$$

(2.14)

Таким образом, энтальпия в данном состоянии представляет собой сумму внутренней энергии тела и работы, которую необходимо затратить, чтобы тело объемом V ввести в окружающую среду, имеющую давление p и находящуюся с телом в равновесном состоянии. Энтальпия системы J аналогично внутренней энергии имеет вполне определенное значение для каждого состояния, т. е. является функцией состояния. Следовательно, в процессе изменения состояния

$$\Delta J = J_2 - J_1.$$

(2.15)

Энтальпий системы удобно пользоваться в тех случаях, когда в качестве независимых переменных, определяющих состояние системы, выбирают давление p и температуру T

$$J = J(p, T).$$

(2.16)

Энтальпия — величина аддитивная, т. е. для сложной системы равна сумме энтальпий ее независимых частей $J = \sum J_i$.

Энтальпия определяется с точностью до постоянной слагающей, которой в термодинамике часто придают произвольные значения (например, при расчете и построении тепловых диаграмм). При наличии немеханических сил величина энтальпии системы равна

$$J = U + pV - \sum X_i y_i,$$

(2.17)

где X_i — обобщенная сила; y_i — обобщенная координата.

ГЛАВА III

ТЕПЛОЕМКОСТЬ

§ 1. Понятие о теплоемкости

Нахождение количества теплоты в процессах при определенном градиенте (разности) температур является одним из наиболее ответственных теплотехнических расчетов, в которых нужны точные значения теплоемкостей.

Теплоемкостью тела (системы тел) называется отношение количества теплоты, поглощенной телом в определенном термодинамическом процессе, к изменению его температуры

$$c = \frac{dQ}{dT},$$

(3.1)

где dQ — элементарное количество теплоты; dT — элементарное изменение температуры.

В зависимости от количественной единицы тела, к которому подводится теплота, различают:
массовую теплоемкость \(c \), размерность которой \(\text{дже}/(\text{кг} \cdot \text{град}) \); мольную \(c \), размерность — \(\text{дже}/(\text{моль} \cdot \text{град}) \); объемную \(C \), отнесенную к 1 м\(^3\) при нормальных условиях, размерность — \(\text{дже}/(\text{м}^3 \cdot \text{град}) \).

Соотношение между этими теплоемкостями можно получить следующим образом.

1 моль газа имеет массу \(\mu \text{ кг} \), следовательно, массовая теплоемкость определяется из мольной делением ее на молекулярный вес:

\[
c = \frac{\mu c}{\mu}.
\] (3.2)

1 моль любого газа при нормальных условиях имеет объем 22,4 м\(^3\), поэтому объемная теплоемкость равна

\[
C = \mu c/22.4.
\] (3.3)

Используя зависимость (1.22), из (3.3) получаем

\[
C = \rho_0 c,
\] (3.4)

а отсюда

\[
c = C/\rho_0.
\] (3.5)

Так как теплота, подводимая в процессе к телу (системе), зависит от вида процесса, являясь функцией процесса, то теплоемкость будет свойством системы только тогда, когда процесс будет фиксированным, т. е. будет проходить при постоянном значении каких-либо параметров системы

\[
c_x = \left(\frac{\partial Q_x}{\partial T} \right)_x.
\] (3.6)

(Индекс «\(x \)» при частной производной означает, что процесс идет при одном постоянном значении величины \(x \)).

Следует оговориться, что рассматриваемые процессы теплообмена снабжены квазистатическими, поэтому теплоемкость будет величиной, относящейся к телу в состоянии термодинамического равновесия, и теплоемкости являются функциями параметров тела (системы), т. е. \(c_x = f (T, x) \).

Уравнение (3.6) определяет так называемые истинные теплоемкости, которые в термомеханической системе будут функциями термических параметров. Так, теплоемкость в процессе при постоянном объеме \(x = v = \text{const} \) согласно уравнению (3.6) равна

\[
c_v = \left(\frac{\partial Q_v}{\partial T} \right)_v,
\] (3.7)

а теплоемкость в процессе, идущем при постоянном давлении \(x = p = \text{const} \), равна

\[
c_p = \left(\frac{\partial Q_p}{\partial T} \right)_p.
\] (3.8)
Разность между теплоемкостями \(c_p \) и \(c_v \) идеального газа устанавливается формулой Майера, известной из физики и имеющей вид
\[
c_p - c_v = R. \tag{3.9}
\]

Эта формула, являющаяся следствием первого закона термодинамики, будет выведена в главе IV.

Кроме истинных теплоемкостей в расчетах употребляют средние теплоемкости \(c_m \), равные отношению количества теплоты, выделяющейся или поглощенной в процессе \(Q_{1.2} \), к изменению температуры \(\Delta t \) при условии, что разность температур величина конечная
\[
c_m \left|_{t_2}^{t_1} \frac{Q_{1.2}}{t_2 - t_1}, \tag{3.10}
\right.
\]

Естественно, что истинная теплоемкость
\[
c = \lim_{\Delta t \to 0} \frac{Q_{1.2}}{\Delta t} = \frac{dQ}{dt}. \tag{3.11}
\]

§ 2. Теплоемкость идеального газа

При любом термодинамическом процессе идеального газа изменение его внутренней энергии определяется только изменением его температуры (опыт Джоуля), т. е. \(U = f (t) \). Если в результате процесса температура газа не изменилась, можно утверждать, что скорость молекул не изменилась и, следовательно, осталась без изменения и внутренняя кинетическая энергия газа.

Определим теплоемкость идеального газа исходя из модельного представления молекулярно-кинетической теории.

В уравнении (1.17)
\[
pV_\mu = \kappa N_A T = \frac{2}{3} N_A \frac{m\bar{v}^2}{2},
\]

Величина \(N_A \cdot \frac{m\bar{v}^2}{2} \) представляет собой внутреннюю кинетическую энергию всех молекул идеального газа в поступательном движении, т. е. \(U \).

Таким образом,
\[
pV_\mu = \frac{2}{3} U \tag{3.12}
\]

или
\[
U = \frac{3}{2} pV_\mu = \frac{3}{2} \mu RT, \tag{3.13}
\]

а так как \(\mu R = 8,3143 \text{ кдеш/(моль} \cdot \text{град), то приближенно получим}
\[
U = \frac{3}{2} 8,3143T \approx 12,5T. \tag{3.14}
\]
С другой стороны, полагая, что элементарное количество теплоты, подведенное в процессе при \(v = \text{const} \) к \(1 \) моль идеального газа, по уравнению (3.7) пойдет на изменение внутренней энергии

\[
dQ_v = \mu c_v \cdot dT = dU.
\]

Потому

\[
\mu c_v = \left(\frac{\partial Q_v}{\partial T} \right)_v = \frac{dU}{dT}.
\] (3.15)

Следовательно,

\[
\mu c_v = 12,5 \text{ кдж/(моль·град)}.
\]

Если правую и левую части в уравнении Майера (3.9) умножить на молекулярный вес, то получим

\[
\mu c_p = \mu c_v = \mu R,
\] (3.16)

откуда

\[
\mu c_p = \mu c_v + 8,3153 = 12,5 + 8,3143 \approx 20,8 \text{ кдж/(моль·град)}.
\]

Проверка по экспериментальным данным для одноатомных газов подтверждает полученные выводы. Для некоторых одноатомных газов даются следующие значения мольной теплоемкости:

<table>
<thead>
<tr>
<th>Газ</th>
<th>(\mu c_p, \text{ кдж/(моль·град)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Аргон</td>
<td>12,48</td>
</tr>
<tr>
<td>Гелий</td>
<td>12,60</td>
</tr>
<tr>
<td>Ртуть (пары)</td>
<td>12,52</td>
</tr>
</tbody>
</table>

Но уже для двухатомных газов получается полное несоответствие выводов с экспериментальными данными; еще большее расхождение наблюдается для трехатомных и многоатомных газов, что видно из следующих данных:

<table>
<thead>
<tr>
<th>Газ</th>
<th>(\mu c_v, \text{ кдж/(моль·град)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Водород</td>
<td>20,26</td>
</tr>
<tr>
<td>Кислород</td>
<td>20,85</td>
</tr>
<tr>
<td>Азот</td>
<td>20,72</td>
</tr>
<tr>
<td>Окись углерода</td>
<td>20,72</td>
</tr>
<tr>
<td>Углекислота</td>
<td>28,13</td>
</tr>
<tr>
<td>Сернистый ангидрид</td>
<td>32,24</td>
</tr>
<tr>
<td>Водяная пар</td>
<td>28,47</td>
</tr>
</tbody>
</table>

Это расхождение объясняется тем, что одноатомный газ достаточно точно соответствует введенному понятию об идеальном газе, для которого и сделаны выводы из кинетической теории газов. Но молекула двухатомного газа представляет собой более сложную систему, где надо учитывать все возможные движения: поступательное и вращательное.

Установленный Максвеллом—Больцманом закон о равнораспределении энергии утверждает, что на каждую степень свободы движения молекулы расходуется одинаковое количество энергии.

34
Молекула одноатомного газа может иметь только 3 степени свободы поступательного движения, как это видно из рис. 3.1,а. Вращательным движением атома вокруг своей оси можно пренебречь, так как вся масса молекулы сосредоточена на оси вращения. Следовательно, на каждую степень свободы движения в одноатомном газе расходуется энергия

$$
\frac{12.5}{3} = 4.16 \text{ кДж/(моль·град)}.
$$

Рассматривая возможные движения двухатомной молекулы на рис. 3.1, б, можно сделать заключение, что пренебрежать вращательным движением такой молекулы уже нельзя; необходимо учесть расход энергии на ускорение молекулы около осей x и y, вращательным же движением около оси z можно пренебречь так же, как и для одноатомного газа. Следовательно, молекула двухатомного газа имеет 3 степени свободы поступательного движения и 2 степени свободы вращательного движения, а всего 5 степеней свободы движения.

Считая, что на каждую степень свободы движения расходуется при нагреве на 1° такое же количество теплоты, как и для одноатомного газа, можно получить для двухатомного газа $\mu c_v = 5 \times 4.16 = 20.8 \text{ кДж/(моль·град)}$. Получается весьма близкое соответствие с экспериментальными данными.

Для трехатомного газа имеются 3 степени свободы поступательного и 3 степени свободы вращательного движений, поэтому

$$
\mu c_v = 6 \times 4.16 = 24.96 \text{ кДж/(моль·град)}.
$$

Таким образом, для более чем двухатомного газа молекулярно-кинетическая теория теплоемкости уже не дает верных результатов. Вполне понятно, что это объясняется большей сложностью молекулы и большей сложностью внутримолекулярных движений.

Во всех вышеприведенных выводах предполагалось, что атомы внутри одной молекулы так жестко связаны между собой, что никаких дополнительных внутренних движений они не имеют. В действительности же они имеют колебательное движение, представляющее собой внутримолекулярную энергию, которая в кинетической теории газов не учитывается. Влияние внутримолекулярной энергии может быть учтено квантовой теорией теплоемкости. Эта теория доказывает, что теплоемкость является функцией температу-
ры вследствие того, что колебательное движение атомов в молекуле усиливается уже непропорционально повышению температуры.

В практических расчетах теплоемкости \(c_p \) и \(c_v \) газов обычно записываются в виде суммы двух слагаемых:

\[
c_p = c_p^{ad} + \Delta c_p, \quad (3.17)
\]

\[
c_p = c_p^{ad} + \Delta c_p. \quad (3.18)
\]

Первое слагаемое представляет собой теплоемкость идеального газа \((\rho \to 0) \), причем \(c_p^{ad} \) является величиной не постоянной, а зависящей от температуры \(c_p^{ad} = f(t) \). Второе слагаемое определяет зависимость теплоемкости от давления.

§ 3. Зависимость теплоемкости от температуры

Опыты показывают, что при повышении температуры газа колебательные движения атомов в молекуле усиливаются, на что расходуется все большее и большее количество энергии. Следовательно, чем выше температура, тем больше теплоемкости приходится расходовать для нагрева газа на 1°. Таким образом, теплоемкость газа не постоянная величина, а представляет собой функцию температуры. В общем случае теплоемкость для температуры \(t \) может быть представлена уравнением

\[
c = c_0 + at + bt^2 + dt^3 + \ldots, \quad (3.19)
\]

gде \(c_0 \) — теплоемкость при 0° С; \(a, b, d \) — постоянные коэффициенты.

Так как коэффициенты \(b, d \) весьма малы и влияние на значение \(c \) членов с температурой в степени выше первой весьма мало, то для технических расчетов часто принимают линейную зависимость теплоемкости от температуры и выражают ее формулой

\[
c = c_0 + at. \quad (3.20)
\]

На рис. 3.2 представлен график зависимости теплоемкости от температуры: кривая — по уравнению (3.19), а прямая — по уравнению (3.20). В дальнейшем пользоваться только уравнением (3.20), т. е. линейной зависимостью теплоемкости от температуры.

Вследствие того, что теплоемкость зависит от температуры, расход теплоносителя одинакового повышения температуры меняется: чем выше начальная температура нагрева, тем больше теплоносителя надо израсходовать для одинакового повышения температуры. Это ясно видно на рис. 3.3, где заштрихованные площади трапеций представляют собой расход теплоносителя при нагреве газа от \(t_1 \) до \(t_2 \) и от \(t_3 \) до \(t_4 \), причем \(t_2 - t_1 \) равно \(t_4 - t_3 \).
Если для определения теплоемкостей даются формулы истинной теплоемкости, то по ним можно получить формулы для средней теплоемкости. Пусть имеем для истинной теплоемкости зависимость \(c = c_0 + at \), требуется получить формулу средней теплоемкости в пределах от \(t_1 \) до \(t_2 \).

Из (3.1) имеем для 1 кг газа

\[
dq = cdq = (c_0 + at) dt = c_0 dt + at dt.
\]

Интегрирование в пределах от \(t_1 \) до \(t_2 \) дает

\[
q_{1-2} = c_0 \left(\int_{t_1}^{t_2} dt + a \int_{t_1}^{t_2} t dt \right)
\]

или

\[
q_{1-2} = c_0 \left(t_2 - t_1 \right) + a \frac{t_2^2 - t_1^2}{2} .
\]

Используя уравнение (3.10), находим

\[
c_{t_1}^{t_2} = \frac{q_{1-2}}{t_2 - t_1} = c_0 + \frac{a}{2} (t_2 + t_1).
\] \((3.21) \)

Этот вывод весьма просто объясняется рис. 3.4. На рисунке дана прямая, характеризующая истинную теплоемкость газа. Требуется найти среднюю теплоемкость в пределах \(t_1 \) и \(t_2 \). Теплота, расходуемая при нагреве газа от \(t_1 \) до \(t_2 \), представляется площадью заштрихованной трапеции, а средняя теплоемкость в пределах температур \(t_1 \) и \(t_2 \) представляет собой среднюю линию трапеции, т. е. полусумму нижнего и верхнего оснований трапеции, что приводит при подсчете к формуле (3.21).

Если теплоемкость задана формулой средней теплоемкости, то коэффициент при \(t \) уже разделен на 2, и, следовательно, в эту формулу надо подставлять сумму заданных начальной и конечной температур. При использовании формул теплоемкости, взятых из справочников, прежде всего следует обратить внимание на то, для каких условий дана эта формула. В табл. 3-1 приводятся формулы средней мольной теплоемкости при \(\rho = \text{const} \), полученные М. П. Вукаловичем и В. А. Кириллиным для некоторых газов.
Новейшие опытные данные по теплоемкостям, полученные спектроскопическим путем, даются в таблицах, так как обработка этих данных в виде формул приводит к очень сложным результатам.

Расчет расхода теплоты по этим данным производится следующим образом (рис. 3.4).

Требуется найти расход теплоты для нагрева газа от t_1 до t_2, если известны только средние теплоемкости в пределах от 0° до t° С. Следовательно, требуется найти площадь трапеции $bcdeb$; эту площадь проще всего определить как разность площадей трапеций $OacdO$ и $OabeO$, представляющих соответственно теплоту q_2, расходуемую на нагрев газа от 0° до t_2 С, и теплоту, расходуемую для нагрева того же газа от 0° до t_1 С. Таким образом, площадь трапеции $bcdeb$ определяет теплоту $q_2 - q_1$, необходимую для нагревания газа от t_1 до t_2.

Следовательно,

$$q_2 - q_1 = \text{пл. } OacdO - \text{пл. } OabeO.$$

Но

$$\text{пл. } OacdO = q_2 = c_{v}^{t_2}t_2;$$

$$\text{пл. } OabeO = q_1 = c_{v}^{t_1}t_1.$$

Теплота, необходимая для нагревания газа от t_1 до t_2, равна

$$q_{1-2} = c_{v}^{t_2}t_2 - c_{v}^{t_1}t_1. \quad (3.22)$$

В этой формуле t_1 и t_2 заданы, а $c_{v}^{t_1}$ и $c_{v}^{t_2}$ находятся по таблицам теплоемкостей.

Средняя теплоемкость в пределах от t_1 до t_2 определяется из уравнения (3.21):

$$c_{v}^{t_2} = \frac{c_{v}^{t_2}t_2 - c_{v}^{t_1}t_1}{t_2 - t_1}. \quad (3.23)$$

§ 4. Теплоемкость газовой смеси

В теплотехнических расчетах необходимо знание теплоемкости газовой смеси (расчет процессов горения и т. п.).

Формула, определяющая теплоемкость газовой смеси, составляет по данным о составе смеси и формулам теплоемкости компонента.
Если задан массовый состав смеси, то необходимо иметь формулы массовых теплоемкостей компонентов:

\[c_1 = c_{01} + a_1 t, \]
\[c_2 = c_{02} + a_2 t. \]

Для 1 кг смеси массовые доли компонентов определяют их массу в смеси, следовательно,

\[c = g_1 c_1 + g_2 c_2 + ... = \sum g_i c_i \] (3.24)

или, подставляя формулы теплоемкости компонентов, можно получить

\[c = \sum g_i c_{0i} + \sum g_i a_i t. \] (3.25)

Если задан объемный состав смеси, то могут быть использованы формулы объемной теплоемкости, которые на основании зависимости (3.4) для i-го газа имеют вид

\[C_i = \rho_{0i} c_i = \rho_{0i} (c_{0i} + a_i t). \]

Следовательно,

\[C = \sum r_i C_i \] (3.26)

или после подстановки формул теплоемкости

\[C = \sum r_i \rho_{0i} C_{0i} + \sum r_i \rho_{0i} a_i t. \] (3.27)

§ 5. Отношение теплоемкостей

При дальнейшем изложении материала весьма большое значение и в формулах и в практических расчетах имеет показатель адиабаты — отношение теплоемкостей \(c_p \) и \(c_v \)

\[k = \frac{c_p}{c_v} = \frac{\mu c_p}{\mu c_v}. \] (3.28)

Если использовать молекулярно-кинетическую теорию теплоемкости, то можно установить следующие значения величины \(k \):

для одноатомных газов

\[\mu c_v \approx 12,5; \quad \mu c_p \approx 20,8; \quad k = \frac{20,8}{12,5} = 1,67; \]

для двухатомных газов

\[\mu c_v \approx 20,8; \quad \mu c_p = 29,1; \quad k = \frac{29,1}{20,8} = 1,4; \]

для трехатомных газов

\[\mu c_v = 24,96; \quad \mu c_p = 33,28; \quad k = \frac{33,28}{24,96} = 1,33. \]
В действительности \(k \) зависит от температуры, и эта зависимость устанавливается следующим образом. Так как \(c_p = c_v + R \), то

\[
k = \frac{c_v + R}{c_v} = 1 + \frac{R}{c_v}.
\]
(3.29)

Для 1 моль газа получается

\[
k = 1 + \frac{8.3143}{\mu c_p}.
\]
(3.30)

В обеих формулах второй член правой части при повышении температуры уменьшается, так как увеличивается \(c_v \) и \(\mu c_v \); следовательно, при повышении температуры значение \(k \) уменьшается, оставаясь все же больше единицы.

Кроме того, можно установить следующие необходимые зависимости:

из (3.9) получаем

\[
c_p - c_v = c_v (k - 1) = R,
\]
откуда

\[
c_v = \frac{R}{k - 1}.
\]
(3.31)

Следовательно,

\[
c_p = \frac{kR}{k - 1}.
\]
(3.32)

ГЛАВА IV

ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ

§ 1. Взаимодействие системы с окружающей средой

Рассмотрим закрытую термомеханическую систему. При взаимодействии системы с окружающей средой, в ходе процесса ее состояние изменится; это изменение состояния вызовет изменение внутренней энергии, которое по (2.6) определяется разностью

\[
\Delta U = U_2 - U_1.
\]

Если термодинамическая система заключена в абсолютно жесткую и в то же время непроницаемую для теплоты (адиабатную) оболочку, то она изолирована от внешней среды и, следовательно, не может обмениваться с окружающей средой энергией ни в форме теплоты, ни в форме механической работы. В этом случае на основании закона о сохранении и превращении энергии можно утверждать, что запас внутренней энергии такой изолированной системы постоянен

\[
\Delta U = 0.
\]
(4.1)
Это утверждение не исключает возможности взаимопреобразований энергии внутри системы, если система не находится в равновесии. В такой системе будет происходить выравнивание давлений и температуру по всему объему, но в конечном итоге система придет в состояние термодинамического равновесия.

Если термомеханическая система находится в абсолютно жесткой оболочке, механического взаимодействия между средой и системой нет, то в ней может произойти теплообмен с окружающей средой. Система получит энергию путем непосредственного перехода ее от других тел без совершения при этом механической работы. Полученную таким образом энергию Борн (1921) назвал в количестве теплоты. Количество теплоты \(Q \), полученное системой из окружающей среды, увеличит на такую же величину ее внутреннюю энергию. В термодинамике принято теплоту, полученную системой, считать положительной, а отдаваемую — отрицательной. Уравнение происходящего процесса теплообмена имеет вид

\[
\Delta U = U_2 - U_1 = Q. \tag{4.2}
\]

Если термодинамическая система находится в свободно расширяющейся адабатной оболочке, то вследствие увеличения объема система воздействует на окружающую среду, преодолевая внешнее давление, или, наоборот, уменьшает свой объем под влиянием внешнего давления. При расширении системы ею производится работа вследствие убыли внутренней энергии системы, а при сжатии: работа внешних сил идет на увеличение внутренней энергии системы. В термодинамике принято: работу, производимую системой, считать положительной, а работу, расходуемую окружающей средой на сжатие системы, — отрицательной.

Обозначая работу через \(L \), найдем уравнение для этого случая

\[
\Delta U = U_2 - U_1 = -L. \tag{4.3}
\]

Если в процессе взаимодействия системы и окружающей среды возможна передача энергии как в виде теплоты, так и в виде механической работы, то уравнение происходящего процесса имеет вид

\[
\Delta U = Q - L. \tag{4.4}
\]

Рассмотрим круговой процесс, в котором система возвращается в первоначальное состояние. Следовательно, изменение внутренней энергии в процессе \(\oint dU = 0 \). В круговом процессе суммарная работа, совершаемая системой \(\oint dL \), равна суммарному количеству теплоты \(\oint dQ \), переданному окружающей средой данной системе

\[
\oint dQ = \oint dL \]

или

\[
\oint dQ - \oint dL = 0.
\]

Эти уравнения свидетельствуют о взаимопрервращаемости теплоты и работы в эквивалентных количествах.
Во всех перечисленных выше процессах энергообмена мы предполагали, что \(E = U \), т. е. термодинамическая система находится в состоянии равновесия и отсутствует поле сил.

В общем случае для изолированной системы по (2.5) закон сохранения энергии имеет вид

\[
\Delta E = \Delta E_{\text{кин}} + \Delta E_{\text{пот}} + \Delta U = 0.
\]

(4.5)

В такой записи энергия \(E \) любой системы может увеличиваться только при подводе энергии из окружающей среды (в форме работы \(L \) или теплоты \(Q \)), но не вследствие производства энергии внутри системы.

§ 2. Уравнение первого закона термодинамики

Уравнение первого закона термодинамики выражает те изменения, которые вызываются в термодинамической системе (рабочем теле) при подводе к ней некоторого количества энергии.

Предположим, что взаимообразование происходит в закрытой системе только между теплотой и механической работой, т. е. исключаются случаи возникновения при этом таких видов работы, как электрическая, химическая, световая и др. Изменением потенциальной энергии, связанной с положением тела в пространстве, пренебрегаем. Тело считаем неподвижным.

Пусть телу массой \(m \) сообщается некоторое количество теплоты \(dQ \). Эта теплота меняет состояние тела (вызывает в нем изменение температуры и объема).

При этом: изменяется кинетическая энергия молекул, на что расходуется часть подведенной теплоты — \(dK \); изменяется потенциальная энергия, связанная с силами взаимодействия между молекулами — \(d\Pi \); газ совершит работу против внешних сил, равную \(dL \). Запишем дифференциальное уравнение баланса энергии

\[
dQ = dK + d\Pi + dL.
\]

(4.6)

Рассмотрим это уравнение первого закона термодинамики. В этом уравнении изменение внутренней энергии тела равно

\[
dU = dK + d\Pi.
\]

Элементарная деформационная работа газа, как было показано ранее,

\[
dL = pdV.
\]

Уравнение (4.6) можно переписать в виде

\[
dQ = dU + dL = dU + pdV.
\]

(4.7)

Для 1 кг рабочего тела это уравнение записывается

\[
dq = du + dl,
\]

(4.8)

или

\[
dq = du + pdv,
\]

(4.9)
так как

\[Q = mq, \quad U = mu, \quad L = ml, \quad V = mv. \]

Таким образом, при принятых допущениях первый закон термодинамики говорит о том, что подводимая извне теплота идет на изменение внутренней энергии тела и на работу расширения.

Полный дифференциал внутренней энергии по (2.7)

\[du = \left(\frac{\partial u}{\partial T} \right)_V dT + \left(\frac{\partial u}{\partial v} \right)_T dv. \] \hspace{1cm} (4.10)

Подставим это выражение в уравнение (4.9) с учетом элементарного количества теплоты, подводимого в процессе \(dq = c_x dT \).

Тогда

\[c_x dT = \left(\frac{\partial u}{\partial T} \right)_v dT + \left[\left(\frac{\partial u}{\partial v} \right)_T + p \right] dv, \] \hspace{1cm} (4.11)

откуда

\[c_x = \left(\frac{\partial u}{\partial T} \right)_v + \left[\left(\frac{\partial u}{\partial v} \right)_T + p \right] \frac{dv}{dT}. \] \hspace{1cm} (4.12)

В уравнении (4.12) величины \(\left(\frac{\partial u}{\partial T} \right)_v, \left(\frac{\partial u}{\partial v} \right)_T, p \) определяют состояние тела, а \(\frac{dv}{dT} \) — процесс изменения состояния.

В процессе \(v = \text{const} \), \(dv = 0 \), удельная теплоемкость

\[c_x = c_v = \left(\frac{\partial u}{\partial T} \right)_v. \] \hspace{1cm} (4.13)

Для идеального газа, у которого внутренняя энергия зависит только от температуры \(u = f(T) \), частная производная совпадает с полной производной от внутренней энергии по температуре и

\[c_v = \frac{du}{dT}. \] \hspace{1cm} (4.14)

Уравнение первого закона термодинамики запишем в виде

\[dq = c_v dT + pdv, \] \hspace{1cm} (4.15)

а в интегральной форме, полагая \(c_v = \text{const}, \)

\[q = c_v \left(T_2 - T_1 \right) + \int_1^2 pdv. \] \hspace{1cm} (4.16)

Уравнение первого закона термодинамики можно представить в другом виде.

Прибавим и отнимем в правой части уравнения (4.7) член \(Vdp \), тогда

\[dQ = dU + pdV + Vdp - Vdp = d(U + pV) - Vdp, \]

а так как \(U + pV = I \), то

\[dQ = dI - Vdp, \] \hspace{1cm} (4.17)
или для 1 кг рабочего тела

\[dq = di - vdp. \] (4.18)

Полный дифференциал энталпии по формуле (2.16) для 1 кг газа равен

\[di = \left(\frac{\partial i}{\partial T} \right)_p dT + \left(\frac{\partial i}{\partial p} \right)_T dp. \] (4.19)

Подставим выражение (4.19) в уравнение первого закона (4.18) считая \(dq = c_xdT, \)

\[c_xdT = \left(\frac{\partial i}{\partial T} \right)_p dT + \left[\left(\frac{\partial i}{\partial p} \right)_T - v \right] dp, \] (4.20)

откуда

\[c_x = \left(\frac{\partial i}{\partial T} \right)_p + \left[\left(\frac{\partial i}{\partial p} \right)_T - v \right] \frac{dp}{dT}. \] (4.21)

В уравнении (4.21) производная \(\frac{dp}{dT} \) определяет процесс изменения состояния тела (системы).

В изобарном процессе \(p = const \) \(dp = 0, \) а удельная теплоемкость равна

\[c_x = c_p = \left(\frac{\partial i}{\partial T} \right)_p, \] (4.22)

для идеального газа, когда \(i = f(T), \)

\[c_p = \frac{di}{dT}. \] (4.23)

Уравнение (4.18) перепишем в виде

\[dq = c_p dT - vdp \] (4.24)

и в интегральной форме, полагая \(c_p = const, \)

\[q = c_p (T_2 - T_1) - \int_1^2 vdp. \] (4.25)

Уравнения (4.9), (4.15) и (4.18), (4.24) являются основными уравнениями при рассмотрении термодинамических процессов.

Связь между \(c_p \) и \(c_v \) может быть определена следующим образом. По первому закону термодинамики

\[dq = c_v dT + \left(\frac{\partial u}{\partial v} \right)_T dv + pdv, \] (4.26)

а количество теплоты, подведенной (отведенной) в процессе \(p = const, \) равно

\[dq = c_p dT. \] (4.27)
Подставим выражения (4.27) в (4.26) и, полагая, что у идеального газа \(\left(\frac{\partial u}{\partial v} \right)_T = 0 \), получим

\[(c_p - c_v) \, dT = pdv. \]

Для процесса \(p = \text{const} \) \(\frac{dv}{dT} = \left(\frac{\partial v}{\partial T} \right)_p \); используя уравнения идеального газа \(pv = RT \), найдем, что

\[p \left(\frac{\partial v}{\partial T} \right)_v = R, \]

тогда уравнение Майера примет вид

\[c_p - c_v = R \quad (4.28) \]

или

\[\mu c_p - \mu c_v = \mu R. \quad (4.29) \]

§ 3. Анализ уравнения первого закона
термодинамики

В математическое выражение первого закона термодинамики входят величины, характеризующие теплое состояние рабочего тела и изменение его в термодинамическом процессе.

Внутренняя энергия и энтальпия определяют запас энергии в рабочем теле (системе) и имеют в каждом состоянии вполне определенное значение.

Таким образом, для внутренней энергии и энтальпии мы имеем следующее:

1) обе величины являются функциями состояния, а \(dI \) и \(dI \)

полными дифференциалаами этих функций; следовательно, изменение этих величин в процессе равно разности их значений в конечном и начальном состояниях;

2) внутренняя энергия и энтальпия являются аддитивными величинами;

3) на основании уравнений (4.7) и (4.17) можно считать, что внутренняя энергия и энтальпия определяются с точностью до некоторой постоянной

\[U = \int (dQ - pdV) + U_0, \quad (4.30) \]

\[I = \int (dQ + Vdp) + I_0; \quad (4.31) \]

4) для идеального газа с постоянной теплоемкостью значения \(\Delta U \) и \(\Delta I \) можно подсчитать из выражений

\[\Delta U = mc_v \left(T_2 - T_1 \right), \quad (4.32) \]

\[\Delta I = \mu c_p \left(T_2 - T_1 \right). \quad (4.33) \]

В процессе изменения состояния рабочее тело, увеличивая свой объем, производит работу по преодолению внешних сил, действующих на него. Такая работа носит название работы расширения.
Если в процессе изменения состояния газ уменьшает свой объем, то это происходит под воздействием внешнего давления, и работу, совершаемую над газом, называют работой сжатия.

Элементарная работа газа определяется уравнением

\[dL = pdV \] \hspace{1cm} (4.34)

или из расчета на 1 кг газа

\[dl = pdv. \] \hspace{1cm} (4.35)

Работа газа может быть получена интегрированием этих уравнений:

\[L = \sum_{1}^{2} pdV, \] \hspace{1cm} (4.36)

\[l = \sum_{1}^{2} pdv. \] \hspace{1cm} (4.37)

В равновесных квазистатических процессах давления рабочего тела и окружающей среды равны; это давление и подставляется в формулы (4.36) и (4.37). В действительных процессах (неравновесных) работа может происходить только при значительной разности давлений; в таких случаях в формулы (4.36) и (4.37) надо подставлять то давление, которое преодолевается, т. е. меньшее.

Поскольку абсолютное давление всегда величина положительная, то \(dL \) и \(dV \) имеют одинаковые знаки: если \(dV > 0 \), то \(dL > 0 \), т. е. при расширении работа, совершаемая рабочим телом, положительна; если \(dV < 0 \), то \(dL < 0 \), т. е. работа, совершаемая внешней средой над телом (работа сжатия), отрицательна.

Из уравнений (4.36) и (4.37) видно, что поскольку давление в процессе изменения состояния переменное, то интегрирование, а следовательно, и определение работы возможно только в том случае, когда известна зависимость между \(p \) и \(V \).

Таким образом, работа зависит от процесса, который происходит с газом.

Если взять систему координат \(p-V \), то процесс, определяемый условием \(p = f(V) \), изображается в виде кривой 1-2-3 (рис. 4.1). Элементарная работа газа на этой диаграмме изображается в виде заштрихованной площади, а работа газа в процессе изменения состояния от точки 1 до точки 3 — площадью, ограниченной кривой процесса 1-2-3, крайними ординатами и осью абсцисс, т. е. пл. 123561. Для процесса, изображенного кривой 1-4-3, работа будет определяться пл. 143561.
На основании всего вышеизложенного, зная функциональную зависимость \(p = f(V) \), определим работу газа

\[
L = \sum_{i=1}^{2} p dV = \int_{V_1}^{V_2} f(V) dV.
\]

(4.38)

Вследствие того, что работа газа является функцией процесса, а не функцией состояния, \(dL \) не полный дифференциал.

Работа, определяемая по уравнениям (4.34)—(4.37), представляет работу в квазистатическом обратимом процессе.

В реальных условиях при сжатии газа в цилиндре компрессора к поршню необходимо прикладывать большее давление, чем давление сжимаемого газа \(p \), для возможности движения поршня со скоростью, отличной от нуля, так как при сжатии газа обязательно имеет место трение, неравновесность и турбулизация.

В результате при сжатии необходимо совершить большую работу, чем в обратимом квазистатическом процессе. Наоборот, в процессе расширения газа действительная работа будет меньше, чем полученная в обратимом процессе.

Разница между действительной работой и работой в обратимых процессах называется работой диссипации. При дальнейшем изложении будем рассматривать только работу в обратимых процессах.

При расширении такая работа будет максимальной, а при сжатии — минимальной.

В заключение анализа первого закона термодинамики отметим, что теплота является функцией процесса, так как алгебраическая сумма внутренней энергии и работы зависит от характера процесса. Поэтому теплота не является параметром состояния, а \(dQ \) не является полным дифференциалом.

ГЛАВА V
ОСНОВНЫЕ ТЕРМОДИНАМИЧЕСКИЕ ПРОЦЕССЫ

§ 1. Равновесные термодинамические процессы и их обратимость

Уравнение состояния справедливо только для газа, находящегося в равновесии. В этом случае температура и давление одинаковы во всем объеме газа. Если газ не изолирован от внешней среды, то равновесное состояние возможно только при условии полного равновесия с окружающей средой.

Достаточными условиями термомеханического равновесия являются:

1) равенство давлений газа и окружающей среды; при равенстве давлений газ не изменяет объема и, следовательно, передача энергии путем работы отсутствует. Это равенство давлений обеспечивает механическое равновесие;
2) равенство температур газа и среды; при равенстве температур, т. е. при термическом равновесии, не возникает передача энергии путем теплообмена.

Всякий термодинамический процесс может возникнуть только при нарушении механического или термического равновесия, т. е. при сжатии или расширении газа (давление среды больше или меньше давления газа), при нагреве или охлаждении газа (температура среды больше или меньше температуры газа). Чем сильнее нарушается равновесие, тем быстрее в общем случае проходят процесс и тем более резко будет нарушаться состояние покоя газа: в газе возникают конвекционные токи, вызываемые разностью температур в массе газа, и вихревые движения, вызываемые разностью давлений. Для газа, находящегося в таком неустойчивом состоянии, уравнение состояния не может быть применено до тех пор, пока газ не придет в состояние равновесия. Для того чтобы во время этих изменений уравнение состояния было бы справедливо, необходимо, чтобы газ во всей своей массе имел одинаковые давления и температуры, а для этого необходимо, чтобы изменения его состояния происходили очень медленно, вернее, даже бесконечно медленно. Бесконечно медленные изменения состояния газа возможны только при условии наличия бесконечно малых разностей давлений и температур газа и окружающей среды. Процессы, происходящие при бесконечно малых разностях давлений и температур, называются равновесными процессами, а так как они протекают бесконечно медленно, то их называют иногда квазистатическими (дословный перевод с латинского: почти равновесными).

Равновесные процессы могут одинаково идти в противоположных направлениях, так как для изменения направления достаточно только на бесконечно малую величину изменить давление или температуру газа или окружающей среды. Такое свойство равновесных процессов называется обратимостью; при обратном направлении обратимого процесса газ последовательно, но в обратном направлении, проходит те же состояния, которые он проходил в прямом процессе. Обратимый процесс, осуществленный в обоих направлениях, не производит изменений в окружающей среде.

Вышесказанное приводит к заключению, что для полной обратимости процесса необходимы следующие условия:

1) механическое равновесие, т. е. равенство давлений газа и среды;
2) термическое равновесие, т. е. равенство температур газа и среды;
3) отсутствие диссипативных эффектов, таких, как трение, турбулентность и т. п.

В ходе термодинамического процесса будут меняться равновесные параметры системы (тела), связь между которыми дается уравнением состояния \(f (p, V, T) = 0 \), и внутренняя энергия, изменение которой можно определить по уравнению вида \(f (U, T, V) = 0 \).

Изменение внутренней энергии определяется характером энергообмена между системой и окружающей средой. Для термомеханиче-
ской системы изменение внутренней энергии определяется механическим и тепловым эффектами процесса.

Для установления этих зависимостей необходимо знать уравнение процесса в какой-либо системе координат. Наиболее распространенной является система координат (или диаграмма) \(p - v \).

При изображении процесса на \(p - v \)-диаграмме работа газа определяется площадью, ограниченной кривой процесса, осью абсцисс и крайними ординатами. Для любой точки процесса из диаграммы известны давление \(p \) и удельный объем \(v \), а температура газа в этой точке процесса определяется из уравнения состояния. Графическое изображение процесса позволяет яснее представить разницу между функциями состояния и функциями процесса. Пусть на рис. 5.1 даны точки 1 и 2, характеризующие начальное и конечное состояния газа в процессе. Между этими двумя точками можно провести сколько угодно разных кривых и каждая кривая будет представлять собой процесс; причем работа газа в каждом процессе будет определяться (как указано выше) площадью, ограниченной кривой процесса \(a \) или \(b \), или \(c \), или \(e \) в то же время изменения величины внутренней энергии и энталпии определяются только состоянием газа в точке 1 и 2 независимо от того, какой процесс был газом совершен.

При изучении тепловых машин большое значение имеют круговые процессы, или циклы. Циклами называются замкнутые термодинамические процессы, в ходе которых рабочее тело, пройдя целый ряд состояний, возвращается в первоначальное. Цикл, состоящий из обратимых процессов, называется обратимым циклом. Если один из процессов, входящий в цикл, необратим, то цикл называется необратимым. Так как в результате совершения цикла газ приходит в начальное состояние, то изменение внутренней энергии за цикл равно нулю \(\Delta U = 0 \).

На рис. 5.2 представлен цикл 1-2-3-4-1. Если цикл протекает по движению часовой стрелки 1-2-3-4-1 — это прямой цикл; циклы, проходящие в направлении 1-4-3-2-1 (против движения часовой стрелки), называются обратными.

Обратимые процессы — это чисто теоретические процессы; действительные процессы всегда в большей или меньшей степени не-
обратимы, т. е. они могут идти самостоятельно только в одном направлении.

Для обратного протекания процесса необходима затрата извне некоторого количества энергии. Ряд простых примеров подтверждает эти выводы. Газ всегда вытекает из резервуара в окружающее пространство, если в этом пространстве давление ниже, чем в резервуаре. Для подачи газа в резервуар необходимо использовать компрессоры, потребляющие извне механическую работу. Теплота может переходить только от горячего тела к холодному, но для обратного направления теплового потока необходимо применение холодильных машин, которые, получая извне механическую работу, заставляют теплоту перетекать от холодного тела к теплому. Из этих примеров видно, что обратное направление любого действительного (необратимого) процесса возможно только при условии подведения к системе, в которой происходит этот процесс, дополнительного количества энергии извне.

Рассмотренные примеры действительных процессов показывают, что все явления в природе проходят в направлениях, приводящих к равновесию в системе; эти явления идут в направлении уравнивания давлений и температур. Особо следует отметить естественное направление процессов превращения механической работы в теплоту.

§ 2. Закономерности термодинамических процессов

Уравнения первого закона термодинамики для закрытой термомеханической системы, полученные в § 2 главы IV, характеризуют распределение подведенной к газу (или отведенной) теплоты между внутренней энергией его и совершенной им работой. В общем случае это распределение имеет незакономерный характер, т. е. доли теплоты, расходуемые на работу и внутреннюю энергию, при протекании процесса меняются в любых отношениях; такие незакономерные процессы не поддаются изучению. В термодинамике изучаются процессы, подчиненные определенной закономерности.

Логично принять за условие протекания таких процессов постоянство распределения подводимой теплоты между внутренней энергией газа и работой, которую он совершает. Для получения наиболее ценных обобщений и простых формул изучение уравнений первого закона термодинамики проводится для 1 кг идеального газа, т. е. газа, внутренняя энергия которого является функцией только температуры, а теплоемкость не зависит от температуры и является постоянной. Пусть в изучаемом процессе на изменение внутренней энергии расходуется ϕ-я часть всей подводимой теплоты

\[du = \varphi dq. \]

Тогда уравнение первого закона термодинамики можно представить в виде

\[dq = \varphi dq + dl \]

или

\[dl = (1 - \varphi) dq. \]

50
В термодинамике процессы, подчиненные закономерности, выражаемой условием \(\varphi = \text{const} \), называются **политропными** (с греческого — многообразными). Исследование показывает, что значение \(\varphi \) в политропных процессах могут быть от \(+\infty\) до \(-\infty\).

Теплота всегда может быть выражена произведением теплоемкости на изменение температуры.

Для любого политропного процесса также можно написать

\[
dq = c_\varphi dT,
\]

где \(c_\varphi \) — теплоемкость политропного процесса, т. е. количество теплоты, которое в данном процессе необходимо подвести к 1 кг газа, чтобы повысить его температуру на 1°.

Следовательно,

\[
c_\varphi = \frac{dq}{dT} = \frac{1}{\varphi} \frac{du}{dT} = \frac{1}{\varphi} \frac{c_o dT}{dT} = \frac{c_o}{\varphi}.
\]

Таким образом, политропный процесс можно определить как процесс при постоянной теплоемкости или постоянном значении \(\varphi \).

§ 3. Зависимость между параметрами газа в политропном процессе

В политропном процессе идеального газа изменения параметров могут быть выражены определенными зависимостями. Для нахождения этих зависимостей возьмем два уравнения:

1) уравнение первого закона термодинамики (4.15)

\[
dq = c_o dT + pdv;
\]

2) уравнение элементарного количества теплоты в политропном процессе (5.3)

\[
dq = c_\varphi dT.
\]

Следовательно,

\[
c_o dT = c_\varphi dT + pdv.
\]

Исключаем из этого уравнения \(dT \), используя дифференциальное уравнение состояния идеального газа,

\[
dT = \frac{pdv + vdp}{R}.
\]

Получаем

\[
\frac{c_o}{R} (pdv + vdp) = \frac{c_o}{R} (pdv + vdp) + pdv,
\]

или

\[
(c_\varphi - c_o - R) pdv = (c_o - c_\varphi) vdp,
\]

\[
(c_\varphi - c_p) pdv + (c_\varphi - c_o) vdp = 0.
\]

Разделив уравнение на \((c_\varphi - c_o) pv\), получим его в виде

\[
\frac{c_\varphi - c_p}{c_\varphi - c_o} \frac{dv}{v} + \frac{dp}{p} = 0,
\]

51
или, введя обозначение

\[n = \frac{c_p - c_p}{c_v - c_v} = \frac{c_p - c_{p_1}}{c_v - c_{p_1}}, \]

получим

\[n \frac{dv}{v} + \frac{dp}{p} = 0. \]

Интегрируя это уравнение в пределах от начала до конца процесса и потенцируя, находим

\[p_1 v_1^n = p_2 v_2^n \]

или

\[p v^n = \text{const.} \]

(5.10)

Зависимость между температурой газа и удельным объемом определяется путем замены давления в уравнении (5.10) его значением из уравнения состояния идеального газа (1.11).

Такая подстановка дает

\[\frac{RT_1}{v_1} (v_1)^n = \frac{RT_2}{v_2} (v_2)^n, \]

отсюда

\[T_1 v_1^{n-1} = T_2 v_2^{n-1} \text{ или } T v^{n-1} = \text{const.} \]

(5.11)

Исклучая подобным же образом удельные объемы, находим зависимость между давлениями и температурами

\[p_1 \left(\frac{RT_1}{p_1} \right)^n = p_2 \left(\frac{RT_2}{p_2} \right)^n, \]

отсюда

\[\frac{T_2}{T_1} = \left(\frac{p_2}{p_1} \right)^{n-1} \text{ или } \frac{T}{p^{n-1}} = \text{const.} \]

(5.12)

Таким образом, зависимости, выражающие изменения параметров газа в политропном процессе, определяются введенной нами величиной \(n \); эта величина называется показателем политропы и для каждого процесса постоянна, так как

\[n = \frac{c_p - c_{p_1}}{c_v - c_{p_1}}, \]

а мы рассматриваем процессы в предположении, что теплоемкости постоянны.

Теплоемкость политропного процесса определяется по величине показателя политропы из уравнения (5.9):

\[c_{p_1} = \frac{c_p - nc_v}{1-n} = c_v \frac{k-n}{1-n} = \frac{c_v}{n}. \]

(5.13)
Зависимость между показателем полиропы \(n \) и величиной \(\phi \), характеризующей распределение теплоты между внутренней энергией газа и его работой, определяется путем приравнивания правых частей равенств (5.4) и (5.13); находим, что

\[
\phi = \frac{1 - n}{k - n}.
\]

(5.14)

§ 4. Работа, внутренняя энергия и теплота полиропного процесса

Работа, производимая в 1 кг газа в полиропном процессе, определяется по общему интегралу работы

\[
l = \int_{1}^{2} p \, dv.
\]

Зависимость давления газа от объема выражается уравнением (5.10), из которого можно найти, что

\[
p = \frac{\rho_1 v_1^n}{v^n}.
\]

Подставляя это выражение в уравнение работы, находим

\[
l = \int_{1}^{2} \rho_1 v_1^n \frac{dv}{v^n} = \rho_1 v_1^n \int_{1}^{2} v^{-n} \, dv.
\]

Решение этого табличного интеграла дает

\[
l = \rho_1 v_1^n \frac{v_2^{1-n} - v_1^{1-n}}{1-n}.
\]

Так как

\[
\rho_1 v_1^n = \rho_2 v_2^n,
\]

то

\[
l = \frac{\rho_2 v_2^n v_2^{1-n} - \rho_1 v_1^n v_1^{1-n}}{1-n} = \frac{\rho_2 v_2 - \rho_1 v_1}{1-n}
\]

или

\[
l = \frac{\rho_1 v_1 - \rho_2 v_2}{n-1}.
\]

(5.15)

Можно получить другие выражения для полиропной работы. Так как для идеального газа \(p\nu = RT \), то

\[
l = \frac{R (T_1 - T_2)}{n-1}.
\]

(5.16)

Уравнение (5.15) преобразуем следующим образом:

\[
l = \frac{\rho_1 v_1 - \rho_2 v_2}{n-1} = \frac{\rho_1 v_1}{n-1} \left(1 - \frac{\rho_2 v_2}{\rho_1 v_1} \right) = \frac{\rho_1 v_1}{n-1} \left(1 - \frac{T_2}{T_1} \right).
\]

(5.17)
Отношение температур может быть заменено отношением давлений из уравнения (5.12), и тогда уравнение (5.17) приводится к виду, весьма часто применяемому в теории турбин и в газодинамике,

$$ l = \frac{p_1 v_1}{n-1} \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} \right] = \frac{RT_1}{n-1} \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} \right]. \quad (5.18) $$

Изменение внутренней энергии газа определяется общей формулой

$$ du = c_v dT, $$

или

$$ \Delta u = u_2 - u_1 = c_v (T_2 - T_1). $$

Количество подводимой теплоты может быть определено по формулам, которые выводятся очень просто. Используя формулу теплоемкости процесса (5.13), находим

$$ dq = c_v \frac{k-n}{1-n} dT, $$

или

$$ q = c_v \frac{k-n}{1-n} (T_2 - T_1). \quad (5.19) $$

С другой стороны,

$$ dq = c_v dT + dl, $$

или

$$ q = c_v (T_v - T_1) + l, $$

где вместо l можно подставить любую формулу работы.

§ 5. Исследование политропного процесса

Как показано в предыдущих параграфах, зависимости между параметрами, характеризующими процесс, могут быть определены или по заданному значению φ, или по известной величине показателя политропы n, или по известному значению теплоемкости процесса c_φ.

Основное значение во всех последующих расчетах процессов имеет показатель политропы n и вполне естественно именно его взять за основу исследования политропных процессов.

Исследование процессов при разных значениях n приводит нас к некоторым частным случаям политропных процессов, особо выделяемым при изучении.

Процесс $p = const$ (изобарный процесс). Если показатель политропы $n = 0$, то из уравнения (5.10) находим

$$ pv^n = pv^0 = p = const. \quad (5.20) $$

Таким образом, политропный процесс с показателем $n = 0$ протекает при постоянном давлении; этот процесс называется изобар-
барным. Следовательно, меняются в процессе только температура газа и его объем, причем из уравнения состояния находим, что изменение объема пропорционально изменению температуры

$$\frac{v_2}{v_1} = \frac{T_2}{T_1}. \quad (5.21)$$

Работа газа в изobarном процессе определяется из выражений (5.15) или из (5.16), откуда при \(p = \text{const} \) и \(n = 0 \) находим

$$l = p \left(v_2 - v_1 \right), \quad (5.22)$$

$$l = R \left(T_2 - T_1 \right). \quad (5.23)$$

Теплоемкость процесса равна

$$c_\varphi = c_v \frac{k-0}{1-0} = kc_v = c_p. \quad (5.24)$$

Количество подведенной теплоты равно

$$q = c_v (T_2 - T_1) + p (v_2 - v_1) = c_v (T_2 - T_1) + R (T_2 - T_1) =$$

$$= (c_v + R) (T_2 - T_1) = c_p (T_2 - T_1) = i_2 - i_1 = \Delta i. \quad (5.25)$$

Таким образом, в изobarном процессе количество подводимой теплоты равно изменению энтальпии газа.

В \(p - v \)-диаграмме процесс представляется прямой линией, параллельной оси абсцисс. Если на рис. 5.3 начальное состояние газа характеризуется точкой 1, то процесс может идти в сторону расширения к точке 2 или же в сторону сжатия к точке 3. В первом случае при увеличении объема газ производит работу расширения, определяемую площадью прямоугольника 12451, и в то же время нагревается, следовательно, извне теплота подводится и для нагрева газа, и для совершения работы расширения; во втором случае газ сжимается, следовательно, на него извне затрачивается работа сжатия; но эта работа превращается в теплоту, а так как газ не только нагревается, но и охлаждается, то от него надо отводить в окружающую среду всю теплоту, как взятую от внутренней энергии тела, так и эквивалентную работе сжатия.

Процесс при \(T = \text{const} \) (изотермический процесс).

Если \(n = 1 \), то из уравнения (5.10) находим

$$p v^2 = p v = \text{const.} \quad (5.26)$$

Процесс при \(n = 1 \) происходит при постоянной температуре газа и называется изотермическим. Из выражения (5.26) следует, что

$$p_1 v_1 = p_2 v_2$$
$$\frac{v_2}{v_1} = \frac{p_1}{p_2},$$

t. е. в этом процессе объемы газа меняются обратно пропорционально давлением (закон Бойля—Мариотта).

Так как температура в процессе не меняется, то внутренняя энергия газа также остается постоянной и $d\mu = 0$. Следовательно, уравнение первого закона термодинамики для этого процесса имеет вид

$$dq = dl,$$

или вся подведенная теплота превращается в работу расширения газа и обратно, вся работа, затраченная на сжатие газа, должна быть отведена в окружающую среду в форме теплоты.

Работа газа в этом процессе определяется из общего уравнения работы с учетом того, что

$$pv = RT = \text{const}.$$

Находим

$$l = \int p \, dv = \int RT \, \frac{dv}{v} = RT \ln \frac{v_2}{v_1} = RT \ln \frac{p_1}{p_2}. \quad (5.27)$$

Теплоемкость процесса из выражения (5.9) получается равной

$$c_\varphi = c_v \frac{k-1}{l-1} = \pm \infty.$$

Физический смысл этой бесконечности заключается в том, что при каких конечных значениях теплоемкости температура газа не может быть изменена, так как вся подводимая теплота полностью превращается в работу.

На $p - v$-диаграмме кривая процесса представляется уравнением $pv = \text{const}$, т. е. равнобокой гиперболой, для которой оси координат являются асимптотами. Следовательно, если на рис. 5.4 точка 1 представляет начальное состояние газа, то процесс может идти к точке 2, причем происходит расширение газа. Газ совершает работу, определяемую пл. 12451, и к нему необходимо подводить теплоту, эквивалентную этой работе; если же процесс идет к точке 3, то происходит сжатие газа, на которое затрачивается работа, определяемая пл. 13651, и отводится наружу теплота, эквивалентная этой работе.

Так как произведение pv увеличивается при увеличении температуры, то изотерма тем дальше отстоит от начала координат, чем более высокую температуру она представляет.
Процесс без обмена теплотой с окружающим пространством (адиабатный процесс).
Если показатель полиропы \(n = k \), то из выражения (5.19) находим, что количество подводимой в процессе теплоты равно
\[
q = c_v \frac{k - 1}{1 - k} (T_2 - T_1) = 0.
\]

Следовательно, этот полиропный процесс происходит без обмена теплотой с окружающим пространством. Такой процесс называется адиабатным. Из уравнения первого закона термодинамики находим при \(dq = 0 \)
\[
du + dl = 0
\]
или
\[
dl = -du,
\]
\[
l = -\Delta u = u_1 - u_2,
\]
\[
l = c_v (T_1 - T_2).
\]

(5.28)

В этом процессе вся совершаемая газом работа получается за счет уменьшения его внутренней энергии и, наоборот, вся работа, затраченная на сжатие газа, идет на увеличение внутренней энергии.
Формулы связи между параметрами газа в адиабатном процессе и формулы работы получаются из общих формул полиропного процесса при условии замены в них \(n \) через \(k \). Получаем

\[
p v^k = \text{const}, \quad p_1 v_1^k = p_2 v_2^k; \quad (5.29)^* \]
\[
T v_1^{k-1} = \text{const}, \quad T_1 v_1^{k-1} = T_2 v_2^{k-1}; \quad (5.30) \]
\[
\frac{T}{p^{\frac{k}{k-1}}} = \text{const}, \quad \frac{T_2}{T_1} = \left(\frac{p_2}{p_1} \right)^{\frac{k-1}{k}}; \quad (5.31) \]
\[
l = \frac{p_1 v_1 - p_2 v_2}{k-1}; \quad (5.32) \]
\[
l = \frac{R (T_1 - T_2)}{k - 1}; \quad (5.33) \]
\[
l = \frac{RT_1}{k - 1} \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{k-1}{k}} \right] = \frac{p_1 v_1}{k - 1} \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{k-1}{k}} \right]. \quad (5.34)
\]

* Уравнение (5.29) носит название уравнения Пуассона и является уравнением для адиабаты идеального газа.
На рис. 5.5 представлена изотерма, уравнение которой, как показано ранее, имеет вид \(pv = \text{const} \). Начальная точка изотермического процесса \(I \), причем ветвь гиперболы \(I-2 \) представляет собой расширение газа, а \(I-3 \) — сжатие. Проведем произвольную изобару \(p' \) выше точки \(I \); в точке \(a \) пересечения изобары с изотермой удельный объем газа равен \(v_a \), причем температура газа от сжатия не изменилась. Если произвести сжатие газа до этого давления адиабатно, то работа сжатия увеличит внутреннюю энергию газа и повысит температуру его. Следовательно, объем газа после адиабатного сжатия до давления \(p' \) будет больше, чем при изотермическом сжатии, и точка пересечения адиабаты с изобарой будет лежать пра-

Рис. 5.5

вее точки \(a \) — где-нибудь в \(a' \). При адиабатном расширении газа до давления \(p'' \) температура его упадет, вследствие чего при том же давлении удельный объем газа после адиабатного расширения будет меньше, чем после изотермического, и точка адиабаты будет лежать на изобаре левее точки \(b \) изотермы. Следовательно, адиабата, представляя собой гиперболу высшего порядка (так как \(k > 1 \)), на \(p - v \)-диаграмме изображается более крутой кривой, чем изотерма.

Процесс при \(v = \text{const} \) (изохорный процесс).

Если показатель полидропы \(n = \pm \infty \), то общую зависимость между давлениями и объемами в полидропном процессе уравнение (5.10)] можно представить в виде

\[p^{1/n}v = \text{const}. \]

По мере увеличения значения показателя полидропы и приближения его значения к бесконечности величина \(1/n \) стремится к 0; в пределе получаем

\[p^0v = \text{const}, \]

или

\[v = \text{const}. \] \hspace{1cm} (5.35)

Таким образом, при показателе полидропы \(n = \pm \infty \) полидропный процесс превращается в процесс, происходящий при \(v = \text{const} \);
такой процесс называется изохорным. Из уравнения состояния при \(v = \text{const} \) находим, что

\[
\frac{p_2}{p_1} = \frac{T_2}{T_1}. \tag{5.36}
\]

В изохорном процессе давление газа пропорционально абсолютной температуре.

Так как \(dv = 0 \), то газ в этом процессе работы не производит и уравнение первого закона термодинамики приводится к виду

\[dq = du, \]

или

\[q = c_v(T_2 - T_1). \tag{5.37} \]

На \(p \) — \(v \)-диаграмме (рис. 5.6) изохора представляется прямой, параллельной оси давлений. Направление процесса из начальной точки 1 вверх на основании уравнения (5.36) характеризует увеличение внутренней энергии и нагрев газа, а вниз — охлаждение путем отвода теплоты в окружающую среду.

§ 6. Определение показателя политропы

В практике иногда приходится определять значение показателя политропы для заданной кривой, представленной на \(p \) — \(v \)-диаграмме. На рис. 5.7 дана кривая 1-2, которая состоит из ряда политроп с разными показателями на разных участках, но можно определить среднее значение показателя политропы для всей кривой в целом. Для этого используем уравнение

\[p_1 v_1^n = p_2 v_2^n. \]

Для данной кривой значения \(p_1, p_2, v_1, v_2 \) берутся непосредственно из рис. 5.7; следовательно, неизвестной величиной является показатель \(n \). Логарифмируя это уравнение, получим

\[\lg p_1 + n \lg v_1 = \lg p_2 + n \lg v_2. \]

Отсюда находим значение

\[n = \frac{\lg p_2 - \lg p_1}{\lg v_1 - \lg v_2} = \frac{\frac{p_2}{p_1}}{\frac{v_1}{v_2}}. \tag{5.38} \]

Так как в это уравнение входят только отношения давлений и объемов, то для вычисления значения \(n \) не нужно даже знать масштабов этих величин, но нужны одинаковые размерности.
Другой способ вычисления среднего значения показателя полiritропы основан на следующем. Из концов кривой 1-2 (рис. 5.7) проводят крайние ординаты 1-4 и 2-3 и крайние абсциссы 1-6 и 2-5. Можно вычислить зависимость между площадями фигур 12561 и 12341. Из чертежа видно, что пл. 12561 = пл. 14061 + пл. 12341 — пл. 23052, но

\[\text{пл. } 14061 = p_1 v_1, \]
\[\text{пл. } 23052 = p_2 v_2, \]
\[\text{пл. } 12341 = I_{\text{полиртр}} = \frac{p_1 v_1 - p_2 v_2}{n - 1}. \]

Подставляя эти значения в основное равенство, находим

\[\text{пл. } 12561 = p_1 v_1 + \frac{p_1 v_1 - p_2 v_2}{n - 1} - p_2 v_2 = \]
\[= \frac{n}{n - 1} (p_1 v_1 - p_2 v_2) = n \cdot \text{пл. } 12341. \]

Следовательно,

\[n = \frac{\text{пл. } 12561}{\text{пл. } 12341}. \]

§ 7. Характеристики полiritропных процессов в зависимости от значения показателя n

На рис. 5.8 представлены основные процессы с разными значениями показателей полiritропы, применяющимися в теплотехнике (0 — ∞). Процессы, расположенные выше изобарного, в правой части диаграммы имеют отрицательный показатель полiritропы и характеризуются настолько большим подводом теплоты, что, несмотря на расширение газа, давление его увеличивается. Процессы с отрицательным значением показателя, расположенные в левой части диаграммы ниже изобары, проходят с настолько большим отводом теплоты, что, несмотря на сжатие газа, давление его уменьшается.

В некоторых производственных процессах, особенно в области химической технологии, процессы с отрицательными значениями показателя полiritропы вполне возможны. Изучаемые нами процессы расположены в левой верхней и правой нижней части диаграммы. Все кривые в правой части диаграммы (принимаем точку 1 за начальное состояние газа) характеризуют процессы, проходящие с расширением газа, а процессы в левой части — со сжатием газа. Как видно из рис. 5.8, все изучаемые нами полiritропные процессы в зависимости от их расположения по отношению к основным процессам можно разделить на 3 группы.

1. 0 < n < 1. Как показывает величина показателя, эти полiritропные процессы расположены между изобарой и изотермой и протекание их можно определить следующими характеристиками:

а) расширение газа; все процессы на этом участке проходят с повышением температуры и, следовательно, с увеличением внутренней

60
энергии газа; объем газа увеличивается, т. е. газ расширяется и производит работу. Таким образом, процесс проходит с подводом к газу теплоты, которая частично расходуется на нагрев газа и частично на работу расширения. По мере приближения значения показателя к единице часть теплоты, расходуемой на изменение внутренней энергии газа, приближается к 0, температура уменьшается;

б) сжатие газа; вполне понятно, что все явления при сжатии газа проходят с обратным знаком. Объем газа уменьшается и на сжатие газа затрачивается работа; температура газа понижается и внутренняя энергия его уменьшается. Таким образом, от газа должна быть отведена теплота, полученная от убыли внутренней энергии и от работы, затраченной на сжатие газа.

Теплоемкость процессов меняется от \(c_p \) (при \(n = 0 \)) до \(\infty \) (при \(n = 1 \)). Значение коэффициента \(\phi \) меняется от \(1/k \) (при \(n = 0 \)) до 0 (при \(n = 1 \)).

2. \(1 < n < k \). Эти процессы располагаются между изотермой и адиабатой:

а) расширение газа; при изотермическом расширении работа получается за счет теплоты, подведенной извне; при адиабатном расширении работа совершается только за счет внутренней энергии газа.

В процессах, расположенных между изотермой и адиабатой, работа газа совершается частично за счет теплоты, подведенной извне, частично за счет внутренней энергии газа; чем ближе значение \(n \) к 1, тем большая доля работы совершается за счет внешней теплоты, чем ближе значение \(n \) к величине \(k \), тем большая доля работы совершается за счет убыли внутренней энергии газа, тем сильнее охлаждается газ;

б) сжатие газа; так как все явления проходят с обратным знаком, то в процессе сжатия частично увеличивается внутренняя энергия газа и теплота должна частично отводиться в окружающую среду, чем ближе значение \(n \) к 1, тем больше отводится теплоты в окружающую среду и тем меньше нагревается газ.

В этих процессах теплоемкость имеет отрицательное значение и меняется от 0 до \(-\infty\), что видно из уравнения (5.13)

\[
c_{\phi} = c_v \frac{n-k}{n-1},
\]

где при \(n = k \) (адиабата) \(c_{\phi} = 0 \), а при \(n = 1 \) \(c_{\phi} = -\infty \) (изотерма).
Отрицательное значение теплоемкости в этих процессах вполне объяснимо. Действительно, теплоемкость процесса определяет количество теплоты, которое необходимо подвести к газу в процессе для повышения его температуры на 1°, но нагрев можно произвести не только подводом теплоты, но и в процессе сжатия газа.

В политропных процессах, расположенных между изотермой и адабатой, при расширении газа работа производится частично за счет внутренней энергии, и температура газа падает, но остальная, необходимая для работы теплота подводится из окружающей среды. Таким образом, при расширении, несмотря на подвод теплоты, газ охлаждается, что возможно только при отрицательном значении теплоемкости. Это видно из уравнения

\[dq = c_p \, dT, \]

где \(dq > 0 \), а \(dT < 0 \).

Такое же явление происходит и при сжатии газа; работа сжатия превращается в теплоту, но часть этой теплоты отводится в окружающую среду и только часть ее идет на нагрев газа. Следовательно, температура газа повышается при отводе теплоты и в приведенном уравнении \(dq < 0 \) и \(dT > 0 \), что возможно только при отрицательном значении теплоемкости.

Значение величины \(\phi \) меняется от 0 при \(n = 1 \) до \(\infty \) при \(n = k \).

3. \(k < n < \infty \). Эти процессы расположены между адабатой и изохорой. Кривые процесса по мере увеличения значений \(n \) располагаются все более круто, приближаясь к прямой \(v = \text{const} \):

а) расширение газа; работа газа все время уменьшается, приближаясь к 0 (изохора); количество отводимой теплоты возрастает вследствие убыли внутренней энергии, и поэтому температура газа понижается быстрее;

б) сжатие газа; несмотря на то, что работа сжатия газа уменьшается, температура его увеличивается по мере приближения значений \(n \) к \(\infty \), так как количество теплоты, подводимой извне, все увеличивается; увеличение внутренней энергии газа происходит за счет суммарной теплоты, подводимой извне, и эквивалентной работы сжатия.

Теплоемкость в процессах по мере увеличения показателя политропы \(n \) от \(k \) до \(\infty \) увеличивается от 0 до \(c_p \), что видно из уравнения (5.13). Значение величины \(\phi \) от \(\infty \) (при \(n = k \)) уменьшается до 1 (при \(n = \infty \)). В этом можно убедиться, если уравнение (5.14) представить в следующем виде, полученном после деления чисителя и знаменателя на \(n \), причем при \(n \rightarrow \pm \infty \)

\[
\phi = \frac{n-1}{n-k} = \frac{1 - \frac{1}{n}}{1 - \frac{k}{n}} = \frac{1 - \frac{1}{\infty}}{1 - \frac{k}{\infty}} = \frac{1-0}{1-0} \rightarrow 1.
\]

Рассматривая рис. 5.8, можно сделать еще следующие выводы. Так, как изотермы по мере удаления от начала координат характери-
зуют все более высокие температуры, то все процессы, идущие от начальной точки \(I \) вверх и вправо от изотермы, проходят с повышением температуры газа, т. е. с увеличением его внутренней энергии. Процессы, идущие от начальной точки \(I \) вниз и влево проходят с понижением температуры газа и, следовательно, с уменьшением его внутренней энергии. Таким образом, изотерма является границей процессов, проходящих с увеличением и уменьшением внутренней энергии газа.

Если рассматривать адниабату как границу процессов, то можно убедиться, что все процессы, проходящие вверх и вправо от адниабаты, идут с подводом извне теплоты, а идущие вниз и влево, — с отводом теплоты в окружающую среду.

ГЛАВА VI

ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ

§ 1. Положения второго закона термодинамики.

Циклы прямые и обратные

Первый закон термодинамики представляет собой математическое выражение общего закона сохранения и превращения энергии. Он рассматривает любые взаимопревращения энергии и изучает явления в этих взаимопревращениях, в частности при осуществлении различных термодинамических процессов. Но этот закон не определяет условий возможности таких преобразований; согласно этому закону равновозможны оба направления в протекании процесса, т. е. перетекание теплоты от теплого тела к холодному и от холодного тела к теплому. Между тем действительные процессы, происходящие вокруг нас, необратимы, так как они самопроизвольно идут только в одном направлении: теплота идет от теплого тела к холодному, газ вытесняет только из резервуара с высоким давлением в окружающее пространство и т. п. Опыт показывает, что все процессы идут в направлении установления в любой системе равновесия, т. е. выравнивания в ней давлений, температур, концентраций и др.

Утверждение о невозможности получения работы за счет энергии тел, находящихся в термодинамическом равновесии, составляет основное положение второго закона термодинамики.

При рассмотрении положений второго закона чаще всего исходят из постулатов (аксиом), основанных на частных соображениях о работе тепловых двигателей.

Существует много эквивалентных друг другу формулировок второго закона, например:

«тепло не может самопроизвольно переходить от менее нагретого тела к более нагретому телу» (Клаузиус);

«невозможно построить периодически действующую машину, единственным результатом действия которой было бы совершенное механической работы за счет охлаждения теплового резервуара» (Планк, Томсон).
Тепловые двигатели работают таким образом, что рабочее тело расширяется в результате получения теплоты Q_1 от источника, имеющего высокую температуру. Для того чтобы вернуться в первоначальное состояние, нужно снова сжать рабочее тело, но при этом полезная работа получена не будет. Для получения полезной работы (работа сжатия должна быть меньше работы расширения) необходимо в процессе расширения понизить давление рабочего тела путем отвода от него части теплоты Q_2 к источнику с более низкой температурой. На рис. 6.1 подвод и отвод теплоты произойдут на различных участках цикла: подвод в процессе 4-1, а отвод в процессе 2-3.

Согласно формулировке Планка нельзя, получив теплоту из некоторого резервуара, превратить ее в работу, а затем снова эту работу превратить в теплоту в резервуаре с более высокой температурой. Так из формулировки Планка вытекает формулировка Клаузиуса.

Но из формулировки последнего следует, что невозможно передать теплоту к высокотемпературному источнику, без каких-либо дополнительных условий.

Для получения полезной работы от двигателя, или переноса теплоты от холодного источника к горячему необходимы компенсирующие процессы: отвод теплоты в холодильник или же затраты работы. В тепловом двигателе (рис. 6.1) из нагревателя с высокой температурой подводится теплота Q_1, а отводится в холодильник с низкой температурой теплота Q_2; полученная работа расширения определяется пл. 12561; затраченная на сжатие работа эквивалентна пл. 34653. В результате осуществления этих процессов рабочее тело прошло через ряд последовательных изменений состояния и вернулось к исходному, т. е. совершило замкнутый круговой процесс-цикл.

Полезная работа двигателя за цикл равна разности работ расширения и сжатия

$$L_\text{ц} = L_{\text{расш}} - L_{\text{сж}} = \text{пл. } 12561 - \text{пл. } 34653 = \text{пл. } 12341.$$

С другой стороны, в работу превращается $Q_1 - Q_2$, следовательно,

$$L_\text{ц} = Q_1 - Q_2.$$

Степень совершенства преобразования теплоты в работу в цикле оценивается отношением полученной работы $L_\text{ц}$ к подведенной
теплоте Q_1. Это отношение называют термическим к. п. д. цикла и обозначают

$$\eta_t = \frac{L_u}{Q_1} = \frac{Q_1 - Q_2}{Q_1}. \quad (6.1)$$

Так как отводимая от рабочего тела машины теплота Q_2 не может равняться нулю, то η_t всегда меньше 1.

Рассмотренный выше цикл называется прямым. В таких циклах теплота превращается в работу; в них работа расширения больше работы сжатия. По прямым циклам работают тепловые двигатели (двигатели внутреннего сгорания, газотурбинные установки, паровые машины, ракетные двигатели).

Таким образом, второй закон исключает возможность построения «вечного двигателя второго рода», который бы совершал работу за счет энергии тепла, находящихся в тепловом равновесии, подобно тому, как первый закон термодинамики исключает возможность построения «вечного двигателя первого рода», который бы выполнял работу «из ничего», без внешнего источника энергии. Если цикл, изображенный на рис. 6.1, представить протекающим в обратном направлении 1-4-3-2-1, то для его осуществления необходимо затратить работу, эквивалентную площади цикла. При этом от холодного источника будет передаваться рабочему телу теплота Q_2, а нагревателю — теплота $Q_1 = Q_2 + L_u$.

Таким образом, при затрате извне работы (компенсирующий процесс) теплота будет перетекать от холодного источника к горячему. По обратному циклу работают тепловые насосы и холодильные машины, где на осуществление обратного цикла затрачивается работа; в них работа сжатия больше работы расширения.

Для оценки работы холодильных машин применяется так называемый холодильный коэффициент, определяемый отношением полезной теплоты Q_2, отнятой от холодного источника ограниченной емкости к затраченной работе

$$\varepsilon = \frac{Q_2}{L_u} = \frac{Q_2}{Q_1 - Q_2}. \quad (6.2)$$

В холодильной машине теплота Q_1 выбрасывается в окружающую среду — источник неограниченной емкости. Машины, основным продуктом производства которых является теплота Q_1, передаваемая в источник ограниченной емкости, называются тепловыми насосами. Эффективность работы тепловых насосов оценивается отопительным коэффициентом, представляющим собой отношение теплоты Q_1, переданной потребителю, к затраченной работе L_u

$$\varphi = \frac{Q_1}{L_u} = \frac{Q_1}{Q_1 - Q_2}. \quad \text{В этом случае теплота } Q_2 \text{ отбирается от источника неограниченной емкости (например, атмосфера, водные массивы и т. п.).}$$

Комбинация из цикла двигателя и циклов теплового насоса или холодильной установки представляет собой цикл теплового
трансформатора, который позволяет перекачивать теплоту от источника одной температуры к источнику другой температуры в ходе совмещенного цикла. Назначение теплового трансформатора — изменение потенциала теплоты.

Если трансформатор предназначен для получения теплоты при более низкой температуре, чем исходная температура горячего источника, то такой трансформатор называется понижающим. Если в трансформаторе получена теплота при температуре более высокой, чем исходная, то такой трансформатор называется повышающим.

Большое значение при термодинамических исследованиях имеют циклы, состоящие из обратимых процессов, при осуществлении которых нет потерь работы — обратимые циклы.

§ 2. Цикл Карно

Цикл, дающий максимальное значение термического К. п. д. (при определенных температурах нагревателя и охладителя), предложенный французским ученым — инженером Сади Карно, носит название цикла Карно. Карно в 1824 г. опубликовал работу «Размышление о движущей силе огня и машинах, способных развивать эту силу». В этом труде Карно впервые сформулировал положения второго закона термодинамики о возможностях превращения теплоты в работу.

Цикл Карно представлен на рис. 6.2 в виде кругового процесса 1-2-3-4-1. Этот цикл состоит из адапабат 2-3 и 4-1 и изотерм 1-2 и 3-4. Прямой цикл совершается по 1-2-3-4-1, и физическая картина явления может быть представлена следующим образом. В точке 1 находится рабочее тело (газ) с давлением p_1, объемом V_1 и температурой T_1, равной температуре нагревателя, заключающего в себе большой запас энергии. Поршень двигателя под влиянием высокого давления начинает двигаться вправо, при этом внутреннее пространство цилиндра сообщено с нагревателем, поддерживающим в расширяющемся газе постоянную температуру T_1, посредством передачи ему соответствующего количества энергии в виде теплоты. Таким образом, расширение газа идет изотермически по кривой 1-2. В точке 2 цилиндр изолируется от нагревателя, но газ продолжает расширяться, двигая поршень в том же направлении; процесс расширения идет без подвода теплоты, т. е. адапабатно по кривой 2-3. В этом процессе газ в работу расширения превращает часть внутренней энергии и, следовательно, понижает свою температуру до T_2, равной температуре охладителя. В этот момент поршень достигает своего крайнего правого положения.
Обратное движение поршня происходит под воздействием энергии, накопленной в маховике и передаваемой посредством кривошипно-шатунного механизма; газ сжимается сначала изотермически, для этого внутреннее пространство цилиндра сообщается с охладителем, поддерживающим температуру T_2, а в точке 4 цилиндр изолируется от охладителя и дальнейшее сжатие идет по адибате 4-1. Сжатие кончается в точке 1, где газ приходит к своему начальному состоянию. Цикл закончен и возможно повторение его сколько угодно раз. Прослежим процессы, происходящие с рабочим телом в этом цикле. Рабочее тело обладает свойствами идеального газа.

Процесс 1-2 (изотермическое расширение).
Газ совершает работу, определяемую пл. 12681 и равную

$$L_{1-2} = mRT_1 \ln \frac{V_2}{V_1}.$$

Из нагревателя подводится теплота, эквивалентная этой работе

$$Q_{1-2} = Q_1 = mRT_1 \ln \frac{V_2}{V_1}.$$

Процесс 2-3 (адиабатное расширение).
Газ совершает работу, определяемую пл. 23562 и равную

$$L_{2-3} = \frac{mR(T_1 - T_2)}{k-1}, \quad Q_{2-3} = 0.$$

Температура газа снижается до T_2.

Процесс 3-4 (изотермическое сжатие).
На сжатие газа затрачивается работа, определяемая пл. 43574 и равная

$$L_{3-4} = mRT_2 \ln \frac{V_4}{V_3} = -mRT_2 \ln \frac{V_3}{V_4}.$$

В охладитель при температуре T_2 отводится теплота, эквивалентная этой работе

$$Q_{3-4} = Q_2 = L_{3-4} = -mRT_2 \ln \frac{V_3}{V_4}.$$

Процесс 4-1 (адиабатное сжатие).
На сжатие газа затрачивается работа, определяемая пл. 14781 и равная

$$L_{4-1} = \frac{mR(T_2 - T_1)}{k-1} = -\frac{mR(T_1 - T_2)}{k-1}, \quad Q_{4-1} = 0.$$

Газ нагревается до температуры T_1.
Результаты цикла следующие.
Полезная работа цикла определяется суммой работ, совершенных газом за весь цикл. Суммируя площади, выражающие работу газа в отдельных процессах, с учетом знаков работы находим

пл. $12341 = \text{пл.} \ 12681 + \text{пл.} \ 23562 - \text{пл.} \ 43574 - \text{пл.} \ 14781$.

3^*
Эта работа определяется также суммированием работ
\[L_{ul} = L_{1.2} + L_{2.3} + L_{3.4} + L_{4.1}. \]
Подставляя значения этих работ, имеем
\[L_{ul} = mRT_1 \ln \frac{V_2}{V_1} + \frac{mR(T_1 - T_2)}{k - 1} - mRT_2 \ln \frac{V_3}{V_1} - \frac{mR(T_1 - T_2)}{k - 1}. \]
Как видно из полученной формулы, адабатные работы взаимно уничтожаются, так как пл. 23562 равна пл. 14781, следовательно,
\[L_{ul} = mRT_1 \ln \frac{V_2}{V_1} - mRT_2 \ln \frac{V_3}{V_3}, \]
и теплота, превращенная в работу, равна
\[Q_2 - Q_1 = L_{ul} = mR \left(T_1 \ln \frac{V_2}{V_1} - T_2 \ln \frac{V_3}{V_4} \right). \]
Но затраченная теплота равна теплоте, подведенной при изотермическом расширении
\[Q_1 = Q_{1.2} = mRT_1 \ln \frac{V_2}{V_1}. \]
Таким образом, термический к. п. д. цикла Карно может быть выражен формулой
\[\eta_t = \frac{L_{ul}}{Q_1} = \frac{T_1 \ln \frac{V_2}{V_1} - T_2 \ln \frac{V_3}{V_4}}{T_1 \ln \frac{V_2}{V_1}}. \]
Эта формула упрощается на основании следующих соображений. Для адабат 2-3 и 4-1 имеем зависимости:
адиабата 2-3 \(T_1 V_2^{k-1} = T_2 V_3^{k-1} \),
adиабата 4-1 \(T_1 V_4^{k-1} = T_2 V_4^{k-1} \).
После деления первого уравнения на второе получим
\[\left(\frac{V_2}{V_1} \right)^{k-1} = \left(\frac{V_3}{V_4} \right)^{k-1}. \]
Логарифмируя, находим
\[(k - 1) \ln \frac{V_2}{V_1} = (k - 1) \ln \frac{V_3}{V_4} \text{ или } \ln \frac{V_2}{V_1} = \ln \frac{V_3}{V_4}. \]
Следовательно, в уравнении термического к. п. д. логарифмы сокращаются и уравнение приводится к виду
\[\eta_t = \frac{T_1 - T_2}{T_1} = 1 - \frac{T_2}{T_1}. \quad (6.3) \]
Как видно из выражения (6.3), величина η зависит от T_1 и T_2. При этом η тем больше, чем больше разница между T_1 и T_2. Термический к. п. д. цикла Карно равен единице в практически недостижимых случаях, когда $T_2 = 0$ или $T_1 = \infty$.

§ 3. Теорема Карно

В рассмотренном выше цикле Карно рабочим телом был идеальный газ. Покажем, что термический к. п. д. обратимого цикла, действующего между нагревателем и охладителем, однозначно определяется температурами T_1 и T_2 тепловых источников и не зависит от рабочего тела цикла. Более того, можно показать, что термический к. п. д. любого необратимого цикла $\eta^{\text{абн}}$, протекающего между теми же тепловыми источниками, меньше термического к. п. д. обратимого цикла $\eta^{\text{обр}}$.

Рассмотрим два цикла Карно, причем в первой машине I (рис. 6.3) рабочим телом является идеальный газ, а во второй машине II — произвольно взятое вещество. Обе машины, которые называют сопряженными, имеют общий теплообменник и холодильник с температурами T_1 и T_2.

Пусть машина I забирает у теплоисточника теплоту Q_1, отдает в холодильник теплоту Q_2, производит работу $L = Q_1 - Q_2$ и имеет термический к. п. д. $\eta = \frac{Q_1 - Q_2}{Q_1} = \frac{T_1 - T_2}{T_1}$.

Если бы машина II забирала у теплоисточника теплоту $Q'_1 = Q_1$, а работы, выполняемые за цикл I и II машинами, были бы равны $L = L'$, то были бы равны как теплоты, отдаваемые холодильнику, $Q'_2 = Q_2$, так и термические к. п. д. $\eta' = \eta$.

Если теперь допустить, что $\eta > \eta'$, то это значит, что $L > L'$, т. е. машина I превращает в работу больше теплоты, заботимой от теплоисточника, чем машина II, а отдает холодильнику меньше теплоты, чем машина II $Q_2 < Q'_2$.

Если цикл машины II производить в обратном направлении, полагая, что $\eta > \eta'$ ($L > L'$), то в результате выполнения обоих циклов из холодильника поглощается теплота, эквивалентная работе $L - L'$, так как от машины I холодильник получает теплоту Q_2, а отдает машине II большее количество теплоты Q'_2. В итоге холодильник теряет теплоту $Q'_2 - Q_2$, поскольку было принято, что $Q'_1 = Q_1$, а $L = Q_1 - Q_2$ и $L' = Q'_1 - Q'_2$, то $Q'_2 - Q_2 = L - L'$.

В результате совмещения работы двух машин состояние теплоисточника не меняется, он получает от машины II столько же теплоты, сколько отдает I. Но перенос теплоты $Q'_2 - Q_2$ от холодильника и теплоисточника, без компенсирующего процесса, противо-
речит второму закону термодинамики и полученный вывод говорит о том, что допущенное неравенство к. п. д. неправильно.

Таким образом, предположение о том, что можно изменить термический к. п. д. машины, взяв другую не с идеальным газом, а с произвольным веществом, неправомочно. Это положение представляет собой теорему Карно, которая говорит о том, что термический к. п. д. цикла с двумя источниками теплоты не зависит от свойств рабочего тела цикла.

Если рассматривать необратимый цикл между двумя источниками теплоты с температурами T_1 и T_2, то внешняя необратимость будет соответствовать конечной разности температур между источниками теплоты и рабочим телом. Естественно предположить, что $T_{1 \text{ тела}} = T_{1 \text{ нагр}} - \Delta T_1$, а $T_{2 \text{ тела}} = T_{2 \text{ хол}} + \Delta T_2$. Поэтому интервал температур, в которых осуществляется цикл, становится меньше, а это уменьшает термический к. п. д. цикла.

В циклах, кроме внешней необратимости, может существовать еще и внутренняя необратимость: трение, излучение в окружающую среду, волновые потери и т. д. Все эти потери приведут к дальнейшему уменьшению термического к. п. д. цикла.

Таким образом, в любом необратимом цикле $\eta_{\text{необр}} < \eta_{\text{обр}}$.

§ 4. Интеграл Клаузиуса

Для любого цикла имеем

$$\eta_t = 1 - \frac{Q_2}{Q_1}.$$

Для обратимого цикла Карно, кроме того, известно, что

$$\eta_t = 1 - \frac{T_2}{T_1}.$$

Приравнивание правых частей этих уравнений дает

$$\frac{Q_2}{Q_1} = \frac{T_2}{T_1} \quad \text{или} \quad \frac{Q_3}{T_2} = \frac{Q_1}{T_1}.$$

Отметим, что в этом выражении Q_2 величина отрицательная

$$\frac{Q_1}{T_1} + \frac{Q_2}{T_2} = \sum \frac{Q}{T} = 0. \quad (6.4)$$

Величины $\frac{Q}{T}$ называются приведенными теплотами, и полученное выражение можно сформулировать так: в обратимом цикле Карно сумма приведенных теплот равна нулю.

Весьма просто можно доказать, что полученное равенство верно не только для цикла Карно, но и для любого обратимого цикла. Пусть имеется обратимый цикл, представленный на рис. 6.4. Проводим ряд близко расположенных адиабат, которые разобьют цикл на большое количество элементарных циклов, состоящих
из 2 адиабат и 2 весьма малых отрезков кривой, ограничивающих цикл. Изменение температуры по отрезкам кривой весьма мало и может быть сделано сколько угодно малым при увеличении количества адиабат; поэтому в каждом элементарном цикле можем отрезки кривой заменить отрезками изотерм и представить исследуемый цикл в виде большого количества элементарных циклов Карно.

По мере увеличения количества адиабат ошибки при замене контура цикла изотермами будет уменьшаться. Для каждого элементарного цикла Карно можно написать:

для цикла $a' - b' - c' - d' - a'$
$$\sum \frac{\Delta Q'}{T'} = 0;$$

для цикла $a'' - b'' - c'' - d'' - a''$
$$\sum \frac{\Delta Q''}{T''} = 0;$$

для цикла $a'' - b'' - c'' - d'' - a''$
$$\sum \frac{\Delta Q'''}{T'''} = 0.$$

Суммируя выражения для отдельных элементарных циклов, получаем для всего количества циклов
$$\sum \frac{\Delta Q}{T} = 0.$$

При бесконечном увеличении количества проведенных адиабат отрезки $b' c', b'' c'', a' d' a'$ и $a'' d''$ сольются в одну кривую, представляющую собой контур цикла, и в пределе получим
$$\int \frac{dQ}{T} = 0,$$
(6.5)
т. е. интеграл от $\frac{dQ}{T}$, взятый по контуру цикла, равен 0. Это уравнение называется интегралом Клаузиуса.

Для необратимых циклов вследствие механических и тепловых потерь получаем следующее:
$$\eta^\text{необр} \leq \eta^\text{обр},$$
следовательно,
$$1 - \frac{Q_2}{Q_1} < 1 - \frac{T_2}{T_1}.$$
Отсюда находим, что
$$\frac{Q_2}{Q_1} > \frac{T_2}{T_1} \text{ или } \frac{Q_3}{T_2} > \frac{Q_1}{T_1}.$$
Учитывая знак при Q_2, приходим к неравенству

$$\frac{Q_1}{T_1} + \frac{Q_2}{T_2} < 0,$$

а отсюда

$$\sum \frac{\Delta Q}{T} < 0.$$

В пределе для всех необратимых циклов

$$\oint = \frac{dQ}{T} < 0. \quad (6.6)$$

Объединяя выражения (6.5) и (6.6) для любых циклов, получим

$$\oint \frac{dQ}{T} \leq 0, \quad (6.7)$$

причем знак равенства относится к обратимым циклам, а знак неравенства — к необратимым.

§ 5. Термодинамическая шкала температур

Изучение цикла Карно приводит к одному важному следствию, которое дает теоретические основания для выбора температурной шкалы, называемой термодинамической шкалой температур. В § 2 главы I было дано определение эмпирической температуры. Из определения ясно, что эмпирическая шкала зависит от выбора термометрического тела и, следовательно, не является абсолютной. Выводы, полученные выше, привели нас к уравнению, которое для некоторого количества рабочего тела может быть написано в форме

$$\frac{T_2}{T_1} = \frac{Q_2}{Q_1}.$$

Это уравнение показывает, что отношение двух температур рабочего тела может быть измерено отношением теплот: Q_2 — теплоты, отдаваемой холодильнику, и Q_1 — теплоты, получаемой от нагревателя. Это же уравнение может быть написано в виде

$$\frac{\Delta T}{T_1} = \frac{Q_1 - Q_2}{Q_1} = \frac{L_n}{Q_1}.$$

Так как величина термического к. п. д. в цикле Карно зависит только от температур источника теплоты, но не зависит от свойств используемого рабочего тела, то приведенные формулы могут служить для построения шкалы температур с помощью измерения теплоты в цикле Карно.

Для доказательства этого положения на произвольных адиабатах I и II (рис. 6.5) построим обратимые циклы Карно, в которых
изотермы имеют температуры T_1, T_2, T_3, ..., а теплота получаемая и отдаваемая на изотермах в этих циклах — Q_1, Q_2, Q_3 и т. д.

Для циклов 1, 2, 3 на основании (6.8) можно записать:

$$ \frac{Q_1}{Q_2} = \frac{T_1}{T_2} , \quad \frac{Q_3}{Q_4} = \frac{T_2}{T_3} , \quad \frac{Q_3}{Q_4} = \frac{T_3}{T_4} \quad \text{и т. д.} $$

Следовательно, температуры всех изотерм должны относиться как количества теплоты, получаемые или отдаваемые на изотермах в циклах Карно, т. е.

$$ Q_1 : Q_2 : Q_3 : \ldots = T_1 : T_2 : T_3 : \ldots \quad (6.8) $$

Это равенство позволило Кельвину принять величину Q за меру температуры.

Построение термодинамической шкалы температур можно представить следующим образом. Пусть температуры цикла A-B-C-D (рис. 6.5) равны температуры кипения воды T_K и температуры таяния льда T_H. Полагая, что в этом цикле в работу превращена теплота Q, разобьём сеткой изотерм площадь цикла A-B-C-D на 100 равных частей так, чтобы в каждом цикле $Q = \frac{Q}{100}$, тогда изотермы проходят через 1°. Так же можно построить изотермы, лежащие ниже T_H. Наименьшая предельная температура $T_0 = 0$, при которой термический к. п. д. цикла Карно равен единице, принимается за начальную точку термодинамической шкалы температур. Эта термодинамическая шкала совпадает с абсолютной шкалою температур, построенной по термометру с идеальным газом.

§ 6. Энтропия

Из математики известно, что если интеграл, взятый по контуру замкнутой кривой, равен 0, то подинтегральное выражение представляет собой полный дифференциал некоторой функции. Следовательно, $\frac{dQ}{T}$ представляет собой полный дифференциал функции, которая в термодинамике получила название энтропии. Таким образом,

$$ \frac{dQ}{T} = dS \quad \text{или} \quad dQ = TdS. \quad (6.9) $$

Это соотношение представляет собой математическое выражение второго закона термодинамики для обратимых процессов.

Энтропия представляет собой параметр, определяющий состояние газа, и является функцией состояния. На рис. 6.6 представлен
обратимый цикл, для которого на основании предыдущего можно написать

\[\oint \frac{dQ}{T} = 0, \]

или, представляя этот интеграл в виде суммы двух интегралов,

\[\oint \frac{dQ}{T} = \int_{a-b-c} \frac{dQ}{T} + \int_{c-d-a} \frac{dQ}{T} = 0. \]

Из этого выражения получаем, меняя пределы интегрирования у второго интеграла,

\[\int_{a-b-c} \frac{dQ}{T} = \int_{a-b-c} \frac{dQ}{T} = \int_{a}^{c} dS = S_c - S_a. \quad (6.10) \]

Таким образом, независимо от пути перехода из точки \(a\) в точку \(c\) интеграл дает одно и то же изменение энтропии газа; другими словами, при изменении состояния газа, определяемом начальной точкой \(a\) и конечной \(c\), изменение энтропии одинаково независимо от вида кривой, по которой происходит изменение состояния. Это изменение одинаково и для обратимых, и для необратимых процессов, но для обратимых процессов это изменение энтропии может быть оценено величиной интеграла (6.9), а для необратимых значение интеграла всегда меньше, чем изменение энтропии. Из всего вышесказанного ясно, что энтропия представляет собой функцию рабочего тела.

Можно объединить математические выражения первого и второго законов термодинамики в одном уравнении:

первый закон

\[dQ = dU + dL; \]

второй закон

\[dQ = TdS, \]

откуда получаем

\[TdS = dU + dL. \quad (6.11)\]

Это соотношение, охватывающее первый и второй законы термодинамики, называют термодинамическим тождеством. Все выведенные уравнения применимы для обратимых циклов и процессов. Для необратимых циклов имеется выражение

\[\oint \frac{dQ}{T} < 0. \]
Примем это выражение для цикла, представленного на рис. 6.6. Предположим, что цикл состоит из необратимого процесса $a\cdot b\cdot c$ и обратимого $c\cdot d\cdot a$. Так как часть цикла протекает необратимо, т. е. с потерями, то и для всего цикла должно быть:

$$
\oint \frac{dQ}{T} = \int_{a\cdot b\cdot c} \frac{dQ}{T} + \int_{c\cdot d\cdot a} \frac{dQ}{T} < 0
$$

или

$$
\int_{a\cdot b\cdot c} \frac{dQ}{T} < \int_{a\cdot d\cdot c} \frac{dQ}{T}.
$$

Но для обратимого процесса $a\cdot d\cdot c$ имеем

$$
\int_{a\cdot d\cdot c} \frac{dQ}{T} = S_c - S_a,
$$

следовательно, для необратимого процесса $a\cdot b\cdot c$

$$
\int_{a\cdot b\cdot c} \frac{dQ}{T} < S_c - S_a,
$$

t. е. в необратимом процессе значение интеграла всегда меньше, чем изменение энтропии; в дифференциальной форме это выражение имеет вид

$$
\frac{dQ}{T} < dS.
$$

Обобщая это выражение для обратимых и необратимых процессов, получим

$$
\frac{dQ}{T} \leq dS. \quad (6.12)
$$

Для замкнутых систем (т. е. представленных самим себе) и адабатно изолированных от внешнего пространства ($dQ = 0$)

$$
dS \geq 0. \quad (6.13)
$$

Следовательно, для обратимых процессов $dS = 0$ и $S_2 = S_1$, а для необратимых $dS > 0$ и $S_2 > S_1$.

Энтропия адабатно замкнутой системы при обратимых процессах остается без изменения, а при необратимых увеличивается. Таким образом, энтропия такой системы никогда не может уменьшаться.

Следует иметь в виду, что энтропия отдельных тел в системе может уменьшаться, и увеличиваться, и оставаться без изменения под влиянием процессов, происходящих в системе, но общая энтропия замкнутой системы при обратимых процессах может только увеличиваться. Если в изолированной системе имеется два тела с температурами T_1 и T_2, причем $T_1 > T_2$, то теплота будет передаваться от первого тела второму. Если запасы энергии в обоих телах весьма велики, то можно пренебречь изменением их температуры при про-
текании некоторого количества теплоты Q. При этом энтропия первого тела уменьшится на величину $\frac{Q}{T_1}$, а энтропия второго тела увеличится на $\frac{Q}{T_2}$. Изменение энтропии всей системы равно $\left(\frac{Q}{T_2} - \frac{Q}{T_1}\right)$, но эта величина положительна, так как $\frac{Q}{T_2} > \frac{Q}{T_1}$; следовательно, энтропия всей этой системы увеличилась. Для уменьшения энтропии этой системы необходимо передать теплоту от более холодного тела более теплому, что возможно только при затратах извне энергии, например при затрате механической энергии, как это делается в холодильных машинах.

§ 7. Физический смысл энтропии

Формулировки второго закона, которые были приведены выше, — это то, что дает нам опыт и второй закон, следует считать в такой же степени эмпирически доказанным, как и первый. Введение новой функции состояния энтропии дало возможность получить для адиабатно замкнутой системы такую математическую формулировку второго закона.

$$dS \geq 0.$$

Свойство энтропии возрастать в необратимых процессах, да и сама необратимость находит в противоречии с обратимостью всех механических движений и поэтому физический смысл энтропии не столь очевиден, как, например, физический смысл внутренней энергии. Максимальное значение энтропии замкнутой системы достигается тогда, когда система приходит в состояние термодинамического равновесия. Такая количественная формулировка второго закона термодинамики дана Клаузузусом, а ее молекулярно-кинетическое истолкование Больцманом, который ввел в теорию теплоты статистические представления, основанные на том, что необратимость тепловых процессов имеет вероятностный характер.

Переход из неравновесного состояния в равновесное представляет собой переход из состояния, которое может осуществляться меньшим числом способов, в состояние, осуществляемое значительно большим числом способов. Наиболее вероятным для замкнутой системы будет то состояние, которое осуществляется наибольшим числом способов, т. е. состояние теплового равновесия.

В то же время маловероятным был бы самопроизвольный выход системы из состояния равновесия. Число способов, которыми может быть осуществлено данное равновесное состояние, называется термодинамической вероятностью ω.

Число способов ω, которыми может осуществляться данное состояние системы, состоящее, например, из двух тел, равно произведению чисел способов ω_1 и ω_2, которыми могут быть осуществлены состояния каждого из этих тел в отдельности

$$\omega_{\text{сист}} = \omega_1 \omega_2. \quad (6.14)$$
Но термодинамическая вероятность не связана с тепловыми характеристиками системы, а лишь с механическими, такими, как положение молекул в пространстве и их скоростями. Кроме того, в отличие от ранее рассмотренных функций состояния \((U, I)\), \(\omega\) не аддитивна — увеличение количества вещества в системе не приводит к такому же увеличению функции \(\omega\).

Больцман предположил существование функциональной зависимости между \(S\) и \(\omega\). Для системы, состоящей из двух частей,

\[
S_{\text{сист}} = S_1 + S_2, \quad (6.15)
\]

а термодинамическая вероятность осуществления результирующего состояния может быть определена по (6.14)

\[
S_{\text{сист}} (\omega_1, \omega_2) = S (\omega_1) + S (\omega_2). \quad (6.16)
\]

Такому функциональному уравнению удовлетворяет логарифмическая функция и энтропия системы

\[
S_{\text{сист}} = k \ln \omega. \quad (6.17)
\]

Из (6.17) следует, что при возрастании вероятности состояния системы увеличивается и \(S_{\text{сист}}\), значение которой при равновесии должно быть максимальным, как и значение \(\omega\). В уравнении (6.17) к постоянная величина, связывающая функцию \(S\) с термическими величинами. Определить ее значение.

При изотермическом расширении 1 моль идеального газа от объема \(V_1\) до объема \(V_2\) вся сообщаемая газу теплота полностью превращается в работу (\(\Delta U = 0\))

\[
Q = L = RT \ln \frac{V_2}{V_1}; \quad (6.18)
\]

по формуле Больцмана (6.17) имеем

\[
\Delta S = S_2 - S_1 = k \ln \frac{\omega_2}{\omega_1}. \quad (6.19)
\]

Предположим, что объем \(V_1\) является \(x\)-й частью объема \(V_2\). Пусть в объеме \(V_2\) находится одна молекула. Эту молекулу с вероятностью \(\omega_2 = 1/1\) можно найти в объеме \(V_2\) и только с вероятностью \(\omega_1 = x\) ее можно обнаружить в объеме \(V_1\).

Для двух молекул вероятность найти обе молекулы одновременно в \(V_2\) и \(V_1\):

\[
\omega_2 = 1/1, \quad \omega_1 = (1/x)^2,
\]

для трех молекул:

\[
\omega_2 = 1/1, \quad \omega_1 = (1/x)^3,
\]

для \(N_A\) молекул (\(N_A\) — число Авогадро):

\[
\omega_2 = 1/1, \quad \omega_1 = (1/x)^{N_A}.
\]

Отношение термодинамических вероятностей дает возможность узнать, во сколько раз вероятнее найти все молекулы в \(V_2\), чем в \(V_1\):

\[
\frac{\omega_2}{\omega_1} = x^{N_A} = \left(\frac{V_2}{V_1}\right)^{N_A} \text{ или } \ln \frac{\omega_2}{\omega_1} = N_A \ln \frac{V_2}{V_1}.
\]

77
Из сопоставления выражений (6.18) и (6.19) найдем, учитывая соотношение между \(\frac{\omega_2}{\omega_1} \),

\[
\Delta S = \frac{kN_A}{R} \cdot \frac{Q}{T}.
\]

(6.20)

Выберем \(\kappa \) так, чтобы \(kN_A = R \), тогда величину

\[
\kappa = \frac{R}{N_A} = 8,314 \div 6,02 \cdot 10^{23} = 1,38 \cdot 10^{-23} \text{ дж/(моль·град)}
\]

называют константой Больцмана.

Следует отметить, что полученное для частного случая изотермического процесса расширения измерение энтропии \(\Delta S = Q/T \) такое же, какое и раньше было получено из анализа цикла Карно. Таким образом, статистическая физика обосновывает существование функции состояния — энтропии, приращение которой при обратимых процессах равно приведенной теплоте, и положения о том, что энтропия замкнутой системы стремится к максимуму. Эта функция состояния позволяет с помощью измерений термических величин выяснить направление процессов и условия равновесия. С принципом возрастания энтропии в замкнутых системах связаны представления о «тепловой смеси Вселенной», выдвинутые Клаузиусом, который утверждал: «Энергия мира постоянна, энтропия мира стремится к максимуму». Отсюда — вывод о достижении в результате односторонних процессов, протекающих в природе, конечного состояния равновесия, в котором энтропия мира максимальна и Вселенная погибает от тепловой смерти. Ошибочность концепций Клаузиуса, Томсона, Эйнштейна была раскрыта Ф. Энгельсом, В. И. Лениным, полагающими, что Вселенную нельзя рассматривать как конечную изолированную систему. В космосе могут протекать и протекают такие процессы, которые непосредственно не подчиняются законам термодинамики конечных систем. В связи со статистической трактовкой второго закона термодинамики следует отметить прямую связь между энтропией и степенью беспорядка, ибо всякий естественный процесс протекает так, что система переходит в состояние с большим беспорядком; температуры тел в системе сами собой выравниваются, газы между собой перемешиваются и т. п. Состояние с большим беспорядком характеризуется большей термодинамической вероятностью, чем более упорядоченное состояние.

Необратимые процессы протекают так, что система переходит из менее вероятного состояния в более вероятное, причем беспорядок в системе увеличивается. Следовательно, энтропия является мерой беспорядка в системе. Рост энтропии в необратимых процессах приходит к тому, что энергия, которой обладает система, становится менее доступной для преобразования в работу, а в состоянии равновесия такое преобразование вообще невозможно. Состояние равновесия относительно окружающей среды удачно обозначено в английской литературе как «dead state» (мертвое состояние системы). Таким образом, мы пришли к первоначальной формулировке второго закона в § 1 этой главы: «Невозможно получить работу за счет энергии тел, находящихся в термодинамическом равновесии».
ГЛАВА VII
ИЗМЕНЕНИЕ ЭНТРОПИИ В ПРОЦЕССАХ.
ЭНТРОПИЙНЫЕ ДИАГРАММЫ

§ 1. Изменение энтропии в процессах

В большинстве термодинамических процессов энтропия рабочего тела меняет свое значение. Воспользуемся термодинамическим тождеством (6.11).

Для реального газа при переменных V и T это уравнение можно представить в виде

$$TdS = \left(\frac{\partial U}{\partial T} \right)_V dT + \left(\frac{\partial U}{\partial V} \right)_T dV + pdV,$$

или

$$TdS = \left(\frac{\partial U}{\partial T} \right)_V dT + \left[\left(\frac{\partial U}{\partial V} \right)_T + p \right] dV.$$

Используя вторую форму уравнения первого закона термодинамики и выражаю dQ через TdS, находим

$$TdS = dI - Vdp.$$

Для реального газа при переменных p и T это уравнение можно записать в виде

$$TdS = \left(\frac{\partial l}{\partial T} \right)_p dT + \left(\frac{\partial l}{\partial p} \right)_T dp - Vdp,$$

или

$$TdS = \left(\frac{\partial l}{\partial T} \right)_p dT + \left[\left(\frac{\partial l}{\partial p} \right)_T - V \right] dp.$$

Найдем из полученных уравнений значения dS

$$dS = \left(\frac{\partial U}{\partial T} \right)_V \frac{dT}{T} + \left[\frac{1}{T} \left(\frac{\partial U}{\partial V} \right)_T + \frac{p}{T} \right] dV,$$

(7.1)

$$dS = \left(\frac{\partial l}{\partial T} \right)_p \frac{dT}{T} + \left[\frac{1}{T} \left(\frac{\partial l}{\partial p} \right)_T - \frac{V}{T} \right] dp.$$

(7.2)

Изменение энтропии реального газа в процессах может быть вычислено путем интегрирования, если известны величины $\left(\frac{\partial U}{\partial T} \right)_V$, $\left(\frac{\partial l}{\partial T} \right)_p$, $\left(\frac{\partial U}{\partial V} \right)_T$, $\left(\frac{\partial l}{\partial p} \right)_T$.

Значительно проще получается вычисления для идеального газа

$$\left(\frac{\partial U}{\partial T} \right)_V = \frac{dU}{dT} = cv, \quad \left(\frac{\partial l}{\partial T} \right)_p = \frac{dl}{dT} = c_p.$$
Кроме того, вследствие отсутствия сил взаимодействия между молекулами идеального газа

\[\left(\frac{\partial U}{\partial V} \right)_T = 0, \quad \left(\frac{\partial V}{\partial p} \right)_T = 0. \]

С учетом сказанного уравнения (7.1) и (7.2) для 1 кг идеального газа имеют вид:

\[
\begin{align*}
\frac{ds}{T} &= c_v \frac{dT}{T} + \frac{pdv}{T}, \\
\frac{ds}{T} &= c_p \frac{dT}{T} - \frac{vdp}{T}.
\end{align*}
\]

Но из уравнения состояния идеального газа имеем:

\[
\frac{\rho}{\lambda} = \frac{R}{v}, \quad \frac{\nu}{\lambda} = \frac{R}{\rho},
\]

тогда уравнения (7.1) и (7.2) с учетом высказанный можно записать:

\[
\begin{align*}
\frac{ds}{T} &= c_v \frac{dT}{T} + R \frac{\delta v}{v}, \\
\frac{ds}{T} &= c_p \frac{dT}{T} - R \frac{dp}{\rho}.
\end{align*}
\]

Так как для идеального газа теплоемкости не зависят от температуры, то интегрирование этих уравнений производится легко и можно получить две формулы, определяющие изменение энтропии в процессах:

\[s_2 - s_1 = c_v \ln \frac{T_2}{T_1} + R \ln \frac{\nu_2}{\nu_1} = \sigma_v \ln \frac{T_2}{T_1} + (c_p - c_v) \ln \frac{\nu_2}{\nu_1}, \quad (7.5) \]

\[s_2 - s_1 = c_p \ln \frac{T_2}{T_1} - R \ln \frac{\rho_2}{\rho_1} = c_p \ln \frac{T_2}{T_1} - (c_p - c_v) \ln \frac{\rho_2}{\rho_1}. \quad (7.6) \]

Эти два уравнения дают возможность определить изменение энтропии в основных процессах идеального газа.

Для политропного процесса с показателем политропы \(n \) используем зависимость между температурой и объемом и, подставив ее в уравнение (7.5), получим

\[s_2 - s_1 = c_v \ln \left(\frac{\nu_1}{\nu_2} \right)^{n-1} + (c_p - c_v) \ln \frac{\nu_2}{\nu_1} =
\]

\[= c_v \ln \left(\frac{\nu_1}{\nu_2} \right)^{n-1} - (c_p - c_v) \ln \frac{\nu_1}{\nu_2}. \]
Несложные преобразования приводят уравнение к виду
\[s_2 - s_1 = c_v (n-k) \ln \frac{v_1}{v_2} = c_v (k-n) \ln \frac{v_2}{v_1}. \quad (7.7) \]

Используя уравнение (5.12), можно написать зависимость между температурами и давлениями в полигропном процессе
\[\frac{T_2}{T} = \left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}}. \]

Уравнение (7.6) после подстановки имеет вид
\[s_2 - s_1 = c_p \ln \left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} - (c_p - c_v) \ln \frac{p_2}{p_1}. \]

После несложных преобразований уравнение приводится к виду
\[s_2 - s_1 = c_v \frac{n-k}{n} \ln \frac{p_2}{p_1} = c_v \frac{k-n}{n} \ln \frac{p_1}{p_2}. \quad (7.8) \]

Можно изменение энтропии выразить также через изменение температуры, если, например, в уравнении (7.7) отношение объемов заменить отношением температур
\[\frac{v_2}{v_1} = \left(\frac{T_1}{T_2} \right)^{\frac{1}{n-1}}; \]

при этом получается
\[s_2 - s_1 = c_v (k-n) \ln \left(\frac{T_1}{T_2} \right)^{\frac{1}{n-1}} = c_v \frac{k-n}{n-1} \ln \frac{T_1}{T_2}. \quad (7.9) \]

Для основных термодинамических процессов можно получить следующие формулы:

Изохорный процесс, при \(n = \pm \infty \quad \frac{1}{n} = 0 \). Из уравнений (7.8) и (7.9) находим
\[s_2 - s_1 = c_v \ln \frac{p_2}{p_1} = c_v \ln \frac{T_2}{T_1}. \quad (7.10) \]

Изобарный процесс, при \(n = 0 \) из уравнений (7.7) и (7.9) получаем
\[s_2 - s_1 = c_p \ln \frac{v_2}{v_1} = c_p \ln \frac{T_2}{T_1}. \quad (7.11) \]

Изотермический процесс, при \(n = 1 \) из уравнений (7.7) и (7.8) находим
\[s_2 - s_1 = (c_p - c_v) \ln \frac{v_2}{v_1} = (c_p - c_v) \ln \frac{p_1}{p_2}; \quad (7.12) \]

Адиабатный процесс, из любого (из трех) уравнений находим, что при \(n = k \)
\[s_2 - s_1 = 0, \quad s_2 = s_1, \quad s = \text{const}. \]

81
Таким образом, обратимый адиабатный процесс протекает без изменения энтропии, поэтому обратимый адиабатный процесс называется изоэнтропным.

§ 2. T—s-диаграмма

Рассмотренная раньше p — v-диаграмма иногда называется рабочей диаграммой, так как работа газа в процессе на этой диаграмме представляется площадью, ограниченной кривой процесса, крайними ординатами и осью абсцисс.

Большое значение имеет при изучении процессов и циклов изображение их на T — s-диаграмме. В этой диаграмме по оси ординат откладывается температура, а по оси абсцисс — энтропия. Так как для обратимого адиабатного процесса $s = const$, то на этой диаграмме он представляется в виде вертикальной прямой. На рис. 7.1 представлена T — s-диаграмма. Каждая точка в этой системе координат характеризует определенное равновесное состояние газа, каждая кривая — термодинамический процесс; выделим на кривой две бесконечно близкие точки a и b и опустим на ось s перпендикуляры ad и bc. Бесконечно малая площадка $abcd$ равна Tds, но

$$Tds = dq.$$

Интегрируя это уравнение по всему пути процесса от 1 до 2, находим

$$q = \int_{1}^{2} Tds = \text{пл.} \quad 12341.$$

Таким образом, в T — s-диаграмме площадь, ограниченная кривой процесса, осью абсцисс и крайними ординатами, представляет собой теплоту, подводимую (отводимую) в процессе, поэтому T — s-диаграмму иногда называют тепловой диаграммой. Так как dq и ds имеют одинаковые знаки, то увеличение энтропии указывает на то, что в процессе теплота подводится к рабочему телу извне (процесс совершается от точки 1 к точке 2) и, наоборот, уменьшение энтропии характеризует процесс с отводом теплоты от рабочего тела в окружающую среду (движение процесса от точки 2 к точке 1).

На рис. 7.2 проведена касательная ae к кривой процесса в точке a; угол α, составляемый касательной с осью абсцисс, принадлежит прямоугольному треугольнику ade, в котором катет ad определяет температуру рабочего тела в процессе в момент a; угловой коэффициент равен

$$\operatorname{tg} \alpha = \frac{dT}{ds}. \quad (7.13)$$
А для любого политропного процесса можно написать две зависимости:

\[dq = Tds, \]
\[dq = c_\Phi \, dT. \]

Приравнивая правые части этих зависимостей и определяя значение теплоемкости политропного процесса, получаем

\[c_\Phi = T \frac{ds}{dT} \]

или, учитывая (7.13), найдем

\[c_\Phi = \frac{T}{tg \alpha}. \]

Но из рис. 7.2, а видно, что

\[c_\Phi = ed \]

и представляет собой подкакательную кривую процесса в точке а; эта подкакательная определяет истинную теплоемкость процесса при температуре Т. Положительному значению \(tg \alpha \) будет соответствовать положительное значение теплоемкости, отрицательному — отрицательное (рис. 7.2, б).

Цикл в \(T - s \)-диаграмме изображается замкнутой кривой. На рис. 7.3 представлен цикл \(a-b-c-d-a \). Если направление процессов в цикле по ходу движения часовой стрелки, т. е. по пути \(a-b-c-d-a \), то пл. abcefa представляет собой теплоту \(q_1 \), подведенную к рабочему телу извне, а отведенная теплота \(q_2 \) изображается пл. adcefa. Следовательно, теплота, эквивалентная работе, совершаемой рабочим телом в цикле, изображается площадью

\[l_4 = q_1 - q_2 = \text{пл. abcefa} - \text{пл. adcefa} = \text{пл. abcda}. \]

Отсюда следует, что термический к. п. д. определяется отношением площадей

\[\eta_t = \frac{q_1 - q_2}{q_1} = \frac{\text{пл. abcda}}{\text{пл. abcefa}}. \]
Термический к. п. д. обратимого цикла, представленного на T — s-диаграмме, определяется отношением площади цикла к площади, определяющей количество подводимой теплоты.

§ 3. Изображение на T — s-диаграмме основных процессов

На рис. 7.4 представлены основные газовые термодинамические процессы в газах. За начало принята точка O и через нее кривые, представляющие исследуемые процессы. Наиболее просто на T — s-диаграмме представляются изотермический и адабатный процессы.

Так как для обратимого адабатного процесса $s = \text{const}$, то он в этой диаграмме изображается прямой линией, перпендикулярной оси энтропий. На рис. 7.4 адабатный процесс представлен прямой 201. В процессе 0-1 температура газа уменьшается, следовательно, уменьшается внутренняя энергия газа и газ совершает работу расширения; в процессе 0-2, наоборот, внутренняя энергия газа увеличивается за счет работы, затраченной на сжатие газа.

Изотермический процесс в T — s-диаграмме представляет собой горизонтальной прямой 403, параллельной оси энтропий. В процессе 0-3 энтропия увеличивается, следовательно, к газу подводится теплота, но при подводе теплоты в изотермическом процессе газ совершает работу расширения, эквивалентную этой теплоте, в процессе 0-4 газ сжимается, и теплота, эквивалентная этой работе, должна быть отведена от газа, вследствие чего энтропия газа уменьшается.

Изохорный и изobarный процессы представляются в T — s-диаграмме кривыми, как это видно из уравнений (7.5) и (7.6). При постоянных значениях теплоемкостей построение дает логарифмические кривые; при значениях $c = f (T)$ эти кривые несколько изменяют свой вид.

Так как теплоемкости C_p и C_v положительны, то кривые расположены, как это показано на рис. 7.2, а, т. е. при увеличении значений энтропии в процессе кривые перехходят все к более высоким температурам.

Сравнивая уравнения изохоры и изобары

$$\Delta s_v = C_v \ln \frac{T_2}{T_1}, \quad \Delta s_p = C_p \ln \frac{T_2}{T_1},$$
находим следующее: так как \(c_p > c_v \), то при одинаковом повышении температуры, т. е. при \(\ln \frac{T_2}{T_1} = \text{idem} \), энтропия в изобарном процессе увеличивается больше, чем в изохорном \(\Delta s_p > \Delta s_v \). Следовательно, кривая изобарного процесса идет в диаграмме более полого, чем кривая изохорного процесса, так как это показано на рис. 7.4, где 5-0-6 представляет изохору, а 7-0-8 — изобару.

Сравним расположение кривых, представляющих процессы на \(p - v \) и \(T - s \)-диаграммах.

На рис. 7.5 представлены обе диаграммы с построенными кривыми процессов, причем одинаковые процессы обозначены на обеих диаграммах одинаковыми цифрами:

Рис. 7.5

0-1 — изобарное расширение. Температура газа при расширении повышается, так как

\[
\frac{v_2}{v_1} = \frac{T_2}{T_1},
\]

показатель полинтропы \(n = 0 \). Работа газа положительна. Внутренняя энергия газа увеличивается; извне подводится теплота в количестве, равном сумме изменения внутренней энергии и теплоты, эквивалентной работе расширения.

0-2 — изотермическое расширение. Работа газа положительна. Внутренняя энергия идеального газа остается в процессе без изменения; извне подводится теплота в количестве, эквивалентном работе расширения. Показатель полинтропы \(n = 1 \).

Полинтропные процессы расширения при показателе полинтропы \(0 < n < 1 \) располагаются между изобарой и изотермой в участке диаграммы 1-0-2. В этих процессах работа положительна; температура газа повышается, т. е. внутренняя энергия газа увеличивается, но по мере приближения значения показателя к 1 повышение температуры делается все меньше и расход тепла на увеличение внутренней энергии приближается к 0.

0-3 — адабатное расширение. Работа расширения положительна, но теплообмена с окружающим пространством нет.
и поэтому работа совершается за счет эквивалентного уменьшения внутренней энергии; температура газа понижается. Показатель политропы \(n = k \).

Политропные процессы расширения при показателе политропы \(1 < n < k \) расположены между изотермой и адиабатой, в участке диаграммы 2-0-3. В этих процессах работа газа положительна. Температура газа понижается и внутренняя энергия его уменьшается; в то же время из окружающей среды подводится к газу теплота; это видно из \(p - V \)-диаграммы, где эти процессы идут выше адиабаты, и из \(T - s \)-диаграммы, где эти процессы идут с увеличением энтропии. Следовательно, в этих процессах работа газа производится за счет теплоты, подводимой извне, и убыли внутренней энергии газа. Теплоемкость этих процессов отрицательна.

0-4 — и з о х о р н о е о х л а ж д е н и е. Газ работы не производит, часть его внутренней энергии отводится в окружающую среду в виде теплоты; показатель политропы \(n = \infty \).

Политропные процессы расширения при показателе политропы \(k < n < \infty \) расположены между адиабатой и изохорой на участке диаграммы 3-0-4. Работа газа в этих процессах положительна, а внутренняя энергия уменьшается. Так как температура газа понижается, теплота отводится от газа в окружающую среду (на \(p - V \)-диаграмме кривая этих процессов расположена ниже адиабаты, а на \(T - s \)-диаграмме видно, что в этих процессах энтропия уменьшается). Таким образом, в этих процессах внутренняя энергия газа уменьшается, причем часть ее отводится в окружающую среду в виде теплоты, а другая часть передается в виде работы расширения.

Аналогичную картину процессов можно представить и для процессов сжатия, расположенных на участке диаграммы 5-0-8.

§ 4. \(T - s \)-диаграмма для идеального газа

\(T - s \)-диаграмма, предназначенная для изучения процессов и циклов, которые совершаются рабочими телами, состоит из основной сетки изотерм и адиабат, представляющих собой горизонтальные и вертикальные прямые линии, и из нанесенной на этой основной сетке сетки изobar и изохор, представляющих собой кривые линии, как это показано в § 3. Для построения изobar основным уравнением служит уравнение (7.11)

\[
\Delta s_p = c_p \ln \frac{T_2}{T_1}.
\]

Если известна зависимость теплоемкости от температуры \(c_p = f(T) \) и заданы начальные условия (принимают \(T_0 = 273^\circ K, p_0 = 1 \text{ bar}, s_0 = 0 \)), то, задаваясь различными температурами \(T_2 \), можно определить соответствующее значение энтропии

\[
s_2 - s_0 = s_2 = c_p \ln \frac{T_2}{273}.
\]
Таким образом, по точкам можно построить основную изобару \(p = 1 \text{ bar} = \text{const} \). Построение остальных изobar ведется очень просто исходя из условия, что изобары идеального газа представляют собой кривые линии, эквидистантные между собой в горизонтальном направлении. Расстояния между изобарами в горизонтальном направлении определяются как изменение энтропии в изотермическом процессе, что представлено на рис. 7.6 отрезком \(a_2a_1 \). Из формулы (7.12) видно

\[
s_1 - s_2 = a_2 a_1 = R \ln \frac{p_2}{p_1},
\]

но для изобар \(p_1 \) и \(p_2 \) это расстояние одинаково для любых изотерм

\[
a_2 a_1 = R \ln \frac{p_2}{p_1} = a_1 a_0.
\]

Для построения ряда изobar принимаем \(\frac{p_2}{p_1} = \text{idem} \), тогда и расстояния между изобарами по горизонталям будут одинаковые, т. е.

\[
a_2 a_1 = a_3 a_2 = a_1 a_0 = \Delta s.
\]

Следовательно, если построена изобара \(p = 1 \text{ bar} \), то весьма просто, как эквидистантные кривые, строятся изобары для \(2 \text{ bar} \), \(4 \text{ bar} \), \(8 \text{ bar} \) и т. п.

Из уравнения (7.14) видно, что если \(s_1 > s_2 \), т. е. если энтропия увеличивается, то \(p_2 \) должно быть больше \(p_1 \), откуда следует, что чем левее расположены на \(T - s \)-диаграмме изобары, тем большему давлению они соответствуют. Так наносится сетка изobar.

Для построения сетки изохор производятся аналогичные построения, причем, как было указано раньше, изохоры представляют собой более круто расположенные логарифмические кривые. Из уравнения (7.7) видно, что изохоры также эквидistantны между собой, но располагаются они на диаграмме тем дальше от начала координат, чем для большего удельного объема они построены.

§ 5. Цикл Карно на \(T - s \)-диаграмме.
Обобщенный цикл Карно

На рис. 7.7 представлен обратимый цикл Карно на \(p - v \) и \(T - s \)-диаграммах; в \(T - s \)-диаграмме цикл Карно представляется в виде прямоугольника 12341. Из сказанного в предыдущих параграфах ясно, что количество теплоты, подведенной к рабочему телу, равно пл. 12561, или

\[
q_1 = \text{пл. 12561} = T_1 (s_2 - s_1),
\]

а теплота, отведенная в охладитель, — пл. 43564, или

\[
q_2 = \text{пл. 43564} = T_2 (s_2 - s_1).
\]
Теплota, эквивалентная работе цикла, равна площади цикла, т. е.

$$\text{I}_u = q_1 - q_2 = (T_1 - T_2) (s_2 - s_1).$$

Следовательно, термический к. п. д. равен

$$\eta_t = \frac{(T_1 - T_2) (s_2 - s_1)}{T_1 (s_2 - s_1)} = \frac{T_1 - T_2}{T_1}.$$

При исследовании обратимых циклов степень совершенства произвольного обратимого цикла определяется тем, насколько термический к. п. д. этого цикла близок к термическому к. п. д. обратимого цикла Карно, осуществляемого между крайними температурами рассматриваемого цикла.

Рис. 7.7

Это сравнение можно ввести по средним температурам подвода или отвода теплоты в цикле a-b-c-d (рис. 7.8), причем

$$q_1 = T_1^{cp} \Delta s, \quad a \quad q_2 = T_2^{cp} \Delta s,$$

где

$$T_1^{cp} = \frac{\int_{(a(abc))} T ds}{\Delta s}, \quad a \quad T_2^{cp} = \frac{\int_{(c(d))} T ds}{\Delta s},$$

тогда

$$\eta_t^{обр} = 1 - \frac{q_2}{q_1} = 1 - \frac{T_1^{cp}}{T_2^{cp}}.$$

Так как максимальная температура подвода теплоты в цикле Карно $T_1^{max} > T_1^{cp}$, а температура отвода теплоты минимальная $T_2^{min} < T_2^{cp}$, то естественно, что термический к. п. д. обратимого цикла между источниками температур T_1^{cp} и T_2^{cp} меньше, чем η_t цикла Карно в этом интервале температур.

Большой наглядностью обладает способ сравнения циклов на $T - s$-диаграммах. Если сравнивать произвольный цикл, вписанный в цикл Карно, то площадь вписанного цикла меньше, чем площадь цикла Карно. Отношение из этих площадей называют коэффициентом заполнения цикла. Чем больше коэффициент заполнения, тем ближе приближаются к наиболее эффективному преобразованию теплоты в работу.
Этот процесс совершенствования циклов тепловых машин называют каротизацией цикла. Повышение средней температуры подвода теплоты \(T_1 \) и понижение средней температуры отвода теплоты \(T_2 \) эквивалентно увеличению коэффициента заполнения цикла.

Цикл Карно имеет максимальный к. п. д. в заданном интервале температур, но в то же время можно подобрать сколько угодно циклов, имеющих такой же термический к. п. д. Пусть на рис. 7.9 представлен цикл Карно, совершаемый газом в пределах определенных температур \(T_1 \) и \(T_2 \).

Из точек изотермы 1 и 2 проведем любые две эквивалентные кривые (например, 2 изохоры), которые пересекут изотерму \(T_2 \) = const в точках 3' и 4'. Рассмотрим полученный цикл 1-2-3'-4'-1, состоящий из двух изотерм и двух эквидианстных линий.

![Рис. 7.8](image)

![Рис. 7.9](image)

Рабочее тело цикла расширяется вначале изотермически в процессе 1-2, получая от теплоисточника количество теплоты \(q_1 \), при температуре \(T_1 \). В процессе 2-3' энтропия уменьшается и рабочее тело должно отдавать теплоту, но температура в процессе уменьшается до \(T_2 \) и для обратимости процесса 2-3' необходимо множество источников теплоты со значениями температур от \(T_1 \) до \(T_2 \). В термическом процессе сжатия 3'-4' теплота в количестве \(q_2 \) при температуре \(T_2 \) будет отдаваться холодильнику. В процессе 4'-1 энтропия увеличивается и, следовательно, рабочее тело цикла должно получать теплоту. Эта теплота может быть воспринята от источников, которые были установлены на линии 2-3'.

Для этого цикла количество затраченной теплоты

\[q_1 = \text{пл. } 123'5'6'4'1, \]

а теплота, превращенная в работу,

\[l_u = q_1 - q_2 = \text{пл. } 123'4'1. \]

Следовательно, термический к. п. д. этого нового цикла равен

\[\eta_t = \frac{\text{пл. } 123'4'1}{\text{пл. } 123'5'6'4'1}. \]
Но вследствие эквидистанности проведенных кривых находим, что

\[\text{пл. } 144'1 = \text{пл. } 233'2; \]

\[\text{пл. } 4'466'4' = \text{пл. } (3'355'3'), \]

поэтому

\[\text{пл. } 123'5'6'4'1 = \text{пл. } 12561, \]

а

\[\text{пл. } 4'3'5'6' = \text{пл. } 4356, \]

t. е. количество подведенной и отведенной теплот в цикле 1-2-3-4-1 то же, что и в цикле Карно 1-2-3-4. Поэтому термический к. п. д. нового цикла равен термическому к. п. д. цикла Карно, осуществляемого в тех же пределах температур

\[\eta_t = \eta_{т. к.}. \]

Так как можно провести сколько угодно эквидистантных линий, подобных линиям 1-4' и 2-3', то, следовательно, можно найти сколько угодно циклов, которые в пределах температур \(T_1 = T_2 = \) дадут термический к. п. д., равный термическому к. п. д. цикла Карно.

Циклы, осуществляемые указанным способом, называются обобщенными циклами Карно. Вследствие эквидистанности проведенных линий пл. 255'3'2 получается равной пл. 166'4'1; но первая площадь представляет теплоту, отводимую от газа в процессе его расширения, а вторая — теплоту, которую необходимо сообщить сжимаемому газу.

Практически представляется возможным отнимаемую от газа теплоту не отводить, а передавать газу; таким образом, эта теплота будет постоянно циркулировать в газе. Такой способ использования этой теплоты носит название регенерации теплоты, а циклы, в которых такая регенерация осуществляется, называются регенеративными циклами.

Регенеративные циклы могут быть осуществлены только при наличии аккумулятора теплоты, который воспринимает теплоту от охлаждаемого газа и отдает ее нагреваемому. Таким образом, в отличие от цикла Карно, который осуществляется между двумя источниками теплоты, для регенеративных циклов необходим промежуточный источник, аккумулирующий теплоту.

Регенеративные циклы будут рассмотрены в главе XII, посвященной изучению циклов, применяемых в двигателях.

§ 6. \(t \) — \(S \)-диаграмма для газов и продуктов сгорания

\(T \) — \(s \)-диаграмма представляет собой весьма удобное и наглядное средство для изучения процессов и циклов, осуществляемых в тепловых машинах и аппаратах. Применение этой диаграммы для расчетных целей затрудняется тем, что количество теплоты определяется в ней площадями. Для расчетных целей чаще применяют-
ся энтропийная диаграмма, в которой координата температур заменяется координатой энталпии по формуле

\[I = \mu c_p T. \]

Так как теплоемкость газа зависит от температуры (уравнение (3.19)), то разбивка оси координат неравномерна; расстояния между изотермами при одном и том же повышении температуры делаются больше вследствие увеличения теплоемкости газа при повышении температуры.

Изобары и изохоры идеального газа, оставаясь эквидистантными кривыми, несколько меняют свой вид вследствие увеличения расстояний между изотермами для более высоких температур; они легко могут быть построены по точкам, перенесенным из \(T - S \)-диagramмы. Адиабаты в этой диаграмме остаются вертикальными линиями.

Использование \(I - S \)-диаграммы основано на следующем. Из уравнения (4.17) для адиабатного процесса \(dQ = 0 \) находим

\[dI = V \, dp \]

или после интегрирования в пределах от начального состояния газа в точке \(I \) до конечного (после расширения) в точке \(2 \)

\[I_2 - I_1 = \int_{1}^{2} V \, dp; \]

меняя знаки, получаем

\[I_1 - I_2 = \int_{2}^{1} V \, dp. \]

Но \(\int V \, dp \) представляет собой техническую работу, получающую в машине (турбине) (пл. 12341, на рис. 7.10). Следовательно, можно написать равенство

\[I_1 - I_2 = L_m. \quad (7.15) \]

Отсюда можно заключить, что техническая работа газа при адиабатном расширении определяется изменением его энталпии в процессе расширения, причем \(I_1 \) — начальная энталпия газа при входе его в машину (турбину), а \(I_2 \) — конечная энтальпия при выходе газа после адиабатного расширения.

На рис. 7.11 представлена \(I - S \)-диаграмма, построенная для 1 моль воздуха. Для расчетов эта диаграмма используется следующим образом. Пусть известно, что в турбину поступает воздух с давлением \(p_1 \) и температурой \(T_1 \); на диаграмме на пересечении изобары \(p_1 \) и изотермы \(T_1 \) находим начальное состояние газа в точке \(I \) и на ординате определяем начальную энталпию 1 моль воздуха \(I_1 \).

В турбине происходит, теоретически, адиабатное расширение до за-
данного конечного давления p_2, которое представится на диаграмме вертикальной линией, проведенной до пересечения с изобарой p_2, на оси ординат находим соответствующую энталпию газа l_2 и температуру газа после расширения T_2. Следовательно, можем определить убыль энталпии, которая была превращена в работу 1 моль воздуха,

$$H_0 = l_1 - l_2.$$

Величину H_0 принято называть располагаемым теплоперепадом.

Эта же диаграмма может быть использована для расчетов продуктов сгорания топлива с воздухом.

![Diagram](image)

Рис. 7.10

Рис. 7.11

Энталпия и энтропия смеси воздуха и продуктов сгорания могут быть вычислены на основании следующих уравнений. Полагая, что энталпия и энтропия величины аддитивные:

$$l = I_1 y_1 + I_{н.c} y_{н.c} = I_1 y_1 + (1 - y_1) I_{н.c},$$ \hfill (7.16)

$$S = S_1 y_1 + S_{н.c} y_{н.c} = S_1 y_1 + (1 - y_1) S_{н.c},$$ \hfill (7.17)

где y_1 и $y_{н.c}$ — мольные доли воздуха и продуктов сгорания в смеси.

При расчетах тепловых машин состав продуктов сгорания определяется коэффициентом избытка воздуха α, представляющим собой отношение действительного количества воздуха, поступившего на сгорание 1 кг топлива L_0, к теоретически необходимому для его полного сгорания L_0

$$\alpha = L_0 / L_0.$$ \hfill (7.18)

Величина L_0 может быть вычислена для углеводородных топлив на основании следующих соображений.

При полном горении углерода образуется углекислота

$$C + O_2 = CO_2.$$

В этом процессе на 1 моль, т. е. на 12 кг углерода (атомный вес углерода равен 12), требуется 1 моль, т. е. 32 кг кислорода (молекуляр-
ный вес кислорода 32), или на 1 кг углерода требуется \(\frac{32}{12} = \frac{8}{3} \) кг кислорода и на 1 кг углерода образуется \(\frac{44}{12} = \frac{11}{3} \) кг углекислоты. Водород, сгорая, образует водяной пар. Процесс горения протекает по уравнению

\[2H_2 + O_2 = 2H_2O. \]

Для сжигания 1 кг водорода требуется \(\frac{32}{2 \cdot 2} = 8 \) кг кислорода; из 1 кг водорода образуется \(\frac{2 \cdot 18}{2 \cdot 2} = 9 \) кг водяного пара. Если топливо содержит С кг углерода и Н кг водорода, то при полном сгорании потребное количество кислорода, идущего на горение, равно

\[\left(\frac{8}{3} \text{ C} + 8 \text{ H} - O_T \right) \frac{\text{кг кислорода}}{\text{кг топлива}}, \]

где \(O_T \) — количество килограммов кислорода, содержащегося в 1 кг топлива.

Так как в воздухе содержится приблизительно 23,2% (по весу) кислорода, то теоретически необходимое количество воздуха для полного сгорания топлива \(L_0 \) определяется по формуле

\[L_0 = \frac{100}{23,2} \left(\frac{8}{3} \text{ C} + 8 \text{ H} - O_T \right) \frac{\text{кг воздуха}}{\text{кг топлива}}. \]

Продукты сгорания 1 кг топлива состоят из \((\alpha - 1)\) \(L_0 \) воздуха и \(1 + L_0\) чистых продуктов сгорания. Мольная доля воздуха в смеси равна

\[y_B = \frac{(\alpha - 1) L_0}{(\alpha - 1) L_0 + \frac{1}{\mu_{B,c}}}, \]

где \(\mu_B \) и \(\mu_{B,c} \) — молекулярные веса воздуха и продуктов сгорания.

Величина \(g = \frac{1 + L_0}{L_0} \cdot \frac{\mu_B}{\mu_{B,c}} \) для жидкых и твердых топлив приближительно равна 1, поэтому для них

\[y_B \approx 1 - \frac{1}{\alpha}. \]

Из формул (7.16), (7.17) и (7.20) следует

\[I = I_B + \frac{I_{B,c} - I_B}{\alpha}, \]

\[S = S_B + \frac{S_B - S_{B,c}}{\alpha}. \]
Для чистых и разбавленных продуктов сгорания (смесь продуктов сгорания с воздухом) удобно при построении $I - S$-диаграммы вместо коэффициента избытка воздуха ввести масштабную величину β, так как значение α для широкого класса двигателей лежит в пределах от 0,7 до 6. Так, в двигателях внутреннего сгорания $\alpha = 0,7 \div 1,8$, в камерах сгорания газотурбинных установок α достигает до $4 \div 6$.

Коэффициент β принимается равным для чистых продуктов сгорания топлива (состав 85% C и 15% H) $\beta_{\text{п.с}} = 1,5$; для чистого воздуха $\beta = 1$.

Связь между α и β дается соотношением

$$\beta = 1 + \frac{1}{2\alpha}. \tag{7.23}$$

Для определения положения луча $\beta = 1,5$ воспользуемся линейной зависимостью теплоемкости от температуры $\mu c_p = a + bT$ и, считая $dS = \mu c_p \frac{dT}{T}$, получим

$$\Delta S = S_{\text{п.с}} - S_{\text{в}} = \left(a_{\text{п.с}} - a_{\text{в}}\right) \ln \frac{T + t}{273} + \left(b_{\text{п.с}} - b_{\text{в}}\right) t, \tag{7.24}$$

где $a_{\text{в}}, b_{\text{в}}, a_{\text{п.с}}, b_{\text{п.с}}$ — постоянные коэффициенты соответственно для воздуха и чистых продуктов сгорания; $S_{\text{п.с}} = S_{\text{в}} = 0$ — энтропия при температуре $T = 273^\circ$ К в начале отсчета. Вычислив значение ΔS по формуле (7.24) для разных температур и откладывая эти разности энтропии от оси ординат $I - S$-диаграммы, построенной для воздуха, найдем положение луча $\beta = 1,5$, являющегося осью ординат для чистых продуктов сгорания. Для значений β, лежащих между 1 — 1,5, лучи строятся по формуле

$$S - S_{\text{в}} = S_{\text{в}} - S_{\text{п.с}} = \frac{\beta - 1}{\beta_{\text{п.с}} - 1} \left(S_{\text{в}} - S_{\text{п.с}}\right). \tag{7.25}$$

Энталпия газа, с учетом линейной зависимости теплоемкости от температуры, определяется по формуле

$$I = a' t + \frac{b}{2} t^2, \tag{7.26}$$

где $a' = a + 273 b$, а $I_0 = 0$ при $T = 273^\circ$ К.

На луче $\beta = 1,5$ строится масштаб энталпий по формуле

$$\Delta I = I_{\text{п.с}} - I_{\text{в}} = (a'_{\text{п.с}} - a'_{\text{в}}) t + \frac{b_{\text{п.с}} - b_{\text{в}}}{2} t^2, \tag{7.27}$$

при $I_{\text{п.с}} = I_{\text{в}} = 0$.

На диаграмме в правой части дается масштаб энталпий для различных значений β от 1,0 до 1,5, построенный с помощью интерполяционной формулы

$$I - I_{\text{в}} = \frac{\beta - 1}{\beta_{\text{п.с}} - 1} (I_{\text{п.с}} - I_{\text{в}}). \tag{7.28}$$
Энталпия продуктов сгорания берется на вертикалях с соответствующим значением β. На вертикали $\beta = 1$ нанесен неискаженный масштаб энталпии для воздуха.

В $I - S$-диаграмме для продуктов сгорания можно пользоваться той же сеткой изохор, изобар и изотерм, что и для воздуха, но адабату надо проводить не вертикально, а эквидистантно луцу β для определенного состава смеси.

ГЛАВА VIII

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ТЕРМОДИНАМИКИ

Так как дифференциалы термодинамических функций U, I, S являются полными дифференциалами, следовательно, сами термодинамические функции являются функциями состояния. Если взять аналитическое выражение любой из термодинамических функций, то, воспользовавшись математическими тождествами

$$\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right),$$

$$\left(\frac{\partial x}{\partial y} \right)_z = - \left(\frac{\partial z}{\partial y} \right)_x = - \left(\frac{\partial z}{\partial x} \right)_y,$$

можно составить уравнения из производных термодинамических функций. Такие уравнения называются дифференциальными уравнениями термодинамики в частных производных. При наличии таких уравнений по параметрам, определяемым экспериментально, можно получить остальные параметры интегрированием соответствующих дифференциальных уравнений.

В практике из всех возможных параметров наиболее часто в качестве независимых переменных применяют параметры P, V, T, которые могут быть непосредственно определены опытным путем. Для однородных веществ или смесей постоянного состава все количественные вычисления могут вестись на базе термодинамического тождества

$$dU = TdS - pdV. \quad (8.1)$$

Рассмотрим основные дифференциальные уравнения в независимых переменных V, T и p, T.

93
§ 1. Дифференциальные уравнения внутренней энергии, энталпии, энтропии

Дифференциальное уравнение внутренней энергии. Полный дифференциал внутренней энергии при независимых переменных V и T

$$dU = \left(-\frac{\partial U}{\partial T} \right)_V dT + \left(-\frac{\partial U}{\partial V} \right)_T dV.$$ (8.2)

Первая из частных производных в (8.2), как известно, теплоемкость при постоянном объеме.

$$\left(\frac{\partial U}{\partial T} \right)_V = c_V.$$ (8.3)

Другая частная производная может быть вычислена по формуле (8.1) при делении ее на dV и, принимая $T = \text{const},$

$$\left(-\frac{\partial U}{\partial V} \right)_T = T \left(-\frac{\partial S}{\partial V} \right)_T - p.$$ (8.4)

При делении формулы (8.1) на dT и при $V = \text{const}$ получим

$$\left(\frac{\partial U}{\partial T} \right)_V = T \left(\frac{\partial S}{\partial T} \right)_V = c_V.$$ (8.5)

Возьмем вторые смешанные производные от (8.4) и (8.5)

$$\frac{\partial^2 U}{\partial V \partial T} = T \frac{\partial^2 S}{\partial V \partial T} + \left(\frac{\partial S}{\partial V} \right)_T - \left(\frac{\partial p}{\partial T} \right)_V,$$ (8.6)

$$\frac{\partial^2 U}{\partial T \partial V} = T \frac{\partial^2 S}{\partial T \partial V}.$$ (8.7)

Из равенства вторых смешанных производных найдем

$$\left(\frac{\partial S}{\partial V} \right)_T = \left(\frac{\partial p}{\partial T} \right)_V.$$ (8.8)

Но из уравнения (8.1)

$$\left(\frac{\partial U}{\partial S} \right)_V = T, \quad \left(\frac{\partial U}{\partial V} \right)_S = -p.$$ (8.9)

Следовательно, беря смешанные производные (8.9), найдем, что

$$\left(\frac{\partial T}{\partial V} \right)_S = -\left(\frac{\partial p}{\partial S} \right)_V,$$ (8.10)

а подставив (8.8) в (8.4), получим

$$\left(\frac{\partial U}{\partial V} \right)_T = T \left(\frac{\partial p}{\partial T} \right)_V - p.$$ (8.11)
Окончательное общеное изменение \(U = f(p, V, T, c_v) \) получим, подставив уравнения (8.3) и (8.11) в уравнение (8.2),

\[
dU = c_v \, dT + \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] dV. \quad (8.12)
\]

Для идеального газа \(\left(\frac{\partial p}{\partial T} \right)_V = \frac{R}{V} \), следовательно,

\[
\left(\frac{\partial U}{\partial V} \right)_T = T \left(\frac{\partial p}{\partial T} \right)_V - p = T \frac{R}{V} - p = 0. \quad (8.13)
\]

Это уравнение выражает закон Джоуля.

Дифференциальные уравнения энтальпии, при независимых \(p \) и \(T \) полный дифференциал

\[
dI = \left(\frac{\partial l}{\partial T} \right)_p \, dT + \left(\frac{\partial l}{\partial p} \right)_T \, dp, \quad (8.14)
\]

где

\[
\left(\frac{\partial l}{\partial T} \right)_p = c_p. \quad (8.15)
\]

Так как

\[
I = U + pV, \quad (8.16)
\]

\[
dI = dU + pdV + Vdp.
\]

Подставив выражение (8.16) в уравнение (8.1), получим

\[
dI = TdS + Vdp. \quad (8.17)
\]

Из уравнения (8.17) следует

\[
\left(\frac{\partial l}{\partial T} \right)_p = T \left(\frac{\partial S}{\partial T} \right)_p = c_p. \quad (8.18)
\]

Разделив уравнение (8.17) на \(dp \) и принимая \(T = \text{const} \), получим

\[
\left(\frac{\partial l}{\partial p} \right)_T = T \left(\frac{\partial S}{\partial p} \right)_T + V. \quad (8.19)
\]

Вторые смешанные производные от уравнений (8.18) и (8.19) равны

\[
\frac{\partial^2 l}{\partial T \, \partial p} = T \frac{\partial^2 S}{\partial T \, \partial p}, \quad (8.20)
\]

\[
\frac{\partial^2 l}{\partial p \, \partial T} = T \left(\frac{\partial^2 S}{\partial p \, \partial T} \right) + \left(\frac{\partial S}{\partial p} \right)_T + \left(\frac{\partial V}{\partial T} \right)_p. \quad (8.21)
\]

Из равенства смешанных производных найдем

\[
\left(\frac{\partial S}{\partial p} \right)_T = - \left(\frac{\partial V}{\partial T} \right)_p, \quad (8.22)
\]

но из уравнения (8.17) следует

\[
\left(\frac{\partial I}{\partial S} \right)_p = T, \quad \text{а} \left(\frac{\partial I}{\partial p} \right)_S = V. \quad (8.23)
\]
Следовательно, взяв смешанные производные от (8.23), найдем
\[\left(\frac{\partial T}{\partial p} \right)_s = \left(\frac{\partial V}{\partial S} \right)_p. \] (8.24)

Подстановка уравнения (8.22) в (8.19) приведет к равенству
\[\left(\frac{\partial I}{\partial p} \right)_T = -T \left(\frac{\partial V}{\partial T} \right)_p + V. \] (8.25)

И, окончательно, подстановка уравнений (8.15) и (8.25) в уравнение (8.14) приведет к зависимости \(I = f (p, V, T, c_p) \):
\[dI = c_p dT - \left[T \left(\frac{\partial V}{\partial T} \right)_p - V \right] dp. \] (8.26)

Ди\-ференциальные уравнения энтропии. Полный дифференциал энтропии при независимых переменных \(V \) и \(T \) равен
\[dS = \left(\frac{\partial S}{\partial T} \right)_V dT + \left(\frac{\partial S}{\partial V} \right)_T dV. \] (8.27)

Возьмем \(\left(\frac{\partial S}{\partial T} \right)_V \) из уравнения (8.5), а \(\left(\frac{\partial S}{\partial V} \right)_T \) из (8.8), тогда
\[dS = c_V \frac{dT}{T} + \left(\frac{\partial V}{\partial T} \right)_V dV. \] (8.28)

Полный дифференциал энтропии в функции температуры и давления равен
\[dS = \left(\frac{\partial S}{\partial T} \right)_p dT + \left(\frac{\partial S}{\partial p} \right)_T dp. \] (8.29)

Возьмем частные производные в уравнении (8.29) из уравнений (8.18) и (8.22) получим
\[dS = c_p \frac{dT}{T} - \left(\frac{\partial V}{\partial T} \right)_p dp. \] (8.30)

Решение дифференциальных уравнений термодинамики ведется графоаналитическими методами или аналитическими методами с применением ЭЦВМ для нахождения точных соотношений между термическими \(p, V, T \) и калорическими \((U, I, S, c_p, c_v) \) параметрами.

Дифференциальные уравнения термодинамики позволяют рассмотреть согласование полученных в эксперименте термических и калорических данных и найти недостающие. Полученные выше дифференциальные уравнения являются расчетной базой термодинамики.

Особо важную роль в термодинамических расчетах играют уравнения (8.8), (8.10), (8.22), (8.24), тем более, что они допускают широкое обобщение на случай, если тело подвергается не механическому, а электрическому воздействию, магнетизму или какому-либо другому. В этом случае, обобщение уравнений достигается заменой
величин \(p \) и \(V \) на соответствующую обобщенную силу \(X \) и обобщенную координату \(y \).
Уравнения (8.9), (8.10), (8.22), (8.24) записываются тогда в следующем виде:

1. \[\left(\frac{\partial S}{\partial X} \right)_T = \left(\frac{\partial y}{\partial T} \right)_X, \]
2. \[\left(\frac{\partial T}{\partial X} \right)_S = -\left(\frac{\partial y}{\partial S} \right)_X, \]
3. \[\left(\frac{\partial S}{\partial T} \right)_X = -\left(\frac{\partial X}{\partial T} \right)_y, \]
4. \[\left(\frac{\partial T}{\partial y} \right)_S = \left(\frac{\partial X}{\partial S} \right)_y. \]

Эти дифференциальные соотношения называют иногда уравнениями Максвелла.

§ 2. Дифференциальные соотношения для теплоемкостей

Зависимость теплоемкости от объема и давления. Теплоемкость при постоянном объеме равна

\[c_V = \left(\frac{\partial U}{\partial T} \right)_V. \]

Дифференцируя это уравнение по \(V \) при \(T = \text{const} \), получим

\[\left(\frac{\partial c_V}{\partial V} \right)_T = \left(\frac{\partial^2 U}{\partial T \partial V} \right)_V. \] (8.31)

Дифференцируя уравнение (8.11) по \(T \) при \(V = \text{const} \), имеем

\[\frac{\partial^2 U}{\partial V \partial T} = T \left(\frac{\partial^2 p}{\partial T^2} \right)_V. \] (8.32)

Из уравнений (8.31) и (8.32) найдем

\[\left(\frac{\partial c_V}{\partial V} \right)_T = T \left(\frac{\partial^2 p}{\partial T^2} \right)_V. \] (8.33)

Теплоемкость при постоянном давлении

\[c_p = \left(\frac{\partial I}{\partial T} \right)_p. \]

Дифференцируем это уравнение по \(p \) при \(T = \text{const} \)

\[\left(\frac{\partial c_p}{\partial p} \right)_T = \left(\frac{\partial^2 I}{\partial T \partial p} \right)_p. \] (8.34)

Дифференцируя (8.25) по \(T \) при \(p = \text{const} \), найдем

\[\frac{\partial^2 I}{\partial p \partial T} = -T \left(\frac{\partial^2 V}{\partial T^2} \right)_p. \] (8.35)

Из выражений (8.34) и (8.35) находим

\[\left(\frac{\partial c_p}{\partial p} \right)_T = -T \left(\frac{\partial^2 V}{\partial T^2} \right)_p. \] (8.36)
Соотношение между c_p и c_v. Это соотношение можно получить, используя уравнения изменения энтропии (8.28) и (8.30)

$$c_p \frac{dT}{T} - \left(\frac{\partial V}{\partial T} \right)_p \ dp = c_v \frac{dT}{T} + \left(\frac{\partial p}{\partial T} \right)_V \ dV,$$

$$c_p - c_v = T \left[\left(\frac{\partial p}{\partial T} \right)_V \frac{dV}{dT} + \left(\frac{\partial V}{\partial T} \right)_p \frac{dp}{dT} \right]. \tag{8.37}$$

Полная производная V по T

$$\frac{dV}{dT} = \left(\frac{\partial V}{\partial T} \right)_p + \left(\frac{\partial V}{\partial p} \right)_T \frac{dp}{dT}. \tag{8.38}$$

Подставив уравнение (8.38) в (8.37), найдем

$$c_p - c_v = T \left[\left(\frac{\partial p}{\partial T} \right)_V \cdot \left(\frac{\partial V}{\partial p} \right)_T + \left(\frac{\partial V}{\partial T} \right)_p \cdot \left(\frac{\partial V}{\partial T} \right)_T + \left(\frac{\partial V}{\partial T} \right)_p \right] \frac{dp}{dT}. \tag{8.39}$$

Принимая в уравнении (8.38) $V = \text{const}$, получим

$$\left(\frac{\partial V}{\partial T} \right)_p + \left(\frac{\partial V}{\partial p} \right)_T \cdot \left(\frac{\partial p}{\partial T} \right)_V = 0. \tag{8.40}$$

Подставив это равенство в уравнение (8.39), найдем

$$c_p - c_v = T \left(\frac{\partial p}{\partial T} \right)_V \left(\frac{\partial V}{\partial T} \right)_p. \tag{8.41}$$

Используя уравнение (8.40), можно получить разность теплоемкостей в виде

$$c_p - c_v = -T \left(\frac{\partial V}{\partial T} \right)_p^2 / \left(\frac{\partial V}{\partial p} \right)_T \quad \text{или} \quad c_p - c_v =$$

$$= -T \left(\frac{\partial p}{\partial T} \right)_V^2 / \left(\frac{\partial p}{\partial V} \right)_T. \tag{8.42}$$

Для идеального газа $(\partial V/\partial T)_p = R/p$ и $(\partial p/\partial T)_V = R/V$, тогда

$$c_p - c_v = T \left(\frac{\partial p}{\partial T} \right)_V \left(\frac{\partial V}{\partial T} \right)_p = T \frac{R}{p} \cdot \frac{R}{V} = R.$$

Теплоемкости реальных газов при высоких давлениях зависят от давления, в большей мере это относится к c_p. Можно рассчитать теплоемкость c_p, пользуясь p-v-T данными, используя соотношение (8.36), по которому

$$c_p = c_{p}^{\text{пл}} - T \int_{p_0}^{p} \left(\frac{\partial a}{\partial T^2} \right)_p dp$$

или

$$c_p = c_{p}^{\text{пл}} + \Delta c_p. \tag{8.43}$$
§ 3. Термические коэффициенты

В дифференциальные уравнения термодинамики входят частные производные одних параметров по другим. Между частными производными термических параметров существует определенное соотношение, которое можно найти из уравнения состояния вида \(p = f(V, T) \).

Полный дифференциал давления

\[
dp = \left(\frac{\partial p}{\partial T} \right)_V dT + \left(\frac{\partial p}{\partial V} \right)_T dV. \quad (8.44)
\]

Для изобарного процесса \(p = \text{const}, \, dp = 0 \)

\[
\left(\frac{\partial p}{\partial V} \right)_T \cdot \left(\frac{\partial V}{\partial T} \right)_p + \left(\frac{\partial p}{\partial T} \right)_V = 0. \quad (8.45)
\]

Разделив это уравнение на \(\left(\frac{\partial p}{\partial T} \right)_V \), получим

\[
\left(\frac{\partial p}{\partial T} \right)_T \cdot \left(\frac{\partial V}{\partial T} \right)_p \cdot \left(\frac{\partial T}{\partial p} \right)_V = -1. \quad (8.46)
\]

В уравнении (8.46) частная производная \(\left(\frac{\partial V}{\partial T} \right)_p \) характеризует способность тел к сжатию. Отношение этой величины к объему \(V_0 \) называют изотермическим коэффициентом сжимаемости и обозначают через

\[
\mu_T = -\frac{1}{V_0} \left(\frac{\partial V}{\partial p} \right)_T. \quad (8.47)
\]

Частная производная \(\left(\frac{\partial V}{\partial T} \right)_p \) характеризует способность тел к расширению, а зависимость

\[
\alpha = \frac{1}{V_0} \left(\frac{\partial V}{\partial T} \right)_p \quad (8.48)
\]

называют термическим коэффициентом расширения.

Частная производная \(\left(\frac{\partial p}{\partial T} \right)_V \) определяет интенсивность изменения давления при нагревании тела при постоянном объеме, а зависимость

\[
\beta = \frac{1}{\rho_0} \left(\frac{\partial p}{\partial T} \right)_V \quad (8.49)
\]

называют коэффициентом упругости.

Рассмотренные выше свойства тел связаны между собой зависимостью

\[
\beta = \frac{\alpha}{\mu_T \rho_0}, \quad (8.50)
\]
которая получается, если подставить значения из выражений (8.49),
(8.48) и (8.47) в уравнение (8.46). Таким образом, коэффициент
упругости, который трудно определить в эксперименте, может
быть найден расчетным путем.
Для обратимого адабатного (изоэнтропного) процесса сжатия
вводится понятие адабатного коэффициента сжимаемости
\[
\mu_S = -\frac{1}{V_0} \left(\frac{\partial V}{\partial \sigma} \right)_S
\]
(8.51)
Связь между адабатной и изотермической сжимаемостью можно
найти следующим путем. Так как
\[
\left(\frac{\partial V}{\partial \rho} \right)_S = \left(\frac{\partial S}{\partial \rho} \right)_V \left(\frac{\partial S}{\partial V} \right)_p
\]
то
\[
\mu_S = -\frac{1}{V_0} \left(\frac{\partial S}{\partial \rho} \right)_V \left(\frac{\partial S}{\partial V} \right)_p.
\]
(8.52)
Найдем каждую из этих частных производных. Если \(S \) функция от
\(T \) и \(V \), т.е. \(S (T, V) = S [T (\rho, V), V] \), то
\[
\left(\frac{\partial S}{\partial \rho} \right)_V = \left(\frac{\partial S}{\partial T} \right)_V \left(\frac{\partial T}{\partial \rho} \right)_V = \frac{c_V}{T} \left(\frac{\partial T}{\partial \rho} \right)_V.
\]
(8.53)
Если \(S \) функция от \(T \) и \(\rho \), т. е. \(S (T, \rho) = S [T (\rho, V), \rho] \),
то
\[
\left(\frac{\partial S}{\partial V} \right)_\rho = \left(\frac{\partial S}{\partial T} \right)_\rho \left(\frac{\partial T}{\partial V} \right)_\rho = \frac{c_p}{T} \left(\frac{\partial T}{\partial V} \right)_\rho.
\]
(8.54)
Учитывая, что
\[
\left(\frac{\partial T}{\partial \rho} \right)_V = \left(\frac{\partial V}{\partial \rho} \right)_T,
\]
находим
\[
\mu_S = -\frac{1}{V_0} \frac{c_V}{c_p} \left(\frac{\partial V}{\partial \rho} \right)_T = \frac{c_V}{c_p} \mu_T.
\]
(8.55)
Так как \(\frac{c_p}{c_V} = k \), где \(k \) — показатель адабаты, то
\[
\mu_S = \frac{\mu_T}{k}.
\]
(8.56)
Глава IX

Реальные газы и пары

§ 1. Уравнения состояния реальных газов

Все реальные газы являются парами тех или иных жидкостей, причем чем ближе газ к переходу в жидкое состояние, тем больше его отклонение от свойств идеального газа, состояние которого описывается уравнением Клапейрона. Для качественной оценки особенностей реальных газов рассмотрим область, где будут значительные отступления от уравнения, описывающего поведение идеальных газов.

Если сжимать газ при постоянной температуре, то можно достигнуть состояния насыщения (сжижения газа), соответствующего этой температуре и некоторому определенному давлению. При дальнейшем сжатии пар будет конденсироваться и в определенный момент полностью превратится в жидкость. Процесс перехода пара в жидкость проходит при постоянных температуре и давлении, так как давление насыщенного пара однозначно определяется температурой. На $p - v$-диаграмме (рис. 9.1) область двухфазных состояний (пар и жидкость) лежит между кривыми кипящей жидкости и сухого насыщенного пара. При увеличении давления эти кривые сближаются. Сближение происходит потому, что объем пара уменьшается, а объем жидкости увеличивается. При некотором определенном для данной жидкости (пара) давлении кривая кипящей жидкости и пара встречаются в так называемой критической точке, которой соответствуют критические параметры: давление $p_{кр}$, температура $T_{кр}$, удельный объем $v_{кр}$, характеризующие критическое состояние вещества. При критическом состоянии исчезают различия между жидкостью и паром. Оно является предельным физическим состоянием как для однородного, так и для распавшегося на две фазы вещества. При температуре более высокой, чем критическая, газ ни при каком давлении не может сконденсироваться, т. е. превратиться в жидкость.

В общем случае все газы в области, близкой к состоянию сжатия, приближенно воспроизводят связь между параметрами состояния по уравнению Клапейрона. Во всех газах с более или менее значительной плотностью нельзя пренебречь силами сцепления между молекулами, объемом, занимаемым ими, а также ассоциацией молекул в группы.

Под ассоциацией понимается механическое соединение двух или нескольких молекул в одну сложную. Уменьшение числа самостоятельных частиц, из которых состоит газ, должно привести к возрастанию среднего молекулярного веса газа и уменьшению его давления. Ассоциация значительно усложняет математическое описание состояния реальных газов.

При уменьшении давления и возрастании температуры газа можно пользоваться уравнением состояния идеального газа, за исключением тех случаев, когда в газе под влиянием больших температур
наступает изменение химической структуры (например, распад сложных молекул — диссоциация).

Уравнение состояния реальных газов выводится или чисто теоретически на основе гипотетических представлений о структуре газа, или на основании обработки экспериментальных зависимостей между ρ, ν, T.

Широкое распространение в научных исследованиях получило уравнение Ван-дер-Ваальса, выведенное путем пересмотра некоторых допущений, лежащих в основе уравнения состояния идеального газа. Уравнение состояния реального газа с учетом сил, действующих между молекулами, и их объема для 1 кг газа имеет вид

$$\left(\rho + \frac{a}{\nu^2}\right)(\nu - b) = RT.$$ \hspace{1cm} (9.1)

Это уравнение отличается от уравнения Клапейрона двумя поправками: поправкой на объем самих молекул b и поправкой на так называемое внутреннее давление $\frac{a}{\nu^2}$, определяемое взаимным притяжением молекул газа. Это давление может рассматриваться как сила, действующая со стороны внешних периферийных молекул и направленная внутрь сосуда.

Рассмотрим изменение на изотермах, обусловленных поправками a и b. При температуре выше критической изотермы, построенные по уравнению Ван-дер-Ваальса, представляют собой плавные кривые, отличные от равнобоких гипербол, которые бы дало уравнение состояния идеального газа. Последние в верхней части на рис. 9.2 показаны пунктировом. При температуре ниже критической имеет область объемов, где поправка $\frac{a}{\nu^2}$ (уменьшающая давление) играет определяющую роль и давление проходит через максимум в точке C. Для меньших объемов давление падает, проходит через минимум — точка B, а затем резко увеличивается, когда ν стремится к значению b.

104
При критической температуре, максимум и минимум на изотермах сливаются в точке перегиба K, а так как касательная к изотерме в критической точке идет горизонтально, то для критической точки должны выполняться условия

$$\left(\frac{\partial^2 \rho}{\partial v^2} \right)_K = 0, \quad \left(\frac{\partial^2 \rho}{\partial v^2} \right)_K = 0. \quad (9.2)$$

Отсюда получаем уравнения

$$\left(\frac{\partial \rho}{\partial v} \right)_T = -\frac{RT}{(v-b)^2} + \frac{2a}{v^3} = 0, \quad (9.3)$$

$$\left(\frac{\partial^2 \rho}{\partial v^2} \right)_T = \frac{2RT}{(v-b)^3} - \frac{ba}{v^4} = 0. \quad (9.4)$$

Температуру T_K и объем v_K можно определить из уравнений (9.3) и (9.4), а давление ρ_K находится затем из уравнения (9.1). В результате получаем

$$T_K = \frac{8a}{27R^6}, \quad v_K = 3b, \quad \rho_K = \frac{a}{27b^2}. \quad (9.5)$$

Из последних соотношений можно определить индивидуальные константы a и b, зависящие от физических свойств данного газа:

$$a = \frac{\gamma}{64}, \quad \frac{R^2 T_K}{\rho}, \quad b = \frac{v_K}{\delta}. \quad (9.6)$$

Так как процесс перехода от жидкого состояния к газообразному идет при постоянных T и p, то на рис. 9.2 этому процессу соответствует линия AD.

Однако участки AB и CD на изотермах можно воспроизвести экспериментально только при использовании очень чистых жидкостей и газов. Вещество на этих участках находится в виде переохлажденной жидкости и перенасыщенного пара. Такое состояние, когда вещество остается в однофазном состоянии и не распадается на фазы, называются метастабильными. Главная ценность уравнения Ван-дер-Ваальса состоит в том, что оно качественно правильно описывает непрерывность перехода из жидкого состояния в газообразное и дальнейшее развитие уравнения состояния пошло по пути уточнения расчетов и усовершенствования его теории.

Предпринимались попытки усовершенствования его за счет того, что коэффициенты a и b принимались не постоянными, а зависящими от температуры и объема. Но эти попытки не привели к созданию уравнения состояния, описывающего свойства газа в широком диапазоне изменения параметров.

Неудачи создания общего уравнения состояния привела к появлению целого ряда эмпирических уравнений, которые могли бы с достаточной точностью предсказывать поведение реальных газов в широком диапазоне условий. Наиболее известны из них: уравнение Битти — Бриджмена с пятью эмпирически определяемыми
постоянными и уравнение Бенедикта—Вебб—Рубина, содержащее восемь эмпирических постоянных — \((a, b, c, d, A_0, B_0, C_0\) и т. д.).

Уравнение Битти—Бриджмена, применяемое до давлений порядка 250 бар и плотностей газа, не превышающих 0,5 плотности в критической точке, имеет вид

\[\rho v^2 = RT \left[v + B_0 \left(1 - \frac{b}{v} \right) \right] \left(1 - \frac{c}{v} T^3 \right) - A_0 \left(1 - \frac{a}{v} \right), \quad (9.7) \]

а уравнение состояния Бенедикта—Вебб—Рубина

\[\rho = RTd + \left(RTB_0 - A_0 - \frac{c}{T^2} \right) d^2 + (RTb - a) d^3 + \]

\[+ aad^6 + cd^8 \left(\frac{1 + \gamma d^2}{T^2 e^{\gamma d^2}} \right). \quad (9.8) \]

Эти уравнения могут предсказать \(\rho, v, T\) — свойства газа с ошибкой в пределах нескольких десятых процента и, несмотря на их сложность, развитие вычислительной техники стимулирует использование таких уравнений состояния в обычных технических расчетах.

Хорошо согласуется с опытными данными одно из современных уравнений состояния газа — уравнение Вукаловича — Новикова, учитывающее ассоциацию молекул. При учете столкновений двойных молекул это уравнение имеет вид

\[\left(\rho + \frac{a}{v^2} \right) (v - b) = R_1 T, \quad (9.9) \]

\[R_1 = R \left(1 - \frac{c p}{5 + 2m} \right) \]

где \(c\) и \(m\) — опытные константы.

В настоящее время теоретически обосновано уравнение состояния, представляющее собой разложение коэффициента сжимаемости \(z\) в бесконечный ряд по степеням \(1/v\)

\[z = \frac{\rho v}{RT} = 1 + \frac{B}{v} + \frac{C}{v^2} + \frac{D}{v^3} + \ldots, \quad (9.10) \]

где \(B, C\) и \(D\) — второй, третий и четвертый виральное коэффициенты, учитывающие взаимодействие соответственно двух, трех, четырех и т. д. молекул. Виральные коэффициенты зависят лишь от температуры и определяются, если известна зависимость потенциальной энергии взаимодействия молекул \(U_{\text{пот}}\) от расстояния между ними (рис. 9.3).

Вместо точных аналитических зависимостей \(U_{\text{пот}} = f (r)\) практически применяют приближенные выражения, которые называются потенциалами. Широко используется потенциал Леннарда—Джонса, по которому энергия отталкивания пропорциональна две-
надцатой степени расстояния между молекулами, а энергия притяжения — шестой

\[U_{\text{пот}} = 4 \varepsilon \left[\left(\frac{a}{r} \right)^{12} - \left(\frac{a}{r} \right)^{6} \right], \quad (9.11) \]

где \(r \) — расстояние между молекулами; \(\sigma \) — значение \(r \), при котором \(U_{\text{пот}} = 0 \); \(\varepsilon \) — максимальная величина энергии притяжения (глубина потенциальной ямы).

Значения \(\sigma \) и \(\varepsilon \) для каждого газа могут быть определены по экспериментальным данным. Кроме потенциала Леннарда — Джонса применяются другие потенциалы, которые могут быть использованы, для определенных групп сходственных веществ.

При решении целого ряда технических задач рабочими телями могут быть не широко используемые в технике вещества (водяной пар, углекислый газ, азот и некоторые другие), а вещества, термические свойства которых неизвестны. В этом случае можно воспользоваться для предсказания свойств малоизученных веществ положением о термодинамическом подобии веществ. Если значения индивидуальных констант \(a \) и \(b \) подставить в уравнение (9.1), то получим уравнение Ван-дер-Ваальса в функции приведенных параметров

\[\left(\pi + \frac{3}{\eta^2} \right) (3 \eta - 1) = 8 \tau, \quad (9.12) \]

где

\[\pi = \frac{p}{p_{\text{кр}}}, \quad \tau = \frac{T}{T_{\text{кр}}}, \quad \eta = \frac{v}{v_{\text{кр}}}. \]

Эти отношения называются приведенными давлением, температурой и объемом. Уравнение (9.12) можно записать в форме

\[f(\pi, \tau, \eta) = 0. \quad (9.13) \]

В этой форме приведенное уравнение состояния будет одинаково для всех веществ. Состояния двух или нескольких веществ, в которых они имеют одинаковые приведенные параметры \(\pi, \tau, \eta \), называются соответственными состояниями, т. е. эти вещества находятся в состояниях, пропорционально удаленных от своего критического состояния. Если вещества подчиняются одному и тому же приведенному уравнению состояния и имеют два одинаковых приведенных параметра, то у них одинаков и третий приведенный параметр, т. е. вещества будут находиться в соответственных состояниях. Это положение носит название закона соответственных состояний. Вещества, подчиняющиеся закону соответственных состояний, называют термодинамически подобными. Практически закон соответствен-
Рис. 9.4
ных состояний наиболее удобно применять в виде зависимости \(z = \frac{\rho}{\rho_{кр}} \) и \(\tau = \frac{T}{T_{кр}} \), причем для расчетов можно применить \((z - \pi)\)-диаграмму (рис. 9.4). Эта диаграмма строится по экспериментальным данным для различных веществ и может быть использована для расчета термодинамических свойств малоизученных веществ методом термодинамического подобия. Для этого, зная критические параметры вещества, находят \(\pi = \frac{\rho}{\rho_{кр}} \) и \(\tau = \frac{T}{T_{кр}} \), а по \(z - \pi \)-диаграмме определяется коэффициент сжимаемости при данных приведенных параметрах. Значение удельного объема можно вычислить по формуле

\[
\nu = z \frac{RT}{\rho}.
\]

Точность расчета по этому методу не превышает 15%, так как закон соответственных состояний выполняется лишь приближенно. Так, при одинаковых \(\pi \) и \(\tau \) коэффициенты сжимаемости должны быть равны, причем должны быть равны и коэффициенты сжимаемости в критической точке \(z_{кр} = \frac{\rho_{кр}}{R}\mu_{кр} \). Но для реальных веществ \(z_{кр} = 0,23 \pm 0,33 \), следовательно, строго говорить о выполнении закона соответственных состояний можно лишь для узких групп сходственных между собой веществ.

§ 2. Водяной пар.
Парообразование при постоянном давлении

Рассмотрим изменение состояния водяного пара (реального газа), имеющего сравнительно высокую критическую температуру. Изменение параметров состояния водяного пара удобно проследить на \(p - v \)-диagramме (рис. 9.5).

Положим, что 1 кг воды при 0° C заключен в цилиндре, закрытом свободно движущимся невесовым поршнем, на который действует постоянное внешнее давление. Объем воды при указанных условиях обозначим \(v_0' \). Если считать жидкость несжимаемой при любых давлениях, то прямая, соединяющая точки \(l' \), \(l \), \(l" \) и параллельная оси ординат, будет определять все возможные состояния воды при 0° C. Следует отметить, что для несжимаемой жидкости эта изохора совпадает с изотермой.

Если (при постоянном давлении) подводить к жидкости теплоту, то при достижении температуры кипения \(t_n \) начнется превращение воды в пар — точка \(m \). Удельный объем жидкости вследствие нагрева увеличивается от \(v_0' \) до \(v' \). При более высоком давлении процесс парообразования начнется и при более высокой температуре \(t_n \), следовательно, объем воды при достижении точки кипения будет больше, чем раньше (точка \(m' \)).

На \(p - v \)-диаграмме геометрическое место точек, определяющих состояние воды, нагретой до температуры кипения, изображается кривой \(m', m, m" \). Эту кривую называют нижней (левой) пограничной
кривой. При дальнейшем подведении теплоты начинается процесс парообразования. При условии постоянства давления, как показывает опыт, для всех жидкостей имеет место характерное явление: температура смеси жидкости и пара остается неизменной и равной температуре кипения \(t_n \).

Процесс парообразования прекратится в точке \(n \), когда вся жидкость превратится в пар. Между точками \(m \) и \(n \) система — двухфазная, пар в этой области — влажный насыщенный.

Влажный насыщенный пар представляет собой смесь пара с жидкостью, причем жидкость может быть сосредоточена в нижней части цилиндра или равномерно распределена в виде мельчайших капель по всему объему.

Пар, полученный при испарении всей жидкости (точка \(n \)), — сухой насыщенный. Удельный объем пара в этой точке обозначим через \(v'' \). При проведении процесса парообразования при другом давлении соответственно получим точки \(n', n'' \). Кривая \(n' \) \(n'' \) представляет собой верхнюю (правую) пограничную кривую. Пересечение верхней и нижней пограничных кривых определяет положение критической точки \(K \). Для воды критической точке соответствует \(p_{kr} = 221,048 \) бар, \(T_{kr} = 647,15^\circ \) К; \(v_{kr} = 0,0031 \) м\(^3\)/кг. На рис. 9.5 в области влажного насыщенного пара пунктирными линиями показаны линии постоянной сухости.

Степень сухости пара \(x \) представляет собой массовую долю сухого насыщенного пара во влажном

\[
x = \frac{m_{сух. пара}}{m_{влажн. пара}}. \tag{9.14}
\]

Для точек, лежащих на нижней пограничной кривой, \(x = 0 \), для точек, лежащих на верхней пограничной кривой, \(x = 1 \). Если к сухому насыщенному пару продолжать подводить теплоту, то удельный объем и температура увеличиваются (\(v_n > v'', t > t_n \)). Пар в этом состоянии называют перегретым. Начиная с точки \(n \) вправо система однофазная.
§ 3. Изменение агрегатного состояния

В § 2 рассматривался процесс парообразования, т. е. переход из жидкого состояния в парообразное, осуществляемый при постоянном давлении. Аналогичный переход из твердого состояния в газообразное называют возгонкой, или сублимацией, а из твердого состояния к жидкому — плавлением.

Состояния вещества при этих превращениях считаются устойчивыми, стабильными. При этом все изменения состояния считаются квазистатическими, как это обычно принято в термодинамике.

Переход из одного агрегатного состояния в другое удобно рассматривать на p—t-диаграмме (рис. 9.6). На диаграмме кривая AK представляет собой зависимость между давлением насыщенного пара и температурой кипения, т. е. $p = f(t)$ (кривая упругости пара).

Кривая равновесия жидкой и газообразной фазы заканчивается в критической точке K.

Если от жидкости отбирать теплоту при постоянном давлении, то при определенной температуре жидкость переходит в твердое состояние. Температура, при которой осуществляется этот переход, называется температурой затвердевания, или плавления $t_{пл}$, а количество теплоты, отбираемое в этом процессе, называется скрытой теплотой плавления. При плавлении так же, как и при парообразовании, вещество находится в двух фазах. Аналогично кривой AK можно построить кривую AD, которая однозначно определяется зависимостью $p = f(t_{пл})$.

Кривая сублимации AB представляет собой зависимость $p = f(t_{c})$ для перехода твердого тела в газообразное. Этот переход при температуре сублимации t_{c} происходит вследствие подведения некоторого количества теплоты, носящего название скрытой теплоты сублимации. Точки этой кривой соответствуют двухфазной системе твердое тело — газ (например, водяной пар над поверхностью льда).

Все три кривых равновесия (парообразования, плавления и сублимации) пересекаются в некоторой характерной для каждого вещества точке. Эта точка A называется тройной точкой, а изображаемое ею состояние — фундаментальным. В этой точке находятся в термодинамическом равновесии три различные фазы вещества: твердая, жидкая и газообразная.

Тройной точке воды соответствуют следующие параметры: давление $p = 0,00610$ бар, $T = 273, 16^\circ$ К.
Рассмотрение описанных процессов показывает, что в состояниях, находящихся между кривыми AB, AE и AD, тело будет находиться целиком в одной фазе: правее AB и AK — область газообразного состояния; левее линий AD и AB располагается область вещества в твердом состоянии; между линиями AD и AK находится область жидкости.

В состояниях на линии AK, AD и AB вещество может существовать в двух фазах, причем на линии AK в жидкой и газообразной, на AD — твердой и жидкой; а на линии AB вещество может быть в твердом и газообразном состояниях. Расположение и вид этих трех кривых

$$AK - p = f(t_n), \quad AD - p = f(t_{пл}), \quad AB - p = f(t_o)$$

зависят от природы вещества и устанавливаются опытным путем.

§ 4. Параметры состояния воды и водяного пара

Вследствие незначительной сжимаемости воды можно принять, что плотность воды при $0^\circ C$ и любых давлениях есть величина постоянная, а $v_o' = 0,001 \text{ м}^3/кг$. Начало отсчета внутренней энергии энтальпии и энтропии берется от $0^\circ C$ и соответствующего давления насыщения $p = 0,00610 \text{ бар}$. При этих параметрах энтальпии, энтропия, а также внутренняя энергия воды берутся условно равными нулю: $s_o' = 0, i_o' = 0, u_o' = 0$.

В процессе подогрева воды происходит нагревание ее до температуры кипения t_n. Удельный объем воды при температуре кипения v' будет больше объема v_o'. Соответствующие значения v' для воды в функции температуры и давления для состояний, лежащих или на нижней пограничной кривой, или левее ее, даются в справочной литературе.

Количество теплоты, которое нужно сообщить воде, чтобы нагреть ее от $0^\circ C$ до температуры кипения в процессе $p = \text{const}$, называется теплотой жидкости. Это количество теплоты определяется по формуле

$$q' = c_{p_b} (t_n - t_0), \quad (9.15)$$

или

$$q' = c_{p_b} t_n. \quad (9.16)$$

где c_{p_b} — средняя теплоемкость воды в интервале температур от $0^\circ C$ до $t_n^\circ C$.

При низких по сравнению с $T_{кp}$ температурах можно считать $c_{p_b} = 4,1865 \text{ кДж/(кг} \cdot \text{град)}$.

Воспользуемся в изобарном процессе подогрева воды первым законом термодинамики, по которому

$$q' = u' - u_o' + l', \quad (9.17)$$

где u' — внутренняя энергия воды при температуре кипения.
Так как при 0° С \(u'_0 = 0 \), а работа расширения жидкости
\[
l'' = p \left(v'' - v'_0 \right)
\]
(9.18)
практически заметна только при больших значениях давления, то
\[
q' \approx u'.
\]
(9.19)

Энтальпия воды при температуре кипения определяется по общей формуле
\[
i' = i'_0 + q'.
\]
(9.20)
Пологая, что \(i'_0 = u'_0 + \rho v'_0 = 0 \), получим
\[
i' = u' = q'.
\]
(9.21)

В процессе нагревания жидкости от 0° С до температуры кипения происходит увеличение ее энтропии, которое может быть найдено по формуле
\[
\Delta s = s' - s'_0 = \int_{s'_0}^{s'} \frac{dq}{T} = \int_{s'_0}^{s'} \frac{T}{c_{pHb}} \frac{dT}{T};
\]
(9.22)
при \(s'_0 = 0 \) и \(c_{pHb} = 4,1865 \text{ кдж/кг·град} \)
\[
s' = 4,1865 \ln \frac{T_H}{273}.
\]
(9.23)

Как уже было сказано, опытами установлено, что в процессе парообразования жидкость, нагретая до температуры кипения при этой температуре и определенном постоянном давлении, обрашается в пар. Количество теплоты, затрачиваемое в процессе при \(p = \text{const} \) на превращение 1 кг воды при температуре кипения в сухой насыщенный пар той же температуры, обозначим через \(r \).

Теплота \(r \) называется скрытой теплотой парообразования. По первому закону термодинамики
\[
r = u'' - u' + l'',
\]
(9.24)
где \(u'' \) — внутренняя энергия сухого насыщенного пара;
\(l'' \) — работа расширения в процессе парообразования.

Разность внутренних энергий \(u'' - u' \), затрачиваемая на работу против внутренних сил, называется внутренней теплотой парообразования и обозначается буквой \(\rho \). Теплота, затрачиваемая на работу против внешних сил, равна
\[
l'' = p \left(v'' - v' \right)
\]
(9.25)
и называется внешней теплотой парообразования. Обозначим ее буквой \(\psi \). Таким образом,
\[
r = \rho + \psi.
\]
(9.26)

Вследствие того что процесс парообразования идет при постоянном давлении,
\[
r = i'' - i'.
\]
(9.27)
Величины r и i'' даются в таблицах насыщенного пара, а ρ, ψ, u'' легко определяются по приведенным выше формулам.

С возрастанием давления, как видно из рис. 9.7, увеличивается энтальпия жидкости и достигает максимального значения при критическом давлении. Скрытая теплота парообразования уменьшается с ростом давления и равна нулю при критическом давлении (и температуре), потому что в этих условиях различия между жидкостью и ее паром исчезают и процесс парообразования как таковой отсутствует.

Изменение энтропии в процессе парообразования при подведении к кипящей воде r кдж/кг теплоты равно

$$s'' - s' = \frac{r}{T_n}, \quad (9.28)$$

откуда

$$s'' = s' + \frac{r}{T_n} \quad (9.29)$$

или, используя значение s' из выражения (9.23),

$$s'' = 4,1865 \ln \frac{T_n}{273} + \frac{r}{T_n}. \quad (9.30)$$

При полном испарении жидкости состояние сухого насыщенного пара определяется одним параметром: давлением или температурой. Поэтому объем, внутренняя энергия и энтальпия определяются по таблицам насыщенного пара по давлению или температуре.

Связь между удельными объемами жидкости и пара на линии насыщения φ' и φ'', давлением насыщенного пара p_n, температурой T_n и скрытой теплотой парообразования может быть получена следующим образом. При превращении жидкости в пар давление насыщенного пара от объема системы не зависит, следовательно, в выражении (8.8) $\left(\frac{\partial \rho}{\partial T} \right)_V = \frac{d\rho_n}{dT_n}$, но так как равновесное превращение жидкости в пар происходит при постоянной температуре ($T_n = \text{const}$), то

$$\left(\frac{\partial S}{\partial V} \right)_T = \frac{dS}{dV},$$

где dV представляет изменение объема системы при переходе жидкости в пар. Таким образом,

$$\frac{d\rho_n}{dT_n} = \frac{dS}{dV}. \quad (9.31)$$
Изменение объема системы, если испарилась жидкость массой \(dm \), равно
\[
dV = (\upsilon'' - \upsilon') \, dm,
\]
а приращение энтропии в квазистатическом процессе испарения жидкости массой \(dm \) по (9.28)
\[
dS = \frac{dm}{T_H}.
\]
Подставив эти значения в уравнение (9.31), получим
\[
\frac{d\rho_H}{dT_H} = \frac{\rho}{T_H (\upsilon'' - \upsilon')},
\]
где \(\frac{d\rho_H}{dT_H} \) — производная от давления по температуре на кривой фазового равновесия \(\rho_H = f (T_H) \).

Уравнение (9.32) называют уравнением Клапейрона — Клаузиуса и применяют при исследованиях изменений агрегатного состояния вещества из жидкого состояния в парообразное. Аналогичные уравнения можно применять к процессам перехода вещества из твердого состояния в жидкое или газообразное.

Параметры влажного насыщенного пара при заданной величине сухости могут быть определены из следующих соотношений.

Удельный объем влажного насыщенного пара
\[
v = (1 - x) \upsilon' + x\upsilon''.
\]
(9.33)

Так как объем воды \((1 - x) \upsilon'\) мал по сравнению с объемом пара, то при невысоких давлениях
\[
v = x \upsilon''.
\]
(9.34)

Энталпия влажного насыщенного пара с учетом того, что на превращение в пар \(x \) кг жидкости необходимо затратить \(x r \) ккал/кг теплоты, равна
\[
i = i' + rx.
\]
(9.35)

Энтропия влажного насыщенного пара
\[
s = s' + \frac{rx}{T_H}.
\]
(9.36)

Свойства перегретого пара резко отличаются от свойств насыщенного пара и приближаются к свойствам газов.

Перегретый пар характеризуется тем, что его температура выше температуры парообразования \(T_H \) при том же давлении и удельный объем его больше, чем объем сухого насыщенного пара при том же давлении.

Количество теплоты, необходимое для перевода 1 кг сухого насыщенного пара при \(p = \text{const} \) в перегретый с температурой \(t \), называют тепловой перегрев \(q_H \) и определяют по формуле
\[
q_H = \int_{T_H}^{t} c_p \, dT.
\]
(9.37)
Если \(c_{p_m} \) — средняя массовая теплоемкость перегретого пара при постоянном давлении, то

\[q_n = c_{p_m} (T - T_n). \] (9.38)

Значение \(c_{p_m} \) берется для перегретого пара по формуле \(c_{p_m} = f(T) \).

Энтальпия перегретого пара

\[i_n = i'' + q_n = i' + r + c_{p_m} (T - T_n) \] (9.39)

называется полной теплотой перегретого пара.

По первому закону термодинамики

\[q_n = u_n - u'' + l, \] (9.40)

где \(l = p (v_n - v'') \) — работа расширения в изobarном процессе перегрева пара;

\(u_n - u'' \) — изменение внутренней энергии в процессе перегрева.

Изменение энтропии в равновесном изobarном процессе перегрева равно

\[s_n - s'' = \int_{T_n}^{T} \frac{dq_n}{T} = \int_{T_n}^{T} \frac{c_p dT}{T} = c_{p_m} \ln \frac{T}{T_n} \] (9.41)

или

\[s_n = s'' + c_{p_m} \ln \frac{T}{T_n} = 4,1865 \ln \frac{T_n}{273} + \frac{r}{T_n} + c_{p_m} \ln \frac{T}{T_n}. \] (9.42)

Свойства перегретых паров будут тем ближе к свойствам идеального газа, чем больше температура перегрева.

§ 5. \(T-s \)-диаграмма водяного пара

Для графического изображения процессов, происходящих в паре, удобно пользоваться \(T-s \)-диаграммой, в которой площадь под кривой обратимого процесса дает количество теплоты, сообщаемое телу или отнимаемое от него. Так как в системе координат \(p - v \) и \(T-s \) любая точка изображает определенное состояние тела, то точкам \(p-v \)-диаграммы должны соответствовать определенные точки \(T-s \)-диаграммы (рис. 9.8).

Если было принято условно, что энтропия начального состояния воды \(s' = 0 \), то эта точка лежит на оси ординат на 273° выше абсолютного нуля.

Переходим по точкам нижнюю пограничную кривую \((x = 0)\) из системы \(p - v \) в \(T-s \)-диаграмму, получим соответствующую ей кривую, абсциссами которой являются значения \(s' \). Аналогично на- носится верхняя пограничная кривая \((x = 1)\), абсциссами которой будут значения энтропии сухого насыщенного пара \(s'' \).
В точке \(b \) диаграммы начинается кипение при \(T_n = \text{const} \), и энтропия в процессе парообразования повышается

\[
\Delta s = \frac{r}{T_n} \ x.
\]

Процесс парообразования заканчивается в точке \(c \), где

\[
\Delta s = \frac{r}{T_n}.
\]

Так как процесс парообразования идет при \(T_n = \text{const} \) и \(p = \text{const} \), изотерма \(b-c \) является одновременно и изобарой. Дальнейший подвод теплоты снова сопровождается увеличением температуры и энтропии. В процессе перегрева пара (кривая \(c-e \))

\[
\Delta s = c_{p_m} \ n \frac{r}{T_n}.
\]

Вследствие того что площади в \(T - s \)-диаграмме изображают количество подведенной (отведённой) теплоты, то пл. \(abAO \) — теплота в процессе нагрева жидкости от \(0^\circ C \) до температуры кипения; пл. \(bcBA \) — теплота, подводимая к воде в процессе парообразования; пл. \(ceCB \) — теплота, затраченная на перегрев пара.

Учитывая, что количество теплоты в процессе \(p = \text{const} \) равно разности энталпий \(q' = i' \), \(r = i'' - i' \), \(q_n = i_n - i'' \), площадь, ограниченная ординатами, осью абсцисс и изобарой, проходящей через точку, определяет энталпию в данной точке. Точка пересечения в верхней и нижней пограничных кривых является критической точкой \(K \).

Область, лежащая между кривыми \(aK \) и \(cK \), — это область влажного насыщенного пара. Область, лежащая правее верхней пограничной кривой, — область перегретого пара.

Исследования паровых процессов и расчеты существенно облегчаются при наличии подробной \(T - s \)-диаграммы, в которой нанесены обе пограничные кривые, сетка изobar и изохор, а также кривые постоянной сухости \(x = \text{const} \), которые на рис. 9.8 показаны пунктирными линиями.

§ 6. \(i - s \)-диаграмма водяного пара

Для изучения и расчетов различных термодинамических процессов, в которых рабочим телом является насыщенный и перегретый пар, особо удобна \(i - s \)-диаграмма (рис. 9.9).
В системе координат $i - s$ наносятся пограничные кривые, изо-
бары и изотермы. Нижняя пограничная кривая и верхняя погранич-
ная кривая строятся по известным значениям i', s', i'', s'' и сливаются в критической точке K. В области влажного насыщенного пара нано-
сятся линии постоянной сухости (пунктирные кривые). В этой диа-
граммне теплоты жидкостей, парообразование и перегрев изобража-
ются линейными отрезками, а не площадями. Теплота парообразования по данной изобаре

$$r = i'' - i'$$

равна разности ординат точек пересечения изобары с пра-
вой и левой пограничными кривыми.

Для процесса парообразо-
вания, происходящего при $p = \text{const}$,

$$ds = \frac{dq}{T_n} = \frac{di}{T_n},$$

т. е. $\left(\frac{di}{ds}\right)_p = T_n$.

Следовательно, в области влажного насыщенного па-
ра изобары, являясь одно-
временно и изотермами, предстают собой прямые
линии с угловым коэффициентом, равным T_n; из диаграммы видно, что изобары пересекают пограничные кривые без излома. Изохоры, изобары и изотермы в области перегретого пара строятся по точкам. Изобары и изохоры в области перегрева — слабо вогнутые логариф-
мические кривые; изотермы в области перегретого пара — выпук-
лые кривые, поднимающиеся слева вверх направо. Вид изотерм опре-
деляется температурой, которой они соответствуют. Чем больше тем-
пература, тем выше располагается изотерма. Чем дальше от погра-
ничной кривой ($x = 1$) проходит изотерма, тем больше она прибли-
зается к горизонтали $i = \text{const}$, так как в области идеального газа энтальпия однозначно определяется температурой. На рис. 9.9 точки A, B, C изображают соответственно состояния влажного, сухого и перегретого пара. Причем точка A лежит на пересечении изобары (изотермы) и линии постоянной сухости, точка B лежит на пересе-
чении изобары и верхней пограничной кривой, точка C находитс-
я на пересечении изобары и изотермы. По положению точки, соответ-
ствующей некоторому состоянию пара, можно определить на $i - s$
диаграмме числовые значения всех параметров в этой точке.
§ 7. Парогазовые смеси

Большинство газов, применяемых в технике, содержит пары тех или иных жидкостей. Наиболее распространенными являются смесь воздуха или какого-либо другого газа с водяным паром, смесь воздуха с паром бензина, керосина и т. п.

Характер изменения параметров парогазовой смеси имеет важное значение в расчетах процесса сушки, кондиционирования воздуха, сверхзвуковых аэродинамических труб, обледенения самолетов, процесса испарения топлива в двигателях и форсирования их впрыском жидкостей и т. д.

Смесь, состоящая из сухого газа и перегретого пара, называется ненасыщенным влажным газом, а смесь из сухого газа и насыщенного пара — насыщенным влажным газом.

При охлаждении влажного газа до определенной температуры (температуры точки росы) пар становится насыщенным, а в дальнейшем может и сконденсироваться.

Состояние парогазовой смеси определяется сравнительно узким диапазоном температуры и давления. Значительное повышение температуры или понижение давления приводит к тому, что влажный газ превращается в простую газовую смесь (гл. 11, § 4).

Полагая, что перегретый пар любой жидкости, входящий в состав влажного газа, приближается по своим свойствам к газам, можно рассматривать влажный газ как газовую смесь.

По закону Дальтона давление смеси идеальных газов \(p \) равно сумме парциальных давлений

\[
p = p_t + p_n, \tag{9.43}
\]

где \(p_t \) — парциальное давление сухого газа; \(p_n \) — парциальное давление пара.

Равным образом можно записать

\[
\rho = \rho_t + \rho_n. \tag{9.44}
\]

Равенство (9.44) показывает, что плотность влажного газа выше плотности сухого тогда, когда давление влажного газа по уравнению (9.43) выше сухого.

Основными характеристиками влажного состояния газа являются:

относительная влажность \(\varphi \), которая определяет степень насыщения газа паром

\[
\varphi = \frac{\rho_n}{\rho} = \frac{p_n}{p_n}, \tag{9.45}
\]

где \(\rho_n \) и \(\rho \) — плотности перегретого и насыщенного пара; \(p_n \) и \(p \) — соответствующие парциальные давления.
Соотношение (9.45) справедливо только тогда, когда можно считать, что пар жидкости является идеальным газом вплоть до состояния насыщения. При этом

$$\rho_n = \frac{\rho_n}{R_n T}, \quad \rho_f = \frac{\rho_f}{R_f T},$$

где $R_n = R_f$ — газовая постоянная пара; абсолютная влажность D, определяющая массу пара, содержащегося в 1 м³ газа,

$$D = \rho_n kg/m^3;$$

влажосодержание d — это масса пара, содержащегося в 1 кг сухого газа,

$$d = \frac{\rho_n}{\rho_f} = \frac{D}{\rho_f},$$

или, определяя ρ_n и ρ_f из уравнения состояния, получим

$$d = \frac{R_f}{R_n} \cdot \frac{\rho_n}{\rho_f}. \quad (9.46)$$

Рассматривая влажный газ как газовую смесь, выводим соотношения, связывающие параметры влажного газа. Пусть состояние влажного газа определяется его давлением p, температурой t, плотностью ρ и относительной влажностью φ. По таблицам сухого насыщенного пара определяем для данной температуры значения ρ_n и ρ_f.

Плотность пара в смеси по уравнению (9.45) равна

$$\rho_n = \rho_n \varphi,$$

а плотность сухого газа

$$\rho_f = \rho - \rho_n = \rho - \varphi \rho_n. \quad (9.47)$$

Парциальное давление сухого газа можно определить из уравнения состояния

$$\rho_f = \rho_f R_f T = (\rho - \varphi \rho_n) R_f T.$$

Парциальное давление пара в смеси

$$\rho_n = p - \rho_f.$$

Если заданы для влажного газа p, t, φ, а плотность его неизвестна, то, найдя по таблицам насыщенного пара ρ_n и ρ_f для данной температуры, определим

$$\rho_n = \varphi \rho_n.$$

Парциальные давления пара и сухого газа вычислим по формулам

$$p_n = \varphi \rho_n, \quad \rho_f = p - \varphi \rho_n.$$

Плотность сухого газа найдем из уравнения состояния

$$\rho_f = \frac{p - \varphi \rho_n}{R_f T}, \quad (9.48)$$

120
а плотность влажного газа вычислим по формуле (9.44). Благосодержание на 1 м³ и на 1 кг сухого газа определяют по формулам:

\[D = \varphi \rho_n ; \]
\[d = \frac{\varphi \rho_n \rho R_T}{\rho - \varphi \rho_n} . \] (9.49)

Если газ насыщен паром, то \(\varphi = 1 \) и

\[D = \rho_n, \quad a \quad d = \frac{R_T}{R_n} \frac{\rho_n}{(\rho - \rho_n)} . \] (9.50)

Массовые доли сухого газа и пара во влажном газе соответственно равны:

\[
\begin{align*}
g_r &= \frac{1}{1 + d}, \\
g_n &= \frac{d}{1 + d}.
\end{align*}
\] (9.51)

Используя обычное выражение газовой постоянной для смеси газов (гл. 11, § 4), получим

\[R = g_r R_r + g_n R_n = \frac{1}{1 + d} (R_r + d R_n) . \] (9.52)

Теплоемкость влажного газа можно определить, зная массовый состав его и теплоемкости сухого газа и пара,

\[c = g_r c_r + g_n c_n = \frac{1}{1 + d} (c_r + d c_n) . \] (9.53)

Так же, как и теплоемкость, энталпия влажного газа равна сумме энталпий сухого газа и пара. Следовательно,

\[i = g_r i_r + g_n i_n = \frac{1}{1 + d} (i_r + d i_n) . \] (9.54)

Энталпия 1 кг сухого газа

\[i_r = c p_r t . \]

Энталпия водяного пара, который находится в перегретом состоянии, определяется по формуле

\[i_n = i + c t_n + c_{p_m} (t - t_n) . \] (9.55)

где \(i + c t_n \) — энталпия сухого насыщенного пара в газе \((t_n \) — температура кипения при определенном парциальном давлении); \(c_{p_m} \) — средняя теплоемкость перегретого пара.
Для водяного пара i_Π может быть взята из таблиц водяного пара. Таким образом, энталпия влажного насыщенного пара равна

$$i = \frac{1}{1 + d} \left\{ c_{p_v} t + d \left[i_0 + (c + c_{p_m}) t_\Pi + c_{p_m} t \right] \right\}. \quad (9.56)$$

Тепловые процессы парогазовой смеси имеют ряд особенностей, их можно разделить на:

процессы, идущие без фазовых превращений, в этом случае относительная влажность $\varphi < 1$, пар в смеси находится в перегретом состоянии и только в крайнем случае достигает состояния насыщения $\varphi = 1$;

процессы, идущие с фазовыми превращениями; насыщенный пар при дальнейшем протекании процесса начнет конденсироваться, при этом φ остается равной единице.

Процессы, идущие при наличии фазового перехода, сильно усложняют математическое описание этих процессов и требуют специальной методики расчета.

§ 8. i—s-диаграмма влажного воздуха

Для проведения расчетов, связанных с влажным воздухом, пользуются i — d-диаграммой, предложенной Рамзиным. На диаграмме по оси ординат откладываются значения энталпии влажного воздуха из расчета на $1 \, kg$ сухого газа, а по оси абсцисс — влагосодержание в граммах на $1 \, kg$ сухого воздуха. Диаграмма построена только для давления 745 mm, pt. cm. В основном диаграмма служит для определения параметров процесса во время сушки.

Рассмотрим i — s-диаграмму для влажного воздуха. С помощью этой диаграммы можно определить состояние как влажного насыщенного, так и ненасыщенного воздуха, т. е. для процессов, идущих с любыми значениями относительной влажности.

В этой диаграмме (рис. 9.10) по оси ординат откладывается энталпия насыщенного воздуха

$$i = c_{p_v} t + d l^\prime \prime, \quad (9.57)$$

где c_{p_v} — теплоемкость сухого воздуха; $l^\prime \prime$ — энталпия сухого насыщенного пара при температуре t.

А по оси абсцисс — энтропия паровоздушной смеси

$$s = c_{p_v} \ln \frac{T}{273} - R \ln \frac{p_v}{p_0} + s_{0_v} + d \left(c_{p_v} \ln \frac{T}{273} - R \ln \frac{p_\Pi}{p_{0\Pi}} + s_{0\Pi} \right), \quad (9.58)$$

где c_{p_v} — теплоемкость сухого насыщенного пара; p_v и p_Π — соответственно парциальные давления сухого воздуха и пара; p_{0_v} и $p_{0\Pi}$ — начальные давления сухого воздуха и пара; s_{0_v} и $s_{0\Pi}$ — начальные энтропии сухого воздуха и пара.

122
На диаграмме наносятся изобары \((p_1 > p_2 > p_3\) и т. д.), изохоры \((u_1 > u_2 > u_3\) и т. д.), изотермы \((t_1 < t_2 < t_3\) и т. д.) и линии постоянного влагосодержания \((d_1 < d_2 < d_3\) и т. д.).

Несмотря на то что диаграмма построена для насыщенного влажного воздуха, по ней можно определить и параметры ненасыщенного влажного воздуха.

Для этого \(\varphi = \frac{p}{p'}\) должно быть заменено отношением

\[
p/p' = \varphi,
\]

где \(p\) — действительное давление влажного воздуха; \(p'\) — условное давление, при котором влажный воздух заданного влагосодержания \((d = \text{const})\) становится насыщенным в изотермическом процессе сжатия.

При такой замене \(\varphi\) давление \(p'\) определяется изобарой, проходящей через данную точку диаграммы, для которой известно действительное значение давления \(p\). Зная действительное давление влажного воздуха, можно определить значение \(\varphi\) по формуле (9.59).

Объем влажного воздуха может быть определен из следующих соотношений:

\[
pV = p'V' = \frac{p}{\varphi} V',
\]

откуда

\[
V = \frac{V'}{\varphi}.
\]

На \(i\) — \(s\)-диаграмме в связи с тем, что изобары насыщенного воздуха в данной точке не соответствуют действительному давлению, энтропия в этой точке не будет соответствовать действительному значению энтропии. Для определения энтропии ненасыщенного воздуха на \(i\) — \(s\)-диаграмме проведены кривые \(\Delta s = f(\varphi)\). Действительное значение энтропии влажного воздуха равно

\[
s = s' + \Delta s,
\]

где \(s'\) — значение энтропии в данной точке; \(\Delta s\) — поправка к действительному значению энтропии. Погрешность расчетов для ненасыщенного воздуха не превышает 4 — 5%.

Диаграмма \(i\) — \(s\) позволяет производить расчеты процессов, связанных с расширением и сжатием влажного воздуха, увлажнением его, с впрыском в камеру сгорания или компрессор двигателя и т. п.
Глава X
Течение газов

Процессы, совершающиеся в турбинах, центробежных и осевых компрессорах, реактивных двигателях и т. п., сопровождаются различными преобразованиями энергии, которые происходят в движущемся газе. Теория и расчеты этих машин строятся на общих данных и положениях теории газового потока. Эта теория не только дает возможность изучения отдельных процессов в движущемся газе, но и устанавливает условия, которые влияют на протекание этих процессов и их эффективность.

Изменение состояния газообразного тела в потоке базируется на основных законах термодинамики и ряде допущений.

В частности, полагают, что:

1) вся область движения газа может быть разбита по потоку на элементарные участки, причем в каждом участке по всему сечению параметры газа остаются постоянными (стационарное или устанавлившееся движение газа);

2) изменения параметров движущегося газа от сечения к сечению бесконечно малы по сравнению со значением самих параметров и параметры газа в различных сечениях потока устанавливаются быстро.

При таких допущениях газ при движении проходит ряд последовательных равновесных состояний. Если при этих допущениях считать, что трение отсутствует, то процесс изменения состояния будет обратимым, несмотря на то, что он не происходит бесконечно медленно (квазистатически).

На основе принятых допущений стационарное течение газа описывается системой уравнений, в которую входят уравнения неразрывности, энергии (первого закона термодинамики) и состояния газа, движение которого изучается.

Если при теплоизолированном течении газа отсутствуют силы трения, то течение будет изоэнтропным и состояние движущегося газа меняется по закону адиабаты.

Изоэнтропное течение газа имеет важное значение в теории турбин, компрессоров, реактивных двигателей и поэтому настоящая глава посвящена изучению этого течения.

§ 1. Основные уравнения газового потока

Если движение газа через канал установившееся, то через каждое сечение канала в единицу времени протекает одно и то же количество газа.

Для этого случая (рис. 10.1) при определенной скорости газа в каждом сечении канала расход газа равен

$$G = \frac{Fw}{v} = \frac{F_1 w_1}{v_1} = \frac{F_2 w_2}{v_2} = \text{const},$$

(10.1)
где G — секундный массовый расход газа; F_1, F_2 — площади поперечных сечений канала; w_1, w_2, — расходные скорости в соответствующих поперечных сечениях; v_1, v_2 — удельные объемы в тех же поперечных сечениях.

Постоянство массового расхода для всех сечений канала в каждый момент времени устанавливает условие неразрывности струи, поэтому уравнение (10.1) называют уравнением неразрывности, или сплошности.

Для рассматриваемого процесса течения газа через канал уравнения первого закона термодинамики для G кг газа имеет вид

$$dQ = dU + dL' + G \frac{dw^2}{2} + Ggdz, \quad (10.2)$$

где dQ — элементарное количество теплоты, подводимое или отводимое от газа на рассматриваемом участке движения; dU — изменение внутренней энергии газа в соответствующих сечениях; dL' — элементарная работа газа против внешних сил; $G \frac{dw^2}{2}$ — приращение кинетической энергии газа при его перемещении на выделенном участке; $Ggdz$ — элементарная работа против сил тяжести; этой состоящей в газах можно пренебречь.

Работа газа против внешних сил в движущемся газе является работой, затраченной на его проталкивание.

Рассмотрим поток газа в канале (рис. 10.1) при одномерном течении. Выделим сечениями $I - I$ и $II - II$ некоторую массу газа. Притекающий к сечению $I - I$ поток выполняет функцию поршня, который вытесняет заполняющий канал газ. На выделенную массу газа в канале действует сила pF, а справа — сила $(p + dp) (F + dF)$.

Работа перемещения, учитывая принятые в термодинамике знаки работ, равна

$$dL' = (p + dp) (F + dF) (w + dw) - pFw. \quad (10.3)$$

После сокращения и отбрасывания малых величин второго и высшего порядка получим

$$dL' = pF dw + pwdF + wFd p, \quad (10.4)$$

или

$$dL' = pd (Fw) + Fwpd. \quad (10.5)$$

Так как по уравнению неразрывности $Fw = Gv$ и, учитывая то, что расход есть величина постоянная, в сплошной среде получим

$$dL' = G (pdv + vdp) = Gd (pv). \quad (10.6)$$
Относительно работы против внешних сил к 1 кг газа, имеем
\[dl' = d \left(pv \right) = p dv + v dp. \] (10.7)

Величина \(v dp \) определяет элементарную работу, произведенную перемещающимся объемом газа при условии, что выделенная масса газа несжимаема.

Второе слагаемое \(p dv \) представляет собой элементарную работу, которую перемещающийся объем газа совершает в результате деформации под действием равномерно распределенного давления.

Подставляя работу против внешних сил в уравнение первого закона термодинамики, записанное для 1 кг газа, имеем
\[dq = du + dl' + \frac{dw^2}{2} = du + d \left(pv \right) + \frac{dw^2}{2} = d \left(u + pv \right) + \frac{dw^2}{2}. \] (10.8)

Как известно, \(u + pv = i \), следовательно,
\[dq = di + \frac{dw^2}{2}. \] (10.9)

Это уравнение показывает, что теплота, сообщаемая движущемуся газу, расходуется в двух направлениях: на приращение энталпии газа и на приращение внешней кинетической энергии, т. е. идет на увеличение скорости газового потока.

Уравнение (10.9) является основным для потока газа или пара, причем оно справедливо как для обратимых, не сопровождающихся действием сил трения, так и для необратимых течений, сопровождающихся трением.

Для течений при наличии сил трения уравнение (10.9) должно быть дополнено двумя членами: один, учитывающий работу, расходуемую на преодоление сил трения — \(l_\text{тр} \), другой, выражающий приращение теплоты в газовом потоке вследствие трения, — \(q_\text{тр} \). Так как работа против сил трения полностью переходит в теплоту, то эти два члена одинаковы по величине, имеют различный знак и поэтому взаимно уничтожаются. Таким образом, наличие сил трения не может нарушить общего баланса энергии.

При адабатном течении газа, когда при движении газа через канал теплота ему не сообщается \((dq = 0) \), имеем
\[l_1 + \frac{\omega}{2} = l_2 + \frac{\omega^2}{2}. \] (10.10)

Из уравнения (10.10) следует, что при теплоизолированном стационарном течении газа через канал сумма удельной энталпии и удельной кинетической энергии сохраняет постоянное значение.

Уравнение (10.9) так же, как и (10.10), сохраняет силу как для обратимых, так и для необратимых течений. Следует отметить, что эти уравнения справедливы лишь в том случае, когда газ при своем движении совершает работу расширения и не производит полезной (технической) работы (например, вращение рабочего класса турби-
ны, приводимой в движение потоком газа). При совершении потоком технической работы уравнение первого закона термодинамики (10.8) должно записываться в виде
\[
dq = du + d(pv) + dl_{\text{т.в.}} + \frac{dw^2}{2} = dl + dl_{\text{т.в.}} + \frac{dw^2}{2}, \tag{10.11}
\]
где \(l_{\text{т.в.}}\) — техническая работа*.
При совершении потоком технической работы работа деформации при расширении отдается внешнему потребителю, тогда как в каналах она воспринимается соседними элементами и изменяет их кинетическую энергию. Из сравнения уравнения (10.11) с уравнением (4.9) первого закона термодинамики, записанного для выделенного элемента потока, который деформируется, но не перемещается, получим в интегральной форме
\[
l_{\text{т.в.}} = \int (pdv + p_1 v_1 - p_2 v_2 + \frac{w_1^2 - w_2^2}{2}). \tag{10.12}
\]
Из этого уравнения видно, что величина технической работы складывается из работы деформации, разности работ вытеснения на входе и выходе из машины \((p_1 v_1 - p_2 v_2)\) и разности кинетических энергий в машине.

§ 2. Располагаемая работа газа в потоке

Для обратного процесса истечения газа одновременно с уравнением (10.9) сохраняет силу и уравнение (4.24):
\[
dq = dl - vdp.
\]
Подставив последнее уравнение в формулу (10.9), получим
\[
dl - vdp = dl + \frac{dw^2}{2},
\]
\[
\frac{dw^2}{2} = - vdp.
\]
Приращение внешней кинетической энергии тела, равное \(-\int vdp\), называется располагаемой работой, которая может быть использована в машинах и превращена в другие виды энергии.
Обозначим располагаемую работу через \(l_0\), тогда
\[
dl_0 = \frac{dw^2}{2} = wdw = - vdp. \tag{10.13}
\]

* Техническая работа будет подробнее рассмотрена в гл. X1.
Этот результат можно получить, если сравнить уравнения (10.11) и (4.24) при $l_{\text{tex}} = 0$.

Равенство (10.13) устанавливает основные особенности истечения газов. Из этого равенства видно, что dw и dp имеют обратные знаки, т. е. при обратимом процессе увеличение скорости всегда связано с понижением давления, и наоборот, уменьшение скорости сопровождается повышением давления.

Каналы, в которых происходит расширение газа с уменьшением давления ($dp < 0$) и увеличением скорости ($dw > 0$), называются соплами.

Каналы, в которых происходит сжатие газа с увеличением давления ($dp > 0$) и уменьшением скорости ($dw < 0$), называют диффузорами.

Как видно из уравнения (10.13), необходимым условием получения располагаемой работы является падение давления, так как только при $dp < 0, \, d\xi > 0$. Если в течение процесса давление будет постоянным $dp = 0$, то располагаемая работа $d\xi = 0$.

Если процесс изменения состояния газа при его течении изображать линией на $p - v$-диаграмме (рис. 10.2), то для процесса изменения $A - B$ располагаемая работа, равная

$$ l_0 = - \int_{p_1}^{p_2} vdp, $$

изображается в виде площади, ограниченной кривой процесса, линиями $p = p_1$ и $p = p_2$ и осью ординат.

Работа расширения газа

$$ l = \int_{v_1}^{v_2} pdv $$

по-прежнему изображается площадью под кривой процесса, которая ограничена крайними ординатами и осью абсцисс.

В зависимости от вида процесса значение располагаемой работы может быть подсчитано на основе общих термодинамических положений. Располагаемая работа в политропном процессе, в котором изменение состояния подчиняется уравнению $pv^n = \text{const}$, после подстановки в уравнение (10.13) значения текущего объема

$$ v = \frac{p_1^{1/n} v_1}{p_1^{1/n}} $$

равна

$$ l_0 = \int_{p_2}^{p_1} \frac{\omega}{p_1^{1/n}} = \frac{n}{n-1} (p_1 v_1 - p_2 v_2) = $$

$$ = \frac{n}{n-1} p_1 v_1 \left[1 - \left(\frac{p_2}{p_1} \right)^{n-1/n} \right]. \quad (10.14) $$

В общем случае располагаемая работа может быть больше или меньше работы расширения или равна ей, причем это соотношение

128
будет определяться величиной показателя политропы. Так, для политропного процесса, в котором работа расширения газа определяется по формуле

$$l = \frac{1}{n-1} \rho_1 v_1 \left[1 - \left(\frac{\rho_2}{\rho_1} \right)^{\frac{n-1}{n}} \right];$$

сравнение с располагаемой работой приводит к равенству

$$l_0 = nl.$$

Для адиабатного процесса расширения газа

$$l_0 = kl.$$

Рис. 10.2

Рис. 10.3

Для адиабатного течения газа располагаемая работа может быть определена и через энтальпию газа. Используя уравнение (10.13), видим, что

$$dl_0 = -dt.$$

Интегрируя это выражение, получим

$$l_0 = - \int_{t_1}^{t_2} dt = (i_1 - i_2). \quad (10.15)$$

Следовательно, располагаемая работа газа при адиабатном течении равна разности энтальпий в начальном и конечном состояниях.

На рис. 10.3 показан располагаемый теплоперепад $h_0 = i_1 - i_2$ (располагаемая работа) на $i - s$-диаграмме.

§ 3. Скорость истечения и расход газа

Скорость истечения газа через сопло при условии, что параметры газа на входе p_1, v_1, а на выходе p_2 и v_2, может быть найдена в общем случае путем интегрирования уравнения (10.13)

$$dl_0 = d \left(\frac{v^2}{2} \right).$$
Располагаемая работа газа

$$l_0 = \frac{\omega_2^2 - \omega_1^2}{2}, \hspace{1cm} (10.16)$$

где ω_1 и ω_2 — значения скорости газа в начале и конце процесса.
Если пренебречь начальной скоростью газа (в ряде практических случаев это можно сделать), то скорость в конце истечения $\omega_2 = \omega$ определяется по формуле

$$\omega = \sqrt{2l_0}. \hspace{1cm} (10.17)$$

Подставляя в эту формулу значение располагаемой работы при адиабатном течении газа, получим значение скорости при обратном адиабатном расширении

$$\omega = \sqrt{\frac{2}{k-1}} \frac{k}{k-1} p_1 \omega_1 \left[1 - \left(\frac{p_2}{p_1} \right)^{(k-1)/k} \right] \hspace{1cm} (10.18)$$

или, используя формулу (10.15),

$$\omega = \sqrt{\frac{2}{(i_1 - i_2)}} = \sqrt{2h_0}. \hspace{1cm} (10.19)$$

Как видно из формул (10.18) и (10.19), скорость истечения определяется состоянием газа на входе в сопло и его конечным давлением на выходе или разностью энталпий на входе и выходе из сопла h_0.
При истечении газа в вакуум ($p_2 = 0$) скорость истечения должна быть максимальной

$$\omega_{\text{max}} = \sqrt{2 \frac{k}{k-1} p_1 \omega_1}. \hspace{1cm} (10.20)$$

Расход газа через сопло может быть подсчитан по уравнению неразрывности

$$G = \frac{F_2 \omega}{v_2},$$

где F_2 — площадь выходного сечения сопла; v_2 — удельный объем газа в этом сечении.
Из уравнения адиабаты

$$p_2 v_2^k = p_1 v_1^k,$$

$$v_2 = v_1 \left(\frac{p_1}{p_2} \right)^{1/k}.$$

Расход газа через сопло после подстановки в него значения скорости истечения по формуле (10.18) и значения удельного объема

$$G = F_2 \frac{1}{\omega_1} \left(\frac{p_2}{p_1} \right)^{1/k} \sqrt{2 \frac{k}{k-1} p_1 \omega_1 \left[1 - \left(\frac{p_2}{p_1} \right)^{(k-1)/k} \right]} =$$

$$= F_2 \sqrt{2 \frac{k}{k-1} \frac{p_1}{\omega_1} \left[\left(\frac{p_2}{p_1} \right)^{2/k} - \left(\frac{p_2}{p_1} \right)^{(k+1)/k} \right]} \hspace{1cm} (10.21)$$
Как видно из уравнения (10.21), расход газа зависит от площади выходного сечения сопла F_3, параметров газа на входе p_1, v_1 и давления в выходном сечении p_2.

§ 4. Истечение газа из резервуара неограниченной емкости

Пусть в резервуаре, размеры которого достаточно большие, находится газ, вытекающий через суживающееся сопло (рис. 10.4). Обозначим параметры газа в резервуаре через p_1, v_1, T_1. Значения этих параметров из-за размеров резервуара не должны меняться с течением времени. Начальную скорость газа в резервуаре примем равной нулю ($w_1 = 0$). Температуру, удельный объем, давление и скорость на выходе (срезе) сопла обозначим через T, v, p, w. Давление внешней среды, куда происходит истечение, обозначим через p_2. При так называемом расчетном режиме истечения $p = p_2$, т. е. давление на срезе сопла должно в процессе истечения равняться давлению окружающей среды.

Если в рассматриваемом случае истечение газа является обратимым и адиабатным, то из уравнений (10.18) и (10.21) следует, что

$$w = \sqrt{\frac{k}{k-1} \frac{p_1}{v_1} \left[1 - \left(\frac{p}{p_1} \right)^{(k-1)/k} \right]}.$$

$$G = F \sqrt{\frac{k}{k-1} \frac{p_1}{v_1} \left[\left(\frac{p}{p_1} \right)^{2/k} - \left(\frac{p}{p_1} \right)^{(k+1)/k} \right]}.$$ \hspace{1cm} (10.22)

При истечении газа из резервуара можно получить максимальный расход газа. Его значение определяется давлением на срезе сопла. Для определения максимального расхода возьмем первую производную от выражения, стоящего в квадратных скобках, и приравняем ее нулю

$$\frac{d}{dp} \left[\left(\frac{p}{p_1} \right)^{2/k} - \left(\frac{p}{p_1} \right)^{(k+1)/k} \right] = \frac{2}{k} \left(\frac{p}{p_1} \right)^{2/k - 1} -$$

$$- \frac{k+1}{k} \left(\frac{p}{p_1} \right)^{(k+1)/k - 1} = \frac{2}{k} \left(\frac{p}{p_1} \right)^{(2-k)/k} -$$

$$- \frac{k+1}{k} \left(\frac{p}{p_1} \right)^{1/k} = 0.$$

Из последнего выражения

$$\frac{2}{k} \left(\frac{p}{p_1} \right)^{(2-k)/k} = \frac{k+1}{k} \left(\frac{p}{p_1} \right)^{1/k}$$
или

\[
\frac{2}{k+1} = \left(\frac{p}{\rho_1} \right)^{1 - \frac{2}{k}} = \left(\frac{p}{\rho_1} \right)^{\frac{k-1}{k}}.
\]

откуда

\[
\frac{p}{\rho_1} = \left(\frac{2}{k+1} \right)^{\frac{k}{k-1}}.
\]

Отношение давлений \(\rho/\rho_1 \) называется **критическим** и обозначается через \(\beta_{кр} \); оно соответствует критическому давлению на срезе сопла \(\rho_{кр} \)

\[
\beta_{кр} = \frac{\rho_{кр}}{\rho_1} = \left(\frac{2}{k+1} \right)^{1/(k-1)}.
\] (10.23)

Критическое отношение давлений зависит только от физических свойств газа, точнее от его показателя адабаты. Для двухатомных газов при \(k = 1,4 \), \(\beta_{кр} = 0,528 \).

Подставляя в общую формулу секундного расхода значение, при котором расход будет максимальным, получим

\[
G_{\text{max}} = F \sqrt{2 \frac{k}{k-1}} \frac{p_1}{v_1} \left[\left(\frac{2}{k+1} \right)^{1/(k-1)} \right]^{2/k} - \left[\left(\frac{2}{k+1} \right)^{1/(k-1)} \right]^{(k+1)/k},
\]

или

\[
G_{\text{max}} = F \sqrt{2 \frac{k}{k-1}} \frac{p_1}{v_1} \left[\left(\frac{2}{k+1} \right)^{2/(k-1)} - \left(\frac{2}{k+1} \right)^{(k+1)/(k-1)} \right].
\]

Вынося за скобку выражение \(\left(\frac{2}{k+1} \right)^{2/(k-1)} \) и произведя соответствующие преобразования, найдем

\[
G_{\text{max}} = F \sqrt{2 \frac{k}{k+1}} \left(\frac{2}{k+1} \right)^{2/(k+1)} \frac{p_1}{v_1}.
\] (10.24)

Величина максимального расхода соответствует значение критической скорости \(\omega_{кр} \). Критическая скорость наступает только тогда, когда перепад давления будет равен

\[
\Delta p = p_1 - p_{кр} = p_1 \left(1 - \beta_{кр} \right).
\]

Подставляя в формулу для скорости потока значение \(\beta_{кр} \) из формулы (10.23), получим

\[
\omega_{кр} = \sqrt{2 \frac{k}{k+1} \frac{p_1}{v_1}}.
\] (10.25)

Таким образом, величина критической скорости для определенного рабочего тела зависит от значения параметров в начальном состоянии. Критическая скорость истечения представляет собой мак-
симальную скорость истечения газа через суживающееся сопло при определенном начальном состоянии газа. Критическая скорость истечения \(\omega_{kp} \) равна скорости звука в выходном сечении сопла, т. е. местной скорости звука.

Так как для критического сечения справедливы соотношения

\[
p_1 = p \left(\frac{k+1}{2} \right)^{k/(k-1)}
\]

\[
v_1 = v \left(\frac{p}{p_1} \right)^{1/k} = v \left(\frac{2}{k+1} \right)^{k/(k-1)}
\]

tо, подставляя эти значения в формулу (10.25), получим после преобразований

\[
\omega_{kp} = \sqrt{\frac{2}{k+1} \frac{k}{p} v \left[\left(\frac{k+1}{2} \right)^{k/(k-1)} \left(\frac{2}{k+1} \right)^{1/(k-1)} \right]} = a. \quad (10.26)
\]

Скорость звука представляет собой скорость распространения бесконечно малых возмущений в сплошной среде и зависит от упругих свойств и плотности среды. Так как в звуковой волне практически нет теплообмена между той частью, через которую проходит звуковая волна, и другими частями газа, то изменение состояния его осуществляется без подвода или отвода теплоты — аднабатно. Вследствие малости изменений состояния газа в волнах разрежения и сжатия действие внутреннего трения очень мало, и распространение звука можно рассматривать как обратимый аднабатный — изоэнтропный процесс (\(s = \text{const} \)).

Скорость распространения звука определяется по формуле Лапласа

\[
a = \sqrt{\frac{k}{\rho} p},
\]

gде \(p \) — давление среды, \(\text{ктс} / \text{м}^2 \); \(\rho \) — плотность среды, \(\text{кг} / \text{м}^3 \).

Значения скоростей звука для различных газов приведены в табл. 10-1

<table>
<thead>
<tr>
<th>Газ</th>
<th>(k = c_p/c_v)</th>
<th>(a, \text{м/сек})</th>
<th>Газ</th>
<th>(k = c_p/c_v)</th>
<th>(a, \text{м/сек})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гелий</td>
<td>1,66</td>
<td>1000</td>
<td>Азот</td>
<td>1,4</td>
<td>347</td>
</tr>
<tr>
<td>Водород</td>
<td>1,41</td>
<td>1320</td>
<td>Воздух сухой</td>
<td>1,4</td>
<td>347</td>
</tr>
<tr>
<td>Кислород</td>
<td>1,4</td>
<td>323</td>
<td>Углекислота</td>
<td>1,31</td>
<td>273</td>
</tr>
</tbody>
</table>

Так как

\[
\rho = 1/v,
\]

tо

\[
a = \sqrt{kpv}.
\]

Для идеального газа \(pv = RT \) и \(a = \sqrt{kRT} \).
Поскольку \(a = \sqrt{\frac{kRT}{p}} \), то каждому сечению сопла должна соответствовать своя местная скорость звука, определяемая величинами \(p \) и \(v \) в данном сечении. Для выходного сечения сопла, когда \(w = w_{kr} = a \), давление на срезе сопла должно быть равно критическому. В рассматриваемом случае скорость не может превысить критическую, и скорость газа, равная скорости звука, может иметь место только в минимальном (выходном) сечении сопла.

Используя формулы (10.22) и (10.23), получим

\[
F_{mln} = \frac{G}{\left(\frac{2}{k+1}\right)^{\frac{1}{k-1}} \sqrt{\frac{2}{k+1} \frac{p_2}{v_1}}}. \quad (10.27)
\]

Становится понятным и характер изменения расхода через суживающиеся сопла. По формуле (10.21) зависимость \(G = f(p) \) имеет параболический характер (кривая A-B-O на рис. 10.5). Расход газа, равный нулю, получается при \(p = p_1 \). При понижении давления расход газа растет до какой-то максимальной величины \(G_{max} \) при \(p = p_{kr} \) и \(w = w_{kr} = a \). Насколько естественно увеличение расхода газа по правой ветви параболы A-B, настолько невероятно уменьшение его по левой ветви параболы B-O при \(p < p_{kr} \). Причём в точке O, согласно формуле (10.21), при \(p = 0 \) расход должен быть равным нулю.

Опытами установлено, что расход газа через суживающееся сопло имеет максимум при \(p = p_{kr} \), но при дальнейшем понижении давления \(p < p_{kr} \) расход остается постоянным, равным максимальному (участок B-C на рис. 10.5).

Постоянство расхода \(G = G_{max} \) при \(p < p_{kr} \) может быть объяснено тем, что при понижении давления среды не происходит понижения давления на срезе сопла. Установившееся на срезе сопла давление \(p_{kr} \) соответствует наличию критической скорости, равной скорости звука, причем это максимальная скорость, которую может иметь газ при истечении через суживающиеся сопла. При этой скорости никакое уменьшение внешнего давления внутри сопла не передается; оно как бы сносится потоком газа, движущимся с той же скоростью, с какой распространяются возмущения, т. е. уменьшается давление.

Поэтому перераспределения давления внутри сопла не происходит, так как не происходит изменения давления на срезе. Скорость истечения остается постоянной независимо от величины внешнего давления.
Провеанализируем теперь изменение состояния газа внутри сопла при течении газа от входного сечения к выходному. Примем, что газ является идеальным, т. е. подчиняется уравнению Клапейрона, а течение его изоэнтропное. Уравнения изоэнтропного течения газа в сопле могут быть записаны в дифференциальной форме:

уравнение неразрывности

\[F \omega = G v \]

после дифференцирования имеет вид

\[F d \omega + \omega d F = G d v. \]

Поле в части на \(F \omega \), получим

\[\frac{d \omega}{\omega} + \frac{d F}{F} = \frac{G d v}{F \omega} = \frac{d \omega}{v}, \]

или

\[\frac{d F}{F} = \frac{d v}{v} - \frac{d \omega}{\omega}. \] (10.28)

уравнение адабаты

\[\frac{d p}{\rho} + k \frac{d v}{v} = 0, \]

откуда

\[\frac{d v}{v} = - \frac{1}{k} \frac{d p}{\rho}. \] (10.29)

Из уравнения (10.13)

\[d \left(\frac{\omega^2}{2} \right) = - v d p; \quad \omega d \omega = - v d p, \]

или после деления на \(\omega^2 \)

\[\frac{d \omega}{\omega} = - \frac{v d p}{\omega^2}. \] (10.30)

Подставив значения \(\frac{d v}{v} \) и \(\frac{d \omega}{\omega} \) в уравнение (10.28), имеем

\[\frac{d F}{F} = \left(\frac{v}{\omega^2} - \frac{1}{k \rho} \right) d p = \frac{k p v - \omega^2}{k p \omega^2} d p. \]

В этом уравнении \(k p v = \alpha^2 \), где \(\alpha \) — скорость звука в газе, следовательно,

\[\frac{d F}{F} = \left(\frac{\alpha^2 - \omega^2}{k p \omega^2} \right) d p. \] (10.31)

Так как для сопла \(d p < 0 \) и \(d \omega > 0 \) и, если скорость истечения меньше скорости звука, \(\alpha^2 - \omega^2 > 0 \), то сопло должно быть суживающимся в направлении движения газа (\(d F < 0 \)).
Если скорость истечения больше скорости звука \(a^2 - \omega^2 < 0 \), то сопло должно быть расширяющимся в направлении газа \(dF > 0 \).
Место перехода суживающейся части в расширяющуюся — самое узкое сечение, в котором \(\omega = \omega_{kr} = a \).

§ 5. Расширяющиеся сопла

Проведенный в предыдущем параграфе анализ показывает, что скорость газа больше скорости звука может быть получена в комбинированном сопле, состоящем из суживающейся и расширяющейся частей (рис. 10.6).
Такое сопло называется по имени изобретателя соплом Лаваля. Суживающаяся часть работает при дозвуковой скорости \(\omega < a \), а расширяющаяся — при сверхзвуковой скорости \(\omega > a \). В наименьшем сечении сопла Лаваля скорость потока равна местной скорости звука.
Рассмотрим изменение скорости и площади поперечного сечения в зависимости от изменения давления по длине сопла. Для удобства такого анализа воспользуемся формулами предыдущего параграфа (10.18), (10.21) и представим их в безразмерном виде. Для этого скорость потока

\[
\omega = \sqrt{\frac{2}{k-1} \frac{k}{RT_1} \left[1 - \left(\frac{p}{p_1} \right)^{\frac{k-1}{k}} \right]}
\]

поделим на \(\sqrt{RT_1} \).
Безразмерное отношение

\[
\frac{\omega}{\sqrt{RT_1}}
\]

назовем параметром скорости.
Расход газа через сопло равен

\[
G = \frac{F\omega}{v} = \frac{F\omega p}{RT}.
\]
Умножим и поделим правую часть равенства на \(\frac{p_1}{T_1} \), тогда

\[
G = \frac{F\omega p_1}{RT_1} \frac{p}{p_1} \frac{T_1}{T}.
\]
Так как связь между давлением и температурой может быть определена по уравнению адиабаты для изоэнтропного течения газа, то

\[
G = \frac{F\omega p_1}{\sqrt{RT_1}} \left(\frac{p}{p_1} \right)^{1/k}.
\]
После подстановки значения скорости потока в последнее уравнение получим

\[
G = \frac{Fp_1}{\sqrt{RT_1}} \sqrt{2 \frac{k}{k-1} \left[\left(\frac{p}{p_1} \right)^{2/k} - \left(\frac{p}{p_1} \right)^{k+1/k} \right]}.
\]
Безразмерное отношение

\[
\frac{F}{G \sqrt{RT_1}} = \frac{F}{G \sqrt{\frac{v_1}{\rho_1}}}
\]

назовем параметром площади.

На рис. 10.7 представлена зависимость параметра скорости и параметра площади в функции отношения давлений \(p/p_1 \).

Как видно из графика (рис. 10.7), кривая изменения параметра площади поперечного сечения показывает, что последняя в начале уменьшается. Это объясняется тем, что скорость растет быстрее, чем удельный объем. Так продолжается до сечения, в котором \(p/p_1 = \beta_{kr} \). В этом сечении устанавливается критическое давление и скорость принимает значение скорости звука. При дальнейшем

![Рис. 10.6 и Рис. 10.7](image)

построении этой кривой по формуле (10.33) параметр площади, а следовательно, и площадь поперечного сечения будет увеличиваться, а вместе с ней для этих сечений будет расти и значение параметра скорости по формуле (10.32).

Расширяющаяся часть сопла Лаваля создает условия для получения сверхзвукового потока, которые не могут быть созданы только понижением давления в среде, куда происходит истечение. Расчет комбинированного сопла сводится к определению проходных сечений сопла \(f_{min} \) и \(F_2 \), при заданном расходе \(G \) и угле уширения сопла \(\alpha \), который обеспечивает безотрывное течение газа (рис. 10.6).

Профилированием проточной части сопла достигается лишь различное распределение давлений внутри сопла, но расход при этом в выходном сечении всегда остается постоянным.

Таким образом, для того чтобы полностью расширить газ до давления окружающей среды (расчетный режим работы сопла), нужно при \(p_2 > p_{kr} \) сопло делать суживающимся.

Если в суживающемся сопле \(p_2 < p_{kr} \), то газ расширяется до давления окружающей среды, но его расширение от давления \(p_{kr} \) до \(p_2 \) будет происходить за соплом и кинетическая энергия газа полностью не может быть использована. Для полного преобразования энергии давления в кинетическую энергию при \(p_2 < p_{kr} \) должно применяться сопло Лаваля.
§ 6. Истечение при наличии трения

Течение газов при наличии трения не будет изоэнтропным, так как из-за действия сил трения происходит диссипация (рассеяние) механической энергии и превращение части её в теплоту, в результате чего внутренняя энергия, энтальпия и энтропия движущегося газа возрастают. Этот процесс можно изобразить на $i - s$-диаграмме (рис. 10.8) в виде линии $1 - 1'$. Теплота трения при отсутствии теплообмена с окружающей средой усваивается потоком газа, при этом часть теплоты трения идет на работу расширения и преобразуется в энергию движения газа (пл. 122') (рис. 10.9). Остальная часть представ-

![Diagram](image-url)

ляет собой потерю работы (кинетической энергии) и изображается пл. 2'243. Вся теплота трения, выделяющаяся в потоке, равна пл. 12'341.

Из рис. 10.8 видно, что тепловой перепад $h_0 = i_1 - i_4$ при наличии трения меньше, а следовательно, и скорость истечения, определяемая по формуле (10.19), будет меньше, чем в случае течения без сопротивления. Потеря энергии, вызываемая внутренними сопротивлениями, определяется по формуле

$$ l_3 - l_4' = \frac{\Delta w^2}{2} = \frac{w^2}{2} - \frac{w^2'}{2} = \xi \frac{w^2}{2}, $$

где ξ — коэффициент потери энергии.

Если обозначить $\frac{w^2}{w_2} = \varphi$ (где φ — коэффициент скорости), то

$$ \frac{\Delta w^2}{2} = (1 - \varphi^2) \frac{w^2}{2}, $$

$$ w_2 = \varphi \sqrt{2(i_1 - i_2)} + w_1. $$

Коэффициент скорости для сопел современных турбин $\varphi = 0,95 \div 0,98$. 138
§ 7. Дросселирование газа

Под дросселированием понимается падение давления в струе рабочего тела, протекающего через суживающийся участок канала. Для осуществления такого процесса на пути движения газа (пра) устанавливается какое-либо гидравлическое сопротивление: дроссельный вентиль, заслонка и т. п. Падение давления в местном сопротивлении можно объяснить диссипацией энергии потока (трением), расходуемой на преодоление этого сопротивления. Проходя через местное сужение проходного сечения канала, как показано на рис. 10.10, давление газа за местом сужения \(p_2 \) всегда меньше давления \(p_1 \) перед сужением. Но работа расширения газа (пра) при разности давлений \(p_1 - p_2 \) во вне не передается, т. е. процесс дросселирования это существенно необратимый процесс, протекающий в изолированной системе, в которой к потоку рабочего тела теплота извне не подводится.

Полагая, что изменение состояния газа от сечения \(I-I \) к сечению \(II-II \) происходит адабатно, воспользуемся уравнением (10.10)

\[
i_1 + \frac{\omega_1^2}{2} = i_2 + \frac{\omega_2^2}{2}.
\]

Если сечения канала до и после сужения одинаковые, то можно пренебречь изменением кинетической энергии потока \(\Delta \omega^2 \), тогда

\[
i_1 = i_2, \text{ т. е. в результате дросселирования энталпия газа (пра) не меняется.}
\]

Так как в сделанных предпосылках не говорилось о свойствах газа, то полученный результат справедлив как для идеальных, так и для реальных газов.

Для идеального газа внутренняя энергия не зависит от объема, а в процессе дросселирования газ не совершает работы и не участвует в теплообмене с внешней средой, т. е. внутренняя энергия должна оставаться постоянной.

В случае дросселирования идеального газа

\[
du = 0, \, dT = 0, \, di = 0, i = \text{const.}
\]

В реальном газе внутренняя энергия зависит от объема, поэтому в процессе дросселирования внутренняя энергия и температура меняются

\[
du \neq 0, \, dT \neq 0, \, di = 0, i = \text{const.}
\]

Процесс дросселирования идеального газа полностью необратим, так как невозможно создать первоначальное давление без затраты работы.
Процесс дросселирования реального газа частично обратим, так как изменение температуры по сравнению с окружающей средой можно использовать для получения работы, которую можно направить на возвращение газа в исходное состояние.

Изменение температуры реального газа при адиабатном дросселировании определяют, задавшись уравнением состояния реального газа и зависимостью $c_p = f(pT)$.

Так как $i = f(p, T)$, то $di = \left(\frac{\partial i}{\partial T}\right)_p dT + \left(\frac{\partial i}{\partial p}\right)_T dp$; при $i = const$ $di = 0$; разделив обе части этого уравнения на dp, получим после преобразований

$$
\left(\frac{\partial T}{\partial p}\right)_i = -\frac{1}{\left(\frac{\partial i}{\partial T}\right)_p \left(\frac{\partial p}{\partial i}\right)_T} = -\frac{\left(\frac{\partial i}{\partial p}\right)_T}{\left(\frac{\partial i}{\partial T}\right)_p}.
$$

(10.37)

Значение частной производной $(di/dT)_p = c_p$, а по формуле (8.25) для 1 кг газа

$$
\left(\frac{\partial i}{\partial p}\right)_p = -\left[T \left(\frac{\partial v}{\partial T}\right)_p - v\right].
$$

Следовательно,

$$
\left(\frac{\partial T}{\partial p}\right)_i = -\left[\frac{T \left(\frac{\partial v}{\partial T}\right)_p - v}{c_p}\right].
$$

(10.38)

Для газа, подчиняющегося уравнению Ван-дер-Ваальса (9.1),

$$
\left(\frac{\partial v}{\partial T}\right)_p = \frac{R}{p - \frac{a}{v^2} + \frac{2ab}{v^3}}.
$$

(10.39)

Подставив это значение частной производной в уравнение (10.38), находим приближенно

$$
dT = \frac{2a}{RT} \frac{b}{c_p} dp.
$$

(10.40)

Отношение бесконечно малого изменения температуры к бесконечно малому изменению давления при дросселировании называется дифференциальным температурным эффектом дросселирования и обозначается через α_i

$$
\alpha_i = \left(\frac{\partial T}{\partial p}\right)_i.
$$
Если давление при дросселировании изменяется незначительно, то изменение температуры

\[T_2 - T_1 = a_1 (\rho_2 - \rho_1). \]

При значительном понижении давления разность температур равна

\[T_2 - T_1 = \int_{\rho_1}^{\rho_2} \frac{\rho}{a_t} \, d\rho. \]

Так как при дросселировании \(d\rho < 0 \), поскольку \(\rho_2 \) всегда меньше \(\rho_1 \), а \(c_p \) величина всегда положительная, знак \(dT \) будет зависеть от того, какие значения получит числитель в формуле (10.40).

Возможны три случая:

1) \(dT < 0 \) \(T < \frac{2a}{bR} \);

2) \(dT > 0 \) \(T > \frac{2a}{bR} \);

3) \(T = 0 \) \(T = \frac{2a}{bR} \).

Из рассмотрения этих соотношений видно, что в зависимости от природы газа и начальной температуры в результате дросселирования его температура понижается, повышается или остается постоянной. Изменение знака дроссель-эффекта называется инверсией.

В точке инверсии \((dT/d\rho)_t = 0 \), а начальная температура по уравнению (10.40) равна \(2a/bR \).

Такую температуру называют температурой инверсии \(T_{инв} \) и определяют обычно, используя значения критических температур. Так как \(T_{инв} = 2a/bR \), а согласно уравнению (9.5) \(T_{кр} = \frac{8}{27} \frac{a}{R_b} \), найдем, что \(T_{инв} = 6,75 T_{кр} \). Таким образом, температура инверсии реальных газов по Ван-дер-Ваальсу в 6,75 раза больше их критической температуры.

Температура при дросселировании возрастает, если \(T > T_{инв} \), и понижается, если подвергнутся этому процессу газ находятся при \(T < T_{инв} \).

Температуры инверсии большинства газов, за исключением водорода и гелия, достаточно велики, и процессы дросселирования обычно идут с понижением температуры. Это понижение температуры впервые было исследовано Джоулем и Томсоном и получило название эффекта Джоуля—Томсона. Этот эффект дросселирования используется на практике для получения низких температур.
ГЛАВА XI
МАШИНЫ ДЛЯ СЖАТИЯ И РАСШИРЕНИЯ ГАЗА

§ 1. Компрессор. Основные процессы в одноступенчатом компрессоре

Назначение компрессора состоит в сжатии газа и непрерывной подаче его к месту потребления. Сжатый газ находит широкое применение в технике, в частности в авиации.

Компрессор является одним из основных агрегатов газотурбинных, поршневых и комбинированных авиационных двигателей. В поршневых двигателях сжатие воздуха происходит в цилиндрах. Если двигатель комбинированный, то сжатие воздуха или топливо-воздушной смеси (наддув двигателя) предварительно осуществляется в компрессоре. Применение наддува было вызвано стремлением увеличить высотность двигателя, так как с увеличением высоты мощность простоя двигателя падает, вследствие понижения плотности атмосферного воздуха.

В газотурбинных двигателях во время полета сжатие воздуха происходит как в струе набегающего потока на входе в двигатель (динамическое сжатие), так и в компрессоре. Компрессор газотурбинного двигателя является одним из основных агрегатов установки и предназначается для сжатия воздуха перед поступлением его в камеры сгорания. Применение компрессора обеспечивает получение больших мощностей двигателя, а также образование силы тяги при работе двигателя на земле.

По способу сжатия воздуха или газа компрессоры можно разделить на две группы. К первой относятся объемные компрессора (поршневые, шестеренчатые, ротационные). Давление в них повышается при непосредственном уменьшении объема газа, поступившего в рабочее пространство компрессора.

Ко второй группе относятся центробежные, осевые и диагональные. Последние являются промежуточным типом между центробежными и осевыми. Во всех этих компрессорах сжатие осуществляется как бы в два этапа. В первом газ получает некоторую скорость, приобретает кинетическую энергию. Во втором происходит преобразование кинетической энергии в потенциальную энергию давления.

Несмотря на конструктивные различия компрессоров с термодинамической точки зрения, процессы сжатия, происходящие в них, одинаковы. Поэтому термодинамические основы процессов сжатия газа или воздуха рассмотрим применительно к поршневому компрессору, как наиболее простому.

На рис. 11.1 приведена схема одноцилиндрового компрессора, состоящего из цилиндра 1 с поршнем 2, который движется возвратно-поступательно, и двух клапанов: всасывающего 3 и нагнетающего 4.

При ходе поршня вправо открывается всасывающий клапан и в цилиндр поступает при неизменном давлении газ. При обратном ходе поршня и закрытых клапанах этот газ сжимается. После того как в результате сжатия будет достигнуто заданное давление, открывает-
съ нагнетательный клапан и при движении поршня справа налево происходит выталкивание сжатого газа (при постоянном давлении) к потребителю.

Рабочая диаграмма компрессора в координатах $p - v$ показана на рис. 11.2, где $A-B$ — линия всасывания газа в цилиндр; $B-C$ — линия сжатия; $C-D$ — линия выталкивания.

Так как процессы $A-B$ и $C-D$ не являются термодина-

![Рис. 11.1](image1)

![Рис. 11.2](image2)

![Рис. 11.3](image3)

миическими и идут с неизменными параметрами, то совокупность процессов, изображенных на рис. 11.2, не является замкнутым термодинамическим процессом — циклом. Линия сжатия в зависимости от количества теплоты, отбираемого от газа при его сжатии (интенсивности охлаждения компрессора), может быть изотермой $B-C'$, адиабатой $B-C''$ и политропой $B-C$. Указанные термодинамические процессы на T—s-диаграмме изображены на рис. 11.3. Работа, затраченная на получение 1 кг сжатого газа в одноступенчатом компрессоре, графически изображается пл. $ABCD$ (рис. 11.2) и является алгебраической суммой площадей:

пл. $ABCD = \text{пл. } CDOE + \text{пл. } BCEF = \text{пл. } ABFO$,

где

пл. $CDOE = l_{\text{выт}} = p_2 v_2$ — работа выталкивания;

пл. $BCEF = l_{\text{сж}} = \int_{v_1}^{v_2} p dv$ — работа сжатия;

пл. $ABFO = l_{\text{вс}} = p_1 v_1$ — работа всасывания.

Величина работы, затрачиваемой на сжатие, всегда отрицательна ($v_1 > v_2$, $dv < 0$). Отрицательна и величина работы выталкивания, так как в процессе выталкивания работа производится над га-
Зом. Наконец, работа в процессе всасывания положительна, так как в этом случае поступающий газ совершает (отдаёт) работу.
Следовательно, суммарная работа равна

$$ l = l_в + l_ох - l_вых = \rho_1 v_1 + \int_{v_1}^{v_2} p dv - \rho_2 v_2. $$
(11.1)

Эта работа является технической работой процесса сжатия.

§ 2. Работа и мощность на привод компрессора

Основная цель термодинамического расчета компрессора — это определение работы (мощности), которую следует затратить, чтобы получить некоторое количество газа при заданных параметрах начала и конца сжатия. Величину работы определяют по уравнению (11.1).

1. Для компрессора, когда процесс сжатия идет по изотермe $pv =$ const, а

$$ \int_{v_1}^{v_2} p dv = RT_1 \ln \frac{v_2}{v_1} = -RT_1 \ln \frac{\rho_2}{\rho_1}, $$
работа идеального «изотермического» компрессора, отнесенная к 1 кг газа, равна с учетом, что $\rho_1 v_1 = \rho_2 v_2$

$$ l_{из} = -RT_1 \ln \frac{\rho_2}{\rho_1}, $$
(11.2)
работа при расходе G кг/сек

$$ L_{из} = \bar{G} l_{из} = -GRT_1 \ln \frac{\rho_2}{\rho_1}. $$
(11.3)

Мощность в киловаттах (кВт), затрачиваемая при получении G кг/сек сжатого газа,

$$ N_{из} = \frac{L_{из}}{1000} = \frac{GRT_1 \ln \frac{\rho_2}{\rho_1}}{1000}. $$
(11.4)

Совершенство компрессора может быть оценено значением изотермического к. п. д.

$$ \eta_{из} = \frac{N_{из}}{N_e}, $$
(11.5)
где N_e — мощность, потребляемая реальным компрессором.
Изотермический к. п. д. $\eta_{из}$ имеет значение от 0,6 до 0,76.
2. При адабатном сжатии

\[
\frac{v_2^2}{v_1} \rho dv = -\frac{1}{k-1} (p_2 v_2 - p_1 v_1) =
\]

\[
= -\frac{1}{k-1} p_1 v_1 \left[\left(\frac{p_2}{p_1} \right)^{\frac{k-1}{k}} - 1 \right] = -(u_2 - u_1).
\]

Работа адабатного компрессора

\[
I_{\text{ад}} = p_1 v_1 \left(\frac{1}{k-1} \right) (p_2 v_2 - p_1 v_1) - p_2 v_2 = -\frac{k}{k-1} (p_2 v_2 - p_1 v_1) =
\]

\[
= -\frac{k}{k-1} p_1 v_1 \left[\left(\frac{p_2}{p_1} \right)^{\frac{k-1}{k}} - 1 \right],
\]

или

\[
I_{\text{ан}} = p_1 v_1 -(u_2 - u_1) - p_2 v_2 = (u_1 + p_1 v_1) -
\]

\[
- (u_2 + p_2 v_2) = -(t_2 - t_1).
\]

Пользуясь выражением работы компрессора (11.7), расчет удобно производить с помощью i — s-диаграммы.

Адиабатная работа при расходе \(G \) кг с/сек газа

\[
L_{\text{ад}} = G I_{\text{ад}}.
\]

Мощность, потребляемая компрессором, в киловаттах (кВт)

\[
N_{\text{ад}} = \frac{L_{\text{ад}}}{1000} = \frac{G I_{\text{ад}}}{1000} = \frac{(i_2 - i_1) G}{1000}.
\]

Адиабатный к. п. д. компрессора

\[
\eta_{\text{ад}} = \frac{N_{\text{ад}}}{N_e}.
\]

Значение \(\eta_{\text{ад}} \) находится в пределах 0,75 ÷ 0,85.

Как адабатный, так и изотермический процесс сжатия газа могут рассматриваться только как теоретические. В действительности процессы сжатия идут по политропе, имеющей переменный показатель, который зависит от интенсивности теплообмена в процессе сжатия газа в компрессоре.

Показатель политропы охлаждаемого компрессора \(k > n > 1 \), для неохлаждаемого компрессора (центробежные, осевые) \(n > k \).

3. Для политропного процесса сжатия

\[
\int_{v_1}^{v_2} \rho dv = -\frac{1}{n-1} (p_2 v_2 - p_1 v_1)
\]
и работа

\[l_{\text{пол}} = p_1 v_1 - \frac{1}{n-1} (p_2 v_2 - p_1 v_1) - p_2 v_2 = \]

\[= -\frac{n}{n-1} p_1 v_1 \left(\frac{p_2}{p_1} \left(\frac{n-1}{n} - 1 \right) \right). \quad (11.11) \]

Средняя величина показателя политропы, как правило, определяется по параметрам газа в начале и конце сжатия.

Как видно из рис. 11.2, в случае охлаждаемого компрессора \(l_{\text{из}} < l_{\text{пол}} < l_{\text{ад}} \) или пл. \(ABC'D' \) < пл. \(ABCD < \) пл. \(ABC'D', \)

t. е. с точки зрения затрат наименьшей работы изотермический процесс сжатия является наиболее выгодным.

§ 3. Многоступенчатый компрессор

Многоступенчатый компрессор применяется для получения сжатого газа высокого давления. Сжатие газа в нем осуществляется в нескольких цилиндрах (ступенях) с промежуточным охлаждением сжимаемого газа между ступенями. Охлаждение газа после каждой ступени производится при постоянном давлении.

Многоступенчатое сжатие газа позволяет:

а) снизить температуру газа в конце сжатия, применяя промежуточное охлаждение, и обеспечить надежную эксплуатацию компрессора;

б) понизить мощность, идущую на привод компрессора, за счет работы, экономленной при охлаждении газа в холодильнике.

На рис. 11.4 дана схема двухступенчатого компрессора, а на рис. 11.5 — \(p - v \)-диаграмма процесса сжатия газа в обеих ступенях такого компрессора.
На этой диаграмме: A-B — всасывание газа в 1-ю ступень; B-C — политропное сжатие в 1-й ступени; C-D — процесс вытапливания газа из 1-й ступени; D-C — процесс поступления газа в холодильник; C-E — процесс охлаждения в холодильнике; E-D — процесс вытапливания газа из холодильника; D-E — процесс всасывания газа во 2-ю ступень; E-F — политропное сжатие газа во 2-й ступени; F-H — процесс нагнетания газа из 2-й ступени к потребителю; пл. I — работа сжатия газа в 1-й ступени; пл. II — работа сжатия газа во 2-й ступени; пл. III — работа, сэкономленная при охлаждении газа в холодильнике.

При расчете многоступенчатого компрессора важно решить вопрос о распределении общего перепада давлений между ступенями. В качестве критерия целесообразно выбрать минимальную работу, затрачиваемую на привод компрессора. Если предположить, что при политропном процессе сжатия газа в каждой ступени показатель политропы будет одинаковым и температура газа в начале каждого сжатия равна первоначальной $T_1 = T_2$, то работа двухступенчатого компрессора определяется по формуле

$$
l = \frac{n}{n-1} \frac{RT_1}{n} \left[\left(\frac{p_2}{p_1} \right)^n - 1 \right] + \frac{n}{n-1} \frac{RT_1}{n} \left[\left(\frac{p_3}{p_2} \right)^n - 1 \right] = \frac{n}{n-1} \frac{RT_1}{n} \left[\left(\frac{p_2}{p_1} \right)^n + \left(\frac{p_3}{p_2} \right)^n - 2 \right]. \quad (11.12)$$

Задача отыскания минимума работы сводится к определению минимума выражения

$$K = \left(\frac{p_2}{p_1} \right)^n + \left(\frac{p_3}{p_2} \right)^n. \quad (11.13)$$

Полагая, что p_1 и p_3 — величины постоянные, продифференцировав K по p_2 и приравнив нулю, получим

$$\frac{dK}{dp_2} = \frac{n-1}{n} \rho_2^{-\frac{n}{n-1}} \left(\frac{1}{p_1} \right)^\frac{n-1}{n} + \frac{n-1}{n} \rho_3^{1-\frac{1}{n}} \rho_2^{2-\frac{2}{n}} = 0. \quad (11.14)$$

Помножив правую и левую части уравнения на $p_2^{1/n}$, имеем

$$\frac{n-1}{n} \rho_1 = \frac{n-1}{n} \rho_3 \rho_2^2 \left(\frac{1}{p_1} \right)^{1-n} \frac{2(1-n)}{n} \rho_2^{-\frac{2}{n}}.$$

$$\frac{2(1-n)}{n} \rho_2 = \frac{1-n}{n} \rho_1 \rho_3^n \rho_2^{-\frac{2}{n}}.$$

откуда

$$p_2^2 = p_1 p_3. \quad (11.15)$$
Или

\[
\frac{p_3}{p_1} = \frac{p_3}{p_2}. \tag{11.16}
\]

Из этого выражения видно, что степени повышения давления в обеих ступенях равны и \(p_2 = \sqrt[p_1]{p_3} \).

Подставив соотношение (11.16) в формулу (11.12) и учитывая, что \(p_1u_1 = RT \), найдем минимальную работу двухступенчатого компрессора

\[
l_{\text{min}} = \frac{2n}{n-1} p_1 u_1 \left[\left(\frac{p_3}{p_1} \right)^{\frac{n-1}{2n}} - 1 \right]. \tag{11.17}
\]

Так как газ после первой ступени охлаждается от \(T_2 \) до \(T_1 \), то отношение объемов в двух цилиндрах при изотермическом сжатии равно

\[
\frac{u_1}{u_2} = \frac{p_2}{p_1} = \sqrt[n]{\frac{p_3}{p_1}}, \tag{11.18}
\]

и

\[
\frac{T_2}{T_1} = \left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} \quad \text{и} \quad \frac{T_3}{T_1} = \left(\frac{p_3}{p_2} \right)^{\frac{n-1}{n}},
\]

то

\[
\frac{T_2}{T_1} = \frac{T_3}{T_1}. \tag{11.19}
\]

Для трехступенчатого компрессора, \(\rho - u \)-диаграмма процесса сжатия газа которого изображена на рис. 11.6, работа равна

\[
l = RT_1 \frac{n}{n-1} \left\{ \left[\left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} - 1 \right] + \left[\left(\frac{p_3}{p_2} \right)^{\frac{n-1}{n}} - 1 \right] + \left[\left(\frac{p_3}{p_3} \right)^{\frac{n-1}{n}} - 1 \right] \right\}. \tag{11.20}
\]

Так как при изотермическом процессе сжатия

\[RT_1 = p_1u_1 = p_2u_2 = p_3u_3,\]

то по аналогии с двухступенчатым компрессором

\[
\frac{p_2}{p_1} = \frac{p_3}{p_2} = \frac{p_4}{p_3} = \left(\frac{p_4}{p_1} \right)^{1/3}. \tag{11.21}
\]

148
Подставляя выражение (11.21) в (11.20), найдем величину минимальной работы

\[l_{\text{min}} = \frac{3n}{n-1} RT_1 \left(\left(\frac{p_1}{p_1} \right)^{\frac{n-1}{3n}} - 1 \right). \] (11.22)

Отношение объемов в трех ступенях

\[\frac{v_1}{v_2} = \frac{v_2}{v_3} = \left(\frac{p_3}{p_1} \right)^{1/3}. \]

На рис. 11.7 и рис. 11.8 изображены \(T-S \)-диаграммы процессов адиабатного и политропного сжатия газа в двухступенчатом компрессоре. Линии \(B-C \) и \(E-F \) изображают процессы сжатия, линия \(C-E \) соответствует изобарному отводу теплоты в холодильник. Пл. \(BCcbB \) и пл. \(EFfeE \) на рис. 11.8 изображают теплоту, отведенную от газа при политропном сжатии в отдельных цилиндрах компрессора.

Так как политропы эквидистанты (\(\frac{dS}{dT} = \text{idem при } T=\text{const} \)), то пл. \(BCcbB \) и \(EFeE \) равны между собой. Следовательно, количество теплоты, отводимое от газа в каждом цилиндре, будет одинаковым для обеих ступеней.

\[\text{§ 4. Детандеры} \]

Машины, в которых происходит расширение рабочих тел, для получения работы или охлаждения газов в холодильных установках, называются детандерами. К таким машинам относятся также пневмодвигатели, паровые машины, паровые и газовые турбины (осевые или центростремительные).

Рабочее усилие в турбине возникает в связи с изменением кинетической энергии. Преобразование кинетической энергии в турбине происходит в каналах неподвижного соплового аппарата и рабочих лопаток, расположенных на вращающемся диске турбины.

В поршневой машине рабочее усилие создается давлением неподвижной массы газа или пара.
Термодинамические основы всех детандеров один и те же, и цель расчета определить работу, которая может быть получена от некоторого количества газа при заданных начальных и конечных параметрах рабочего тела.

Работа детандера зависит, как видно из рис. 11.9, от процесса расширения газа. На рис. 11.9, а: а-1 — процесс наполнения; 1-2 — процесс расширения газа, 2-b — процесс выталкивания.

Совокупность рабочих процессов в детандере, как и в компрессоре, не представляет собой замкнутый термодинамический процесс-цикл. Наиболее выгодным, с точки зрения получения работы, будет изотермический процесс 1-2'. Однако изотермический процесс расширения трудно осуществить, и процессы в детандерах близки к адабатным.

Рис. 11.9

Определяя работу детандера (техническую работу машины), как это было сделано для случая адабатного расширения (гл. VII, § 6), найдем для случая адабатного расширения 1 кг газа (рис. 11.9, б)

\[
I_д = \int_{p_2}^{p_1} vdp = i_1 - i_2 = c_p (T_1 - T_2).
\] (11.23)

В то же время полагая, что в адабатном процессе \(p \alpha^k = \rho_1 v_1^k \), и счи- тая, что в детандере \(dp < 0 \), найдем

\[
I_д = - \int_{p_2}^{p_1} vdp = - \rho_1 v_1^k \int_{p_1}^{p_2} \frac{dp}{p^{1/k}} = - \rho_1 v_1^k \frac{p_2^{1/k - 1} - p_1^{1/k - 1}}{(k-1)/k} =
\]

\[
= \frac{k}{k-1} \rho_1 v_1 \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{k-1}{k}} \right].
\] (11.24)

Работа детандера при изотермическом процессе расширения равна

\[
I_д = - \int_{p_1}^{p_2} vdp = -RT \int_{1}^{2} \frac{dp}{\rho} = RT \ln \frac{\rho_1}{\rho_2}.
\] (11.25)

Реализовать изотермический процесс расширения в детандере трудно, но можно приблизиться к нему, если в процессе многоступен-
чтого расширения от p_1 до p_2 подавать теплоту между ступенями (перегрев пара в пароперегревателе, промежуточная камера сгорания между ступенями газовой турбины). Мощность детандера (в $кВт$), т. е. количество работы, снимаемой с вала детандера в единицу времени, равна

$$N_д = \frac{Gl_д}{1000},$$ \hspace{1cm} (11.26)

где G — расход газа через детандер, $кг/сек$.

Мощность детандера зависит от конструктивных особенностей детандера, выбора рабочего тела, расхода через него. Наибольшие расходы допускают турбины; они способны развивать большие мощности при малых размерах. Совершенство работы детандера может быть оценено значением относительного к. п. д.

$$\eta_д = \frac{N_е}{N_д},$$ \hspace{1cm} (11.27)

где $N_е$ — действительная мощность, снимаемая с вала детандера. Для современных детандеров (турбин) $\eta_д = 0,82 ÷ 0,85$.

И компрессоры, и детандеры являются основными агрегатами современных газовых теплосиловых установок.

ГЛАВА XII

ЦИКЛЫ ПОРШНЕВЫХ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

Назначение всякого теплового двигателя состоит в преобразовании теплоты в работу. Необходимая для перевода в работу теплота получается при сгорании жидкых, твердых или газообразных топлив. Топливо может сжигаться вне тепловой машины (паровые машины и турбины) — это так называемые двигатели внешнего сгорания. Двигатели, в которых процесс сгорания осуществляется в рабочем пространстве машины, называют двигателями внутреннего сгорания.

Рабочий процесс поршневого двигателя внутреннего сгорания заключается в следующем (рис. 12.1). Горючая смесь (смесь топлива с воздухом) сгорает в цилиндре двигателя 1 с повышением температуры и давления. Продукты сгорания, воздействуя на поршень 2, перемещают его из крайнего верхнего положения (верхняя мертвая точка — ВМТ) в крайнее нижнее (нижняя мертвая точка — НМТ) (рис. 12.1, а).

Процессы сгорания и расширения дают в совокупности рабочий ход (такт) поршня. Чтобы можно было повторить эти основные процессы в двигателе, отработавшие продукты сгорания нужно удалить из цилиндра и наполнить его свежей порцией горючей смеси. Это производится за два (такта) хода поршня: выталкивания продуктов сгорания (рис. 12.1, б) и обратного хода для всасывания воздуха или горючей смеси (рис. 12.1, в). Процессы выталкивания и всасывания осуществляются при соответствующем открытии выхлопного 3 и всасывающего 5 клапанов, помещенных в головке цилиндра 4.

151
Во время четвертого хода поршня производится сжатие воздуха или горючей смеси (рис. 12.1, а), и затем все процессы повторяются. Таким образом, рабочий процесс периодичен и каждый период складывается из четырех ходов поршня, производимых за два полных оборота коленчатого вала двигателя. Двигатели, работающие таким образом, называют четырехтактными. Двигатели, у которых процесс совершается за два хода поршня (один оборот коленчатого вала), называются двухтактными. У них ход выталкивания и всасывания заменяется продувкой цилиндра, при которой производится удаление продуктов сгорания и заполнение цилиндра воздухом или горючей смесью.

Рис. 12.1

Исследование рабочего процесса в двигателях производится с помощью особых приборов — индикаторов. Они позволяют получить индикаторные диаграммы, отображающие изменение давления в рабочих процессах, происходящих в цилиндре двигателя. На индикаторных диаграммах по оси ординат откладываются абсолютные давления внутри цилиндра, а по оси абсцисс — соответствующие этому давлению изменения объема или перемещение поршня.

Индикаторная диаграмма дает возможность исследовать совершенство рабочих процессов в двигателе и определить так называемые индикаторные параметры двигателя: работу, к. п. д., мощность, удельный расход топлива. Однако индикаторная диаграмма не является круговым обратимым термодинамическим процессом — циклом и не дает возможности сравнительно просто определить изменение состояния рабочего тела в отдельных термодинамических процессах, из которых состоит цикл.

В основе работы двигателей внутреннего сгорания лежат идеальные круговые процессы преобразования теплоты в механическую работу, т. е. идеальные циклы. Изучение их необходимо для оценки совершенства действительных тепловых процессов, происходящих в двигателях, а также факторов, влияющих на экономическую двигателя и величину развиваемой им работы.
При термодинамическом исследовании циклов полагают:
1) циклы замкнуты. В действительности же продукты сгорания удаляются в атмосферу, а на их место поступает новое рабочее тело;
2) рабочее тело в цикле рассматривается как идеальный газ с постоянной теплоемкостью;
3) процесс сгорания, связанный с химическими изменениями состава газа, заменяется обратимым процессом подвода теплоты извне q_1;
4) процесс уноса теплоты, содержащейся в продуктах сгорания, заменяется тепловой q_2, которая отводится от рабочего тела обратимым путем;
5) механические потери, т. е. потери на трение и потери теплоты в окружающую среду (передача теплоты от стенок и унос теплоты охлаждающей водой), отсутствуют.

При таких предпосылках можно считать, что двигатели внутреннего сгорания работают по обратимым термодинамическим циклам. Термодинамическое исследование дает возможность определять принципы работы двигателей, параметры газа в характерных точках цикла, термический к. п. д. и работу цикла. Термодинамические исследования циклов, как правило, сопровождаются графическим изображением их на $p-v$ и $T-s$-диаграммах.

В двигателях внутреннего сгорания могут быть использованы следующие циклы:

а) цикл с подводом теплоты при постоянном объеме ($v = \text{const}$);
б) цикл с подводом теплоты при постоянном давлении ($p = \text{const}$);
в) цикл со смешанным подводом теплоты как при постоянном объеме, так и при постоянном давлении.

Во всех перечисленных циклах отвод теплоты в цикле произоходит при постоянном объеме в силу того, что расширение газа происходит не полностью, и степень возможного расширения в двигателе определяется положением поршня в нижней мертвой точке.

§ 1. Цикл с подводом теплоты при $v = \text{const}$

Исследование этого цикла поршневого двигателя начнем с рассмотрения теоретической индикаторной диаграммы, в которой процесс сгорания осуществляется при постоянном объеме.

На $p-V$-диаграмме (рис. 12.2): $b-a$ — процесс всасывания в цилиндр горючей смеси; $a-c$ — сжатие смеси; $c-z$ — процесс горения смеси, воспламенение которой осуществляется от специального запальника — свечи; $z-e$ — процесс расширения продуктов сгорания; $e-a-b$ — процесс выхлопа продуктов сгорания в атмосферу.

Всасывание $b-a$ и выталкивание $a-b$ не являются термодинамическими процессами, так как параметры рабочего тела при этом не меняются. Также следует учесть и то обстоятельство, что площадь под линией всасывания $b-a$ представляет собой работу всасывания L_{bc}, а площадь под линией $a-b$ — работу выталкивания.
$L_{\text{выт}}$. Так как процессы всасывания и выталкивания направлены в разные стороны, то

$$L_{\text{вс}} + L_{\text{выт}} = 0.$$

Обратимый термодинамический цикл на 1 кг рабочего тела, изображенный на p—v-диаграмме (рис. 12.3), состоит из адиабатного сжатия, подвода к газу теплоты при $v = \text{const}$, адиабатного расширения и отдачи газом теплоты при $v = \text{const}$.

По этому циклу, предложенному Отто, работают двигатели с искровым зажиганием.

Цикл с подводом теплоты при $v = \text{const}$ определяется заданием начального состояния в точке a и параметров цикла:

Рис. 12.2

$$\varepsilon = \frac{v_a}{v_c},$$

степени сжатия*

$$\lambda = \frac{p_z}{p_c},$$

степени повышения давления

Параметры рабочего тела в узловых точках цикла, определяемые при рассмотрении отдельных процессов, находятся по формулам, вывод которых дан в главе V:

точка c

$$\frac{p_c}{p_a} = \left(\frac{v_a}{v_c} \right)^k = \varepsilon^k; \quad p_c = p_a \varepsilon^k;$$

$$\frac{T_c}{T_a} = \left(\frac{v_a}{v_c} \right)^{k-1} = \varepsilon^{k-1}; \quad T_c = T_a \varepsilon^{k-1};$$

* Степень сжатия представляет собой отношение полного объема цилиндра V_a к объему камеры сгорания V_c. Разность между полным объемом и объемом камеры сгорания дает так называемый рабочий объем цилиндра V_H.

154
Точка \(z \)

\[
\frac{p_z}{p_c} = \lambda, \quad p_z = p_c \lambda = p_a \varepsilon^k \lambda;
\]

\[
\frac{T_z}{T_c} = \frac{p_z}{p_c}, \quad T_z = T_c \lambda = T_a \varepsilon^{k-1} \lambda;
\]

Точка \(e \)

\[
\frac{p_e}{p_z} = \left(\frac{v_z}{v_e} \right)^k = \left(\frac{a_c}{v_a} \right)^k = \frac{1}{\varepsilon^k}, \quad p_e = \frac{p_z}{\varepsilon^k} = p_a \lambda;
\]

\[
\frac{T_e}{T_z} = \left(\frac{v_z}{v_e} \right)^{k-1} = \varepsilon^{k-1}, \quad T_e = \frac{T_z}{\varepsilon^{k-1}} = T_a \lambda.
\]

Рис. 12.4

Рис. 12.5

Термический к. п. д. этого цикла может быть определен с помощью уравнения (6.1)

\[
\eta_t = 1 - \frac{q_2}{q_1} = \frac{l_{\alpha}}{q_1}.
\]

Количество подводимой и отводимой теплоты на 1 кг рабочего тела, участвующего в цикле, можно определить, используя первый закон термодинамики (4.15),

\[
dq = c_v dT + pdv.
\]

Для процессов, происходящих при \(v = \text{const} (dv = 0) \)

\[
q = c_v (T_z - T_1),
\]

следовательно, для цикла, идущего с подводом теплоты, при \(v = \text{const} \)

\[
q_1 = c_v (T_z - T_c) = c_v T_a \varepsilon^{k-1} (\lambda - 1), \quad (12.1)
\]

\[
q_2 = c_v (T_e - T_a) = c_v T_a (\lambda - 1). \quad (12.2)
\]

Подводимая теплота \(q_1 \) на \(T - s \)-диаграмме (рис. 12.4) представляет собой пл. \(cz21 \), а отводимая теплота \(q_2 \) — пл. \(ae21 \).
Термический к. п. д. цикла равен

\[\eta_v = 1 - \frac{c_v T_n (\lambda - 1)}{c_v T_a e^{k-1} (\lambda - 1)}, \]

(12.3)

или

\[\eta_v = 1 - \frac{1}{e^{k-1}}. \]

Работа цикла определяется количеством подводимой теплоты и значением термического к. п. д.

\[l_n = q_1 \eta_v = c_v T_a e^{k-1} (\lambda - 1) \left(1 - \frac{1}{e^{k-1}} \right). \]

(12.4)

Из выражения (12.3) видно, что термический к. п. д. цикла с подводом теплоты при \(v = \text{const} \) зависит от степени сжатия и показателя адиабаты \(k \) рабочего тела, совершающего цикл. Уравнение (12.3) показывает, что с увеличением степени сжатия термический к. п. д. растет. Зависимость \(\eta_v = f(e) \) для различных \(k \) представлена на рис. 12.5. Из этой зависимости видно, что с увеличением степени сжатия выше значений 10 ÷ 12 темп возрастания \(\eta_v \) уменьшается. Отсюда следует, что степень сжатия больше чем 10 ÷ 12 применять нецелесообразно, так как значительно возрастает максимальное давление в цикле.

Одновременно с увеличением термического к. п. д. растет и работа цикла. На рис. 12.6 представлены два цикла с одинаковым начальным давлением \(p = 1 \text{ bar} \) и одинаковым количеством подводимой теплоты \(q_1 \). Циклы имеют различную степень сжатия, причем, как видно из сравнения площадей, определяющих работу цикла, цикл, имеющий большую степень сжатия, имеет и большую полезную работу.

В двигателях, работающих по циклу \(v = \text{const} \), в цилиндр двигателя поступает свежая рабочая смесь, т. е. смесь воздуха с топливом. Топливо-воздушная смесь в двигателях, работающих по циклу \(v = \text{const} \), подвергается сжатию и около ВМТ зажигается электрической свечой. При больших степенях сжатия в резуль-
тате значительного повышения температуры в конце процесса сжатия может наступить самовоспламенение смеси. Ещё более существенным является то обстоятельство, что с увеличением степени сжатия, а следовательно, и с увеличением температуры в конце сжатия появляется детонация свежей рабочей смеси, которая приводит к взрывному характеру сгорания. В результате детонации процесс сгорания нарушается, мощность двигателя падает, расход топлива растет. Появление детонации является причиной того, что практически в двигателях, работающих по циклу $\sigma = \text{const}$, степени сжатия имеют вполне определенные предельные значения.

Явление детонации в значительной степени зависит от сорта применяемого топлива, от его антидетонационных качеств. Поэтому сорт применяемого топлива определяет выбор предельного значения степени сжатия.

§ 2. Цикл с подводом теплоты при $\rho = \text{const}$

Двигатели, работающие по циклу $\sigma = \text{const}$, практически работают при малых значениях ε, а следовательно, имеют невысокие η_i. Увеличения термического к. п. д. в двигателях можно достичь, если создать такой рабочий процесс, при котором бы производилось раздельное сжатие воздуха и топлива. Это позволило бы двигателю работать с высокими степенями сжатия $\varepsilon = 14 - 18$. При этих степенях сжатия воздух, поступивший внутрь цилиндра, в конце сжатия имеет давление 30—40 бар и температуру, равную 500—800° C, которая обеспечивает надежное самовоспламенение и сгорание топлива. Топливо подается в камеру сгорания через форсунки в конце процесса сжатия. Ввод топлива осуществляется сжатым воздухом, подаваемым от компрессора под давлением 50—60 бар.

Теоретическая индикаторная диаграмма такого двигателя представлена на рис. 12.7. На диаграмме: $b-a$ — процесс всасывания воздуха в цилиндр; $a-c$ — адиабатное сжатие воздуха; $c-z$ — процесс горения топлива; $z-e$ — процесс расширения продуктов сгорания; $e-a-b$ — процесс выхлопа продуктов сгорания в атмосферу.

Двигатели с высокой степенью сжатия и самовоспламенением топлива в основе имеют идеальный цикл с подводом теплоты при $\rho = \text{const}$. Двигатели, которые работают по такому циклу, предложенному Дизелем, называются дизелями. Этот цикл состоит из двух адиабат сжатия и расширения, изобары подвода теплоты и изохоры отвода теплоты (рис. 12.8). При заданном начальном состоянии (точка a) цикл однозначно определяется двумя параметрами: степенью сжатия

$$\varepsilon = \frac{v_a}{v_c}$$

и степенью предварительного расширения

$$\rho = \frac{v_z}{v_c}.$$
Параметры рабочего тела в узловых точках цикла, определяемые при рассмотрении отдельных процессов, находятся через общих термодинамических соотношений:
точка c
$$\rho_c = \rho_a e^k, \quad T_c = T_a e^{k-1};$$
точка z
$$\rho_z = \rho_c = \rho_a e^k, \quad T_z = T_c e^{k-1};$$
точка e
$$\rho_e = \rho_a \rho^k, \quad \frac{T_e}{T_a} = \left(\frac{v_z}{v_c}\right)^{k-1} = \left(\frac{v_z}{v_a}\right)^{k-1} = \left(\frac{v_c}{v_a}\right)^{k-1} = \frac{\rho^k}{e^k-1}, \quad T_e = T_a \rho^k.$$

Рис. 12.7

Теплота q_1, подведенная к газу в процессе $c-z$, и теплота q_2, отведенная от газа в процессе $e-a$, соответственно равны:
$$q_1 = c_v (T_z - T_c) = c_p T_a e^{k-1} (\rho - 1),$$
$$q_2 = c_v (T_e - T_a) = c_v T_a \rho^{k-1}.$$

Подставляя значения q_1 и q_2 в формулу термического к. п. д. цикла, получаем
$$\eta_v = 1 - \frac{q_2}{q_1} = 1 - \frac{c_v T_a \rho^{k-1}}{c_p T_a e^{k-1} (\rho - 1)},$$
или
$$\eta_v = 1 - \frac{\rho^{k-1}}{e^{k-1} (\rho - 1)}. \quad (12.5)$$

Работа цикла равна
$$\tau_a = \frac{q_1 \eta_v}{c_v T_a e^{k-1} (\rho - 1)} \left[1 - \frac{\rho^{k-1}}{e^{k-1} (\rho - 1)} \right]. \quad (12.6)$$

Исключая из рассмотрения влияние показателя адиабаты k, зависящего от рода применяемого в цикле рабочего тела, видим, что на термический к. п. д. [формула (12.5)] влияют две величины ϵ и ρ.

158
Влияние \(\varepsilon \) на \(\eta_p \), такое же, как и в цикле с подводом теплоты при \(v = \text{const} \), т. е. с увеличением степени сжатия увеличивается и термический к. п. д. цикла. При увеличении степени предварительного расширения, как видно из формулы (12.5), термический к. п. д. цикла должен падать. При постоянной степени сжатия увеличение \(\rho \) вызовет увеличение \(v_z \), который зависит от количества подводимой теплоты. При увеличении \(q_1 \) увеличивается объем \(v_z \), а вместе с ним увеличивается и работа цикла (рис. 12.9).

Таким образом, возрастание \(\rho \) приводит к увеличению работы и уменьшению термического к. п. д. Сопоставляя значения термических к. п. д. циклов с подводом теплоты при \(v = \text{const} \) и \(p = \text{const} \), видим, что они различаются множителем

\[
\frac{\rho^k - 1}{k (\rho - 1)} > 1.
\]

Отсюда следует, что при одинаковых степенях сжатия \(\eta_{t_v} > \eta_p \).

Сравнивая циклы с подводом теплоты при \(p = \text{const} \) и \(v = \text{const} \) при одинаковых максимальных давлениях и температурах и различных \(\varepsilon \) (рис. 12.10), видим, что при неизменном количестве отводимой теплоты

\[
\eta_p = 1 - \frac{\text{пл. } A}{\text{пл. } A + \text{пл. } B + \text{пл. } C} = \frac{\text{пл. } B + \text{пл. } C}{\text{пл. } A + \text{пл. } B + \text{пл. } C},
\]

\[
\eta_v = 1 - \frac{\text{пл. } A}{\text{пл. } A + \text{пл. } B} = \frac{\text{пл. } B}{\text{пл. } A + \text{пл. } B}.
\]

Так как выражение термического к. п. д. представляет собой правильную дробь, то прибавление к числителю и знаменателю одинаковой величины (пл. \(C \)) дает увеличение к. п. д. и

\[
\eta_p > \eta_v.
\]
Следовательно, рабочий процесс двигателей с самовоспламенением от сжатия при больших значениях степени сжатия выгоднее, чем рабочий процесс в двигателях с искровым зажиганием.

Выбранная величина e должна обеспечить самовоспламенение топлива и создать необходимые температурные условия для быстрого протекания процесса горения. Этим условиям в компрессорных дизелях соответствуют значения степеней сжатия от 14 до 18.

§ 3. Цикл со смешанным подводом теплоты

Стремление создать двигатель, который в пределах допустимых давлений объединил бы положительные свойства циклов с подводом теплоты при $v = \text{const}$ и $p = \text{const}$, привело к появлению бескомпрессорных двигателей, в которых распыление топлива осуществляется механическим путем. Топливо сжимается в насосе или насосе-форсунке до давлений 1500 бар.

Впрыскиваемое топливо поступает в камеру сгорания или специальные предкамеры. Процесс сгорания идет вначале с повышением давления, а затем при постоянном давлении. Осуществление такого подвода теплоты характерно для двигателей, работающих по смешанному циклу. При термодинамическом исследовании таких циклов рассматривается цикл, состоящий из следующих процессов (рис. 12.11): a-c — адиабатное сжатие; c-z — изохорный подвод теплоты; z-z' — изобарный подвод теплоты; z'-e — адиабатное расширение; e-a — изохорный отвод теплоты.

Параметры газа в узловых точках цикла могут быть определены из общих термодинамических соотношений:

точка c

$$p_c = p_a e^k, \quad T_c = T_a e^{k-1};$$

точка z

$$p_z = p_a e^k \lambda, \quad T_z = T_a e^{k-1} \lambda;$$

точка z'

$$p_{z'} = p_z, \quad T_{z'} = T_c \lambda e^{k-1} \rho;$$

точка e

$$p_e = p_a e^k \lambda, \quad T_e = T_a \lambda e^{k-1} \rho^k.$$

Термический к. п. д. смешанного цикла равен

$$\eta_{см} = 1 - \frac{q_2}{q_1 + q_1''},$$

где

$$q_1' = c_v (T_z - T_e), \quad q_1'' = c_p (T_{z'} - T_a),$$

а

$$q_2 = c_v (T_e - T_a).$$
Подставляя значения соответствующих температур и полагая, что теплоемкости идеального газа величины постоянные, получим

\[
\eta_{т_см} = 1 - \frac{\lambda \rho^k - 1}{e^{k-1} [(\lambda - 1) + k\lambda (\rho - 1)]}.
\] (12.7)

Как видно из формулы (12.7), термический к. п. д. цикла растет с увеличением \(e\) и зависит также от \(\rho\) и \(\lambda\).

Рассмотренный идеальный цикл лежит в основе работы всех современных дизелей.

Рис. 12.11

Рис. 12.12

При \(\rho = 1\) смешанный цикл обращается в цикл с подводом теплоты при \(v = \text{const}\)

\[
\eta_{т_см} = \eta_{t_o} = 1 - \frac{1}{e^{k-1}}.
\]

При \(\lambda = 1\) смешанный цикл превращается в цикл с подводом теплоты при \(\rho = \text{const}\)

\[
\eta_{т_см} = \eta_{t_p} = 1 - \frac{\rho^k - 1}{ke^{k-1} (\rho - 1)}.
\]

Сравнение этого цикла с циклами, в которых подвод теплоты осуществляется при \(v = \text{const}\) и \(\rho = \text{const}\) (рис. 12.12), показывает, что при одинаковых конечных давлениях и температурах во всех трех циклах и одинаковом количестве отводимой теплоты \(q_2\)

\[
\eta_{t_p} > \eta_{т_см} > \eta_{t_o}.
\]

Для этих условий наибольшая степень сжатия будет у двигателей, работающих со сгоранием при \(\rho = \text{const}\).
ГЛАВА XIII
ЦИКЛЫ ГАЗОТУРБИННЫХ УСТАНОВОК

Газотурбинные установки (ГТУ) относятся к числу двигателей внутреннего сгорания. Газ, получившийся в результате сгорания топлива в камере сгорания, направляется в турбину. Продукты сгорания, расширяясь в сопловом аппарате и частично на рабочих лопатках турбины, производят на колесе турбины механическую работу.

Газотурбинные установки по сравнению с поршневыми двигателями обладают целым рядом технико-экономических преимуществ:
1) простота силовой установки;
2) отсутствие постепенно движущихся частей;
3) получение больших чисел оборотов, что позволяет существенно снизить вес и габариты установки;
4) получение больших мощностей в одном агрегате;
5) осуществление цикла с полным расширением и тем самым с большим термическим к. п. д.;
6) применение дешевых сортов топлива (керосин).

Эти преимущества ГТУ способствовали ее распространению во многих областях техники и особенно в авиации.

В основе работы ГТУ лежат идеальные циклы, состоящие из простейших термодинамических процессов. Термодинамическое изучение этих циклов базируется на предположениях аналогичных тем, которые были сделаны в главе XI, а именно: циклы обратимы, подвод теплоты происходит без изменения химического состава рабочего тела цикла, отвод теплоты предполагается обратимым, гидравлические и тепловые потери отсутствуют, рабочее тело представляет собой идеальный газ с постоянной теплоемкостью.

К числу возможных идеальных циклов ГТУ относят:
1) цикл с подводом теплоты при постоянном давлении \(p = \text{const} \);
2) цикл с подводом теплоты при постоянном объеме \(v = \text{const} \);
3) цикл с регенерацией теплоты.

Во всех циклах ГТУ отвод теплоты при наличии полного расширения в турбине производится при постоянном давлении. Из перечисленных циклов наиболее практическое применение получил цикл с подводом теплоты при \(p = \text{const} \).

§ 1. Цикл ГТУ с подводом теплоты при \(p = \text{const} \)

Схема простейшей ГТУ со сгоранием топлива при постоянном давлении изображена на рис. 13.1. Компрессор 1, приводимый в движение газовой турбиной 2, подает сжатый воздух в камеру сгорания 5, в которую через форсунку 6 впрыскивается жидкое топливо, подаваемое насосом 7, находящимся на валу турбины. Продукты сгорания расширяются в сопловом аппарате 4 и частично на рабочих лопатках 3 и выбрасываются в атмосферу. При сделанных в начале главы допущениях термодинамический цикл га-
зотурбинного двигателя со сгоранием при \(p = \text{const} \) изображается на \(p-v \) и \(T-s \)-диаграммах (рис. 13.2 и 13.3) в виде пл. aceb. Работа цикла на \(p-v \)-диаграмме представляет собой разность площадей 1ez2 и 1ac2, соответственно равных работе турбины и компрессора.

В этих диаграммах: \(a-c \) — процесс адиабатного сжатия воздуха в компрессоре; \(c-2 \) — подвод теплоты в камеру сгорания при \(p = \text{const} \); \(z-e \) — адиабатное расширение газа в турбине; \(e-a \) — изobarная отдача газом теплоты окружающему воздуху.

Параметрами цикла являются:

степень повышения давления воздуха

\[
\pi = \frac{p_c}{p_a},
\]

степень предварительного расширения

\[
\rho = \frac{v_z}{v_c}.
\]

Термический к. п. д. цикла определяют из общего выражения

\[
\eta_t = 1 - \frac{q_2}{q_1},
\]

где

\[q_1 = c_p (T_z - T_c), \]

\[q_3 = c_p (T_e - T_a). \]

Параметры газа в узловых точках цикла находят по формулам, связывающим параметры газа в адиабатном и изobarном процессах:
точка c

$$T_c = T_a \pi^{\frac{k-1}{k}};$$

точка z

$$T_z = T_a \pi^{\frac{k-1}{k}} \rho;$$

точка e

$$T_e = T_a \rho.$$

Найдем выражение для термического к. п. д. цикла

$$\eta_t = 1 - \frac{T_a (\rho - 1)}{\frac{k-1}{k} \pi^{\frac{k-1}{k}} (\rho - 1)}, \quad \eta_t = 1 - \frac{1}{\frac{k-1}{k} \pi^{\frac{k-1}{k}}}.$$

(13.1)

Рис. 13.4

Рис. 13.5

Работа цикла равна

$$I_u = q_1 \eta_t = c_p T_a \pi^{\frac{k-1}{k}} (\rho - 1) \left(1 - \frac{1}{\frac{k-1}{k} \pi^{\frac{k-1}{k}}} \right).$$

(13.2)

Выражение (13.1) показывает, что термический к. п. д. ГТУ при данном рабочем теле (данном k) зависит только от степени повышения давления в компрессоре, причем с ростом π термический к. п. д. цикла увеличивается. Зависимость $\eta_t = f (\pi)$ представлена на рис. 13.4.

На рис. 13.5 изображен рассматриваемый цикл при различных степенях повышения давления и одинаковом количестве подводимой теплоты q_1. Из рассмотрения этого графика следует, что при $q_1 = \text{idem}$ и повышении π уменьшается количество теплоты, отдаваемое газом в холодильник, а это приводит к увеличению термического к. п. д. цикла.

Несмотря на то, что увеличение π благоприятно сказывается на экономичности газотурбинной установки, повышение этой величины приводит к увеличению температуры газов перед рабочи-
мии лопатками турбины. Величины этой температуры лимитируются жаропрочностью сплавов, из которых изготовлены лопатки. В настоящее время максимально допустимая температура газов перед турбиной составляет 800—1000° С и дальнейшее повышение температуры может быть достигнуто только при применении новых жаропрочных материалов и внедрении конструкций турбин с охлаждаемыми лопатками.

§ 2. Цикл ГТУ с подводом теплоты при $v=\text{const}$

В газотурбинной установке, работающей по этому циклу, процесс сгорания идет в замкнутом объёме камеры. Схема ГТУ со сгоранием при $v=\text{const}$ изображена на рис. 13.6. Компрессор 1, приводимый во вращение турбиной 2, подает сжатый воздух в камеру сгорания 5 через управляемый клапан 8. Второй клапан 4 находится в конце камеры сгорания и предназначен для выхода продуктов сгорания на турбину. Топливо в камеру сгорания подается насосом 9, находящимся на валу турбины, через форсунку 7. Подача топлива должна осуществляться периодически топливным клапаном 6.

В камере сгорания при закрытых клапанах 8 и 4 происходит процесс горения топлива в постоянном объеме. При увеличении давления клапан 4 открывается и продукты сгорания поступают в сопловый аппарат 3 и на лопатки турбины. При прохождении через лопатки турбины газ производит работу и выбрасывается в окружающую среду.

На рис. 13.7 и 13.8 приведен цикл этой установки на $p-v$ и $T-s$-диаграммах. На этих диаграммах:

- $a-c$ — аднабатное сжатие в компрессоре;
- $c-z$ — подвод теплоты при $v=\text{const}$;
- $z-e$ — аднабатное расширение газа в турбине;
- $e-a$ — изобарная отдача газом теплоты окружающему воздуху.

Основными параметрами цикла являются:

степень повышения давления

$$\pi = \frac{p_c}{p_a};$$

степень изохорного повышения давления

$$\lambda = \frac{p_z}{p_c}.$$
Для определения термического к. п. д., равного

$$\eta_t = 1 \frac{q_2}{q_1} = 1 - \frac{c_p(T_a - T_0)}{c_v(T_a - T_c)},$$

найдем температуру газа в узловых точках цикла:

точка c

$$T_c = T_a \frac{k - 1}{k};$$

точка z

$$T_z = T_a \frac{k - 1}{k} \lambda;$$

точка e

$$T_e = T_a \lambda^{1/k}.$$

Подставляя значения этих температур в формулу термического к. п. д., получим

$$\eta_t = 1 - \frac{k(\lambda^{1/k} - 1)}{k - 1}. \frac{k - 1}{k} \frac{(\lambda - 1)}{(\lambda - 1)}.$$

(13.3)

Работа цикла

$$l_u = q_1 \eta_t = c_v T_a \frac{k - 1}{k} \left(1 - \frac{k(\lambda^{1/k} - 1)}{k - 1} \frac{k - 1}{k} \frac{(\lambda - 1)}{(\lambda - 1)} \right).$$

(13.4)

Формула (13.3) показывает, что термический к. п. д. цикла зависит от степени повышения давления, определяемой повышением давления воздуха в компрессоре, и от величины λ, характеризующей количество подведенной в цикле теплоты (рис. 13.9). Изме-
нение $\eta_t = f(\pi)$ аналогично изменению этой величины в цикле с подводом теплоты при $p = \text{const}$ (см. рис. 13.4).

Из сравнения между собой циклов с подводом теплоты при $p = \text{const}$ и $v = \text{const}$ на $p-v$ и $T-s$-диаграммах (рис. 13.10 и рис. 13.11) видно, что при одной и той же величине степени повышения давления и одинаковом количестве отведенной теплоты цикл при $v = \text{const}$ выгоднее цикла при $p = \text{const}$.

Это объясняется большей степенью расширения, которая будет в цикле $v = \text{const}$, а следовательно, и большими значениями термического к. п. д. Несмотря на это преимущество, цикл с подводом теплоты при $v = \text{const}$ широкого применения в практике не нашел в связи с усложнением конструкции камеры сгорания и ухудшением работы турбины в пульсирующем потоке газа.

§ 3. Регенеративные циклы

Одной из мер повышения степени совершенства перехода теплоты в работу в газотурбинной установке является применение регенерации теплоты. Регенерация теплоты заключается в использовании теплоты отработавших газов для подогрева воздуха, поступающего в камеру сгорания. Экономичность ГТУ при применении регенерации повышается. Схема установки с регенерацией представлена на рис. 13.12.

Воздух из компрессора I направляется в теплообменник b, где он получит теплоту от газов, вышедших из турбины 2. После подогрева воздух направляется в камеру сгорания 3, в которую через форсунку 4 от насоса 5 подводится топливо. Воздух, получивший теплоту от отработавших газов, должен получить в камере сгорания меньше теплоты для достижения определенной температуры газа перед турбиной. Цикл ГТУ с регенерацией теплоты показан на рис. 13.13 и рис. 13.14. На этих диаграммах: $a-c$ — адна-
батное сжатие воздуха в компрессоре; \(c \cdot l \) — изobarный подогрев воздуха в регенераторе; 1-2 — подвод теплоты при \(p = \text{const} \) в камере сгорания; 2-3 — адабатное расширение газа в турбине; 3-e — отдача теплоты при \(p = \text{const} \) в регенераторе; 2-a — отдача теплоты при \(p = \text{const} \) в окружающую среду.

Если предположить, что охлаждение газов в регенераторе происходит до температуры воздуха, поступающего в него \(T_3 = T_c \) то регенерация будет полной.

Термический к. п. д. цикла при полной регенерации, когда \(T_e = T_2 = T_1 = T_c \), определяется по формуле

\[
\eta_t = 1 - q_2 / q_1,
\]

где

\[
q_1 = c_p (T_z - T_1) = c_p (T_z - T_c),
\]

а

\[
q_2 = c_p (T_2 - T_1) = c_p (T_c - T_a),
\]

тогда

\[
\eta_t = 1 - \frac{T_c - T_a}{T_z - T_a}.
\]

При принятых параметрах цикла ГТУ с подводом теплоты при \(p = \text{const} \)

\[
T_c = T_a \frac{k-1}{k}, \quad T_z = T_a \frac{k-1}{k} \rho, \quad T_e = T_a \rho
\]

и

\[
\eta_t = 1 - \frac{T_a}{T_e} = 1 - \frac{1}{\rho}.
\] (13.5)

Эта формула показывает, что термический к. п. д. цикла при полной регенерации зависит как от начальной температуры, так и от температуры в конце адабатного расширения. Обычно двигатели работают не при полной регенерации, поэтому \(T_2 > T_c \).
При этом термический к. п. д. цикла должен учитывать степень регенерации, определяемую как отношение количества теплоты, переданной воздуху, к тому количеству теплоты, которое могло бы быть передано при охлаждении газов до температуры воздуха.

Степень регенерации

$$\sigma = \frac{T_1 - T_e}{T_e - T_2}.$$ \hspace{1cm} (13.6)

При полной регенерации $T_2 = T_e$, $T_1 = T_e$, $\sigma = 1$.
При отсутствии регенерации $T_e = T_1$, $\sigma = 0$.

Величина степени регенерации определяется качеством и величиной рабочих поверхностей теплообменника (рекенератора).

Принципиально регенерацию теплоты возможно осуществить в ГТУ, работающей по циклу $v = \text{const}$. При том характер цикла, как видно из рис. 13.15, изменяется. Подвод теплоты осуществляется как по изохоре, так и по изобаре.

В настоящее время регенерация теплоты находится практическое применение в основном в стационарных установках и реже в транспортных установках из-за большого веса и габаритов регенератора.

ГЛАВА XIV

ЦИКЛЫ РЕАКТИВНЫХ ДВИГАТЕЛЕЙ

Законы истечения газов, описывающие превращение энергии давления в количество движения, находят в настоящее время важное применение в реактивных двигателях. В таких двигателях теплота, полученная от сгорания топлива, преобразуется в кинетическую энергию продуктов сгорания и используется для получения тяги. Сила тяги газов, вытекающих из сопла, равна

$$P = G (\omega - \upsilon),$$ \hspace{1cm} (14.1)

где G — расход газов, кг/сек; ω — скорость истечения газов из сопла, м/сек; υ — скорость летательного аппарата, м/сек.
Реактивные двигатели могут быть подразделены на две основные группы:
1) воздушно-реактивные двигатели — ВРД (бескомпрессорные и компрессорные);
2) ракетные двигатели — РД (жидкостные ракетные двигатели и двигатели, работающие на твердом топливе).
Все типы реактивных двигателей применяют в современной авиации; развитие этих двигателей позволило создать космические аппараты, которые преодолели притяжение Земли, достигли Луны, Венеры, Марса и вышли на эллиптические орбиты вокруг Солнца.

§ 1. Бескомпрессорные ВРД

Бескомпрессорные ВРД делятся на прямооточные, в которых процесс сгорания топлива производится при \(p = \text{const} \), и пульсирующие; в них сгорание топлива осуществляется при \(v = \text{const} \).

В прямооточных двигателях процессы в отдельных частях двигателя протекают непрерывно. Сжатие воздуха в прямооточном двигателе осуществляется за счет скоростного на-поля. При этом входная часть двигателя при дозвуковых или сверхзвуковых скоростях полета должна быть спрофилирована так, чтобы в зоне горения скорость потока была порядка 150 м/сек для обеспечения безотрывного процесса горения топлива, впрыскиваемого через форсунки в камеру сгорания. Постоянство давления в камере сгорания достигается подбором поперечных сечений камеры.

сжатия воздуха в диффузоре; линия с-z — процессу изобарного подвода теплоты; линия z-e — адиабатному расширению продуктов сгорания в сопле; линия e-a — охлаждению продуктов сгорания (отвода теплоты в окружающую среду). Как видно, цикл прямоточного ВРД со сгоранием при \(p = \text{const} \) аналогичен циклу ГТУ со сгоранием при \(p = \text{const} \). Поэтому термический к. п. д. цикла может быть определен по формуле (13.1)

\[
\eta_t = 1 - \frac{1}{\frac{k-1}{k}} \pi_d, \quad (14.2)
\]

где \(\pi_d = \frac{p_e}{p_a} \) — представляет собой степень повышения давления воздуха в диффузоре.

Как \(\pi_d \), так и \(\eta_t \) возрастают с увеличением скорости полета, но с уменьшением скорости экономичность двигателя и тяга резко падают, а при нулевой скорости тяга будет равняться нулю. Поэтому для запуска аппаратов с такими двигателями требуются дополнительные стартовые двигатели. Области скоростей полета, целесообразных для применения прямоточного двигателя, лежат в диапазоне скоростей, в 2—3 раза превышающих скорость звука.

В пульсирующих ВРД для осуществления процесса горения топлива при постоянном объеме необходимо в сечениях II—II и III—III (рис. 14.1) поставить клапаны, которые при горении топлива разобщат камеру сгорания от входного диффузора и реактивного сопла. Впрыск топлива должен осуществляться периодически, когда эти клапаны будут закрыты.

На рис. 14.3 изображен на \(p-u \)-диаграмме цикл пульсирующего ВРД, где процесс a-c соответствует сжатию воздуха в входном диффузоре; процесс c-z — подводу теплоты при сгорании топлива; процесс z-e — расширению газа в сопле; процесс e-a — условному процессу выброса в атмосферу и охлаждению в ней при \(p = \text{const} \) продуктов сгорания.

Термический к. п. д. пульсирующего двигателя можно определить по формуле (13.3)

\[
\eta_t = 1 - \frac{k (\lambda^{1/k} - 1)}{\left(\frac{k-1}{k}\right) \pi_d \lambda^b (\lambda-1)}, \quad (14.3)
\]

где \(\pi_d \) — степень повышения давления воздуха в диффузоре; \(\lambda \) — степень повышения давления в процессе сообщения теплоты в камере сгорания при \(u = \text{const} \).
Пульсирующий двигатель можно применять при меньших скоростях полета, чем прямоточный, но ненадежная работа клапанов в условиях высоких температур ограничивает возможности его применения.

§ 2. Компрессорные турбореактивные двигатели

Этот класс двигателей в настоящее время наиболее широко применяется в авиации. В этих двигателях сжатие воздуха осуществляется в диффузоре вследствие скоростного напора и в компрессоре (осевом или центробежном), имеющем высокую степень повышения давления. Из компрессора воздух подается в камеру сгорания, а затем продукты сгорания поступают на газовую турбину, где, расширяясь, производят работу, идущую на привод компрессора. Окончательно расширение газа до атмосферного давления происходит в реактивном соплe. На рис. 14.4 представлена схема и изменение параметров по тракту двигателя. Идеальный цикл этого двигателя по сравнению с прямоточным двигателем дополняется процессами, идущими в компрессоре и турбине (рис. 14.5). На \(p-u \)-диаграмме процесс \(a-1 \) — сжатие в диффузоре; процесс \(1-c \) — сжатие в компрессоре; процесс \(z-2 \) — расширение в турбине; \(2-e \) — расширение в реактивном соплe. Общая степень повышения давления \(\pi = \pi_{диф} \cdot \pi_{к} = \frac{p_e}{p_a} \). Термический к. п. д. турбореактивного двигателя может быть определен по формуле (13.1), из которой видно, что эффективность этого двигателя будет определяться степенью повышения давления в диффузоре и компрессоре.

§ 3. Цикл жидкостно-реактивного двигателя

Жидкостно-реактивным двигателем (ЖРД) называется двигатель, создающий силу тяги вследствие вытекания из сопла продуктов сгорания жидкого топлива. ЖРД получили в настоящее
время широкое распространение как силовые установки самолетов, баллистических снарядов, ракет. Они применяются также для бурения скважин, в твердых породах.

Жидкостно-реактивный двигатель, схема которого приведена на рис. 14.6, состоит из камеры сгорания 1 с соплом 2, системы подачи топлива 3, в которую входят баки, насосы, агрегаты управления. Рабочие компоненты топлива — горючее и окислитель — по- даются в камеру сгорания через форсунки 4, перемешиваются там и сгорают. Продукты сгорания расширяются в сопловом канале. При этом часть теплоты, которой они обладают, превращается в кинетическую энергию вытекающей среды. Скорость истечения га-

![Рис. 14.6](image)

![Рис. 14.7](image)

зов увеличивается, а давление падает от давления в камере сгорания до давления окружающей среды (при полном расширении).

Равнодействующая от сил давления, приложенных к стенке камеры сгорания и сопла, создает силу, направленную в сторону, противоположную истечению, — силу тяги двигателя.

Сила тяги получается непосредственно без каких-либо промежуточных устройств. Она равна

$$ P = G \omega, \quad (14.4) $$

где G — расход топлива, $кг/сек$; ω — скорость в выходном сечении сопла.

Процессы, происходящие в ЖРД, сводятся к следующему. Топливо, состоящее из горючего и окислителя, насосом (или под давлением сжатого газа) подается в камеру сгорания. При этом давление топлива в насосе возрастает от p_1 до p_2. В p—v-диаграмме (рис. 14.7) этот процесс изображается прямой, параллельной оси p. Объем, занимаемый топливом, откладывается по оси абсцисс вправо от начала координат.

Процесс горения топлива идет при постоянном давлении и непрерывном увеличении объема продуктов сгорания. Следовательно, процесс горения можно представить себе изobarой c-z. После этого продукты сгорания поступают в реактивное сопло и расширяются до конечного давления (процесс z-e). Отработавшие газы вы-
брасываются из сопла в окружающую среду, унося с собой заключенную в них теплоту.

При изучении идеального цикла пренебрегают объемом жидкого топлива по сравнению с объемом газов. Циклы считаются обратимыми, так как процесс горения отождествляется с подводом эквивалентного количества теплоты при $p = \text{const}$, а процесс выброса газов в окружающую среду — с отводом эквивалентного количества теплоты от рабочего тела также при $p = \text{const}$. Рабочее тело, участвующее в цикле, рассматривается как идеальный газ с постоянной теплоемкостью.

![Diagram](image)

Рис. 14.8

Рис. 14.9

Диаграмма идеального цикла в координатах p—v имеет вид, показанный на рис. 14.8. Пл. acge представляет собой работу цикла.

Параметром цикла является степень расширения газа

$$\delta = \frac{p_0}{p_z}.$$

Термический к. п. д. цикла

$$\eta_t = 1 - \frac{q_2}{q_1},$$

где

$$q_1 = c_p (T_z - T_0) \quad \text{и} \quad q_2 = c_p (T_e - T_0).$$

Так как в идеальном цикле T_0 и T_e малы по сравнению с T_z и T_e, то

$$q_1 = c_p T_z \quad \text{и} \quad q_2 = c_p T_e$$

и

$$\eta_t = 1 - \frac{T_e}{T_z} = 1 - \frac{1}{T_z / T_e}.$$

Если расширение газа в идеальном цикле осуществляется по адиабате, то, произведя замену

$$\frac{T_e}{T_z} = \left(\frac{p_0}{p_z}\right)^{\frac{k-1}{k}} = \left(\frac{p_0}{p_z}\right)^{\frac{k-1}{k}},$$

174
найдем

\[\eta_k = 1 - \delta \frac{k-1}{k}. \]

(14.5)

Таким образом, термический к. п. д. цикла определяется при полном расширении только степени расширения и при увеличении последней увеличивается (рис. 14.9).

Из графика видно, что по мере увеличения степени расширения рост \(\eta_k \) замедляется и применение высоких давлений в камере сгорания нецелесообразно, так как необходимо будет делать ее с более толстыми стенками, а следовательно, и утяжелять двигатель.

Более значимые \(k \) дают больший термический к. п. д. Повышения \(k \) можно достичь, увеличив в продуктах сгорания наличие одноатомных или легких газов.

ГЛАВА XV

ЦИКЛЫ ПАРОСИЛОВЫХ УСТАНОВОК

§ 1. Цикл Ренкина

Так как для обеспечения замкнутого парового цикла Карно необходимо сжимать насыщенный пар, а не воду (причем парокомпрессор будет потреблять значительную часть работы, производимую установкой), то за идеальный цикл паросиловой установки принят не цикл Карно, а другой специальный, называемый циклом Ренкина. Этот цикл может быть осуществлен в паросиловой установке, представленной на рис. 15.1.

В паровом котле 1 за счет теплоты сгорающего в топке топлива происходит процесс парообразования; пар необходимых параметров получается в пароперегревателе 2. Из пароперегревателя 2 пар поступает в паровую машину или турбину 3, где происходит преобразование теплоты в работу. Отработанный пар направляется в конденсатор 4 (холодильник), где отдает часть теплоты охлаждающей воде и конденсируется. Полученный конденсат насосом 5 подается обратно в котел.

На рис. 15.2 и рис. 15.3 изображен цикл Ренкина для перегрева пара на \(p-v \) и \(T-s \)-диаграммах. В паровом котле при давлении \(p_1 \) происходит подогрев и испарение воды (при \(p_1 = \text{const} \)), процесс \(a-b \), а в пароперегревателе идет изobarный перегрев пара до температуры \(t_1 \), процесс \(b-e \).
Таким образом, из котла и пароперегревателя пар выходит с параметрами p_1, i_1, i_1.

Далее в машине (турбине) происходит адиабатное расширение пара до давления p_2 (процесс $e-f$). После расширения температура пара равна t_2, а энтальпия отработавшего пара i_2. При этих параметрах начнется изobarный процесс конденсации пара (процесс $f-d$), в результате которого получится вода при температуре t_2 с энтальпийей i_2'. Конденсат после адиабатного сжатия от давления p_2 до давления p_1 в питательном насосе поступает в котел.

Если пренебречь работой, которая затрачена на питательный насос $l_{нас} = \text{пл. madn (p—v-диаграмма)}$ или $l_{нас} = \text{пл. da'a (T—s-

диаграмма)}$, т. е. считать, что изобары жидкостей совпадают с нижней пограничной кривой, то работа, получаемая от машины (турбины), равна

$$l_T = i_1 - i_2. \quad (15.1)$$

Теплота, эквивалентная этой работе, изображается на $T—s$-диаграмме пл. $d'befda'$.

Термический к. п. д. цикла Ренкина равен

$$\eta_t = \frac{l_T}{q_1} = \frac{i_1 - i_2}{i_1 - i_2'}. \quad (15.2)$$

В числителе формулы (15.2) стоит количество теплоты, превращенной в полезную работу цикла, а в знаменателе — вся подводимая к рабочему телу теплота.

Из $T—s$-диаграммы видно, что увеличение начального давления пара, при неизменном значении T_1 и T_2, приводит к повышению температуры насыщения. Следовательно, средняя температура подвода теплоты возрастет и должен возрасти термический к. п. д. цикла (рис. 15.4).

Термический к. п. д. цикла должен возрасти, если при других неизменных параметрах цикла увеличить перегрев пара, а следовательно, увеличить среднюю температуру подвода теплоты (рис. 15.5). В настоящее время температура перегрева равна 600—650° C.

176
Перегрев пара одновременно приводит к уменьшению конечной влажности. Появление влаги в турбинах вызывает дополнительные потери при расширении, а кроме этого эрозию лопаток турбин, поэтому при больших начальных давлениях перегрев пара необходим. В некоторых случаях прибегают к промежуточному перегреву пара (после расширения пара в начальной ступени турбины) (рис. 15.6). При неизменных p_1 и T_1 в цикле уменьшение конечного давления приводит к повышению к. п. д. цикла, так как в этом случае возрастает располагаемый теплоперепад на турбине ($i_1 - i_2$) (рис. 15.7). Для уменьшения конечного давления p_2 на выходе пара из турбины создают вакуум с помощью конденсатора.

Средствами повышения термического к. п. д. являются также регенерация теплоты в цикле, применение бинарных циклов и т. п.

§ 2. Цикл парогазовой установки

Парогазовый цикл представляет собой бинарный цикл, в котором используются два рабочих тела — продукты сгорания и водяной пар. В газовом цикле температура газов на входе в турбину 900—1000° C, а на выходе 350° С и более. В паросиловых установ-
как температура перегретого пара достигает 600—650°С, но зато температура воды в конденсаторе будет всего лишь 25—30°С.

Таким образом, в бинарном цикле можно осуществить перепад температур значительно больший, чем в каждом из отдельных циклов. Изменение температурного перепада приведет к увеличению термического к. п. д. цикла.

Идеальный цикл парогазовой установки показан на рис. 15.8, где 1-2 — изотермический подвод теплоты к газу от горячего источника; 2-3 — аднабатное расширение газа; 3-6 — изobarный отвод теплоты от газа; 6-I — сжатие газа; 3-4 — аднабатное расширение пара; 4-5 — изотермический отвод теплоты в холодный источник от водяного пара; 5-6 — аднабатное сжатие воды; 6-3 — изobarный подвод теплоты к пару.

Практическая реализация изотермического подвода теплоты в газовом цикле 1-2-3-6-I может быть осуществлена в результате многоступенчатого подвода теплоты, а изотермический отвод теплоты в паровом цикле 3-4-5-6-3 может быть осуществлен в процессе конденсации водяного пара (процесс 4-5). Передача теплоты от продуктов сгорания к водяному пару осуществляется в теплообменнике. Газовый цикл в такой схеме является открытым (продукты сгорания удаляются в атмосферу), а паровой — закрытым.

Рабочим телом в закрытом цикле может быть не только вода, но и углекислота или другие вещества, утилизирующие теплоту газового цикла.

Газовый цикл осуществляется и в виде цикла газотурбинной установки с подводом теплоты при $p =$ const. На рис. 15.8 этот цикл изображается пл. 7-2-3-6-7.

Газовый и паровой циклы могут быть объединены в газопаровом цикле (рабочим телом такого цикла является парогазовая смесь, состоящая из продуктов сгорания и водяного пара). В парогазовых установках впрыск воды перед турбиной приводит к снижению температуры газов и одновременно к увеличению энтальпии рабочего тела, так как удельная энтальпия воды больше, чем у продуктов сгорания. Такой цикл был предложен академиком С. А. Христиановичем.

ГЛАВА XVI

ЦИКЛЫ ХОЛОДИЛЬНЫХМАШИН. ТЕПЛОВОЙ НАСОС

В холодильных установках происходит процесс передачи теплоты от охлаждающего тела к окружающей среде. Этот процесс осуществляется рабочим телом холодильной машины — так называемым холодильным агентом. Эффективность цикла холодильной

178
машины определяется холодильным коэффициентом — ε, равным отношению теплоты, отведенной от охлаждаемого тела q_2 к затраченной работе l_ν. В обратных циклах затрата внешней работы представляет собой компенсационный процесс (см. § 1, гл. ВІ), необходимый для осуществления такого цикла.

Холодильный коэффициент для 1 кг холодильного агента, участвующего в цикле,

$$
\varepsilon = \frac{q_2}{l_\nu}.
$$

(16.1)

Если осуществляется обратный цикл Карно в интервале температур T_1-T_2, в ходе которого отбирается от холодильного источника теплота q_2 и передается источнику (окружающей среде) теплота q_1, то на основании (16.1) и (6.3) имеем

$$
e_k = \frac{q_2}{q_1 - q_2} = \frac{T_1}{T_1 - T_2}.
$$

(16.2)

Формула (16.2) показывает, что e_k зависит от температур T_2 и температуры окружающей среды T_1. Можно доказать, как и ранее, что холодильный коэффициент цикла Карно не будет зависеть от выбора рабочего тела цикла.

Для определения работы и мощности, необходимой для осуществления обратного цикла, надо знать холодопроизводительность (т. е. количество теплоты, которое отводится от охлаждаемого тела в единицу времени Q кдж/сек)

$$
L = \frac{Q}{\varepsilon},
$$

(16.3)
a

$$
N = \frac{L}{1000} \text{ квт}.
$$

(16.4)

§ 1. Цикл воздушной холодильной машины

Основными элементами установки для получения холода (рис. 16.1) являются компрессор 1 и детандер 3. Кроме них, имеются два теплообменных аппарата, в одном из них — рефрижераторе 4 воздух воспринимает теплоту от охлаждаемой емкости, а во втором — холодильнике 2 отдает теплоту окружающей среде или воде холодильника.

Процессы в холодильнике и рефрижераторе идут при постоянном давлении, если пренебречь гидравлическими сопротивлениями. В компрессоре давление повышается от p_1 до p_2, в детандере падает от p_2 до p_1, причем процесс сжатия и расширения считают адабатными. Таким образом, идеализированный цикл холодильной машины состоит из двух изобар и двух адиабат (рис. 16.2 и рис. 16.3). Этот цикл называется циклом Лоренца.
Расчет цикла производится следующим образом. Теплота q_2, отбираемая воздухом от охлаждаемого объема (холодного источника) в изобарном процессе 2-3, равна

$$q_2 = (i_3 - i_2).$$

(16.5)

Теплота q_1, отдаваемая воздухом в окружающую среду (охлаждающей воде) в изобарном процессе 4-1, равна

$$q_1 = (i_4 - i_1).$$

(16.6)

Считая воздух идеальным газом с постоянной теплоемкостью, найдем

$$q_2 = c_p (T_3 - T_2); \quad q_1 = c_p (T_4 - T_1).$$

(16.7)

а работа, необходимая для осуществления цикла, равна

$$l_\Pi = c_p [(T_4 - T_1) - (T_3 - T_2)].$$

(16.8)

Подставляя значения q_2 и l_Π в формулу (16.1), получим

$$\varepsilon = \frac{T_3 - T_2}{(T_4 - T_1) - (T_3 - T_2)},$$

(16.9)

или

$$\varepsilon = \frac{1}{\frac{T_4 - T_1}{T_3 - T_2} - 1}.$$

(16.10)

Для аднабатного процесса 3-4 можно записать

$$\frac{T_4}{T_3} = \left(\frac{p_4}{p_3}\right)^{\frac{k-1}{k}}$$

(16.11)

и аналогично для аднабатного процесса 1-2

$$\frac{T_1}{T_2} = \left(\frac{p_1}{p_2}\right)^{\frac{k-1}{k}}.$$

(16.12)

Поскольку для изобарных процессов 4-1 и 2-3 \(p_1 = p_4\) и \(p_2 = p_3\), то из (16.11) и (16.12) имеем

$$\frac{T_4}{T_3} = \frac{T_1}{T_2}.$$
\[
\frac{T_4-T_1}{T_3-T_1} = \frac{T_1}{T_2}.
\]

Тогда уравнение (16.10) можно переписать в виде
\[
\varepsilon = \frac{1}{\frac{T_1}{T_2} - 1},
\]
(16.13)
или
\[
\varepsilon = \frac{1}{\left(\frac{p_1}{p_2}\right)^{\frac{k-1}{k}} - 1}.
\]
(16.14)

Таким образом холодильный коэффициент цикла зависит только от отношения давлений \(p_1/p_2\). При постоянных температурах окружающей среды и охлаждаемой емкости рассматриваемый цикл является внешнее необратимым. Это вызвано тем, что изобарные процессы теплообмена протекают при конечной разности температур, поэтому холодильный коэффициент этого цикла по сравнению с холодильным коэффициентом цикла Карно меньше.

Из рис. 16.4 видно, что в обратном цикле Карно отбирается теплоты больше, чем в цикле Лоренца,

пл. \(1'3ba1' > \) пл. \(23ba2\),

а работа, затрачиваемая в цикле воздушной холодильной установки, больше, чем в обратном цикле Карно,

пл. \(12341 > \) пл. \(11'33'1\).

В настоящее время воздушные холодильные установки не применяют на практике для получения холода при умеренных температурах. Они уступили здесь ведущую роль парокомпрессорным холодильным машинам.
§ 2. Цикл парокомпрессорной холодильной машины

В парокомпрессорных холодильных установках в основном осуществляются те же процессы, что и в воздушной холодильной машине. Но благодаря тому, что рабочее тело цикла — низкокипящая жидкость, можно холодильный цикл расположить в двухфазной области состояний, в которой изобарные процессы теплообмена будут протекать изотермически. Кроме того, понижение давления в цикле можно осуществить не в детандере, а в дроссельном вентиле, в котором процесс дросселирования влажного пара сопро-

ождается понижением температуры. На рис. 16.5 и рис. 16.6 даны схема паровой холодильной установки и ее цикл на T—s-диаграмме.

Процесс работы установки осуществляется следующим образом (рис. 16.5). В компрессоре 1 происходит аднабатное сжатие пара (процесс 3–4 на рис. 16.6), а затем пар направляется в конденсатор 2, в котором вначале происходит охлаждение при $p = \text{const}$ парогре- того пара (процесс 4–5), а затем полная конденсация пара (процесс 5–1). Из точки 1 жидкость при температуре T_1 и соответствующем давлении насыщения направляется к дроссельному вентилю 3, где происходит процесс дросселирования (процесс 1–2). Из дроссельного вентиля выходит влажный пар. Поступая затем в испаритель 4, влажный пар воспринимает теплоту и содержащаяся в нем жидкость испаряется (процесс 2–3). Из испарителя пар направляется снова в компрессор. Холодильный коэффициент этой установки равен

$$
\varepsilon = \frac{q_2}{l_v}. \quad (16.15)
$$

Теплота q_2, воспринимаемая паром в испарителе (процесс 2–3), равна

$$
q_2 = l_3 - l_2. \quad (16.16)
$$
Работа, затрачиваемая в цикле, равна работе компрессора (расширение в дросселе идет без отдачи внешней работы и $i_1 = i_2$)

$$l_u = i_4 - i_3.$$

(16.17)

Посставленя значения q_2 и l_u в уравнение (16.15), получим

$$\varepsilon = \frac{i_3 - i_2}{i_4 - i_3}. $$

(16.18)

Значение этого холодильного коэффициента отличается на 0.5—20% от ε_K и значительно выше, чем у воздушно-холодильных машин.

Таким образом, парокомпрессорная холодильная машина по сравнению с воздушной холодильной установкой имеет более высокое значение ε, а также холодопроизводительность.

В качестве хладоагентов применяют аммиак NH₃, двуокис углерода CO₂, хлористый метил CH₃Cl и так называемые фреоны—фтор-, хлорпроизводные простейших предельных углеводородов (CF₄, CClF₃, CCl₂F₂ и т. п.).

§ 3. Цикл теплового насоса

В процессе работы холодильной установки теплота перекачивается к горячему источнику, повышая его температуру. Таким образом, холодильный цикл можно использовать в целях отопления. Рабочая машина холодильной установки представляет собой тепловую насос. Тепловой насос забирает теплоту не из охлаждаемой емкости, а из окружающей среды. За счет затраты работы в обратном цикле температура теплоносителя повышается. Эффективность теплового насоса оценивается величиной отопительного коэффициента φ

$$\varphi = \frac{q_1}{l_u},$$

(16.19)

где q_1 — количество теплоты, сообщенное нагреваемому объекту; l_u — работа, подводимая в цикле.

Если в целях отопления используют определенную холодильную машину с холодильным коэффициентом ε, то

$$q_1 = q_2 + l_u, \quad \varepsilon = \frac{q_2}{l_u},$$

$$\varphi = \varepsilon + 1.$$

(16.20)

Следовательно, чем выше холодильный коэффициент, тем выше и отопительный коэффициент.

Так как в тепловом насосе $q_1 \gg l_u$, то и $\varphi \gg 1$. Значение отопительного коэффициента в реальных тепловых насосах равно 3—5.

Если бы тепловой насос работал по циклу Карно, то с учетом формул (16.2) и (16.20)

$$\varphi = \frac{T_1}{T_1 - T_2}. $$

(16.21)
При постоянной температуре нижнего источника теплоты T_2 эффективность теплового насоса будет зависеть от температуры, при которой рабочее тело отдает теплоту в отопительную систему. Этой температурой и нужно руководствоваться при выборе теплоносителя.

ГЛАВА XVII
МАКСИМАЛЬНАЯ РАБОТА. ЭКСЕРГЕТИЧЕСКИЙ МЕТОД ИССЛЕДОВАНИЯ

При переходе рабочего тела из неравновесного состояния в равновесное, максимум работы будет получен тогда, когда процесс изменения состояния рабочего тела обратим. Для определения максимальной работы рассмотрим расширенную изолированную систему, состоящую из рабочего тела (источника работы) и окружающей среды. Для того чтобы рабочее тело (система) пришло в равновесие со средой, необходимо изменить внутреннюю энергию за счет отвода или подвода теплоты или же за счет совершения работы, так как по первому закону термодинамики

$$dU = dQ - dL.$$

Подвод или отвод теплоты внешней среде происходит при постоянной температуре, равной температуре окружающей среды T_0. Если процесс обратим, то рабочее тело получит и отдаст теплоту при этой же температуре. Тогда, по второму закону термодинамики

$$dQ = T_0 dS.$$

Определим максимальную работу, которую складывается из той работы, которую совершит замкнутая термодинамическая система, и работы $p_0 dV$, пошедшей на преодоление давления окружающей среды p_0.

Элементарная максимальная работа равна

$$dL_{\text{max}} = T_0 dS - dU - p_0 dV,$$

или после интегрирования

$$L_{\text{max}} = (U_1 - U_2) - p_0 (V_2 - V_1) - T_0 (S_{0,1} - S_{0,2}).$$

Индексы «1» и «2» характеризуют состояние рабочего тела (системы) в начале и после приведения его в состояние равновесия с окружающей средой.

В выражении (17.2) разность $U_1 - U_2$ представляет собой работу системы в адабатном процессе изменения состояния; $p_0 (V_1 - V_2)$ — работу системы над окружающей средой; $T_0 (S_{0,1} - S_{0,2})$ — теплоту, переданную от источника работы окружающей среде и пошедшую на приращение энтропии среды.
При обратимом изменении состояния расширенной системы изменение энтропии равно нулю

\[(S_{0_2} - S_{0_1})_{обр} + (S_2 - S_1) = 0\] \hspace{1cm} (17.3)

и

\[\Delta S_{обр} = (S_{0_2} + S_{0_1})_{обр} = S_1 - S_2 = 0,\] \hspace{1cm} (17.4)

где \(S_{0_2} - S_{0_1}\) — изменение энтропии окружающей среды; \(S_1 - S_2\) — изменение энтропии рабочего тела (системы).

Тогда величина максимальной полезной работы, произведенная изолированной системой, т. е. работоспособность равна

\[L_{max} = (U_1 - U_2) - \rho_0 (V_2 - V_1) - T_0 (S_1 - S_2).\] \hspace{1cm} (17.5)

Из уравнения (17.5) следует, что максимальная работа, которую можно получить от рассматриваемой системы (рабочего тела), будет определяться начальным состоянием рабочего тела в процессе производства работы, но не будет зависеть от характера процесса изменения состояния рабочего тела. Следовательно, максимальная работа представляет собой функцию состояния системы.

При необратимом изменении состояния расширенной системы, когда

\[(S_{0_2} - S_{0_1}) + (S_2 - S_1) > 0,\] \hspace{1cm} (17.6)

\[\Delta S_{необ} = (S_{0_2} - S_{0_1}) - (S_1 - S_2),\] \hspace{1cm} (17.7)

gде \(\Delta S_{необ}\) — увеличение энтропии системы в результате протекающих в ней необратимых процессов.

Работа системы в случае необратимости протекающих в ней процессов, полезная работа, равна

\[L = L_{max} - T_0 \Delta S_{необ},\] \hspace{1cm} (17.8)

где \(T_0 \Delta S_{необ}\) — потеря работоспособности системы.

Уравнение

\[\Delta L = T_0 \Delta S_{необ}\] \hspace{1cm} (17.9)

называют уравнением Гюйо—Стодоль.

Задача определения \(\Delta S_{необ}\) должна решаться отдельно для каждого реального процесса.

Метод исследований, основанный на анализе потерь работоспособности в процессах, называют эксергетическим методом.

§ 1. Потери работоспособности в циклах

Свойство увеличения энтропии системы может быть использовано для определения потерь, возникающих вследствие необратимых явлений в процессах, и в частности в процессах преобразования теплоты и работы, т. е. в циклах.
Работа в обратимом цикле будет меньше, чем в обратимом, и уменьшение работы, совершаемой в цикле, так же как и увеличение энтропии, может служить мерой обратимости процессов, происходящих с рабочим телом цикла. Максимальное количество полезной работы в цикле при данных источниках теплоты называется работоспособностью, или эксергией, теплоты.

Очевидно, максимальную работу в цикле Карно можно получить за счет теплоты, отводимой от горячего источника с температурой T, и используя окружающую среду в качестве холодного источника с температурой T_0. Пусть источник выделил бесконечно малое количество теплоты dQ, при этом в работу превратится лишь часть теплоты $\left(1 - \frac{T_0}{T}\right)dQ$, остальная часть $\frac{T_0}{T}dQ$ будет передана окружающей среде. Таким образом, максимальное количество работы от теплоты dQ с температурой T равно

$$dL_{\text{max}} = \left(1 - \frac{T_0}{T}\right)dQ. \quad (17.10)$$

Следовательно, при постоянной температуре горячего источника

$$L_{\text{max}} = Q \left(1 - \frac{T_0}{T}\right). \quad (17.11)$$

Таким образом, качество теплоты, т. е. ее ценность, зависит от температуры и определяется коэффициентом качества теплоты, равным $\left(1 - \frac{T_0}{T}\right)$.

Коэффициент качества теплоты определяет, какая часть ее может быть превращена в работу. Эксергия (работоспособность) теплоты при температуре окружающей среды равна нулю.

В случае переменной температуры горячего источника

$$L_{\text{max}} = Q - T_0 \int_A^B \frac{dQ}{T} = Q - T_0 \Delta S, \quad (17.12)$$

где ΔS — уменьшение энтропии горячего источника; $T_0\Delta S$ — теплота, не превращенная в работу.

В отличие от цикла Карно $A-B-C-D$ в произвольном необратимом цикле $a-b-c-d$ (рис. 17.1) будут иметь место потери:

1) вследствие того, что температура горячего источника больше температуры рабочего тела;
2) так как температура рабочего тела больше температуры холодного источника;
3) из-за необратимых процессов в рабочем теле, связанных с увеличением энтропии (трение в рабочем теле в процессе сжатия $d-a$ и расширения $b-c$).

Первые два вида потерь связаны с процессом теплообмена при конечной разности температур. При этом в рабочем теле не будет равновесного состояния во всей массе и цикл будет в целом не обратим. (При внешние необратимых процессах состояние рабочего тела в каждой точке мало отличается от равновесного и характеризуется определенными значениями термодинамических параметров так же, как это имеет место в равновесных процессах.)

Изменение энтропии при неравновесных процессах теплообмена вследствие подвода (отвода) теплоты к рабочему телу может быть определено по формуле (17.7). Изменение энтропии вследствие трения может быть определено по количеству теплоты, выделившейся в процессе с трением.

Приращение энтропии системы за цикл равно приращению энтропии от каждого из составляющих процессов

$$\Delta S^* = \Sigma \Delta S.$$

Потери работоспособности вследствие необратимости подсчитывается как произведение температуры окружающей среды на изменение энтропии системы

$$\Delta L = T_0 \Delta S^*.$$

(17.13)

Полезная работа в необратимом цикле $a-b-c-d$ равна

$$L = L_{\text{max}} - T_0 \Delta S^*,$$

(17.14)

причем $L_{\text{max}} = Q_1 - Q_2$ представляет собой работу в обратимом цикле, а $T_0 \Delta S^*$ — потерю работоспособности.

Таким образом, полезная работа необратимого цикла меньше работы обратимого цикла на величину произведения абсолютной температуры теплоприемника (т. е. окружающей среды) на приращение энтропии всей системы. Относительный эффективный к. п. д. необратимого цикла равен

$$\eta_{0,e} = \frac{L}{L_{\text{max}}} = 1 - \frac{T_0 \Delta S^*}{L_{\text{max}}}.$$

(17.15)

Если считать, что максимальная работа в цикле Карно ($A-B-C-D$) равна

$$L_{\text{max}} = Q_1 \eta = Q_1 \left(1 - \frac{T_2}{T_1}\right),$$

где Q_1, T_1 — теплота, переданная рабочему телу от горячего источника, и температура горячего источника; $T_2 = T_0$ — температура окружающей среды.

187
Тогда
\[\eta_0 = 1 - \frac{T_2}{T_1} - \frac{T_2 \Delta S^*}{Q_1}. \]
(17.16)

При анализе потерь полезной работы необходимо помнить, что изменение энтропии рабочего тела за цикл равно нулю (цикл замкнут). И общая потеря равна сумме потерь работоспособности (эксергии), а не работы. Это имеет принципиальное значение для оценки совершенства действительных процессов в отдельных частях двигателя.

§ 2. Потери работоспособности (эксергии) потока

Рассмотрим установившийся поток рабочего тела, источник работы, имеющий на входе в канал параметры \(u_1, v_1, s_1, T_1, p_1 \) и на выходе из канала параметры \(u_2, v_2, s_2, T_2, p_2 \). Параметры внешней среды обозначим через \(u_0, v_0, s_0, T_0, p_0 \).

Максимальная работа, которую может произвести поток при отсутствии равновесия с окружающей средой, должна увеличиваться на величину, потерянную на преодоление давления окружающей среды
\[\rho_1 v_1 - \rho_0 v_1 = v_1 (p_1 - p_0). \]
Величина \(v_1 (p_1 - p_0) \) представляет собой работу проталкивания в окружающую среду.

Таким образом, учитывая выражение (17.5), работа единицы массы установившегося потока в результате обратимого перехода из состояния 1 в состояние 0
\[l_{max} = (u_1 - u_0) - \rho_0 (v_0 - v_1) - T_0 (s_1 - s_0) + v_1 (p_1 - p_0) = \\
= (u_1 + p_1 v_1) - (u_0 + p_0 v_0) - T_0 (s_1 - s_0) = (i_1 - i_0) - T_0 (s_1 - s_0). \]
(17.17)

Если кинетическая энергия потока \(w_i^2/2 \) имеет значение, которым пренебречь нельзя, то при \(w_0 = 0 \)
\[l_{max} = i_1 - i_0 + (w_1^2/2) - T_0 (s_1 - s_0). \]
(17.18)

Из формул (17.17), (17.18) видно, что максимальная работа представляет собой функцию состояния системы, зависящую от начальных параметров и параметров окружающей среды. Снижение работоспособности между состояниями 1 и 2 вдоль пути установившегося потока равно
\[\Delta l_{1-2} = \left(i_1 - T_0 s_1 + \frac{w_1^2}{2} \right) - \left(i_2 - T_0 s_2 + \frac{w_2^2}{2} \right). \]
(17.19)

Величина, на которую это снижение превышает работу, производимую над окружающей средой вне потока, является мерой необратимости любого аднабатного термодинамического процесса между
состояниями 1 и 2. При этом должны быть известны величины эн
tальпии и энтропии для начального и конечного состояний.

Диаграмма состояния в координатах \(i - s \) позволяет наглядно
представить графически величины потери эксергии потока. Пре
небрегая изменением скорости, можно вычислить потери удельной
эксергии потока между состояниями 1 и 2 по формуле

\[
-\Delta e_{1-2} = \Delta i_{1-2} = i_1 - i_2 - T_0 (s_1 - s_2).
\]

(17.20)

На рис. 17.2 для определения этой величины воспользуемся
следующим построением. Пусть точка 1 изображает начальное сос
тояние, а точка 2 конечное. В точке пересечения изобары с изотер-
мой \(T_0 \) проведем касательную. Наклон этой касательной к оси
абсцисс пропорционален температуре окружающей среды. Через
точку 2 проведем прямую, параллельную касательной до пересе
чения с изоэнтропой, проведенной через точку 1. Отрезок этой
изоэнтропы между найденной точкой пересечения и точкой 1 пред
ставляет собой снижение эксергии рабочего тела между состояниями
1 и 2. При вычислении удельной эксергии потока для различных
рабочих тел можно воспользоваться \(e - i \)-диаграммами для единицы
массы. Значение эксергии определяем по формуле

\[
e = i - i_0 - T_0 (s - s_0).
\]

(17.21)

Значения параметров окружающей среды \((i_0, s_0, T_0)\) примем
постоянными. \(e - i \)-Диаграмма (рис. 17.3) строится как разновид
ность косоугольной \(i - s \)-диаграммы, в которой ось энталпий рас
положена горизонтально, а ось энтропий выбрана так, чтобы
угол наклона оси \(s \) в процессе \(s = \text{idem} \) был взят при \(\Delta e = \Delta i \).
При одинаковом масштабе шкал по осям \(e \) и \(i \) этому условию соот
ветствует угол наклона, равный 135°. Следовательно, ось энтропий
наклонена к оси энталпии под косым углом.

Линии \(i = \text{idem} \) в такой диаграмме располагаются вертикально,
а \(e = \text{idem} \) — горизонтально. Линии \(s = \text{idem} \) перпендикулярны оси \(s \).
На $e-i$-диаграмму наносится сетка изobar, изотерм, а также верхняя и нижняя пограничные кривые данного вещества. Характер $e-i$-диаграммы определяется физическими свойствами вещества, для которого она построена.

Вид диаграммы, показанной на рис. 17.2, характерен для воды, у которой $T_{кр} > T_0$.

Экспергетический метод анализа использует как первый, так и второй законы термодинамики с учетом роли окружающей среды.

Такой метод исследования теплотехнических процессов получает все более широкое распространение, так как позволяет:
1) оценить более широко термодинамическую эффективность различных процессов;
2) количественно определить степень необратимости процессов, при этом учет качество теплоты;
3) учесть влияние изменений в окружающей среде на показатели установки;
4) наметить пути термодинамического совершенствования процессов (для уменьшения необратимости процесса горения необходимо подогревать воздух, для уменьшения потерь от необратимости, теплообмен нужно осуществлять теплообмен с минимальным перепадом температур и т. п.).

Рис. 17.3
ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА

Химическая термодинамика занимается изучением химических процессов с термодинамической точки зрения и в отличие от технической рассматривает явления, в которых происходят внутримолекулярные изменения рабочего тела при сохранении атомами молекул своей индивидуальности. Образование новых веществ (работочего тела) или разложение веществ осуществляется в результате химической реакции. Для химического процесса характерно изменение числа и расположения атомов в молекуле реагирующих веществ. В ходе реакции разрушаются старые и возникают новые связи между атомами. В результате действия сил связей происходит выделение или поглощение энергии. Энергия, которая может проявляться только в результате химической реакции, называется химической энергией. Химическая энергия представляет собой часть внутренней энергии системы, рассматриваемой в момент химического превращения, ибо в запас внутренней энергии входит не только кинетическая и потенциальная энергия молекул, но и энергия электронов, энергия, содержащаяся в атомных ядрах, лучистая энергия. Отличительным признаком химической реакции является изменение состава системы в результате перераспределения массы между реагирующими веществами в изолированной системе. Если же система не изолирована от окружающей среды, то свойства ее зависят также от количества вещества, введенного в систему или выведенного из нее. Если, например, в калориметрическую бомбу поставить смесь из двух объемов водорода и одного объема кислорода (гремучий газ), то, несмотря на отсутствие теплообмена, происходит реакция с образованием водяного пара

\[2H_2 + O_2 \rightarrow 2H_2O \]

Эта реакция протекает с заметной скоростью при 600°С или при присутствии катализатора (платина) при комнатной температуре. Эти условия представляют собой внешние воздействия, но сама реакция протекает в условиях полной изоляции. В результате реакции происходит перераспределение массы. Масса H_2 и O_2 уменьшается, а масса H_2O увеличивается.

В реакции разложения

\[2H_2O \rightarrow 2H_2 + O_2 \]

масса H_2O уменьшается, а масса H_2 и O_2 увеличивается. Таким образом, в химических реакциях масса должна являться одной из величин, которые характеризуют состояние системы, т. е. для...
химических превращений масса является дополнительной координатой состояния. Процесс перераспределения массы в изолированной системе может произойти только в результате внутренней неравновесности, и возникновение процесса в такой системе возможно лишь при существовании неравновесного поля потенциала, который был назван химическим. Неравновесное поле химического потенциала и является движущей силой химических реакций. В процессе перераспределения массы системы происходит изменение внутренней энергии, энталпии, энтропии и ряда других функций состояния.

Изменение внутренней энергии в ходе химической реакции может проявляться только в виде теплоты или в виде работы. Так, результатом реакции гремучего газа после выравнивания температуры будет отдача теплоты окружающей среде. Это термодинамический процесс. Если же эту реакцию осуществить в цилиндре двигателя, то водяной пар совершит, воздействуя на поршень, определенную работу. Взяв состояние смеси до сгорания за начальное и состояние водяного пара после расширения в цилиндре за конечное, будем иметь дело с чисто термодинамическим процессом взаимодействия с окружающей средой. Таким образом, химическая реакция может рассматриваться как термодинамический процесс. Из химических процессов для авиационных специалистов наибольший интерес представляют реакции горения (процесс окисления топлив), ибо выделявшаяся в процессе горения теплота в двигателях может быть преобразована в механическую работу.

ГЛАВА XVIII
ОСНОВНЫЕ ЗАКОНЫ ТЕРМОДИНАМИКИ В ПРИМЕНЕНИИ К ХИМИЧЕСКИМ ПРОЦЕССАМ

В химической термодинамике основные законы термодинамики и общие методы исследования применяются для изучения химических процессов. При этом может быть установлен энергетический баланс химической реакции, направление ее возможного развития, скорость реакции и т. п.

§ 1. Первый закон термодинамики и применение его к химическим процессам

Как известно из главы V, количество теплоты, которое подводится к рабочему телу, идет на изменение внутренней энергии и на совершение работы против внешних сил. Это положение 1-го закона термодинамики записывается в виде равенства

\[dQ = dU + dL. \]

При превращении теплоты в работу с помощью простых веществ считалось, что они не претерпевали химических превращений. Для
того чтобы применить это уравнение к химическим процессам, следует учесть, что протекание химических реакций связано с изменением состояния атомов и электронов в молекулах реагирующих веществ. При этом происходит изменение внутренней энергии, которое может проявиться в виде теплоты или работы. Уменьшение внутренней энергии в результате реакции будет соответствовать определенному количеству выделившейся теплоты и совершенной системой работы.

При написании первого закона термодинамики применительно к химическим процессам следует учесть, что:

а) в отличие от технической термодинамики все уравнения, как правило, записываются не для 1 кг, а для 1 кмоль вещества;

б) в величину работы входит не только работа расширения или сжатия газа, но и работа в результате действия электрических, световых и других сил, которые могут проявляться в ходе химической реакции. Работа в химической термодинамике обозначается буквой A.

При принятых замечаниях уравнение первого закона термодинамики, применительно к химическим реакциям, имеет вид

$$
\Delta U = Q + A, \quad (18.1)
$$

где ΔU — убыль внутренней энергии системы; Q — теплота реакции; A — работа реакции.

Таким образом, выделение теплоты в реакции и совершение работы осуществляется за счет изменения внутренней энергии системы. В химической термодинамике принято считать, что:

уменьшение внутренней энергии системы положительно, а увеличение внутренней энергии отрицательно;

теплота, выделяющаяся в результате экзотермической реакции положительна, а поглощенная в результате эндотермической реакции, отрицательна.

Таким образом в соответствии с принятым выше

$$
-\Delta U = -(U_2 - U_1) = Q + A,
$$

или

$$
-dU = dQ + dA.
$$

Работа реакции складывается из работы расширения или сжатия L, отнесенной к 1 моль, и работ электрических, магнитных, световых и других сил, обозначенных через A_x. Следовательно, работа реакции равна

$$
A = L + A_x. \quad (18.2)
$$

Так как

$$
L = \int_1^2 pdV,
$$

то

$$
A = \int_1^2 pdV + A_x. \quad (18.3)
$$
Изменение внутренней энергии может распределяться между теплотой и работой различно и возможны крайние случаи, когда:

а) максимум внутренней энергии превращается в работу

$$\Delta U = Q_{\text{min}} + A_{\text{max}},$$

(18.4)

где A_{max} — максимальная работа реакции; при этом в реакции выделяется минимум теплоты, не превращенной в работу;

б) в реакциях, кроме работы расширения и сжатия, другой работы не производится $A_{\text{min}} = L$; в этом случае имеем наибольшее количество теплоты и минимум работы

$$\Delta U = Q_{\text{max}} + A_{\text{min}}.$$

(18.5)

В первом случае реакция протекает в условиях полной обратимости, а во втором она необратима.

§ 2. Теплоты реакций

Раздел химической термодинамики, занимающийся изучением теплот реакций, называется термохимией.

В химических процессах изменение состояния системы может характеризоваться не двумя, как в технической термодинамике, а тремя или более параметрами (например, давление, удельный объем, концентрация). При этом в процессе изменения состояния могут оставаться постоянными два параметра. Так как химические реакции рассматриваются идущими при постоянной температуре, то реакция, идущая при постоянном объеме, называется изохорно-изотермической $(V, T) = \text{const}$, а реакция, идущая при постоянном давлении, называется изобарно-изотермической $(p, T) = \text{const}$.

Для реакций между твердыми и жидкими телами или для газовых реакций, идущих в постоянном объеме, $dV = 0$,

$$L = A_{\text{min}} = \sum_{V_1}^{V_2} pdV = 0,$$

$$\Delta U = -(U_2 - U_1) = Q_{V_{\text{max}}},$$

(18.6)

gде Q_V — теплота изохорно-изотермической реакции, соответствующая изменению внутренней энергии.

Для химической реакции, протекающей при постоянном давлении, $dp = 0$,

$$A_{\text{min}} = L = \sum_{V_1}^{V_2} pdV = p (V_2 - V_1),$$

$$\Delta U = Q_{p_{\text{max}}} + p (V_2 - V_1),$$

(18.7)

gде $Q_{p_{\text{max}}}$ — теплота реакции при постоянном давлении*.

* Теплота химической реакции при $p = \text{const}$ и отсутствии всех видов работы, кроме работы расширения, сжатия, называется тепловым эффектом реакции, как это принято в физической химии.
Тепловой эффект реакции при \(p = \text{const} \)

\[
Q_{\text{p max}} = \Delta U - p (V_2 - V_1) = U_1 - U_2 - pV_2 + pV_1 = (U_1 + p_1V_1) - (U_2 + p_2V_2) = -(I_2 - I_1),
\]

где \(I_1 = U_1 + p_1V_1 \) и \(I_2 = U_2 + p_2V_2 \) — начальная и конечная энталпия системы.

В зависимости от вида реакции (\(p, T = \text{const} \) или \(V, T = \text{const} \)) получаются различные теплоты реакций.

Связь между ними может быть получена исходя из соотношений (18.7) и (18.8). Подставив значение \(\Delta U = Q_{v \text{ max}} \) в формулу (18.8) имеем

\[
Q_{v \text{ max}} = Q_{p \text{ max}} + p(V_2 - V_1).
\]

Если в реакции участвуют газообразные вещества, то из уравнения состояния идеального газа

\[
pV = nRT,
\]

(где \(n \) — число молей газа в объеме \(V \); \(R \) — универсальная газовая постоянная, равная \(R = 8,3143 \text{ кдж/(моль \cdot град)} \)) следует, что для изобарно-изотермической реакции (\(p, T = \text{const} \))

\[
p(V_2 - V_1) = (n_2 - n_1)RT = \Delta nRT.
\]

Подставляя выражение (18.10) в (18.9), получим

\[
Q_{v \text{ max}} = Q_{p \text{ max}} + 8,3143\Delta nRT.
\]

Таким образом, связь между теплотами реакций (\(p, T = \text{const} \) (\(V, T = \text{const} \)) зависит как от температуры, при которой идет реакция, так и от изменения в ней числа молей, газообразных реагентов.

При \(\Delta n > 0 \), например, в реакции*

\[
\text{CO}(r) + \frac{1}{2} \text{O}_2(r) = \text{CO}_2(r) + 28330 \text{ кдж/моль},
\]

то

\[
Q_{v \text{ max}} > Q_{p \text{ max}}.
\]

В этом случае система совершает работу расширения.

Если \(\Delta n < 0 \), примером такой реакции может служить реакция

\[
C_8H_{12}(ж) + 7 \frac{1}{2} \text{O}_2(r) = 6\text{CO}_2(r) + 3\text{H}_2\text{O}(r) + 3259000 \text{ кдж/моль},
\]

то

\[
Q_{v \text{ max}} < Q_{p \text{ max}}.
\]

При этом система воспринимает работу, совершаемую внешней средой (работу сжатия).

* Обозначения в вышеприведенных примерах означают: (\(T \)) — твердое, (\(Ж \)) — жидкое и (\(Г \)) — газообразное состояние.
Если число молей в реакции остается постоянным $\Delta n = 0$, например в реакции

$$C(\tau) + O_2(\tau) = CO_2(\tau) + 393,4 \text{ кдкс/моль},$$
то

$$Q_{\text{v max}} = Q_{\text{p max}}.$$

При составлении термохимических уравнений важно знать, в каком состоянии находятся реагирующие вещества, так как величина теплоты реакции зависит от их агрегатного состояния. Обычно в термохимических уравнениях, если это специально не оговорено, фигурируют теплоты реакций при постоянном давлении, $Q_p = -\Delta I$.

При вычислении величины изменения энтальпии не имеет значения, какое состояние берется за начало отсчета. В термохимии принято за стандартное состояние — состояние элементов при $T = 298^\circ K$ и $p = 1,0133$ бар. Причем для элементов в стандартном состоянии величина ΔI^o_{298} равна нулю. (Нижний индекс в этой величине указывает на стандартную абсолютную температуру, верхний — на стандартное давление). Теплота образования вещества из элементов, определенная при стандартных условиях, называется стандартной теплотой образования и обозначается ΔI^o_{298}.

Большинство соединений образуется из элементов с выделением теплоты и соответственно табличные величины стандартных теплот образования отрицательны и лишь для немногих эндо- и эндотермических соединений, например NO (ΔI^o_{298}), — положительны. Стандартная теплота сгорания представляет собой изменение энтальпии при реакции данного вещества с элементарным кислородом, причем исходные вещества и продукты реакции должны быть взяты при стандартных условиях. Стандартная теплота какой-либо реакции может быть определена с помощью ряда таких реакций образования и сгорания, которые бы в сумме составили изучаемую реакцию. Стандартные эффекты реакций представляют собой изменение энтальпии реагентов в результате химической реакции до продуктов реакции в стандартных условиях. Обычно теплоты образования известны для неорганических соединений, а теплоты сгорания для органических. При расчете двигателей внутреннего сгорания воздушно-реактивных двигателей используют теплопротворность топлива.

Теплотворностью топлива называют количество теплоты, деленной при полном сгорании 1 кг или 1 м³ топлива. Теплопроизводительность определяется опытым путем в бомбе при постоянном объеме — H_v или в калориметре при постоянном давлении H_p

$$H_v = H_p + p \cdot (V_2 - V_1).$$

Разница между H_v и H_p не превышает 0,5—1,5%, поэтому принимают

$$H_p = H_v = H.$$
§ 3. Закон Гесса

Первое начало термодинамики позволяет получить закон Гесса (или закон постоянства тепловых сумм), который указывает, что теплота реакции не зависит от пути реакции, а определяется лишь начальным и конечным состояниями реагирующих веществ.

Действительно, при \((V, T) = \text{const}\)

\[
Q_{V, \text{max}} = -(U_2 - U_1) = U_1 - U_2,
\]

t. e. количество теплоты реакции не зависит от пути перехода системы из первого состояния во второе.

Если же реакция происходит при \((p, T) = \text{const}\), то

\[
Q_{p, \text{max}} = -(l_2 - l_1) = l_1 - l_2
\]

tакже не зависит от пути и является функцией состояния системы.

Закон Гесса позволяет вычислить теплоты таких реакций, для которых они непосредственно не могут быть измерены. В таких случаях составляют термохимические уравнения, решая которые определяют теплоту искомой реакции.

Например, при сгорании твердого углерода, который никогда не сгорает целиком в окись углерода, а всегда образует некоторое количество двуокиси CO₂

\[
C(r) + O_2(r) = CO_2(r) + 393 700,
\]

\[
CO_2(r) + 1/2O_2(r) = CO_2(r) + 283 300.
\]

Вычитая из первого уравнения второе, получим

\[
C(r) + 1/2O_2(r) = CO(r) + 110 400,
\]

t. e. при неполном сгорании углерода выделяется 110 400,0 кджс на 1 моль CO₂ в то время, как при полном сгорании углерода выделяется 393 720 кджс/моль, а при сгорании окиси углерода выделяется 283 300 кджс/моль CO₂.

§ 4. Закон Кирхгофа

Характер температурной зависимости теплоты реакции определяется уравнением Кирхгофа, которое легко получить на основе первого закона термодинамики. Для этого продифференцируем по температуре выражение \(Q_{\text{max}}\), определяемое первым законом термодинамики.

Для реакции \((V, T) = \text{const}\)

\[
\left(\frac{\partial Q_{\text{max}}}{\partial T}\right)_V = \left(\frac{\partial U_1}{\partial T}\right)_V - \left(\frac{\partial U_2}{\partial T}\right)_V = C_{V_1} - C_{V_2}, \tag{18.12}
\]

где \(C_{V_1}\) и \(C_{V_2}\) — суммарные изохорные теплоемкости исходных и полученных веществ.
При изобарно-изотермических процессах \((p, T) = \text{const}\)

\[
\left(\frac{\partial Q_{\text{max}}}{\partial T} \right)_p = \left(\frac{\partial l_1}{\partial T} \right)_p - \left(\frac{\partial l_2}{\partial T} \right)_p = C_{p_1} - C_{p_2},
\]

(18.13)

где \(C_{p_1}\) и \(C_{p_2}\) — суммарные теплоемкости при постоянном давлении исходных и полученных веществ.

Суммарные теплоемкости системы перед реакцией и после реакции могут быть подсчитаны по формулам (см. § 4, гл. III)

\[
C_1 = \sum_{i=1}^{t=m_1} n_1 c_1, \quad C_2 = \sum_{i=1}^{t=m_2} n_2 c_2,
\]

где \(n_1\) и \(c_1\) — числа молей и теплоемкости исходных веществ; \(n_2\) и \(c_2\) — числа молей и теплоемкости полученных веществ; \(m_1\) и \(m_2\) — число компонентов исходных и полученных в реакции веществ.

Обобщение формул (18.12) и (18.13) приводит к зависимости

\[
\frac{dQ}{dT} = C_1 - C_2 = \sum_{i=1}^{t=m_1} n_1 c_1 - \sum_{i=1}^{t=m_2} n_2 c_2.
\]

(18.14)

Полученное выражение представляет собой математическое выражение закона Кирхгофа, по которому температурный коэффициент теплоты реакции \(\frac{dQ}{dT}\) равен разности сумм теплоемкостей исходных и полученных в реакции веществ.

Для определения теплоты реакции при любой температуре нужно знать зависимость \(Q = f(T)\).

Если допустить, что истинные теплоемкости определяются эмпирическим степенным рядом

\[
c = c_0 + aT + bT^2 + \ldots,
\]

то, подставляя их значение в формулу (18.14), получим, пропуская пределы у сумм

\[
\frac{dQ}{dT} = \sum (n_1 c_0) + \sum (n_1 a_1)T + \sum (n_1 b_1)T^2 + \ldots - \sum (n_2 c_0) - - \sum (n_2 a_2)T - \sum (n_2 b_2)T^2 + \ldots,
\]

или

\[
\frac{dQ}{dT} = \sum n_1 c_0 - \sum n_2 c_0 + \left[\sum (n_1 a_1) - \sum (n_2 a_2) \right] T + + \left[\sum (n_1 b_1) - \sum (n_2 b_2) \right] T^2 + \ldots.
\]

(18.15)
Интегрируя это уравнение, найдем

\[Q = \left[\Sigma (n_1 c_{01}) - \Sigma (n_2 c_{02}) \right] T + \frac{\left[\Sigma (n_1 a_1) - \Sigma (n_2 a_2) \right]}{2} T^2 + \frac{\left[\Sigma (n_1 b_1) - \Sigma (n_2 b_2) \right]}{3} T^3 + \ldots + C, \]

где \(C \) — константа интегрирования.

Введем для сокращения записи следующие обозначения:

\[\Sigma (n_1 c_{01}) - \Sigma (n_2 c_{02}) = \alpha, \]
\[\frac{\Sigma (n_1 a_1) - \Sigma (n_2 a_2)}{2} = \beta, \]
\[\frac{\Sigma (n_1 b_1) - \Sigma (n_2 b_2)}{3} = \gamma. \]

Подставляя эти обозначения в (18.16), находим

\[Q = \alpha T + \beta T^2 + \gamma T^3 + \ldots + C. \]

(18.17)

При \(T = 0^\circ K \) и \(C = Q_0 \) уравнение теплоты реакции примет вид

\[Q = Q_0 + \alpha T + \beta T^2 + \gamma T^3 + \ldots \]

(18.18)

Постоянный член \(Q_0 \) не представляет собой теплоту реакции при абсолютном нуле, так как использованные для составления уравнения (18.18) эмпирические уравнения теплоемкости не применимы при низких температурах. Таким образом, \(Q_0 \) — просто свободный член эмпирического уравнения, применяемого лишь в области, далекой от абсолютного нуля. Значение \(Q_0 \) может быть определено по известной теплоте реакции для какой-либо температуры.

§ 5. Второй закон термодинамики и его применение к химическим процессам

Основные положения второго закона термодинамики и его подданное толкование были приведены в главе VI настоящего курса. В этом виде аналитическое выражение 2-го закона термодинамики для любой изолированной системы записывалось в виде уравнения

\[dS \geq \frac{dQ}{T}, \]

где знак равенства характеризует обратимые, а знак неравенства необратимые процессы. Так как для адниабатически изолированной системы \(dQ = 0 \), это неравенство принимает вид

\[dS \geq 0, \]
откуда следует, что энтропия такой системы может только возрастать или оставаться постоянной.
В состоянии равновесия энтропия системы принимает максимальное значение

\[S = S_{\text{max}}; \quad dS = 0; \quad d^2S < 0. \]

Таким образом, энтропия является наиболее общей функцией, с помощью которой можно определять направление процессов и найти условия их равновесия.
Для целого ряда конкретных и часто встречающихся в практике процессов удобно пользоваться вместо энтропии другими величинами, также являющимися критериями необратимости процессов и равновесия системы.
Первый и второй закон термодинамики с учетом знаков, принятых в термохимии (убыль внутренней энергии положительна, а теплота, сообщенная системе, отрицательна), можно записать в следующем виде:

\[-dU = dQ + dA, \]
\[dS \geq -\frac{dQ}{T}. \]
Объединяя эти уравнения, получим

\[TdS \geq dU + dA. \] (18.19)
При отсутствии работ против немеханических сил \(A_x = 0, \)

\[A = L = \int pdV. \]

\[TdS \geq dU + pdV, \] (18.20)
или

\[TdS \geq dl - Vdp. \] (18.21)
Преобразуем уравнение (18.20)

\[dU - TdS \leq -pdV, \]
\[dU - TdS - SdT \leq -pdV - SdT, \]
откуда

\[d(U - TS) \leq -pdV - SdT. \] (18)
Функция \(U - TS = F \) является некоторой функцией состояния. Ее называют изохорно-изотермическим потенциалом.
С учетом вышеизложенного уравнение (18.21) можно записать в виде

\[dF + pdV + SdT \leq 0. \] (18.23)
Как и раньше, знак равенства относится к обратимым процессам, а неравенства — к необратимым.
Для изохорно-изотермического процесса \((V, \ T = \text{const})\),
\[
dV = 0 \quad \text{и} \quad dT = 0 \quad \Rightarrow \quad dF \leq 0.
\] (18.24)

Следовательно, в изолированных системах, находящихся при постоянной температуре и объеме, самопроизвольно могут протекать только те процессы, которые идут с уменьшением \(F\), причем пределом их протекания (условием равновесия) является достижение минимального, для определенных условий, значения функции \(F\), т. е.
\[
F = F_{\text{min}}; \quad dF = 0; \quad d^2F > 0.
\] (18.25)

Рассматривая \(F\) как функцию независимых параметров \(T\) и \(V\), полный дифференциал ее представим в виде
\[
dF = \left(\frac{\partial F}{\partial T} \right)_V dT + \left(\frac{\partial F}{\partial V} \right)_T dV.
\]

Сопоставление этого выражения с уравнением (18.23) приводит к выводу, что
\[
\left(\frac{\partial F}{\partial T} \right)_V = -S, \quad \left(\frac{\partial F}{\partial V} \right)_T = -p.
\] (18.26)

Соотношения (18.26) показывают, что изменение изохорно-изотермического потенциала по температуре при \(V = \text{const}\) определяется энтропией, а изменение его по объему при постоянной температуре определяется давлением.

Следовательно, \(F\) представляет характеристическую функцию, так как частные производные ее позволяют выразить термодинамические свойства системы.

Подставляя значение энтропии из уравнения (18.26) в выражение \(F = U - TS\), получим связь между изохорно-изотермическим потенциалом и внутренней энергией
\[
F = U + T \left(\frac{\partial F}{\partial T} \right)_V.
\] (18.27)

Если в уравнении (18.20) прибавить к обеим частям выражение \(Vdp - SdT\), то после преобразования получим:
\[
dU - TdS - SdT + pdV + Vdp \leq Vdp - SdT,
\]
откуда
\[
d(U - TS + pV) \leq Vdp - SdT.
\] (18.28)

Обозначим
\[
U - TS + pV = Z.
\] (18.29)

Так как
\[
U - TS = F,
\]
то \(Z = F + pV\) или \(Z = I - TS\) вследствие того, что \(U + PV = I\).

Величина \(U - TS + pV = Z\) является некоторой функцией состояния и называется изобарно-изотермическим потенциалом.
Тогда согласно уравнению (18.28)
\[dZ + SdT - Vdp \leq 0. \] (18.30)

Для изобарно-изотермических процессов, в которых \(dT\) и \(dp\) равны нулю,
\[dZ \leq 0. \] (18.31)

Следовательно, в изолированной системе при постоянном давлении и температуре самопроизвольно могут протекать только такие процессы, которые идут с уменьшением \(Z\), причем пределом их протекания (условием равновесия) служит достижение некоторого минимального для данных условий значения функции \(Z\), т. е.
\[Z = Z_{\text{min}}; \quad dZ = 0; \quad d^2 Z > 0. \] (18.32)

Как следует из уравнения (18.29), функция \(Z\) является характеристикой при независимых параметрах \(p\) и \(T\), при этом
\[dZ = \left(\frac{\partial Z}{\partial p} \right)_T dp + \left(\frac{\partial Z}{\partial T} \right)_p dT, \]
последнее уравнение и (18.29) тождественны, а поэтому имеем
\[\left(\frac{\partial Z}{\partial T} \right)_p = -S, \quad \left(\frac{\partial Z}{\partial p} \right)_T = \dot{V}. \] (18.33)

Если подставить найденное значение энтропии в выражение изобарно-изотермического потенциала, то получим связь между этим потенциалом и энталпийей
\[Z = l + T \left(\frac{\partial Z}{\partial T} \right)_p. \] (18.34)

Таким образом, кроме такого критерия равновесия системы, как энтропия (которая принимает при равновесии максимальное значение), в частных случаях можно пользоваться величинами изохорно- и изобарно-изотермических потенциалов. Условием равновесия процессов \((V, T) = \text{const}\) и \((p, T) = \text{const}\) является минимум этих потенциалов. Обе новые функции \(F\) и \(Z\) характеризуют часть внутренней энергии или энталпии системы, которая может переходить в полезную работу.

Определим значения изохорно- и изобарно-изотермических потенциалов для идеального газа. Из термодинамического тождества (18.20), (18.21), учитывая, что \(\left(\frac{\partial U}{\partial T} \right)_V = c_v\), а \(\left(\frac{\partial l}{\partial T} \right)_p = c_p\), следует
\[S = c_v \ln T + R \ln V = S_0 + R \ln V, \] (18.35)
или
\[S = c_p \ln T - R \ln p = S'_0 - R \ln p. \] (18.36)

Эти уравнения выражают зависимость энтропии одного моля идеального газа от его объема и давления, причем \(S_0\) и \(S'_0\) представляют собой сумму членов, которые при постоянной температуре
сохраняют постоянное значение. Вводя значение энтропии из выражений (18.35) и (18.36) в формулы \(F = U - TS \) и \(Z = I - TS \), получим

\[
F = F_0 - RT \ln V, \tag{18.37}
\]

\[
Z = Z_0 + RT \ln \rho, \tag{18.38}
\]

где \(F_0 \) и \(Z_0 \) — суммы членов, не изменяющихся при постоянной температуре.

Численные значения \(S_0 \) и \(F_0 \) соответствуют энтропии и изохорно-изотермическому потенциалу 1 моль при \(V = 1 \), а \(S_0 \) и \(Z_0 \) — энтропии и изobarно-изотермическому потенциалу 1 моль при \(p = 1.0133 \) бар.

§ 6. Максимальная работа реакции

Максимальная работа реакции представляет собой ту работу, которую можно получить при химических реакциях в предположении, что все процессы, идущие в ней, обратимы. Величина \(A_{\text{max}} \) в уравнении (18.4) характеризует стремление различных тел вступать в реакцию и является мерой химического сродства.

Воспользуемся для определения работы понятиями о изохорно-и изobarно-изотермических потенциалах применительно к изохорно-изотермической и изobarно-изотермической реакциям. Для реакции \((V, T) = \text{const}\) \((dL = p dV = 0 \text{ и } dA = dA_x = dA_y)\) на основании уравнения (18.20) следует

\[
dA_o \leq T ds - dU. \tag{18.39}
\]

Интегрируя это выражение применительно к изохорно-изотермической реакции, получим

\[
A_o \leq T (S_2 - S_1) - (U_2 - U_1), \tag{18.40}
\]

так как \(U - TS = F \), то

\[
\begin{align*}
A_{V, \text{max}} &= F_1 - F_2, \\
A_{V, \text{н}} &= F_1 - F_2.
\end{align*} \tag{18.41}
\]

Следовательно, если в изотермической системе процессы при \(V = \text{const} \) осуществляются обратимо, то максимальная работа определяется разностью изохорно-изотермических потенциалов.

Для необратимых процессов в той же системе получаемая работа меньше, чем для обратимых, а затрачиваемая работа больше, в то время как убыль изобарно-изотермического потенциала или его увеличение остаются при одних и тех же (начальном и конечном) состояниях неизменными.

Для реакции \((p, T) = \text{const}\) \(dA_p = dA_x = dA = dL\), но согласно выражению (18.20)

\[
dA_p \leq T ds - dU - dL, \tag{18.42}
\]

где \(dL = p dV \) — представляет собой работу расширения.
Интегрируя уравнение (18.42) при \(p = \text{const} \) и \(T = \text{const} \), получим
\[
A_p \leq T (S_2 - S_1) - (U_2 - U_1) - \rho (V_2 - V_1)
\]
или
\[
A_p \leq (U_1 + \rho V_1 - TS_1) - (U_2 + \rho V_2 - TS_2)
\]
и
\[
A_p \leq (I_1 - TS_1) - (I_2 - TS_2).
\]
(18.43)
Принимая во внимание, что \(I - TS = Z \),
\[
A_{\rho_{\text{max}}} = Z_1 - Z_2,
\]
\[
A_{\rho} \leq Z_1 - Z_2.
\]
(18.44)
Таким образом, в изобарно-изотермической системе максимальная работа при обратимых процессах равна разности изобарно-изотермических потенциалов. Следует отметить, что максимальная работа в данном случае подсчитывается как разность общей работы системы и работы расширения при постоянном давлении. Если в этой же системе процессы осуществляются необратимо, то развиваемая работа меньше разности изобарно-изотермических потенциалов.

§ 7. Уравнение максимальной работы

В реакциях \((V, T) = \text{const}\) максимальная работа равна уменьшению изохорно-изотермического потенциала
\[
A_{V_{\text{max}}} = F_1 - F_2.
\]
Полагая на основании уравнения (18.27), что в начальном состоянии
\[
F_1 = U_1 + T \left(\frac{\partial F_1}{\partial T} \right)_V,
\]
а в конечном
\[
F_2 = U_2 + T \left(\frac{\partial F_2}{\partial T} \right)_V,
\]
находим, что работа реакции
\[
A_{V_{\text{max}}} = U_1 - U_2 + T \left[\frac{\partial (F_1 - F_2)}{\partial T} \right]_V,
\]
но ввиду того, что \(U_1 - U_2 = Q_{V_{\text{max}}}, \) а \(F_1 - F_2 = A_{V_{\text{max}}}, \)
\[
A_{V_{\text{max}}} = Q_{V_{\text{max}}} + T \left[\frac{\partial (\Delta F)}{\partial T} \right]_V = Q_{V_{\text{max}}} + T \left(\frac{\partial A_{V_{\text{max}}}}{\partial T} \right)_V.
\]
(18.45)
Для реакции \((p, T) = \text{const}\) максимальная работа
\[
A_{p_{\text{max}}} = Z_1 - Z_2.
\]
При изотермическом переходе из одного состояния в другое для двух состояний системы из уравнения (18.34) имеем

\[Z_1 = l_1 + T \left(\frac{\partial Z_1}{\partial T} \right)_p, \]

\[Z_2 = l_2 + \left(\frac{\partial Z_2}{\partial T} \right)_p, \]

а максимальная работа реакции равна

\[A_{p, \max} = l_1 - l_2 + T \left[\frac{\partial (Z_1 - Z_2)}{\partial T} \right]_p. \quad (18.46) \]

С учетом того, что для реакции \((p, T) = \text{const} \) \(l_1 - l_2 = Q_{p, \max}\), а \(Z_1 - Z_2 = A_{p, \max}\),

\[A_{p, \max} = Q_{p, \max} + T \left[\frac{\partial (\Delta Z)}{\partial T} \right]_p = Q_{p, \max} + T \left(\frac{\partial A_{p, \max}}{\partial T} \right)_p. \quad (18.47) \]

Уравнения (18.45) и (18.47) носят название уравнений максимальной работы, или уравнений Гиббса—Гельмгольца. Объединяя их, получим уравнение максимальной работы в общем виде

\[A_{\max} = Q_{\max} + T \frac{dA_{\max}}{dT}. \quad (18.48) \]

§ 8. Химический потенциал

При рассмотрении термодинамических процессов количество вещества в системе считалось неизменным. В химических реакциях, когда из одних веществ образуются другие, изменяются и массы отдельных компонентов. При переменном составе системы любое из свойств системы может быть представлено как функция количества вещества \(m\) и любых из двух переменных \(p, V, T, U, S, F\) и т. п.

Так, например, дифференцируя уравнение

\[U = m \mu \]

(где \(u\) — внутренняя энергия количественной единицы вещества), получим

\[dU = mdu + udm = m(Tds - pdu) + udm. \]

Так как

\[mds = d(mS) - sdm = dS - sdm, \]

\[mdu = dV - udm, \]

то

\[dU = TdS - pdV + (u - sT + pv) dm. \quad (18.49) \]

Величина \(u - sT + pv = i - sT\) называется химическим потенциалом и обозначается через \(\mu\).
Таким образом, уравнение (18.49) можно записать в следующем виде:

$$dU = TdS - pdV + \mu dm$$ \hspace{1cm} (18.50)

и по аналогии

$$dI = TdS + Vdp + \mu dm,$$ \hspace{1cm} (18.51)

$$dF = -SdT - pdV + \mu dm,$$ \hspace{1cm} (18.52)

$$dZ = -SdT + Vdp + \mu dm.$$ \hspace{1cm} (18.53)

Взяв соответствующие производные по уравнениям (18.50)–(18.53), получим

$$\mu = \left(\frac{\partial U}{\partial m} \right)_V, s = \left(\frac{\partial I}{\partial m} \right)_p, s = \left(\frac{\partial F}{\partial m} \right)_V, t = \left(\frac{\partial Z}{\partial m} \right)_p.$$ \hspace{1cm} (18.54)

Следовательно, химический потенциал есть частная производная одной из термодинамических функций по массе при постоянных значениях соответствующих независимых переменных. Если термодинамические процессы идут при $p = \text{const}$ и $T = \text{const}$, то из уравнения (18.53) следует

$$\mu = \frac{Z}{m} = u + pv - Ts = i - Ts.$$ \hspace{1cm} (18.55)

Так как все рассмотренные термодинамические функции U, I, S, F, Z и т. п. имеют размерность энергии, то согласно формуле (18.54) химический потенциал характеризует изменение энергии при изменении массы данного вещества на единицу.

Химический потенциал был впервые введен Гиббсом и отнесен им к единице массы. Он играет большую роль в термодинамике фазовых превращений и химической термодинамике, так как в этих разделах рассматриваются процессы, идущие с перераспределением массы системы.

§ 9. Условия равновесия в изолированной однородной системе

Рассмотрим изолированную систему, которая состоит из двух подсистем 1 и 2, и выясним условия, при которых между этими подсистемами будет равновесное состояние. В качестве критерия равновесия возьмем условие

$$dS_{\text{сист}} = 0.$$ \hspace{1cm} (18.56)

Поскольку энтропия является аддитивной величиной, то применительно к нашему случаю

$$S_{\text{сист}} = S_1 + S_2,$$ \hspace{1cm} (18.57)

где S_1 и S_2 — энтропия соответственно 1-й и 2-й подсистем.
В соответствии с равенством (18.56)

\[dS_{\text{сист}} = dS_1 + dS_2 = 0. \] \hspace{1cm} (18.58)

Из термодинамического тождества (18.20) имеем

\[dS = \frac{1}{T} dU + \frac{p}{T} dV. \]

Следовательно, для 1-й подсистемы можно записать

\[dS_1 = \frac{1}{T_1} dU_1 + \frac{p_1}{T_1} dV_1. \] \hspace{1cm} (18.59)

а для 2-й

\[dS_2 = \frac{1}{T_2} dU_2 + \frac{p_2}{T_2} dV_2. \] \hspace{1cm} (18.60)

Подставив значения \(dS_1 \) и \(dS_2 \) из выражений (18.59) и (18.60) в уравнение (18.58), найдем

\[\left(\frac{1}{T_1} - \frac{1}{T_2} \right) dU_1 + \left(\frac{p_1}{T_1} - \frac{p_2}{T_2} \right) dV_1 = 0. \] \hspace{1cm} (18.61)

Внутренняя энергия \(U \) и объем \(V \) могут быть независимы друг от друга, причем для рассматриваемой системы

\[U_{\text{сист}} = U_1 + U_2 = \text{const}, \]

\[V_{\text{сист}} = V_1 + V_2 = \text{const}. \]

Если внутренняя энергия и объем системы независимы друг от друга, следовательно, для подсистем дифференциалы \(dU_1 \) и \(dV_1 \), \(dU_2 \) и \(dV_2 \) также независимы.

Тогда для того чтобы левая часть уравнения (18.61) была тождественно равна нулю, нужно чтобы поразнь множители при дифференциалах \(dU_1 \) и \(dV_1 \) также были равны нулю, т. е.

\[\frac{1}{T_1} - \frac{1}{T_2} = 0, \] \hspace{1cm} (18.62)

\[\frac{p_1}{T_2} - \frac{p_2}{T_2} = 0. \] \hspace{1cm} (18.63)

Из выражения (18.62) следует, что

\[T_1 = T_2, \] \hspace{1cm} (18.64)

а из выражения (18.63) с учетом (18.64) получаем

\[p_1 = p_2. \] \hspace{1cm} (18.65)

Таким образом, в изолированной системе в состоянии равновесия температура и давление во всех частях системы одинаковы.
§ 10. Условия равновесия в гетерогенных системах и химических реакциях

Рассмотрим изолированную термодинамическую систему, состоящую из двух подсистем, в которых вещество находится в двух фазах, причем количество вещества в подсистемах меняется, а общее количество вещества в системе m остается постоянным

$$m = m_1 + m_2 = \text{const.}$$ (18.66)

Предположим, что давления и температуры системы постоянны, так что температуры и давления фаз одинаковы

$$T_1 = T_2 = T; \quad p_1 = p_2 = p.$$ (18.67)

При постоянных p и T изobarно-изотермический потенциал системы в условиях равновесия должен иметь минимум, т. е.

$$dZ = 0,$$ (18.68)

а так как потенциал — величина аддитивная $Z_{\text{сист}} = Z_1 + Z_2$, то

$$dZ_{\text{сист}} = dZ_1 + dZ_2.$$ (18.69)

На основании формулы (18.53) при постоянном давлении и температуре для 1-й подсистемы

$$dZ_1 = \mu_1 dm_1,$$ (18.70)

а для 2-й

$$dZ_2 = \mu_2 dm_2.$$ (18.71)

Подставив выражения (18.70) и (18.71) в формулу (18.69) и учитывая, что в состоянии равновесия $dZ_{\text{сист}} = 0$, получим

$$\mu_1 dm_1 + \mu_2 dm_2 = 0,$$

tак как по формуле (18.66) $dm_1 = -dm_2$, то

$$\mu_1 = \mu_2.$$ (18.72)

Следовательно, в условиях равновесия фаз нужно иметь равные температуры, давления и химические потенциалы фаз. Равенство химических потенциалов фаз означает, что в условиях равновесия удельные энергии в фазах равны.

Для фаз, количество которых больше двух, результаты будут аналогичными, и в условиях равновесия

$$\mu_1 dm_1 + \mu_2 dm_2 + \mu_3 dm_3 + \ldots = 0.$$ (18.73)

Таким образом, в условиях равновесия гетерогенных систем при $(p, T) = \text{const}$

$$\sum \mu_i dm_i = 0.$$ (18.74)

При равновесии в химических реакциях, рассматривая, например, изobarно-изотермический потенциал, необходимо учитывать,
что введение некоторого количества \(dn_i \) молей компонента \(i \) при сохранении постоянного количества всех других компонентов и при постоянных \(T \) и \(p \) будет изменять значение изобарного потенциала на величину \(\frac{dZ}{dn_i}dn_i = \mu_idn_i \). Соответственно изменения изо-барного потенциала вызваны и изменением содержания других компонентов реагирующей смеси газов. Тогда уравнение (18.53) можно записать в следующем виде:

\[
dZ = -SdT + Vdp + \mu_1dn_1 + \mu_2dn_2 + \ldots + \mu_kdn_k \tag{18.75}
\]

или

\[
dZ = -SdT + Vdp + \sum\mu_idn_i. \tag{18.76}
\]

Так как в условиях равновесия \(dZ = 0 \), то для химически реа-гирующих газов при \((P, T) = \text{const.}\)

\[
dZ = \sum\mu_idn_i = 0. \tag{18.77}
\]

Значение химического потенциала компонента, полагая, что он является идеальным газом, можно представить по аналогии с выражением (18.38)

\[
\mu_i = \frac{Z_i}{m_i} = \mu_{i_0} + RT\ln p_i, \tag{18.78}
\]

где \(Z_i \) — парциальное значение изоobarно-изотермического потенциала для компонента в смеси; \(\mu_{i_0} \) — значение химического потенциала компонента не меняющегося при постоянной температуре.

ГЛАВА XIX
РАВНОВЕСИЕ ТЕРМОДИНАМИЧЕСКИХ СИСТЕМ
И ДИССОЦИАЦИЯ

§ 1. Равновесие в химических реакциях

Химическая реакция возможна только при условии соударения молекул реагирующих веществ между собой; при этом столкновении происходит перераспределение атомов в молекулах и из исходных веществ получаются конечные. Рассмотрим простую часто применяемую в химической технологии реакцию, называемую иногда реакцией водяного газа

\[
\text{CO} + \text{H}_2\text{O} = \text{CO}_2 + \text{H}_2. \tag{19.1}
\]

В этой реакции при столкновении молекулы окиси углерода с молекулой водяного пара атом кислорода отрывается от молекулы пара и присоединяется к молекуле окиси углерода, образуя молекулу углекислоты. По мере протекания реакции количество исходных веществ уменьшается, следовательно, столкновений молекул исходных веществ делается все меньше и скорость реакции уменьшается. Но с другой стороны, увеличивается количество получен-ной углекислоты и водорода, увеличивается количество столкно-
вений молекул этих веществ и усиливается образование исходных веществ — окиси углерода и водяного пара, так как один атом кислорода опять передается от молекулы углекислоты молекуле водорода. Таким образом, всякая химическая реакция обратима и может идти в обоих направлениях, что обычно в химических уравнениях обозначается стрелками, т. е. уравнение (19.1) должно быть написано так:

$$\text{CO} + \text{H}_2\text{O} \rightleftharpoons \text{CO}_2 + \text{H}_2. \quad (19.2)$$

В действительности наблюдают только результат протекания двух противоположно направленных реакций. Если в реакции количество реагирующих между собой молекул CO и H$_2$O превышает количество реагирующих молекул CO$_2$ и H$_2$, то наблюдаем, что реакция идет слева направо, т. е. исходные вещества превращаются в конечные. Но если количество молекул CO$_2$ и H$_2$ превышает количество молекул CO и H$_2$O, то реакция идет справа налево, т. е. конечные вещества превращаются в исходные. Таким образом, направление реакции определяется в основном числом столкновений реагирующих молекул. Но вполне понятно, что число столкновений зависит от концентрации молекул этих веществ. Чем больше молекул исходных веществ прореагировало между собой, тем меньше остается непрореагировавших молекул, тем меньше концентрация исходных веществ, тем меньше скорость реакции.

Концентрация вещества в термохимии принято оценивать по количеству молей в 1 м3

$$C_i = n_i/V. \quad (19.3)$$

При протекании реакции концентрация исходных веществ уменьшается и скорость реакции можно оценить по уменьшению концентрации того или иного исходного вещества в единицу времени. Скоростью реакции называется количество молей вещества, прореагировавшее в 1 м3 за 1 сек

$$W = dC/dt. \quad (19.4)$$

Концентрация газообразных продуктов реакции может быть выражена через их парциальные давления. Для этого воспользуемся уравнением состояния идеального газа, по которому

$$C_i = \frac{n_i}{RT}. \quad (19.5)$$

§ 2. Закон действующих масс. Константы равновесия

Химические реакции не протекают до полного исчезновения исходных веществ и останавливаются при достижении определенного состояния химического равновесия. С практической точки зрения важно знать, в какую сторону сдвинуто равновесие, какой будет состав продуктов реакции и т. д. Для решения подобных задач необходимо научиться характеризовать равновесие и найти парамет-
ры, от которых оно зависит. Общие соотношения (18.25), (18.32), (18.77), вытекающие из второго закона термодинамики, дают возможность установления условий химического равновесия. Пусть имеется гомогенная газовая химическая реакция

\[aA + bB \rightleftharpoons cC + dD, \]

где \(a, b, c, d \) — числа молей (стехиометрические коэффициенты) соответствующих веществ \(A, B, C, D \).

Обозначим через \(\mu_A, \mu_B, \mu_C, \mu_D \) химические потенциалы этих веществ при равновесии. Условия равновесия для этой реакции между газами по (18.77) выполняются тогда, когда

\[dZ = \sum \mu_i d\mu_i = c\mu_C + d\mu_D - a\mu_A - b\mu_B = 0. \quad (19.6) \]

Если к исходным веществам и продуктам реакции применимы законы идеальных газов, то значение химического потенциала компонентов можно взять по (18.78). Тогда

\[(c\mu_{0c} + d\mu_{0d} - a\mu_{0a} - b\mu_{0b}) + RT (c \ln p_c + d \ln p_d - a \ln p_a - b \ln p_b) = 0 \]

или

\[\ln \frac{p_a^a p_b^b}{p_c^c p_d^d} = \frac{1}{RT} (c\mu_{0c} + d\mu_{0d} - a\mu_{0a} - b\mu_{0b}). \quad (19.7) \]

Так как правая часть уравнения (19.7) постоянна при определенной температуре, то и левая часть также должна быть постоянна. Если обозначить

\[\ln \frac{p_a^a p_b^b}{p_c^c p_d^d} = \ln K_p, \]

то

\[\frac{p_a^a p_b^b}{p_c^c p_d^d} = K_p. \quad (19.8) \]

Таким образом, парциальные давления газов при равновесии связаны между собой определенным соотношением. Это соотношение и является выражением закона действующих масс, по которому отношение произведений парциальных давлений исходных веществ и продуктов реакции, взятых в степенях, равных их стехиометрическим коэффициентам в уравнении реакции, при постоянной температуре, есть величина постоянная. Оно называется константой равновесия химической реакции по парциальным давлениям — \(K_p \).
Константы равновесия можно выразить и через концентрации. Подставив уравнение (19.5) в (19.8), получим

\[
\frac{c_A^a c_B^b}{c_C^c c_D^d} (RT)^{(c+d-a-b)} = K_p
\]
или

\[
K_p (RT)^\Delta n = \frac{c_A^a c_B^b}{c_C^c c_D^d} = K_C,
\]
(19.9)

где \(K_C \) — константа равновесия химической реакции по концентрациям.

Численно \(K_C \) совпадает с \(K_p \) только для тех газообразных реакций, в которых не происходит изменение числа молей

\[
\Delta n = (c + d) - (a + b) = 0.
\]

Но в предыдущем параграфе было выяснено, что при определенных внешних условиях скорость химической реакции определяется концентрациями реагирующих веществ. Пусть имеется реакция

\[A + B \rightleftharpoons C + D, \]
в которой скорость прямой реакции, т. е. реакция превращения веществ \(A \) и \(B \) в вещества \(C \) и \(D \) равна \(W_1 \), а скорость обратной реакции \(W_2 \). На основании закона действующих масс можно написать:

\[
W_1 = k_1 c_A c_B, \quad W_2 = k_2 c_C c_D,
\]
где \(k_1, k_2 \) — константы скорости прямой и обратной реакций; \(c_A, c_B, c_C, c_D \) — концентрации веществ в данный момент.

Если реакция выражается более сложным уравнением, в которое входит равное количество молей веществ, например,

\[
aA + bB \rightleftharpoons cC + dD,
\]
то скорости реакций, аналогично предыдущему, будут выражаться следующими формулами:

\[
W_1 = k_1 \frac{c_A^a c_A ... c_B^b}{a \text{ раз}} = k_1 c_A^a c_B^b,
\]

\[
W_2 = k_2 c_C^c c_D^d.
\]

На основании этого для реакции водяного газа по уравнению (19.1) можно написать:

\[
W_1 = k_1 c_{CO} c_{H_2O}; \quad W_2 = k_2 c_{CO}, c_{H_2}.
\]

При протекании реакции слева направо скорость прямой реакции уменьшается вследствие уменьшения концентраций исходных веществ, а скорость обратной реакции соответственно увеличивает-
см. Вполне естественно, что наступает момент, когда скорости прямой и обратной реакции ставятся равными

$$W_1 = W_2.$$ (19.10)

На основании вышесказанного можно заключить, что в реакции наступило химическое равновесие и количество получаемых в единицу времени конечных веществ равно количеству веществ, разлагающихся обратно в вещества \(A \) и \(B \); таким образом, при наступлении равновесия обе реакции продолжают идти с одинаковой скоростью, т. е. химическое равновесие является динамическим.

Подставляя в равенство (19.10) значения скоростей реакций, находим

$$\kappa_1 c_A^a c_B^b = \kappa_2 c_C^c c_D^d$$

или

$$\frac{\kappa_2}{\kappa_1} = \frac{c_A^a c_B^b}{c_C^c c_D^d} = K_c.$$ (19.11)

Константы скорости \(\kappa_1 \) и \(\kappa_2 \) представляют собой коэффициенты пропорциональности, учитывающие полноту столкновений молекул и их взаимную ориентацию в момент соударения.

В гетерогенных реакциях, т. е. в реакциях, где, кроме газов, участвуют конденсированные вещества (твердые тела и жидкости) в общее давление смеси, кроме парциальных давлений реагирующих газообразных веществ, входят пары этих конденсированных веществ. Например, для реакции горения твердого углерода

$$C + O_2 \rightleftharpoons CO_2$$

dавление газовой смеси равно

$$p = p_6^{(r)} + p_0^{(r)} + p_{CO}^{(r)}.$$

Но давления \(p_0 \) и \(p_{CO} \) меняются по ходу реакции, а \(p_6^{(r)} \) остается постоянным, так как реакция происходит при постоянной температуре.

На этом основании при вычислении константы равновесия для гетерогенных реакций давления паров твердых и жидких тел как величины постоянные относят к величине константы равновесия, и, следовательно, для реакции горения углерода константа равновесия выражается уравнением

$$K_p = \frac{p_{O_2}}{p_{CO_2}}.$$

Закон действующих масс [уравнения (19.8), (19.9)], полученный для смеси идеальных газов, применим и к процессам диссоциации и к рекомбинации молекул, которые имеют место в камерах сгорания и соплах ракетных двигателей.
§ 3. Термическая диссоциация в газах. Степень диссоциации

Среди реакций, возникающих при столкновении молекул различных веществ, особо следует выделить реакции термической диссоциации.

Разложение более сложных веществ на более простые под влиянием высокой температуры называется термической диссоциацией. Обратное направление процесса сопровождается рекомбинацией молекул. Например, для водяного пара имеем:

\[\text{H}_2\text{O} \rightleftharpoons \text{H}_2 + \text{O}_2, \]

\[\text{H}_2\text{O} \rightleftharpoons 2\text{OH} + \text{H}_2, \]

для углекислоты

\[\text{CO}_2 \rightleftharpoons \text{CO} + \text{O}_2. \]

При высоких температурах (2500°C и более) двухатомные газы разлагаются на одноатомные:

\[\text{O}_2 \rightleftharpoons 2\text{O}, \]

\[\text{H}_2 \rightleftharpoons 2\text{H}, \]

\[\text{N}_2 \rightleftharpoons 2\text{N}. \]

Диссоциация — реакция противоположного направления реакции горения и поэтому она требует затраты энергии извне и идет с поглощением теплоты, т. е. это реакция эндотермическая. Энергия эта расходуется на разрыв связей и на сообщение кинетической энергии вновь освобождающимся частицам. Диссоциация конечных продуктов сгорания указывает на неполноту реакции, на неполноту выделения теплоты и, следовательно, приводит к снижению к. п. д. камеры сгорания.

Степень диссоциации \(\alpha \) называется доля моля конечного вещества реакции, разложившегося к моменту равновесия на исходные. Например, горение водорода выражается формулой

\[\text{H}_2 + 0,5\text{O}_2 \rightleftharpoons \text{H}_2\text{O} \]

Из формулы видно, что при полном сгорании одного моля водорода в половине моля кислорода получается один моль водяного пара. Но вследствие диссоциации не происходит полного окисления, и при степени диссоциации, равной \(\alpha \), к моменту равновесия в смеси будет не 1 моль водяного пара, а только \((1 - \alpha)\) моль, но зато в смеси останутся продукты диссоциации, а именно водород и кислород, причем число молей водорода будет вдвое больше, чем кислорода, так как при разложении одной молекулы водяного пара получается одна молекула водорода и половина молекулы кислорода. Следовательно, в смеси будет \(\alpha \) моль водорода и \(0,5 \alpha \) моль кислорода. По этим данным можно определить состав диссоциированных продуктов сгорания.
По степени диссоциации можно определить состав смеси реагирующих веществ в момент равновесия, а так как константа равновесия также позволяет определить этот состав, то обе эти величины должны быть связаны между собой, т.e. \(K_C = f(\alpha) \) или \(K_p = f(\alpha) \).

\[\text{§ 4. Связь между константой равновесия и степенью диссоциации} \]

Зависимость между константой равновесия и степенью диссоциации имеет разную форму для разных реакций. Рассмотрим основные виды реакций, встречающихся в процессах горения.

1. Реакции горения, происходящие с уменьшением числа молей. К этим реакциям относятся однотипные реакции горения водорода и окиси углерода:

\[2\text{H}_2 + \text{O}_2 \rightleftharpoons 2\text{H}_2\text{O} \]
\[2\text{CO} + \text{O}_2 \rightleftharpoons 2\text{CO}_2 \]

Рассмотрим реакцию горения водорода. Пусть при определенной температуре реакции, для которой известна величина константы равновесия \(K_p \), к моменту равновесия непрореагировала \(\alpha \)-я часть моля, тогда в продуктах горения вместо 2 моль водяного пара будет только 2 \((1 - \alpha)\) моль, но вместо 2\(\alpha\) моль пара останутся в смеси непрореагировавшие водород и кислород в количестве: водорода 2\(\alpha\) моль, а кислорода \(\alpha\) моль. Таким образом, состав продуктов сгорания к моменту равновесия будет следующий:

Водяного пара	(1 - \(\alpha\)) моль	
Водорода	...	2\(\alpha\) моль
Кислорода	...	\(\alpha\) моль
Всего	**(2 + \(\alpha\)) моль**	

Используя формулы (1.32) и (1.33) для газовых смесей, находим парциальные давления компонентов в виде:

\[p_{\text{H}_2\text{O}} = p \frac{2(1 - \alpha)}{2 + \alpha} ; \]
\[p_{\text{H}_2} = p \frac{2\alpha}{2 + \alpha} ; \]
\[p_{\text{O}_2} = p \frac{\alpha}{2 + \alpha} . \]

Зная парциальные давления, по формуле (19.8) находим константу равновесия

\[K_p = \frac{p_{\text{H}_2}^2 \cdot p_{\text{O}_2}}{p_{\text{H}_2\text{O}}^2} = \frac{p^2 \cdot 4\alpha^2 \cdot \alpha p \cdot (2 + \alpha)^2}{(2 + \alpha)^2 \cdot (2 + \alpha) \cdot p^2 \cdot 4 \cdot (1 - \alpha)^2} = \]
\[= p \frac{\alpha^3}{(2 + \alpha)(1 - \alpha)^2} . \quad (19.12) \]
Это уравнение дает зависимость между константой равновесия и степенью диссоциации. Так как константа равновесия для определенной температуры имеет вполне определенное значение, то степень диссоциации определяется давлением, при котором происходит диссоциация. Для выяснения этого влияния в правой части уравнения (19.12) числитель и знаменатель разделим на \(\alpha^3 \)

\[
K_p = \rho \frac{1}{(2/\alpha + 1)(1/\alpha - 1)^2}.
\]

Найдем, что при \(T = \text{const} \) и повышении давления степень диссоциации уменьшается, т. е. полнота горения увеличивается, увеличивается количество получаемого водяного пара, а количество водорода и кислорода уменьшается; в этом случае говорят, что равновесное сдвигается вправо.

2. Реакции, происходящие без изменения числа молей газообразных участников реакции. К таким реакциям можно отнести реакцию водяного газа

\[
\text{CO} + \text{H}_2\text{O} \rightleftharpoons \text{CO}_2 + \text{H}_2.
\]

Константа равновесия этой реакции определяется из выражения

\[
K_p = \frac{\rho_{\text{CO}} \rho_{\text{H}_2}(\cdot)}{\rho_{\text{CO}_2} \rho_{\text{H}}(\cdot)}.
\]

Рассматривая эту реакцию, находим следующее. Если степень диссоциации равна \(\alpha \), то к моменту равновесия в смеси будет не по одному моль \(\text{CO}_2 \) и \(\text{H}_2 \), а только по \((1 - \alpha) \) моль, но зато остается по \(\alpha \) моль \(\text{CO} \) и \(\text{H}_2\text{O} \), которые не могли прореагировать вследствие диссоциации. Следовательно, состав смеси и парциальные давления компонентов к моменту равновесия будут следующие:

\[
\frac{\text{CO}_2}{\text{H}_2} \ldots \ldots (1 - \alpha) \text{ моль} \\
\frac{\text{CO}}{\text{H}_2\text{O}} \ldots \ldots \alpha \text{ моль} \\
\text{Всего} \ldots \ldots \alpha \text{ моль}
\]

Находим константу равновесия

\[
K_C = K_p = \frac{\alpha \rho \alpha \rho \alpha^2 \cdot \cdot \cdot 2.2}{2.2 (1 - \alpha) \rho \alpha^2 \cdot \cdot \cdot (1 - \alpha) \rho} = \frac{\alpha^2}{(1 - \alpha)^3}.
\]

В эту зависимость давление, при котором происходит реакция, не входит, следовательно, степень диссоциации в реакциях этого вида не зависит от давления.

Изучение формул зависимостей между константой равновесия и степенью диссоциации приводит к заключению, что константа равновесия представляет гораздо более удобную расчетную величину, чем степень диссоциации, поэтому за основу расчета состава про
дуктов сгорания принимают именно константу равновесия и для
нее даются таблицы значений K_p в зависимости от температуры для
разных реакций. В этом случае, если нужно, то можно воспользовать-
ся связью между K_p и K_c, т. е. формулой (19.9).

§ 5. Связь между максимальной работой
и константой равновесия

Как было указано в главе XVIII, скорость и полнота химической
реакции определяются химическим сродством реагирующих эле-
ментов. Степень химического сродства элементов определяется ве-
личиной максимальной работы, причем для изохорно-изотерми-
ческой реакции максимальная работа определяется уменьшением
изохорного потенциала F, а для изобарно-изотермической — умень-
шением изобарного потенциала Z. Чем большее значение имеет
максимальная работа реакции, тем больше химическое сродство эле-
ментов, тем полнее проходит реакция, т. е. тем меньше делается
к моменту равновесия исходных веществ и больше конечных.
Из формул (19.8) видно, что чем полнее проходит реакция, тем
меньше значение константы равновесия. Можно заключить, что
максимальная работа реакции связана определенными зависимо-
стями с константой равновесия. Уравнение, связывающее эти две
величины, называется изохорно-изотермической реакцией. Для вывода
этого уравнения предположим, что в смеси обратно происходит
реакция по уравнению

$$aA + bB \rightleftharpoons cC + dD.$$

Состояние смеси в начальный момент характеризуется неравно-
весными парциальными давлениями P_C, P_B, P_C, P_D, причем реак-
ция идет слева направо, т. е. с преобразованием веществ A и B
в вещества C и D, при этом парциальные давления P_A и P_B
меняются, а P_C и P_D увеличиваются. При достижении равно-
веся все парциальные давления делятся равновесными и равны-
ми p_A, p_B, p_C, p_D. Так как по условию реакция протекала
обратно, а $T = \text{const}$, то работа, произведенная всей системой, ма-
ксимальна. Изменение изобарно-изотермического потенциала сис-
темы в ходе этой реакции определяется равенством

$$\Delta Z = \sum \mu_i \Delta n_i = c\mu_C + d\mu_D - a\mu_A - b\mu_B.$$

Подставив значение химических потенциалов идеального газа
из уравнения (18.78) в приведенное выше соотношение, получим для
начального состояния

$$\Delta Z = (c\mu_0C + d\mu_0D - a\mu_0A - b\mu_0B) +$$

$$+ RT (c \ln P_C + d \ln P_D - a \ln P_A - b \ln P_B).$$
Сумма в первых скобках согласно выражению (19.7) равна —\(RT\ln K_p\). Следовательно,
\[
\Delta Z = RT (a \ln P_C + d \ln P_D - a \ln P_A + b \ln P_B) + RT \ln K_p,
\]
или так как по уравнению (18.44) \(A_{\text{max}} = \Delta Z = Z_1 - Z_2\),
\[
A_{\text{max}} = RT \left[\ln \frac{P_A^{a} P_B^{b}}{P_C^{c} P_D^{d}} - \ln K_p \right].
\] (19.14)
Этот вывод одинаков как для изобарно-изотермических реакций, так и для изохорно-изотермических. Анализ этого уравнения приводит к следующим выводам:
1) если \(A_{\text{max}} > 0\), то
\[
\ln \frac{P_A^{a} P_B^{b}}{P_C^{c} P_D^{d}} > \ln K_p,
\]
следовательно, \(P_A > p_A\), \(P_B > p_B\), \(P_C < p_C\), \(P_D < p_D\). При этих условиях реакция может идти только слева направо, т. е. с образованием веществ \(C\) и \(D\);
2) если \(A_{\text{max}} < 0\), то, естественно, реакция может идти только справа налево, т. е. с разложением веществ \(C\) и \(D\) на вещества \(A\) и \(B\);
3) если \(A_{\text{max}} = 0\), то система находится в равновесии.
Так как значение максимальной работы реакции зависит от начальных концентраций (парциальных давлений) веществ в смеси, то для оценки химического сродства за начальные парциальные давления веществ принимают такие отношения, произведения которых равны 1, т. е.
\[
\frac{P_A^{a} P_B^{b}}{P_C^{c} P_D^{d}} = 1,
\]
а логарифм этого произведения равен 0.
При таких условиях уравнение максимальной работы имеет вид
\[
A_{\text{max}} = -RT \ln K_p.
\] (19.15)
Так как \(R = 8,3143\), то при переходе к десятичным логарифмам получаем
\[
A_{\text{max}} = -8,3143 \cdot 2,303 \ T \log K_p = -19,15 \ T \log K_p.\] (19.16)

§ 6. Влияние температуры реакции на химическое равновесие

Положение химического равновесия зависит от температуры реакции. Следовательно, температура реакции влияет на все величины, связанные с химическим равновесием. Выведем уравнение, определяющее зависимость константы равновесия от темпе-
ратуры. Для этого используем уравнения максимальной работы (18.48) и (19.14):

$$A_{\text{max}} = Q_{\text{max}} + RT \frac{dA_{\text{max}}}{dT}.$$ \hspace{1cm} (a)

$$A_{\text{max}} = RT \left[\ln \frac{p_A^a p_B^b}{p_C^c p_D^d} - \ln K_p \right].$$ \hspace{1cm} (b)

Определяем из уравнения (b) \(\frac{dA_{\text{max}}}{dT} \), принимая произведение начальных парциальных давлений величиной постоянной

$$\frac{dA_{\text{max}}}{dT} = R \left[\ln \frac{p_A^a p_B^b}{p_C^c p_D^d} - \ln K_p \right] - RT \frac{d \ln K_p}{dT}.$$

Полученное значение подставляем в уравнение (a)

$$A_{\text{max}} = Q_{\text{max}} + RT \left[\ln \frac{p_A^a p_B^b}{p_C^c p_D^d} - \ln K_p \right] - RT^2 \frac{d \ln K_p}{dT},$$

или

$$A_{\text{max}} = Q_{\text{max}} + A_{\text{max}} - RT^2 \frac{d \ln K_p}{dT}. $$

Следовательно,

$$\frac{d \ln K_p}{dT} = \frac{Q_{\text{max}}}{RT^2}. $$ \hspace{1cm} (19.17)

Это уравнение одинаково и для изохорной, и для изобарной реакции.

При переходе к десятичным логарифмам, полагая, что \(R = 8,3143 \text{ кДж/(моль} \cdot \text{град}) \), окончательно получаем

$$\frac{d \log K}{dT} = \frac{Q_{\text{max}}}{19,15 T^2}. $$ \hspace{1cm} (19.18)

Полученная зависимость позволяет обнаружить влияние температуры реакции на химическое равновесие. Для экзотермических реакций тепловой эффект положителен, следовательно, левая часть полученного уравнения также положительна, т. е. \(\frac{d \log K}{dT} > 0 \) и \(d \log K \) и \(dT \) имеют одинаковые знаки. Если температура реакции повышается, то увеличивается константа равновесия. Отсюда следует, что к моменту равновесия давления исходных веществ делаются больше, и реакция проходит менее полно: равновесие сдвигается влево и увеличивается степень диссоциации. Для более полного протекания изотермической реакции необходимы более низкие температуры.
Аналогичные рассуждения для эндотермических реакций приводят к выводу, что полнота такой реакции увеличивается при повышении температуры, а степень диссоциации уменьшается.

Согласно принципу Ле-Шателье изменение внешних условий, определяющих равновесие химической системы, приводит к химической реакции прямой или обратной, развитие которой уменьшает влияние произведенного воздействия.

Если система получила теплоту извне, то в ходе реакции, согласно этому принципу теплота должна поглощаться. Если изменение внешних условий связано с увеличением давления (уменьшение объема), то в ходе реакции объем системы уменьшается. При наличии внешних воздействий нарушается равенство скоростей прямой и обратной реакций, условия, характеризующего состояние равновесия в системе. Новое состояние равновесия устанавливается в зависимости от развития прямой или обратной реакций.

§ 7. Определение констант равновесия.
Тепловая теорема Нернста

Формула (19.17) дает возможность определять значения констант равновесия для любых температур. В интегральном виде эта формула имеет вид

$$\ln K = \int \frac{Q_{max}}{RT^2} dT + C.$$

Для использования в вычислениях этой формулы необходимо определить значение константы C. Это значение может быть получено, если экспериментально определены для какой-нибудь температуры значение K и тепловой эффект Q_{max}. Подсчитанное значение C подставляется в формулу, после чего она может быть использована для вычисления K при любых температурах.

Имеется другой путь нахождения значения K, путь чисто аналитический, основанный на тепловой теореме Нернста, называемый третим законом термодинамики.

Нернст, используя большой экспериментальный материал, накопленный при изучении поведения конденсированных (твердых и жидких) веществ при низких температурах, установил, что разность $A_{max} - Q_{max}$ мала и с понижением температуры до абсолютного нуля уменьшается быстрее, чем по линейному закону. Из выражения (18.48) при $T \to 0 A_{max} \to Q_{max}$, но $A_{max} - Q_{max} = T \frac{dA_{max}}{dT} \to 0$, поэтому

$$\lim_{T \to 0} \left(\frac{dQ_{max}}{dT} \right) = \lim_{T \to 0} \left(\frac{dA_{max}}{dT} \right) = 0.$$

Эти уравнения дают возможность исключить константу интегрирования и получить зависимость $A_{max} = f(T)$ аналитическим путем. Уравнение (19.19) математически выражает тепловую теорему Нернста. На основе этой теоремы можно утверждать, что
в уравнении Кирхгофа (18.15) при 0° К разность теплоемкостей в правой части стремится к нулю, следовательно, и сами теплоемкости конденсированных систем также стремятся к нулю.

Планк, основываясь на теореме Нернста, пришел к дополнительным выводам относительно энтропии. Из уравнения (18.44) можно записать

\[
\frac{dA_{\text{max}}}{dT} = \frac{d(\Delta Z)}{dT}.
\]

В соответствии с уравнением (18.33)

\[
\left(\frac{\partial Z}{\partial I} \right)_p = -S,
\]

следовательно,

\[
\left[\frac{\partial (\Delta Z)}{\partial T} \right]_p = -\Delta S \quad \text{и} \quad \frac{dA_{\text{max}}}{dT} = -\Delta S \to 0. \quad (19.20)
\]

На основании зависимостей (19.20) следует, что вблизи 0° К все реакции происходят без изменения энтропии, а при 0° К сама энтропия конденсированных систем равна нулю, т. е.

\[
\lim S_{T \to 0} = 0 \quad \text{и в начале отсчета} \quad S_0 = 0. \quad (19.21)
\]

Из уравнения (19.21) следует, что при \(T = 0° K \), когда стсутствует тепловое движение, энтропия конденсированной системы равна нулю. Это происходит вследствие того, что при приближении к абсолютному нулю значительно уменьшается термодинамическая вероятность, и одновременно упорядочивается взаимное расположение молекул. Образуется периодическая пространственная решетка, в которой каждая молекула неподвижна. Таким образом, при абсолютном нуле равновесная система находится в состоянии, когда термодинамическая вероятность такого состояния \(\omega = 1 \).

Поэтому по формуле Болцмана (6.17)

\[
S = k \ln \omega
\]

получаем, что при \(T = 0 \) энтропия \(S = 0 \).

Следовательно, при приближении к абсолютному нулю энтропия каждого однородного кристаллического тела неограниченно стремится к нулю. Это положение представляет собой третий закон термодинамики в формулировке Планка.

Положения третьего закона термодинамики позволяют определять значение константы интегрирования для вычисления абсолютного значения энтропии. Используя дифференциальные уравнения термодинамики, можно также определить абсолютные значения основных термодинамических функций \(F, Z \) и др.
ГЛАВА XX
КИНЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ

Кинетикой химических реакций называется учение о скоростях химических реакций. Скорости химических реакций зависят от условий, в которых они протекают, от концентрации реагирующих веществ, температуры, влияния катализаторов и т. п.

§ 1. Влияние концентрации на скорость химической реакции

Как известно из предыдущих глав, скорость реакции как прямой, так и обратной определяется изменением концентрации реагирующих веществ в единицу времени. Так, для реакции вида

\[aA + bB \rightleftharpoons cC + dD \]

скорость прямой реакции

\[W_1 = \kappa_1 c_A^a c_B^b, \]

а скорость обратной

\[W_2 = \kappa_2 c_C^c c_D^d. \]

Концентрации исходных веществ в реакции будут уменьшаться, а полученных — возрастать. По мере израсходования исходных веществ скорость процесса уменьшается, следовательно, численные значения скорости будут различными в различные промежутки времени.

Средняя скорость реакции обычно относится к конечному промежутку времени \(\tau = \tau_2 - \tau_1 \)

\[\overline{W} = - \frac{c_2 - c_1}{\tau_2 - \tau_1}. \]

(20.1)

Истинную скорость можно определить как производную от концентрации по времени

\[W = - \frac{dc}{d\tau}. \]

(20.2)

Знак «—» в выражениях (20.1) и (20.2) соответствует уменьшению концентрации исходных веществ со временем.

Для обратимых реакций, когда \(W = W_1 - W_2 \neq W_1 \), реакция идут не с полным исчезновением исходных веществ. Скорость убывания концентрации исходного вещества \(B \) в бимолекулярной реакции вида

\[A + B \rightleftharpoons C + D \]

равна

\[W_1 = - \frac{dc_A}{d\tau} = \kappa_1 c_A c_B, \]

(20.3)
а скорость возрастания концентрации того же вещества \(A \) в результате обратной реакции

\[
W_2 = -\frac{dc_A}{dt} = \kappa_2 c_C c_D. \tag{20.4}
\]

Уравнение скорости реакции при \(W_1 > W_2 \) может быть записано в виде

\[
-\frac{dc}{dt} = W_1 - W_2 = \kappa_1 c_A c_B - \kappa_2 c_C c_D.
\]

Состояние динамического равновесия наступает в результате равенства скоростей \(W_1 \) и \(W_2 \), при этом общая скорость реакции будет равна нулю.

Следовательно, при равновесии

\[
\kappa_1 c_A c_B = \kappa_2 c_C c_D,
\]

\[
\frac{\kappa_2}{\kappa_1} = \frac{c_A c_B}{c_C c_D}. \tag{20.5}
\]

Правая часть этого равенства представляет собой константу равновесия \(K_C \) данной реакции и, следовательно, \(K_C = \kappa_2/\kappa_1 \) представляет собой отношение констант скоростей двух противоположных реакций, составляющих данную обратимую реакцию.

Если предположить, что в заданном объеме моли веществ, участвующих в бимолекулярной реакции, равны \(a, b, c, d \) и в определенный момент времени их количество равно \((a - x), (b - x), (c - x), (d - x) \), то

\[
\frac{dx}{dt} = \kappa_1 (a - x) (b - x) - \kappa_2 (c + x) (d + x).
\]

Допуская для простоты выводов, что \(a = b \) и \(c = d = 0 \), предыдущее уравнение перепишем в виде

\[
\frac{dx}{dt} = \kappa_1 (a - x)^2 - \kappa_2 x^2. \tag{20.6}
\]

Интегрируя уравнение (20.6), получим

\[
\kappa_1 - \kappa_2 = \frac{1}{\tau (m_2 - m_1)} \int \frac{(m_2 - x) m_1}{(m_1 - x) m_2} dx,
\]

где

\[
m_1 = \frac{a (1 + \sqrt{K_C})}{1 - K_C},
\]

\[
m_2 = \frac{a (1 - \sqrt{K_C})}{1 - K_C},
\]

\[
K_C = \frac{\kappa_2}{\kappa_1} = \left(\frac{a - x_\infty}{x_\infty} \right)^2,
\]

где \(x_\infty \) — количество прореагировавшего вещества к моменту равновесия.
§ 2. Влияние температуры на скорость химической реакции

Экспериментальные исследования химических реакций показывают, что при повышении температуры скорость реакции увеличивается. Так, например, скорость реакции соединения водорода с кислородом при температуре 300° С неизмеримо мала; а при 700° С эта реакция идет с громадной (взрывной) скоростью.

Количественная оценка влияния температуры на скорость реакции, а следовательно, и на константу скорости оценивается температурным коэффициентом скорости реакции \(\tau' \). Температурный коэффициент скорости равен отношению констант скоростей

\[
\tau' = \frac{\kappa T + 10}{\kappa T}
\]

и показывает, во сколько раз увеличилась скорость реакции при увеличении температуры на 10°.

Опытными исследованиями установлено, что при повышении температуры на 10° скорость гомогенных реакций увеличивается в 2 — 4 раза.

Уравнение вида \(\kappa = f(T) \) можно вывести из уравнения изохоры химической реакции (19.17)

\[
\frac{d \ln K}{dT} = -\frac{Q}{RT^2},
\]

которая выражает температурный коэффициент константы равновесия через тепловой эффект реакции. Но так как константа равновесия \(K = \frac{\kappa_2}{\kappa_1} \), то

\[
\frac{d \ln \kappa_2}{dT} = \frac{d \ln \kappa_1}{dT} = \frac{Q}{RT^2}.
\]

(20.7)

Рассмотрим тепловой эффект реакции как разность двух энергетических величин

\[
Q = E_1 - E_2,
\]

где \(E_1 \) и \(E_2 \) относятся к прямой и обратной реакции.

На вертикальной оси (рис. 20.1) отложена энергия рассматриваемой системы молекул на горизонтальный ход реакции. Если идет прямая экзотермическая реакция, т. е. из вещества \(A \) и \(B \) получаются вещества \(C \) и \(D \), то общий запас энергии продуктов реакции меньше, чем исходных и система в результате переходит на более низкий энергетический уровень. Разность этих уровней равна
теплоте реакции \(Q \). Верхний уровень определяет тот наименьший запас энергии, которым должны обладать молекулы, чтобы их столкновения могли привести к химическому взаимодействию. Разность между этим верхним уровнем и уровнем \(I \) представляет энергию активации прямой реакции \(E_1 \), а разность между максимальным уровнем и уровнем \(II \) — энергию активации обратной реакции \(E_2 \). Таким образом, в ходе реакции система должна перейти через энергетический барьер.

Уравнение (20.7) можно разложить на два, относящихся к прямой и обратной реакциям, и оно будет удовлетворено если:

\[
\frac{d \ln \kappa_1}{dT} = \frac{E_1}{RT^2} + H
\]

и

\[
\frac{d \ln \kappa_2}{dT} = \frac{E_2}{RT^2} + H.
\]

В общем случае

\[
\frac{d \ln \kappa}{dT} = \frac{E}{RT^2} + H. \tag{20.8}
\]

Это уравнение было выведено Вант-Гоффом.

На основании опытных данных можно принять \(H = 0 \), тогда уравнение (20.8) примет вид

\[
\frac{d \ln \kappa}{dT} = \frac{E}{RT^2}. \tag{20.9}
\]

Интегрируя это уравнение при постоянной величине \(E \), получим

\[
\ln \kappa = -\frac{E}{RT} + C, \tag{20.10}
\]

где \(C \) — константа интегрирования.

Откуда

\[
\kappa = e^{-\frac{E}{RT} + C}. \tag{20.11}
\]

Это уравнение позволяет выразить зависимость константы скорости химической реакции от температуры в виде прямой в координатах \(\ln \kappa, 1/T \).

Пользуясь уравнением (20.10), можно определить зависимость температурного коэффициента скорости реакции от температуры.

Для температур \(T_1 \) и \(T_2 \) получим:

\[
\ln \kappa_1 = -\frac{E}{RT_1} + C,
\]

\[
\ln \kappa_2 = -\frac{E}{RT_2} + C,
\]

или

\[
\ln \frac{\kappa_2}{\kappa_1} = \frac{E}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) = \frac{E}{R} \frac{(T_2 - T_1)}{T_1 T_2}.
\]

8 Элк. 52
Принимая \(T_2 = T_1 + 10; \ T_1T_2 = T_{cp}^2 \) и \(R = 8,3143 \ \text{kдж}/(\text{моль} \times \times \text{град}) \),

\[
\lg \frac{k_2}{k_1} = \frac{E}{19,15} \cdot \frac{10}{T_{cp}^2},
\]

(20.12)

\[
\lg \tau' = \lg \frac{k_{T+10}}{K_T} = B \frac{10}{T_{cp}^2}.
\]

(20.13)

Откуда

\[
\tau' = \frac{K_{T+10}}{K_T} = 10^{\frac{B \cdot 10}{T_{cp}^2}}.
\]

(20.14)

Полученная зависимость показывает, что \(\tau' \) с повышением температуры уменьшается, т. е. с повышением температуры уменьшается рост константы скорости, а следовательно, и рост скорости реакции. Скорость реакции при низких температурах возрастает более интенсивно, чем при высоких.

§ 3. Активация

Химические реакции осуществляются в результате взаимных столкновений молекул. Скорость реакции на основании закона действующих масс зависит от концентрации реагирующих молекул, а следовательно, и числа столкновений, причем чем больше концентрация, тем больше будет столкновений. Однако в реакциях, протекающих с конечной скоростью, не все столкновения молекул приводят к химическому взаимодействию. Эффективными будут только те столкновения между молекулами, которые в момент столкновения обладают некоторым избыtkом внутренней энергии и при встрече их может выделиться энергия, необходимая для разрушения химических связей. Этот избыток энергии, необходимый для проведения данной реакции, называется энергией активации. Причина того, что топливо (бензин, керосин и т. п.) не загорается само собой, заключается в значительной энергии активации соответствующих окислительных реакций. Повышение температуры приводит к тому, что все чаще и чаще молекулы окислителя и горючего в момент столкновения имеют необходимый избыток энергии, и в конце концов скорость реакции достигает большой величины — начинается горение. По теории активации к реакции могут привести только столкновения между активными молекулами, энергия которых будет больше энергии активации.

Когда число активных молекул \(N' \) составляет относительно малую долю от их общего числа \(N \), то (на основании уравнения распределения Больцмана) отношение их равно

\[
\frac{N'}{N} = e^{-\frac{E_a}{RT}},
\]

(20.15)

где \(E_a \) — некоторый минимум энергии молекул при столкновении.

В силу этого активное число столкновений, энергия которых превышает энергию активации \(E_a \), равно
(20.16)

где z_0 — полное число столкновений.

На основании уравнения (20.16) скорость химической реакции

$$ W = W_0 e^{-\frac{E_a}{RT}} $$

(20.17)

зависит как от температуры, так и от величины энергии активации.

Для бимолекулярной реакции скорость W_0, соответствующая полному числу столкновений молекул, равна

$$ W_0 = \kappa_0 c_1 c_2, $$

где κ_0 — константа скорости по столкновению; c_1, c_2 — концентрации реагентов.

Действительная скорость реакции на основании теории активации определяется по формуле

$$ W = W_0 e^{-\frac{E_a}{RT}} = \kappa_0 c_1 c_2 e^{-\frac{E_a}{RT}}. $$

(20.18)

Обозначая величину $\kappa_0 e^{-E_a/RT}$ через κ, получим

$$ W = \kappa c_1 c_2, $$

(20.19)

где κ — действительная константа скорости химической реакции, которая учитывает фактор активации.

Выражение для действительной скорости реакции (20.19) имеет тот же вид, что и закон действующих масс, но учитывает фактор активации $-\frac{E_a}{RT}$.

§ 4. Катализ

Катализом называют явление, при котором происходит изменение скорости реакции под действием некоторых веществ (катализаторов), остающихся в результате реакции химически неизменными. Под действием катализаторов реакции могут ускоряться (положительный катализ) или замедляться (отрицательный катализ).

Оригинальный катализ играет важную роль в процессе горения. Добавление в бензин тетраэтилсвинца не способствует образованию углеводородов и подавляет детonation.

Катализатор не влияет на химическое равновесие в системе и не может перемещать равновесие в ту или другую сторону. В зависимости катализаторов входит только увеличение скорости реакции, т. е. скорейшее достижение состояния равновесия. Катализаторы всегда изменяют энергию активации, причем при положительном каталиze она уменьшается. Катализатор в реакции может находиться в одной фазе с реагентом (гомогенный катализ), в разных фазах (герогенный катализ) или являться одним из конечных продуктов реакции (автокатализ).

Катализаторы, значительно изменяя скорости реакции и возбуждая заторможенные реакции, существенно влияют на кинетику химических реакций.
Современная термодинамика не является застойной наукой. С одной стороны, шириятся объекты исследования, где могут быть применены термодинамические методы исследования: области высоких и низких температур, области очень малых и больших давлений. С другой стороны, новые открытия рождают и новые области применения термодинамики: термодинамика термоядерных реакций, термодинамика плазмы, релятивистская термодинамика, термодинамика отрицательных абсолютных температур и т. д. И, наконец, не остаются неизменными и сами методы термодинамического исследования: эксергетический метод, методы термодинамики необратимых процессов и др.

ГЛАВА XXI
ОСНОВЫ ТЕРМОДИНАМИКИ ПЛАЗМЫ
И НЕОБРАТИМЫХ ПРОЦЕССОВ

§ 1. Термодинамика плазмы.
Состояние плазмы

Электрические двигатели являются в настоящее время наиболее перспективными для осуществления длительных полетов в пределах Солнечной системы. Они могут применяться для корректировки орбиты спутников Земли и в ряде других случаев. Среди электрических двигателей на первое место могут быть поставлены плазменные двигатели, в которых реактивная тяга создается потоком плазмы. Энергия сообщается плазме нагреванием (за счет джоулева нагрева плазмы протекающим через нее током) или ускорением плазмы магнитным полем. Магнитное поле в плазменных магнитогидродинамических двигателях (МГД) не только служит для ускорения плазмы, но и предотвращает ее соприкосновение со стенками камеры и выходного сопла. Так как длительное удержание плазмы магнитным полем осуществить трудно, то плазменные двигатели работают в импульсном режиме.

Плазмой называется ионизированный газ. При ионизации электроны отрываются от атомов. Потеряв электроны, атомы и молекулы приобретают положительный электрический заряд и становятся ионами. Плазма состоит из ионов и электронов. Количество по-
ложительно и отрицательно заряженных частиц в плазме таково, что их суммарный заряд равен нулю — это квазинейтральная плазма.

Однако плазма не только полностью ионизированный газ. Если ионизацию в газе создают легко ионизирующиеся щелочные присадки, то газ почти не ионизирован, ионизирована лишь некоторая доля атомов присадки. В этом случае плазма частично ионизирована.

Между плазмой и газом нет резкой границы. Плазма подчиняется газовым законам и в многих отношениях ведет себя как газ. Но свободно движущиеся электроны в плазме могут переносить электрический ток, и поэтому плазма обнаруживает ряд свойств, которыми обладают электролиты и твердые проводники (металлы, полупроводники).

Специфические свойства проявляются в плазме, если на нее действует сильное магнитное поле. Эти особенности плазмы определяются дальнодействующим характером электрических сил взаимодействия между составляющими ее частицами. Так, в газе в случае сил притяжения потенциал межмoleкулярных сил $\phi (r)$ пропорционален $1/r^6$ (где r — расстояние между молекулами), то потенциал взаимодействия между частицами плазмы подчиняется закону Кулона $\phi (r) \sim 1/r$, что приводит к длительному взаимодействию на больших расстояниях.

В газах благодаря большому числу столкновений между молекулами быстро устанавливается равновесное состояние. В разреженной плазме столкновения редки и вероятность установления равновесного состояния меньше, причем она падает с увеличением температуры. Плотная и, в частности, слабо ионизированная плазма должна находиться в состоянии термического равновесия. Разреженная, полностью ионизированная плазма может находиться длительное время в неравновесном состоянии; в этой плазме термодинамическое описание состояния непригодно.

В состоянии термического равновесия распределение энергии в газах подчиняется закону Максвелла. По этому закону средняя кинетическая энергия поступательного движения молекулы не зависит от ее природы и пропорциональна абсолютной температуре газа T

$$E_{кин} = \frac{3}{2} \kappa T,$$

где κ — константа Больцмана.

В случае одноатомного газа, имеющего 3 степени свободы в поступательном движении, среднее значение энергии, приходящееся на одну степень свободы, равно $\frac{1}{2} \kappa T$.

Аналогичное соотношение справедливо для полностью ионизованной плазмы, в которой электроны и ионы могут совершать только поступательное движение. При температурах до 2500° К газ нельзя считать плазмой. В диапазоне температур $2500—6000^\circ$ К
свойства плазмы проявляются в газах с легкоионизирующимися присадками — натрий, калий, цезий и др. В такой частично ионизованной плазме концентрация электронов достаточна для того, чтобы на движение газа заметное влияние оказывали электрическое и магнитное поля. В температурном интервале 6000—25 000° К в газе наблюдается заметная концентрация электронов и при температурах до 1 000 000° К возможен отрыв атомных ядер и свободных электронов. Для получения полностью ионизованной плазмы нужно нагреть газ до такой температуры, чтобы средняя энергия теплового движения атома была раза или больше его потенциала ионизации J

\[\kappa T \gg J. \] \hspace{1cm} (21.2)

Для водорода или дейтерия \(J = 13,54 \text{ эВ} \), поэтому полностью ионизованная плазма получается при температурах

\[T \geq \frac{13,54 \cdot 1,6 \cdot 10^{-12}}{1,37 \cdot 10^{-16}} = 160 000 \text{ К}. \]

Вследствие ряда специфических свойств плазмы понятие температуры имеет множество определений и их многообразие не позволяет остановиться на одном и считать его в настоящее время единственно правильным. Для плазмы, находящейся в состоянии частичного термодинамического равновесия, можно выделить электронную \(T_e \) и ионную \(T_i \) температуры. В этом случае плазма может рассматриваться как смесь электронного и ионного газов, причем распределение скоростей частиц в каждом из газов максвелловское (хотя оба газа электронный и ионный не находятся в равновесии). При достаточно высоких плотностях плазма будет находится в состоянии термического равновесия и \(T_e = T_i \). Такая плазма называется *изотермической*. При очень низких плотностях плазма не может находиться в термическом равновесии и понятие температуры к ней неприемлемо.

Для плазмы, находящейся в магнитном поле, вводят две температуры, соответствующие движению плазмы вдоль и поперек магнитного поля, продольную и поперечную.

Одним из важнейших параметров ионизированного газа является давление. Если давление выше \(10^{-1} \text{ бар} \), то среда считается сплошной. В области, где \(p = (10^{-5}—10^{-1}) \text{ бар} \), газ — не сплошная среда, не простая совокупность независимых частиц, так как в этой области средняя длина свободного пробега частиц соизмерима или превосходит размер области, где идет изучаемый процесс. При более низких давлениях газ можно считать совокупностью движущихся независимо друг от друга частиц. Если энергия взаимодействия между частицами мала по сравнению с кинетической энергией частиц, то давление (в барах) в плазме можно определить из уравнения состояния идеального газа

\[p = (n_e + n_i) \kappa T = 1,6 (n_e + n_i) T \cdot 10^{-12}, \] \hspace{1cm} (21.3)

где \(n_e \) и \(n_i \) — концентрации электронов и ионов (число этих частиц в 1 см\(^3\)).

230
При значительном повышении плотности плазма перестает вести себя как идеальный газ. Отступление от законов идеальных газов связано с электростатическим взаимодействием частиц плазмы и явлением вырождения плазмы. Учет электростатического взаимодействия может быть произведен следующим образом.

Внутренняя энергия плазмы в этом случае складывается из внутренней кинетической энергии равной внутренней энергии идеального газа $E_{\text{кин}} = U_{\text{id}}$ и средней энергии электростатического взаимодействия U_a

$$ U = U_{\text{id}} + U_a, \quad (21.4) $$

где

$$ U_{\text{id}} = \frac{3}{2} (n_e T_e + n_i T_i). \quad (21.5) $$

Энергия электростатического взаимодействия находится по формуле электростатики для двух видов противоположно заряженных частиц и равна

$$ U_a = -\frac{e^2}{r} N, \quad (21.6) $$

где e — заряд частицы; N — число частиц данного вида в объеме V; r — дебаевский радиус, определяющий глубину проникновения внешнего электрического поля в плазму.

Для однократно полностью или частично ионизированной плазмы ($n_e = n_i = n$)

$$ r = \sqrt{\frac{\kappa T_i T_e}{4\pi ne^2 (T_i + T_e)}} = \sqrt{\frac{\kappa TV}{8\pi Ne^2}}. \quad (21.7) $$

Таким образом, внутренняя энергия плазмы определяется выражением

$$ U = U_{\text{id}} - Ne^2 \sqrt{\frac{8\pi Ne^2}{\kappa TV}}. \quad (21.8) $$

По значению внутренней энергии, используя дифференциальные уравнения термодинамики, можно определить изохорно-изотермический потенциал, энтропию, теплоемкость и другие параметры плазмы.

Из уравнения (18.27) получим

$$ U = F - T \left(\frac{\partial F}{\partial T} \right)_T = -T^2 \frac{\partial}{\partial T} \left(\frac{F}{T} \right), \quad (21.9) $$

откуда

$$ F = -T \int \frac{U}{T^2} dT + CT. $$

231
Из теоремы Нернста можно доказать, что \(C = 0 \) и тогда

\[
F = -T \int \frac{U_{\text{ид}}}{T^2} dT + T \int \frac{N e^2}{T^2} \sqrt{\frac{8\pi N e^2}{\kappa T V}} dT,
\]

или

\[
F = F_{\text{ид}} - \frac{3}{2} N e^2 \sqrt{\frac{8\pi N e^2}{\kappa T V}}.
\quad (21.10)
\]

Термическое уравнение состояния плазмы, ее энтропия могут быть определены из соотношения (18.26)

\[
p = -\left(\frac{\partial F}{\partial V} \right)_T = \frac{RT}{V} - \frac{1}{3} N e^2 \sqrt{\frac{8\pi N e^2}{\kappa T^3 V}},
\quad (21.11)
\]

\[
S = -\left(\frac{\partial F}{\partial T} \right)_V = c_V_{\text{ид}} \ln T + R \ln V - \frac{1}{3} N e^2 \sqrt{\frac{8\pi N e^2}{\kappa T^3 V}}.
\quad (21.12)
\]

Так как изохорная теплоемкость \(c_V = -T \left(\frac{\partial^2 F}{\partial T^2} \right)_V, \) то

\[
c_V = c_V_{\text{ид}} + \frac{1}{2} N e^2 \sqrt{\frac{8\pi N e^2}{\kappa T^3 V}}.
\quad (21.13)
\]

Энталпия плазмы может быть определена, используя зависимость \(J = U + pV, \) тогда

\[
J = J_{\text{ид}} - \frac{4}{3} \sqrt{\frac{8\pi N e^2}{\kappa T V}}.
\quad (21.14)
\]

Давление и энтропия в плазме меньше, чем у идеального газа, из-за преобладающего влияния сил притяжения. Теплоемкость плазмы получается больше теплоемкости идеального газа, так как энергия расходуется в двух направлениях: на изменение нейтральной энергии частиц и на изменение средней потенциальной энергии взаимодействия между противоположно заряженными частицами. Такой учет электрического взаимодействия дает возможность сделать лишь приближенные расчеты, так как определение коллективного взаимодействия многих частиц между собой представляет огромные трудности.

Применение законов термодинамики ограничено высокими плотностями, где энергия плазмы и ее давление определяются не электрическим взаимодействием, а явлением вырождения. При этом если энергия вырождения (энергия Ферми) велика по сравнению с тепловой и электростатической энергией, то энергия и давление плазмы будут определяться энергией и давлением вырожденного электронного газа. Энергия и давление вырожденного электронного газа находятся методами статистической физики.

При расчете свойств плазмы в области высоких температур необходимо учитывать излучение. При малых температурах лучистая энергия мала по сравнению с кинетической энергией частиц. При
больших температурах лучистая энергия становится соизмеримой с величиной полной внутренней энергии, и нарушение лучистого равновесия приводит к отклонению от равновесного распределения частиц по энергиям. Исследуя термодинамические свойства газов до 1000°К, мы не учтываем имеющееся в них излучение. Температуру, при которой необходимо учитывать излучение частиц, можно найти следующим образом.

Полная плотность энергии равновесного излучения определяется по закону Стефана—Больцмана

\[E_{\text{изл}} = \sigma T^4, \quad (21.15) \]

где \(\sigma \) — постоянная Стефана—Больцмана, определяемая или опытным путем или статистическим путем; \(\sigma = 5,68 \cdot 10^{-8} \text{ Btm} / (\text{сред}^4 \cdot \text{м}^2) \).

Если плотность энергии равновесного излучения становится равной плотности энергии теплового движения частиц \(\frac{3}{2} kTn \), то

\[\sigma T^4 = \frac{3}{2} kTn \]

и

\[T = \sqrt[3]{\frac{3 \frac{kTn}{\sigma}}}. \quad (21.16) \]

Таким образом, при температурах полной ионизации плазмы \(T = 100 000^\circ \text{K} \), плотность энергии излучения в ней становится преобладающей. Это приводит к трудностям аднабатной изоляции плазмы при температурах термоядерных реакций (\(T \approx 1000 000^\circ \text{K} \)). Если интенсивность излучения абсолютно черного тела определяется однозначно его температурой (закон Стефана—Больцмана), то плазма термически равновесна. Но плазма в редких случаях излучает как черное тело и лучистое равновесие нарушается из-за наличия «холодных» стенок. Стенки не только поглощают лучистую энергию, но и оказывают каталитическое и электрическое воздействие на процессы в плазме. Наличие градиента температуры у стенок вызывает концентрационную диффузию и местное равновесие может восстановиться лишь тогда, когда скорость реакции велика по сравнению со скоростью диффузии. И, наконец, неравновесность может быть вызвана и наличием магнитно-гидродинамических эффектов, обусловленных наличием заряженных частиц.

В полностью ионизованной плазме скорость процессов ионизации равна скорости процессов рекомбинации. Такое стационарное состояние совпадает с состоянием термодинамического равновесия в закрытой системе. В открытой системе энергетически неизолированной (энергия может как подводиться, так и отводиться) стационарное состояние ионизации не всегда совпадает с состоянием термодинамического равновесия. Поэтому при термодинамическом расчете плазмы должно учитываться как излучение плазмы, так и степень ее ионизации. Несмотря на многообразие явлений, сопутствующих плазме, состояние ее в настоящее время опре-
делятся из статистических зависимостей. Такие средние статистические параметры, как температура, давление, плотность, наряду с данными по химическому составу определяют границы и состояние равновесной плазмы.

§ 2. Термодинамика необратимых процессов

Классическая термодинамика является мощным средством исследования обратимых процессов. И метод циклов, и метод термодинамических потенциалов позволяют получить основные закономерности термодинамических процессов, не вскрывая их молекулярного механизма.

В настоящее время создан аналогичный метод для необратимых процессов, которые для современной техники представляют большой интерес.

Неравновесные процессы возникают при наличии между различными частями системы конечных разностей значений таких параметров, как давление, температура, концентрации, электрический потенциал и др. С течением времени система возвращается в состояние термодинамического равновесия \((dS = 0)\). Но классическая термодинамика не ответит на вопрос, как быстро термодинамическая система вернется в состояние равновесия. Для того чтобы термодинамика могла определить скорость процессов, необходимо расширить круг понятий и постулатов и ввести время в качестве независимой переменной.

Неравновесное распределение параметров по объему, занимающему системой, может быть постоянно по времени, следовательно, будут постоянны в каждой точке градиенты этих параметров. При этом перемещение количества теплоты, массы вещества, электричества вдоль линии градиента происходит с постоянной по времени скоростью. Такие процессы называются стационарными.

Количество теплоты, вещества, электричества, переходящего через известную площадь в единицу времени, называется потоком.

Обозначим поток буквой \(J \) с нижним индексом, указывающим на природу потока. Движущей силой процесса являются градиенты факторов интенсивности, называемые общепринятыми силами.

Величина потока пропорциональна соответствующей обобщенной силе \(X_i \).

Например, поток теплоты вдоль градиента температуры определяется уравнением (закон Фурье)

\[
q = \frac{dQ}{dx} = -\lambda \text{ grad } T \quad (\lambda > 0),
\]

где \(\lambda \) — коэффициент теплопроводности.

При диффузии поток компонента смеси пропорционален градиенту концентрации \(C \) (закон Фика)

\[
j = -D \text{ grad } C \quad (D > 0),
\]

где \(D \) — коэффициент диффузии.
Сила, или плотность, тока пропорциональна градиенту электрического потенциала \(\psi \), т. е. напряжению электрического поля вдоль проводника (закон Ома):

\[
i = -\sigma \ \text{grad} \ \psi \quad (\sigma \geq 0),
\]

(21.19)

где \(\sigma \) — коэффициент электропроводности проводника.

Одно из положений термодинамики необратимых процессов утверждает, что вблизи от равновесия поток \(J_i \) пропорционален обобщенной силе \(X_i \)

\[
J_i = L_{ii} X_i,
\]

(21.20)

где \(L_{ii} \) — коэффициент пропорциональности, называемый феноменологическим коэффициентом.

В случае потока теплоты \(X_i \) равен минус градиенту температуры, в случае потока электричества — минус градиенту электрического потенциала.

При одновременном протекании двух явлений они, налагаясь друг на друга, вызывают появление новых эффектов. При наложении теплопроводности и электропроводности появляется термоэлектричество, при наложении диффузии и теплопроводности появляется термодиффузия и т. д.

Если одновременно имеют место два потока, то

\[
J_i = L_{ii} X_i + L_{ik} X_k,
\]

(21.21)

\[
J_k = L_{ki} X_i + L_{kk} X_k.
\]

(21.22)

Уравнения (21.21) и (21.22) показывают, что оба потока взаимно влияют друг на друга и наличие одного градиента приводит к появлению другого. При протекании потоков энтропии системы возрастает. Причем поток энтропии (скорость изменения энтропии по времени) также будет функцией обобщенной силы

\[
\frac{dS}{d\tau} = \sum J_i X_i.
\]

(21.23)

Это уравнение, называемое уравнением возникновения энтропии, может быть установлено следующим образом.

Энтропию системы при неравновесных процессах можно определить, положив, что энтропия является функцией состояния.

В любой момент времени, зафиксировав состояние с определенной энтропией в ходе неравновесного процесса, можно определить энтропию системы, если привести систему к этому состоянию равновесным путем. Если неравновесное состояние связано с перемещением вещества (поток жидкости, газа) и передачей теплоты от одних частей системы к другим, то параметры системы \((\rho, T, \rho, c) \) будут меняться в каждой части системы с течением времени.
В таких случаях систему нужно разделять на части, внутри которых в данный момент параметры имеют определенное значение.

Изменение энтропии при неравновесном процессе $dS_{неравн}$ равно сумме изменений энтропии системы $dS_{сист} = dS_{равн}$ и энтропии окружающей среды $\Sigma \frac{dQ}{T}$

$$dS_{неравн} = dS_{равн} + \Sigma \frac{dQ}{T}.$$ \hspace{1cm} (21.24)

Рассмотрим скорость возникновения энтропии для частного случая перехода теплоты от одного тела к другому. Если одно тело при температуре T поглощает количество теплоты Q, а второе тело отдает эту теплоту при температуре $T + \Delta T$, то суммарное изменение энтропии при условии, что ΔT мало, составит

$$\Delta S = -\frac{Q}{T} - \frac{Q}{T + \Delta T} = -\frac{Q \Delta T}{T^2}.$$ \hspace{1cm} (21.25)

Скорость возникновения энтропии в объеме V равна

$$\left(\frac{dS}{d\tau} \right)_{неравн} = -\frac{d}{d\tau} \left(\frac{Q \Delta T}{T^2} \right) = -\frac{\Delta T}{T^2} \cdot \frac{dQ}{d\tau}.$$ \hspace{1cm} (21.26)

Скорость возникновения энтропии в единице объема

$$\theta = \frac{1}{V} \cdot \frac{dS}{d\tau}.$$ \hspace{1cm} (21.27)

Но так как $V = F \Delta x$ (F — площадь сечения), то $\frac{1}{F} \cdot \frac{dQ}{d\tau} = q$ — составляющая по оси x вектора теплового потока, а $\frac{\Delta T}{\Delta x} = \text{grad} \ T$. Таким образом,

$$\theta T = -q \frac{\text{grad} T}{T}.$$ \hspace{1cm} (21.27)

Найдем скорость изменения энтропии в процессе передачи теплоты через стержень от нагретого конца к холодному в стационарном процессе с градиентом температуры $\text{grad} \ T = \frac{dT}{dx} = \text{const}$.

Возрастание энтропии по формуле (21.24), когда тепловой поток направлен только вдоль стержня, равно

$$\left(\frac{dS}{d\tau} \right)_{неравн} = \frac{dQ}{d\tau} \frac{1}{T_1} - \frac{dQ}{d\tau} \frac{1}{T_2} = \frac{dQ}{d\tau} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) = q \left(\frac{1}{T_1} - \frac{1}{T_2} \right).$$ \hspace{1cm} (21.28)
Здесь T_2 и T_1 — температуры горячего и холодного концов стержня, причем
\[T_2 - T_1 = \Delta T = \frac{dT}{dx} x. \]

При небольшой разности температур ΔT и стационарном процессе
\[\frac{dS}{dT} = q \frac{\Delta T}{T_1 T_2} = q \frac{\Delta T}{T^2} = -\frac{q}{T^2} \frac{dT}{dx} x. \tag{21.29} \]

Скорость возникновения энтропии на единицу длины стержня
\[\theta' = \frac{1}{x} \frac{dS}{dt} = -\frac{q}{T^2} \frac{dT}{dx} \]

и
\[T\theta' = -\frac{q \text{grad} T}{T}. \tag{21.30} \]

Так как поток теплоты направлен всегда против направления с положительным градиентом T, то
\[q \frac{dT}{dx} = -\lambda \left(\frac{dT}{dx} \right)^2 \]

и
\[\theta' = \frac{\lambda}{T^2} (\text{grad} T)^2 \geq 0. \tag{21.31} \]

Из выражений (21.20), (21.27) и (21.30) «тепловая» сила $X_i = -\frac{\text{grad} T}{T}$. Л. Онзагер обобщил этот результат и показал, что если при выборе сил пользоваться правилом
\[\sum_{i=1}^{n} J_i X_i = T\theta, \tag{21.32} \]
то должны выполняться соотношения взаимности
\[L_{ik} = L_{ki}. \tag{21.33} \]

Это соотношение взаимности Онзагера показывает, что если на поток J_i действует обобщенная сила X_k потока J_k, то на поток J_k действует обобщенная сила X_i потока J_i и коэффициенты пропорциональности в обоих случаях одинаковы $L_{ik} = L_{ki}$.

237
В рассмотренном частном примере поток вещества равен нулю, тогда из выражения (21.22) при $J_k = 0$

$$L_{kl} X_l + L_{kk} X_k = 0$$

и

$$\frac{X_k}{X_l} = -\frac{L_{kl}}{L_{kk}} = -\frac{L_{lk}}{L_{kk}}.$$

(21.34)

Таким образом, в основе термодинамики необратимых процессов лежат три следующих положения:

1) линейность термодинамических уравнений движения;
2) зависимость потока i-го свойства от всех сил, действующих в системе;
3) соотношения взаимности.

Последние устанавливают связь между различными процессами в системе.

Исходными положениями для получения этих соотношений являются молекулярные свойства — свойства макроскопической обратимости. Принцип макроскопической обратимости может быть строго выведен из законов механики. Причем макропроцессы подчиняются законам механики и не могут быть необратимыми.

Таким образом, и соотношения взаимности, и предположение о линейной связи между потоками и силами, и, наконец, характер взаимодействия потоков и сил в системе выводятся с позиций механики, решающей задачу отыскания равновесий механических систем.
ГЛАВА I
ОСНОВНЫЕ ЗАКОНЫ ТЕПЛООБМЕНА

Теория теплообмена — это учение о процессах переноса теплоты в пространстве. Теплообмен является основой многих явлений, наблюдаемых в природе и технике. Целый ряд важных вопросов конструирования и создания летательных аппаратов и особенно их силовых установок решается на основе теории теплообмена.

§ 1. Виды теплообмена

Явления теплообмена наблюдаются в телях или системах тел с неоднинаковой температурой. Любой процесс переноса теплоты в пространстве называется теплообменом*. Наблюдения за процессами распространения теплоты показали, что теплообмен — сложное явление, которое можно рассмотреть на ряд простых. Теплота может передаваться тремя простейшими принципиально отличными друг от друга способами: теплопроводностью, конвективным переносом и излучением.

Явление теплопроводности состоит в переносе теплоты структурными частицами вещества — молекулами, атомами, электронами — в процессе их теплового движения. Такой теплообмен может происходить в любых телях с неоднородным распределением температуры, но механизм переноса теплоты зависит от агрегатного состояния тела. В жидкостях и в твердых телях — диэлектриках — перенос теплоты осуществляется путем непосредственной передачи теплового движения молекул и атомов соседним частицам вещества. В газообразных телях распространение теплоты теплопроводностью происходит вследствие обмена энергией при соударении молекул, имеющих различную скорость теплового движения. В металлах теплопроводность осуществляется главным образом вследствие движения свободных электронов.

Примером теплопроводности может служить распространение теплоты в колесе турбины. Во время работы газотурбинного двига-

* В теории теплообмена под процессом переноса теплоты понимается процесс обмена внутренней энергией между элементами системы в форме теплоты. В литературе термин «теплообмен» часто отождествляется с термином «теплопередача».
теля лопатки турбины имеют температуру порядка 800° С. Лопатки крепятся к диску турбины и путем теплопроводности передают ему теплоту, полученную от газов. Поэтому диск, который не соприкасается с горячими газами и даже обычно обдувается холодным воздухом, имеет на наружном диаметре температуру 500—600° С, а в центре — свыше 100° С.

Явление конвективного переноса теплоты наблюдается лишь в жидкостях и газах. Конвективный перенос — это распространение теплоты, обусловленное перемещением макроскопических элементов среды. Объемы жидкости или газа, перемещающиеся из области с большей температурой, в область с меньшей температурой, переносят с собой теплоту. Конвективный перенос обычно сопровождается теплопроводностью.

Конвективный перенос может осуществляться в результате свободного или вынужденного движения теплоносителя. Свободное движение возникает тогда, когда частицы жидкости в различных частях системы находятся под воздействием массовых сил различной величины, т. е. когда поле массовых сил неоднородно. Если массовые силы обусловлены гравитационным полем, то в неизотермической системе неоднородность поля обусловлена изменением плотности, которое и вызывает свободное движение. Например, отопительная батарея в помещении или кабине самолета подогревает соприкасающийся с ней воздух путем теплопроводности. Вес, а следовательно, и давление столба подогретого воздуха меньше, чем холодного. Под разностью этих давлений холодный воздух будет перемещаться в зону подогрева, вытесняя подогретый воздух. Таким образом, теплота вместе с воздухом передается от батареи в другие части помещения.

Кроме гравитационного поля, массовые силы могут быть обусловлены полем инерционных центробежных и кориолисовых сил, а также магнитным полем.

Вынужденное движение происходит под действием внешних поверхностных сил. Разность давлений, под действием которой перемещается теплоноситель, создается с помощью насосов, эжекторов и других устройств. Однородное поле массовых сил также может служить источником вынужденного течения жидкости (например, вытекание жидкости из вертикального канала).

В условиях невесомости, когда гравитационных массовых сил нет или они уравновешены центробежными силами, различные в температурах отдельных объемов жидкости не приводит к относительному перемещению этих объемов, т. е. свободное движение не возникает. Поэтому во время установившегося полета искусственного спутника Земли для рассеивания в окружающую среду теплоты, выделяемой его аппаратурой, приходится ставить вентилятор, который обеспечивает вынужденное движение газа-теплоносителя между нагреваемой и охлаждаемой поверхностями (рис. 1.1).

Теплобмен излучением (или радиационный теплобмен) состоит из испускания энергии излучения телом, распространения ее в пространстве между телами и поглощения ее
другими телами. В процессе испускания внутренняя энергия излучающего тела превращается в энергию электромагнитных волн, которые распространяются во всех направлениях. Тела, расположенные на пути распространения энергии излучения, поглощают часть падающих на них электромагнитных волн, и таким образом энергия излучения превращается во внутреннюю энергию поглощающего тела. Например, при полете космического корабля в межпланетном пространстве его поверхность излучает энергию и поглощает падающее на нее излучение Солнца и других космических тел. От интенсивности этого теплообмена зависит температурное состояние обшивки корабля.

Наблюдаемые в природе и технике явления теплообмена включают в себя обычно все элементарные способы переноса теплоты. Иногда интенсивность некоторых способов переноса теплоты невелика и ею можно пренебречь.

Рассмотрим некоторые сложные явления теплообмена, часто встречающиеся на практике.

Теплообмен между движущейся средой и поверхностью какого-либо тела (твердого, жидкого и газообразного) называется теплоотдачей. В технике наиболее часто это явление протекает в форме теплообмена жидкого или газообразного теплоносителя с поверхностью твердого тела. Через поверхность соприкосновения жидкости или газа с твердым телом теплота передается теплопроводностью. Поэтому теплоотдача включает в себя конвективный перенос и теплопроводность.

Теплоотдача — широко распространенное явление. Теплообмен между горячей стенкой камеры сгорания ракетного двигателя и охлаждающей жидкостью, между турбинной лопаткой и продуктами сгорания, между горячей поверхностью радиолампы и окружающим воздухом — все это примеры теплоотдачи.

Теплообмен между стенкой и окружающей средой происходит одновременно путем соприкосновения (теплоотдачи) и излучения. Это явление называется радиационно-конвективным теплообменом. Оно включает все три элементарных способа переноса теплоты. Явление радиационно-конвективного теплообмена наблюдается, например, в камере сгорания ракетного двигателя, где горячие газы — продукты сгорания — передают теплоту поверхности камеры сгорания одновременно путем соприкосновения и излучения.

Теплообмен между двумя жидкими или газообразными средами, разделенными твердой стенкой, или через поверхность раздела между ними называется теплопередачей. Перенос теплоты от теплоносителя к стенке и от стенки к теплоносителю может иметь характер теплоотдачи или радиационно-конвективного теплообмена. Перенос теплоты через стенку осуществляется теплопроводностью.
Явление теплопередачи можно наблюдать в теплообменных аппаратах, в двигателях и т. п. Передача теплоты в маслозвездном радиаторе от охлаждающего масла в воздух через стенку радиатора, перенос теплоты от продуктов сгорания в охлаждающую жидкость через стенку камеры сгорания жидкостного ракетного двигателя — все это примеры явления теплопередачи.

§ 2. Краткие сведения из истории развития науки о теплообмене

Наука о теплообмене возникла и развивалась под влиянием требований, выдвигаемых развитием различных отраслей техники.

После создания тепловых двигателей теория теплоты стала развиваться вначале как наука о превращении теплоты в механическую энергию, т. е. в форме термодинамики. Но термодинамика выясняла только теоретические возможности рабочего процесса двигателя, тогда как совершенствование реального двигателя зависит от ряда физико-химических процессов, среди которых одним из главных является теплообмен. Таким образом, теория теплообмена стала совершенно необходимой для правильного понимания и совершенствования рабочего процесса тепловых двигателей. Стремление к наиболее эффективному использованию теплоты и желание увеличить надежность работы двигателя привело к появлению в силовых установках ряда дополнительных теплообменных аппаратов (рефрижеративные подогреватели, экономайзеры, воздушные радиаторы и т. п.).

В настоящее время учение о теплообмене используется почти во всех областях инженерной деятельности.

Учение о теплообмене является частью общего учения о теплote, основы которого заложены М. В. Ломоносовым. На основе корпускулярной теории строения вещества М. В. Ломоносов дал правильное представление о механизме процесса передачи теплоты. В работе «Размышления о причине теплоты и холода» (1750) Ломоносов так поясняет явление теплопроводности: «Если более теплое тело А находится в соприкосновении с другим телом В, менее теплым, то находящиеся в точках соприкосновения частицы тела А, вращающаяся быстрее, чем соседние с ними частицы тела В, более быстрым вращением ускоряют вращательное движение частиц тела В, т. е. передают им част часть своего движения...».

В этом определении отражена сущность явления теплопроводности как способа передачи теплоты при обмене энергией теплового движения между мельчайшими частицами вещества.

Основы математической теории теплопроводности были заложены работами французского ученого Ж. Фурье (1822).

Один из основных законов радиационного теплообмена, определяющий связь излучаемой телом энергии с его температурой, был экспериментально установлен австрийским ученым И. Стефаном
в 1872 г. и получен из теоретических соображений немецким ученым Л. Больцманом в 1884 г.

Теплоотдача оказалась наиболее сложным физическим явлением. А чем сложнее явление, тем труднее описать его математически и одновременно тем меньше возможность обобщения результатов отдельных экспериментов.

К концу XIX столетия явление теплоотдачи было описано системой дифференциальных уравнений, не разрешимых в общем виде средствами современной математики. С другой стороны, имелось много опытных данных, которые не могли быть распространены за пределы единичных опытов. Все это способствовало разработке метода обобщения результатов непосредственного опыта, который позволил бы распространить результаты единичного опыта на все процессы, подобные исследованному. Такой метод был разработан в форме теории подобия физических явлений. Он объединяет в себе средства математического анализа и физического эксперимента.

Основные теоремы теории подобия были сформулированы членом французской академии наук Ж. Бертраном в 1848 г., русским ученым А. Федерманом в 1911 г. и советскими учеными М. В. Кирпичевым и А. А. Гухманом в 1930 г.

Одним из первых использовал теорию подобия О. Рейнольдс, который получил обобщенную формулу для оценки коэффициентов гидравлического сопротивления, пригодную для различных жидкостей. К исследованию процессов теплообмена теория подобия была впервые применена Нуссельтом в 1915 г. Теория подобия широко используется теперь для обобщения опытных данных и результатов численных расчетов по теплоотдаче.

В текущем столетии большое развитие получил аналитический метод исследования теплоотдачи, основанный на теории пограничного слоя. Основные уравнения этой теории были установлены Л. Прандтлем в 1904 г. Два первых десятилетия теория пограничного слоя использовалась только для расчета сопротивления трения, позднее она становится также средством исследования процессов теплоотдачи.

Советские ученые сделали большой вклад в науку о теплообмене. Академик М. А. Михеев провел значительную работу по систематизации и обобщению опытных данных по теплоотдаче.

Теория пограничного слоя получила развитие в работах проф. Л. Г. Лойцянского, чл.-кор. АН СССР В. С. Авдуевского, Г. Н. Кружилина, В. М. Иевлева, С. Г. Кутателадзе и проф. А. И. Леонтьева.

Большие исследования проведены советскими учеными по теплоотдаче при изменении агрегатного состояния вещества. Наибольшее значение среди этих работ имеют исследования чл.-кор. АН СССР Г. Н. Кружилина, проф. Д. А. Лабунцова и чл.-кор. АН СССР С. С. Кутателадзе.

Оригинальные методы расчета нестационарной теплопроводности разработаны чл.-кор. АН СССР А. П. Ваничевым и проф. Г. М. Кондратьевым.
§ 3. Явления теплообмена в авиационной и ракетной технике

Явления теплообмена сопровождают многие производственные процессы. Они составляют основу или важную часть рабочих процессов многих машин и аппаратов. Качество систем охлаждения и использованные способы интенсификации теплообмена, выбор теплоизолирующих или теплопроводящих материалов и режимов теплообмена в значительной мере определяют совершенство различных машин и аппаратов.

Многие проблемы, возникающие при создании летательных аппаратов и их силовых установок, решаются на основе теории теплообмена. При этом теоретические и экспериментальные исследования теплообмена в условиях работы летательных аппаратов и их двигателей, исследования новых способов тепловой защиты и интенсификации теплообмена обогащают теорию теплообмена, совершенствуют ее расчетный аппарат, приводят к созданию новых методов расчета и исследования.

Теплообмен между твердым телом и быстродвигающимся газовым потоком сопровождается эффектами, обусловленными процессами взаимопереобразования механической энергии и теплоты. Торможение высокоскоростного газового потока около стенки ведет к повышению его температуры и может сопровождаться диссоциацией и ионизацией частиц газа. Эти процессы усложняют расчетную оценку теплообмена между газовым потоком и поверхностью твердого тела.

При полете на высоте 11—30 км со скоростью 500 и 1000 м/сек температура обтекающего летательный аппарат воздуха составляет 70 и 430° С, в то время как атмосферный воздух на этой высоте имеет температуру —55° С.

При полете ракетного аппарата аэродинамический нагрев приобретает значительно большие масштабы. Правда, на больших высотах, где воздух имеет очень малую плотность, температура воздуха не определяет температуру обшивки летательного аппарата, так как главную роль там играет теплообмен излучением. Но ниже 150 км и особенно на высоте меньше 60 км температура летательного аппарата определяется аэродинамическим нагревом.

При входе в плотные слои атмосферы баллистическая ракета имеет скорость около 7 км/сек. При такой скорости движения тела температура заторможенного воздуха с учетом диссоциации составляет около 7000° С.

Эти примеры показывают, что поверхности скоростных самолетов и особенно ракет нуждаются в тепловой защите.

Разработка систем тепловой защиты выдвинула новые проблемы теории теплообмена. Появилась необходимость в исследовании явлений теплоотдачи в условиях испарения жидкости на поверхности теплообмена, оплавления этой поверхности, подвода инородного газа в пограничный слой горячей среды и т. п.

Полет на больших высотах происходит в атмосфере разреженного воздуха. Теплообмен в разреженных газах обладает определен-
ными особенностями, и потому его законы отличны от законов теплообмена в плотных газах. Исследование закономерностей теплоотдачи в разреженных газах составляет одну из проблем теории теплообмена.

Возможность достижения самолетом больших скоростей и высот полета ограничивается, главным образом, качеством авиационного двигателя. Размеры и вес авиационного газотурбинного двигателя можно существенно снизить, повышая температуру газов перед турбиной, и для этого необходимо охлаждать турбинные лопатки и другие детали турбины. В связи с этим возникла необходимость исследования теплоотдачи вращающихся поверхностей.

Не менее острой является проблема охлаждения стенок камеры сгорания и сопла жидкостного ракетного двигателя. В камере сгорания таких двигателей температура газа превышает 3000° С, и поэтому даже при наружном охлаждении стенок топливом возможен прогар сопла. Проблема тепловой защиты стенок сопла и камеры ракетного двигателя твердого топлива усложняется тем, что топливо не может быть использовано для внешнего охлаждения.

Для летательных аппаратов и их силовых установок характерны высокие тепловые нагрузки. При входе баллистической ракеты в атмосферу тепловой поток к ее поверхности достигает 40 000—100 000 ккал/м². В соплах жидкостных ракетных двигателей тепловые потоки достигают величин порядка 30 000 ккал/м². Большие тепловые потоки наблюдаются также в атомных реакторах. Теплоотдача в условиях высоких тепловых нагрузок обладает некоторыми особенностями и требует специального исследования.

Таким образом, развитие ракетной и авиационной техники связано с необходимостью разрешения многих проблем теории теплообмена. Поэтому авиационный инженер должен не только владеть расчетным аппаратом современной теории теплообмена, но и быть готовым к решению новых проблем, которые возникнут в процессе дальнейшего развития авиации и ракетостроения.

§ 4. Основные понятия и определения

Количество теплоты, передаваемой в единицу времени через произвольную поверхность, оценивается тепловым потоком Q, единицей измерения которого служит ватт (bm).

Тепловой поток, отнесенный к единице площади поверхности, называется плотностью теплового потока, или тепловой нагрузкой q; единицей измерения q является ватт на квадратный метр (вт/м²).

Тепловые потоки возникают в телях и между телами только при наличии разности температур. Температурное состояние тела или системы тел можно охарактеризовать с помощью температурного поля, под которым понимается совокупность мгновенных значений температур во всех точках изучаемого пространства. Температура различных точек тела t определяется координатами x, y, z и времени t. Поэтому в общем случае

\[t = f (x, y, z, t). \]

(1.1)
Температурное поле, которое изменяется во времени, называется нестационарным, или неуставновившимся. Такому полю отвечает нестационарный, или неуставновившийся, тепловой режим и тепловой поток. Если температура не изменяется во времени, температурное поле называется стационарным, или установившимся. В этом случае теплового режима и тепловой поток будут также стационарны.

Температурное состояние стенок камеры и сопла ракетного двигателя твердого топлива во время его работы является примером стационарного температурного поля.

Стационарное температурное поле можно охарактеризовать зависимостью

$$ t = f (x, y, z). \quad (1.2) $$

![Рис. 1.2](image_url)

Температурное поле изменяется по направлению одной, двух или трех координат. В соответствии с этим различают одномерные, двумерные и трехмерные поля. Стационарное одномерное температурное поле можно описать уравнением

$$ t = f (x). \quad (1.3) $$

Температурное поле тела можно охарактеризовать с помощью серий изотермических поверхностей. Под изотермической поверхностью понимается геометрическое место точек с одинаковой температурой. Такие поверхности могут быть замкнуты или выходить на границы тела. Изотермические поверхности, соответствующие разным температурам, не могут пересекаться друг с другом. Если тело рассечение плоскостью, то изотермические поверхности на этой плоскости изображаются в виде их следов — изотермических линий, которые называются изотермами (рис. 1.2).

По расположению изотерм можно оценить интенсивность изменения температуры в различных направлениях: чем чаще расположены изотермы, тем интенсивнее изменяется температура.

Выделим вблизи точки A две изотермы с разностью температур Δt и расстоянием по нормали Δn между ними (рис. 1.3). Отношение $\Delta t/\Delta n$ характеризует среднюю интенсивность изменения температуры между изотермами. Предел этого отношения при $\Delta n \to 0$ позволяет оценить интенсивность изменения температуры вблизи точки A

$$ \lim_{\Delta n \to 0} \frac{\Delta t}{\Delta n} = \frac{\partial t}{\partial n} = \text{grad} \, t. \quad (1.4) $$

246
Производная температуры по нормали к изотермической поверхности называется температурным градиентом.

Температурный градиент — векторная величина, направленная по нормали к изотерме в сторону увеличения температуры.

Интенсивность изменения температуры в направлении s (рис. 1.3) определяется пределом отношения $\Delta t/\Delta s$ при $\Delta s \to 0$, т. е. проекцией температурного градиента на это направление, так как

$$
\lim_{\Delta s \to 0} \frac{\Delta t}{\Delta s} = \frac{\partial t}{\partial s} = \lim_{\Delta n \to 0} \frac{\Delta t}{\Delta n} \cos(n, s) = \frac{\partial t}{\partial n} \cos(n, s).
$$

Поэтому интенсивность изменения температуры вдоль осей координат определяется проекциями температурного градиента на эти оси, т. е. производными,

$$
\frac{\partial t}{\partial x}; \quad \frac{\partial t}{\partial y}; \quad \frac{\partial t}{\partial z}.
$$

Специфические понятия используются при изучении теплообмена излучением.

Процесс превращения внутренней энергии в энергию излучения происходит во всем объеме твердого тела, но энергия излучения частиц, расположенных далеко от поверхности, поглощается самим телом, а в окружающую среду попадает только энергия, испускаемая тонким поверхностным слоем. Поэтому излучение тела оценивается поверхностью плотностью потока собственного излучения E, которая представляет собой количество энергии излучения, испускаемое единицей площади поверхности в единицу времени. Плотность потока собственного излучения учитывает излучение во всех направлениях и при всех длинах волн ($\lambda = 0 \div \infty$).

В диапазоне длин волн от λ до $\lambda + d\lambda$ излучается энергия dE. Определение

$$
J = \frac{dE}{d\lambda} \quad (1.5)
$$

характеризует энергию электромагнитных волн с длиной волны λ и называется плотностью потока монохроматического излучения.

Поглощение энергии излучения происходит также в тонком поверхностном слое твердого тела. Для металлов этот слой имеет толщину порядка 1 мкм, а для неметаллических материалов — около 1 мкм.

Поток излучения, падающий на поверхность тела, поглощается не полностью: часть энергии отражается, другая — проходит сквозь тело (рис. 1.4). Таким образом,

$$
Q = Q_A + Q_R + Q_D,
$$

или

$$
A + R + D = 1, \quad (1.6)
$$

где $A = Q_A / Q$ — поглощательная способность тела; $R = Q_R / Q$ — отражательная способность тела; $D = Q_D / Q$ — пропускательная способность тела.
Тело, поглощающее всю падающую на него энергию, называется абсолютно черным. Для такого тела \(A = 1 \) и \(R = D = 0 \). Абсолютно черных тел в природе нет и поэтому для реальных тел \(A < 1 \).

Тела, отражающие всю падающую на них энергию, называются абсолютно белыми. В этом случае \(R = 1 \) и \(A = D = 0 \). Если отражение имеет правильный характер (угол падения равен углу отражения), то такие тела называются зеркальными. Для реальных тел \(R < 1 \).

Большинство твердых тел не пропускает энергию излучения и для них

\[
A + R = 1. \tag{1.7}
\]

В этом случае все факторы, увеличивающие поглощающую способность, одновременно уменьшают отражательную способность поверхности.

Тела, пропускающие всю падающую на них энергию излучения, называются диатермичными. Для них \(D = 1 \) и \(R = A = 0 \). Наиболее пропускающей способностью обладают газы. Так, слой воздуха до толщины значительного размера можно считать диатермичным.

Для монохроматического излучения (т. е. для излучения с определенной длиной волны) уравнение (1.6) имеет вид

\[
A_\lambda + R_\lambda + D_\lambda = 1. \tag{1.8}
\]

Для одного и того же тела при различных длинах волн величины \(A_\lambda, R_\lambda \) и \(D_\lambda \) могут иметь существенно различные значения. Так, обычное стекло хорошо пропускает световые лучи \((\lambda = 0,4 — 0,8 \text{ мкм})\), но почти не пропускает ультрафиолетовые и инфракрасные лучи.

§ 5. Законы Фурье и Фика. Формулы для теплового и массового потоков

Основным законом теплопроводности является предложенная Ж. Фурье гипотеза о пропорциональности теплового потока температурному градиенту.

Выделим на изотермической поверхности вблизи точки \(A \) площадку \(dF \) (рис. 1.5) и построим вектор температурного градиента. В соответствии с гипотезой Фурье количество теплоты \(dQ \), которое пройдет через эту площадку за элемент времени \(dt \), запишется выражением

\[
dQ = - \lambda \frac{\partial t}{\partial n} dFd\tau. \tag{1.9}
\]

Здесь \(\lambda \) — множитель пропорциональности, который называется коэффициентом теплопроводности и имеет размерность \(\text{Вт}/(\text{м} \cdot \text{град}) \).
Разделив правую и левую части уравнения (1.9) на dF/dt, получим

$$q = -\lambda \frac{dt}{dn}.$$ (1.10)

Плотность теплового потока q — векторная величина. Вектор q направлен в сторону уменьшения температуры (рис. 1.5). Знак минус в уравнении (1.10) отражает противоположность направлений векторов плотности теплового потока и температурного градиента.

Формулы (1.9) и (1.10) являются математическим выражением закона Фурье.

Для расчета теплоотдачи удобно пользоваться формулой Ньютона, в которой тепловой поток считается пропорциональным разности температур между теплоносителем и стенкой

$$Q = \alpha (t_f - t_w) F,$$ (1.11)

где t_f — температура теплоносителя; t_w — температура стенки; F — площадь поверхности соприкосновения теплоносителя со стенкой; α — коэффициент теплоотдачи.

Как видно из формулы (1.11), коэффициент теплоотдачи представляет собой плотность теплового потока между теплоносителем и стенкой при разности температур в 1°. Размерность коэффициента теплоотдачи — $W/(m^2 \cdot K)$.

Формула Ньютона является формальным выражением теплового потока и не отражает в явном виде влияния всего многообразия факторов на интенсивность теплоотдачи: все эти факторы должны учитываться коэффициентом теплоотдачи.

Интенсивность теплообмена неодинакова по всей площади соприкосновения теплоносителя со стенкой. Поэтому для разных участков поверхности коэффициент теплоотдачи имеет различные числовые значения. Коэффициент теплоотдачи, характеризующий интенсивность теплообмена на элементе площади dF, называют местным коэффициентом теплоотдачи. В соответствии с формулой Ньютона местный коэффициент теплоотдачи имеет вид

$$\alpha = \frac{dQ}{(t_f - t_w) dF}.$$ (1.12)

В практических расчетах чаще используется среднее значение коэффициента теплоотдачи, который определяется выражением

$$\bar{\alpha} = \frac{Q}{(t_f - t_w) F}.$$ (1.13)

В этой формуле t_f и t_w — средние для всей поверхности температуры теплоносителя и стенки.
Температура стенки обычно изменяется по длине канала в меньшей мере, чем температура жидкости, поэтому ее среднее значение с достаточной точностью можно определять как среднегеометрическое двух крайних температур:

\[t_w = \frac{t'_w + t''_w}{2}. \]

Средняя по длине канала температура жидкости подсчитывается по формуле

\[t_f = t_w + \overline{\Delta t}. \]

Здесь \(\overline{\Delta t} \) — средний температурный напор, который определяется температурными напорами в начале канала или стенки \(\Delta t' \) и на выходе из канала или в конце стенки \(\Delta t'' \)

\[\overline{\Delta t} = \frac{\Delta t' - \Delta t''}{\ln \frac{\Delta t'}{\Delta t''}}. \quad (1.14) \]

Если \(\Delta t''/\Delta t' = 0,6—1,67 \), то с ошибкой, не превышающей 3%, величину \(\overline{\Delta t} \) можно подсчитать по формуле

\[\overline{\Delta t} = \frac{1}{2} (\Delta t' + \Delta t''). \quad (1.15) \]

Формулу Ньютона удобно также использовать для записи теплового потока при радиационно-конвективном теплообмене. Если газ обменивается со стенкой теплотой одновременно путем соприкосновения и излучения, то общий поток теплоты равен

\[q = q_c + q_{изл}, \quad (1.16) \]

где \(q_c, q_{изл} \) — плотности теплового потока, обусловленные соприкосновением и излучением, которые можно записать с помощью формулы Ньютона:

\[q_c = \alpha_c (t_f - t_w), \quad (1.17) \]

\[q_{изл} = \alpha_{изл} (t_f - t_w). \quad (1.18) \]

Просуммирував правые и левые части этих формул, с учетом равенства (1.16) получим

\[q = \alpha (t_f - t_w), \quad (1.19) \]

где \(\alpha = \alpha_c + \alpha_{изл} \) — коэффициент радиационно-конвективного теплообмена, который для краткости можно называть коэффициентом теплообмена; \(\alpha_c \) — коэффициент теплоотдачи; \(\alpha_{изл} \) — поправка на теплообмен излучением.

Явление теплообмена обычно сопровождается процессами переноса вещества — массообменом. В ряде практически важ-

* Вывод этой формулы сделан в § 2 гл. XV, ч. II.
ных случаях перенос вещества оказывает существенное влияние на теплообмен, расчет которого становится невозможным без количественной оценки массообмена. Теплообмен испаряющейся стенки с газом, теплоотдача с участком химически реагирующего газового потока — все это примеры таких процессов.

Молекулярная диффузия, обусловленная неоднородностью состава газового или парогазового потоков, представляет собой процесс массопереноса, имеющий важное значение в теории теплообмена. В этих условиях плотность потока массы \(g^* \) \([\text{kg}/(\text{м}^2 \cdot \text{сек})] \) для бинарной смеси определяется законом Фика

\[
g^* = -D_e \frac{\partial C}{\partial n}.
\]

где \(D_e \) — коэффициент диффузии бинарной смеси, определяемый по изменению концентрации*, \(\text{м}^2/\text{сек} \); \(\frac{\partial C}{\partial n} \) — градиент концентрации диффундирующего вещества.

Плотность потока массы от стенки в теплоноситель или в обратном направлении можно определить также по формуле, аналогичной формуле Ньютона

\[
g^* = \beta_e (C_w - C_f),
\]

где \(\beta_e \) — коэффициент массоотдачи, \(\text{м/сек} \); \(C_w \) и \(C_f \) — концентрации диффундирующего вещества около стенки и в потоке, \(\text{кг/м}^3 \).

§ 6. Законы теплообмена излучением

Наиболее простыми и строгими законами описывается излучение абсолютно черного тела. Эти законы с соответствующими правками используются для получения расчетных формул теплообмена излучением между реальными телами.

Законом Планка устанавливается зависимость плотности потока монохроматического излучения абсолютно черного тела \(J_0^{**} \) от длины волны \(\lambda \) и температуры \(T \). Используя представление о квантах энергии, Планк теоретическим путем получил следующий закон:

\[
J_0 = \frac{C_1 \lambda^{-5}}{e^{C_2/\lambda T} - 1},
\]

где \(C_1 \) и \(C_2 \) — константы; \(e \) — основание натурального логарифма.

Графическое изображение зависимости (1.22) показано на рис. 1.6. Из графиков видно, что \(J_0 \) увеличивается с ростом температуры, а по длине волны меняется по кривой с максимумом. На рисунке штриховкой отмечен диапазон длин волн, отвечающий световым лучам. Как видно, при рассматриваемых температурах плотность потока светового излучения невелика, а основная энергия

* Коэффициент диффузии может определяться также по изменению парциального давления диффундирующего вещества.

** Индексом "о" отмечаются все параметры, относящиеся к абсолютно черному телу.
переносится инфракрасными (тепловыми) лучами. Однако положение максимума плотности потока монохроматического излучения зависит от температуры. В соответствии с законом Вина длина волны \(\lambda_m \), отвечающая максимуму плотности, связана с температурой излучающего тела уравнением

\[
\lambda_m T = 2,9 \text{ мкм} \cdot ^\circ\text{К}.
\] (1.23)

Следовательно, с увеличением температуры максимум \(J_0 \) сдвигается в сторону более коротких волн. При температуре Солнца \(\sim 6000^\circ \text{К} \) \(\lambda_m = 0,48 \text{ мкм} \), т. е. световые лучи обладают наибольшей плотностью потока монохроматического излучения.

Абсолютно черное тело имеет сплошной спектр излучения, т. е. излучает при всех длинах волн. Реальные тела могут иметь сплошной (диэлектрики) или линейчатый спектры (газы, пары).

На рис. 1.7 сопоставлены зависимости \(J = f (\lambda) \) для абсолютно черного и реального тел со сплошным и линейчатым (зашифрованные полосы) спектром.

Способность тела излучать энергию можно охарактеризовать спектральной степенью черноты тела

\[
\varepsilon_\lambda = \frac{J}{J_0}
\] (1.24)

и степенью черноты тела

\[
\varepsilon = \frac{E}{E_0}.
\] (1.25)

Если величина \(\varepsilon_\lambda \) имеет одинаковое значение для всех длин волн, то тело называют серым.

Из формулы (1.5) следует, что

\[
E = \int_0^\infty J d\lambda,
\] (1.26)
т. е. поверхностная плотность потока собственного излучения может быть подсчитана как площадь под кривой \(J = f(\lambda) \). Поэтому для серого тела

\[
\varepsilon_\lambda = \varepsilon. \tag{1.27}
\]

Для реальных тел величина \(\varepsilon_\lambda \) не остается одинаковой при различных длинах волн, поэтому равенство (1.27) нарушается.

Тела с линейчатым спектром излучения не относятся к категории серых, но степень черноты \(\varepsilon \), выраженная формулой (1.25), и для них может служить характеристикой способности излучать энергию, так как она показывает, какую часть энергии излучения абсолютно черного тела может испускать реальное тело в тех же условиях.

Для конкретной температуры плотность потока монохроматического излучения реальных тел не превышает величины \(J'_0 \), поэтому \(\varepsilon < 1 \).

Рассмотрим далее закон Стефана — Больцмана, который определяет связь поверхностной плотности потока собственного излучения абсолютно черного тела \(E_0 \) с температурой. Из определения плотности потока монохроматического излучения следует, что

\[
E_0 = \int_0^\infty J_0 \, d\lambda.
\]

Это выражение можно проинтегрировать, если заменить \(J_0 \) его значением из формулы закона Планка (1.22). После интегрирования получается

\[
E_0 = C_0 \left(\frac{T}{100} \right)^4, \tag{1.28}
\]

где \(C_0 \) — коэффициент излучения абсолютно черного тела; \(C_0 = 5.67 \, \text{вт}/(\text{м}^2 \cdot \text{°К}^4) \).

Для реальных тел из формул (1.25) и (1.28) можно определить \(E \)

\[
E = \varepsilon E_0 = \varepsilon C_0 \left(\frac{T}{100} \right)^4 = C \left(\frac{T}{100} \right)^4, \tag{1.29}
\]

где \(C = \varepsilon C_0 \) — коэффициент излучения. При \(\varepsilon = 0 \) — 1 значение \(C = 0 \)— 5.67 \(\text{вт}/(\text{м}^2 \cdot \text{°К}^4) \).

Таким образом, поверхностная плотность потока собственного излучения возрастает пропорционально четвертой степени абсолютной температуры тела. Закон четвертой степени подтверждается для реальных тел только приближенно. Наибольшие отклонения от этого закона наблюдаются у металлов и газов. У металлов эта степень больше, а у газов — меньше четырех. Однако для расчетной оценки потоков излучения используется закон четвертой степени, т. е. формула (1.29), а несоответствие этой формулы действительной зависимости поверхностной плотности потока собственного излучения от температуры учитывается выбором степени черноты тела.
Для тел, находящихся в тепловом равновесии*, поверхностная плотность потока собственного излучения и поглощательная способность однозначно связаны. Связь этих характеристик теплообмена излучением составляет содержание закона Кирхгофа.

Рассмотрим тепловое равновесие двух параллельных плоскостей, расположенных настолько близко друг к другу, что излучение каждой из них обязательно попадает на другую (рис. 1.8). Пусть одна из пластин — произвольное тело с поверхностной плотностью потока излучения и поглощательной способностью E_1 и A_1, вторая — абсолютно черное тело ($A_0 = 1$). При одинаковых температурах стенки находятся в тепловом равновесии. Первая стенка на каждый квадратный метр поглощает $E_0 A_1 \text{ Bt}$, а ее излучение и отражение полностью поглощаются абсолютно черной стенкой. Условие теплового равновесия стенки позволяет записать

$$E_1 = A_1 E_0,$$

или

$$\frac{E_1}{A_1} = E_0.$$ \hspace{1cm} (1.30)

Выражение (1.30) справедливо не только для рассмотренной, но и для любой другой стенки. Поэтому

$$\frac{E_1}{A_1} = \frac{E_2}{A_2} = \frac{E_3}{A_3} = \ldots = E_0 = f(T).$$ \hspace{1cm} (1.31)

Отношение поверхностной плотности потока собственного излучения тела к его поглощательной способности одинаково для всех тел, находящихся при одной и той же температуре, и равно поверхностной плотности потока собственного излучения абсолютно черного тела при той же температуре. Это и есть закон Кирхгофа, представленный уравнением (1.31).

Из уравнения (1.31) следует, что чем больше тело поглощает, тем больше оно излучает, поэтому для конкретной температуры абсолютно черное тело имеет наибольшую поверхностную плотность потока собственного излучения.

Диатермичные тела не поглощают энергию излучения, следовательно, в соответствии с законом Кирхгофа они не могут излучать.

Если в уравнении (1.31) величины E выразить через степень черноты по закону Стефана — Больцмана, то это уравнение придет вид

$$\frac{\varepsilon_1}{A_1} = \frac{\varepsilon_2}{A_2} = \frac{\varepsilon_3}{A_3} = \ldots = 1.$$

Следовательно, $\varepsilon = \lambda$.

* При тепловом равновесии количество излученной и поглощенной телом энергии одинаково.
Если тело отдает или получает теплоту излучением, то теплового равновесия нет. В этих условиях поглощательная способность зависит как от температуры самого тела, так и от температуры источника излучения. Э. Эккерт нашел, что в этом случае для металлов равенство $\varepsilon = \lambda$ будет справедливым, если степень черноты тела определять по среднегеометрической температуре $\sqrt{\frac{T_1 T_2}{}}$.

Закон Кирхгофа справедлив и для монохроматического излучения. Если поглощательную способность монохроматического излучения обозначить через λ, то для определенной длины волны

$$\frac{J_1}{A_{\lambda_1}} = \frac{J_2}{A_{\lambda_2}} = \frac{J_3}{A_{\lambda_3}} = \ldots = J_0 = \tilde{f} (\lambda, T). \quad (1.32)$$

Рассмотрим далее закон Ламберта, на основе которого определяются количественные характеристики излучения по определенному направлению. Обозначим через E_n интенсивность излучения. E_n — это поток излучения, распространяющийся в данном направлении, отнесенный к единице элементарного телесного угла, осью которого является выбранное направление, и к единице поверхности, расположенной в данной точке перпендикулярно этому направлению.

Закон Ламберта определяет зависимость излучаемой телом энергии от направления. Если энергию излучения, передаваемую элементарной площадкой поверхности тела dF_1 (рис. 1.9) на площадку dF_2, расположенную на расстоянии r под углом φ к нормали, обозначить через dQ_φ, то по закону Ламберта

$$d^2 Q_\varphi = E_n dF_1 d\Omega \cos \varphi, \quad (1.33)$$

где $d\Omega$ — пространственный угол, под которым площадка dF_2 видна из точки O.

Так как $d\Omega = \frac{dF_2}{r^2}$,

то закон Ламберта имеет вид

$$d^2 Q_\varphi = \frac{E_n}{r^2} dF_1 dF_2 \cos \varphi. \quad (1.34)$$

Пользуясь законом Ламберта, можно установить связь интенсивности излучения с поверхностной плотностью потока собственного излучения:

$$E_n = \frac{E}{\pi} = \frac{e}{\pi} C_0 \left(\frac{T}{100} \right)^4. \quad (1.35)$$

255
Закон Ламберта точно удовлетворяется для абсолютно черных тел. Для реальных тел при \(\varphi > 60^\circ \) действительные потоки энергии излучения от шероховатых поверхностей несколько меньше, а от полированых металлических поверхностей несколько больше, чем рассчитанные по закону Ламберта.

ГЛАВА II
МАТЕМАТИЧЕСКАЯ ФОРМУЛИРОВКА ЗАДАЧИ О ТЕПЛООБМЕНЕ И ПОДОБИЕ ФИЗИЧЕСКИХ ЯВЛЕНИЙ

§ 1. Дифференциальное уравнение энергии

Дифференциальное уравнение энергии определяет распределение температуры в теле. Оно выводится на основании закона сохранения энергии и закона Фурье. Получим уравнение для движущейся среды с равномерно распределенными внутренними источниками теплоты. Предполагается, что теплоноситель представляет собой изотропное однородное тело с теплопроводностью \(\lambda \), теплоемкостью \(c_p \) и плотностью \(\rho \), независящими от температуры. Рассмотрим только такие системы, в которых изменением кинетической энергии по сравнению с изменением энталпии можно пренебречь.

Выделим неподвижный элементарный параллелепипед с гранями \(dx, dy \) и \(dz \) и обозначим входящие в него за время \(d\tau \) количества теплоты через \(dQ_x, dQ_y, dQ_z \), а выходящие через \(dQ'_x, dQ'_y, dQ'_z \) (рис. 2.1), составляющие скорости движения среды \(\omega_x, \omega_y, \omega_z \) и мощность внутренних источников теплоты \(q_v \) \(\text{Вт/м}^3 \).

На основе закона сохранения энергии баланс теплоты для рассматриваемого параллелепипеда имеет вид

\[
dQ_1 + dQ_2 = dQ_3, \tag{2.1}
\]

где \(dQ_1 \) — разность между входящим и выходящим из параллелепипеда количеством теплоты; \(dQ_2 \) — внутреннее тепловыделение; \(dQ_3 \) — изменение энталпии в элементарном объеме.

Теплоту, входящую в параллелепипед вдоль оси \(x \) и выходящую из него, можно определить по формулам:

\[
dQ'_x = q_x dy dz d\tau, \tag{2.2}
\]

\[
dQ'_z = q_z dy dz d\tau. \tag{2.3}
\]
Здесь \(q'_x \) и \(q''_x \) — плотности теплового потока, отвечающие координатам \(x \) и \(x + dx \) соответственно.

Разложим величину \(q''_x \) в ряд Тейлора, ограничившись двумя первыми членами ряда

\[
q''_x = q'_x + \frac{\partial q_x}{\partial x} \, dx.
\] (2.4)

Разница между введенным и выведенным из параллелепипеда количеством теплоты вдоль оси \(x \) с учетом выражения (2.4) зачисляется формулой

\[
dQ_x = dQ'_x - dQ''_x = (q'_x - q''_x) \, dy \, dz \, d\tau = -\frac{\partial q_x}{\partial x} \, dx \, dy \, dz \, d\tau
\]

или

\[
\int dQ_x = -\frac{\partial q_x}{\partial x} \, dV \, d\tau.
\]

Аналогично

\[
dQ_y = -\frac{\partial q_y}{\partial y} \, dV \, d\tau \quad \text{и} \quad dQ_z = -\frac{\partial q_z}{\partial z} \, dV \, d\tau.
\]

Общее количество теплоты, аккумулированное параллелепипедом, равно

\[
dQ_1 = dQ_x + dQ_y + dQ_z = -\left(\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial q_z}{\partial z} \right) dV \, d\tau. \tag{2.5}
\]

Внутреннее тепловыделение определим по формуле

\[
dQ_2 = q_v \, dV \, d\tau. \tag{2.6}
\]

Изменение температуры неподвижного элементарного параллелепипеда за время \(d\tau \) составит \(\frac{\partial t}{\partial \tau} \, d\tau \). Следовательно,

\[
dQ_3 = c_p \rho \, \frac{\partial t}{\partial \tau} \, d\tau \, dV. \tag{2.7}
\]

Подстановка выражений (2.5), (2.6) и (2.7) в формулу (2.1) позволяет получить уравнение

\[
c_p \rho \, \frac{\partial t}{\partial \tau} = -\left(\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial q_z}{\partial z} \right) + q_v. \tag{2.8}
\]

Рассмотрим более подробно составляющие плотности теплового потока, входящие в уравнение (2.8). Величина \(q_x \) запишется выражением

\[
q_x = q_x^{\text{тепл}} + q_x^{\text{конв}},
\]

где \(q_x^{\text{тепл}} \) и \(q_x^{\text{конв}} \) — плотности теплового потока, входящего в параллелепипед путем теплопроводности и конвективного переноса вдоль оси \(x \).
На основе закона Фурье имеем

\[q_{x \text{ тепл}} = -\lambda \frac{dt}{dx}. \]

Конвективная составляющая равна

\[q_{x \text{ конв}} = \rho c_p \omega_x t, \]

где \(\omega_x \) — составляющая скорости потока вдоль оси \(x \).

Следовательно,

\[q_x = \rho c_p \omega_x t - \lambda \frac{dt}{dx}. \]

При \(\lambda = \text{const} \) из этого равенства получается

\[\frac{\partial q_x}{\partial x} = \rho c_p \left(\omega_x \frac{\partial t}{\partial x} + t \frac{\partial \omega_x}{\partial x} \right) - \lambda \frac{\partial^2 t}{\partial x^2}. \]

(2.9)

Аналогично для других осей координат:

\[\frac{\partial q_y}{\partial y} = \rho c_p \left(\omega_y \frac{\partial t}{\partial y} + t \frac{\partial \omega_y}{\partial y} \right) - \lambda \frac{\partial^2 t}{\partial y^2}, \]

(2.10)

\[\frac{\partial q_z}{\partial z} = \rho c_p \left(\omega_z \frac{\partial t}{\partial z} + t \frac{\partial \omega_z}{\partial z} \right) - \lambda \frac{\partial^2 t}{\partial z^2}, \]

(2.11)

где \(\omega_y \) и \(\omega_z \) — составляющие скорости потока вдоль осей \(y \) и \(z \).

Подставив эти равенства в уравнение (2.8), получим

\[\rho c_p \frac{\partial t}{\partial \tau} = \lambda \left(\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2} \right) - \rho c_p \left(\omega_x \frac{\partial t}{\partial x} + \omega_y \frac{\partial t}{\partial y} + \omega_z \frac{\partial t}{\partial z} \right) - q_V. \]

(2.12)

Дифференциальное уравнение сплошности для несжимаемых жидкостей имеет вид*:

\[\frac{\partial \omega_x}{\partial x} + \frac{\partial \omega_y}{\partial y} + \frac{\partial \omega_z}{\partial z} = 0. \]

С учетом этого уравнение (2.12) приводится к виду

\[\frac{\partial t}{\partial \tau} + \omega_x \frac{\partial t}{\partial x} + \omega_y \frac{\partial t}{\partial y} + \omega_z \frac{\partial t}{\partial z} = a \nabla^2 t + \frac{q_V}{\rho c_p} , \]

(2.13)

где \(\nabla^2 t = \frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2} ; \quad a = \frac{\lambda}{c_p \rho} \) — коэффициент температуропроводности.

* Это уравнение рассмотрено в § 4 настоящей главы.
В общем случае \(t = f(x, y, z, \tau) \). Поэтому, используя понятие полной производной, можно записать

\[
\frac{dt}{d\tau} = \frac{\partial t}{\partial \tau} + \frac{\partial t}{\partial x} \frac{dx}{d\tau} + \frac{\partial t}{\partial y} \frac{dy}{d\tau} + \frac{\partial t}{\partial z} \frac{dz}{d\tau}.
\]

Эту производную называют субстанциальной и обозначают особым символом \(\frac{D}{d\tau} \).

\[
\frac{D}{d\tau} = \frac{\partial t}{\partial \tau} + \omega_x \frac{\partial t}{\partial x} + \omega_y \frac{\partial t}{\partial y} + \omega_z \frac{\partial t}{\partial z}.
\] (2.14)

Заменив левую часть равенства (2.13) значением из уравнения (2.14), получим дифференциальное уравнение энергии

\[
\frac{D}{d\tau} = a \nabla^2 t + \frac{q_v}{\rho c_p}.
\] (2.15)

В цилиндрической системе координат в дифференциальном уравнении (2.15) величина \(\nabla^2 t \) имеет следующее значение:

\[
\nabla^2 t = \frac{\partial^2 t}{\partial r^2} + \frac{1}{r} \frac{\partial t}{\partial r} + \frac{1}{r^2} \frac{\partial^2 t}{\partial \varphi^2} + \frac{\partial^2 t}{\partial z^2}.
\] (2.16)

При значительном изменении температуры в системе и существенной зависимости \(\lambda \) от температуры упрощающая предпосылка о постоянстве коэффициента теплопроводности может привести к существенной погрешности. При \(\lambda = f(t) \) выражение (2.9) имеет вид

\[
\frac{\partial q_x}{\partial x} = \rho c_p \left(\omega_x \frac{\partial t}{\partial x} + t \frac{\partial \omega_x}{\partial x} \right) - \frac{\partial}{\partial x} \left(\lambda \frac{\partial t}{\partial x} \right).
\] (2.17)

Аналогичную форму будут иметь выражения (2.10) и (2.11). В этом случае дифференциальное уравнение (2.15) запишется так:

\[
\rho c_p \frac{D t}{d\tau} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial t}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial t}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial t}{\partial z} \right) + q_v.
\] (2.18)

Рассмотренные выше виды дифференциального уравнения энергии пригодны как для ламинарного, так и турбулентного потоков. В последнем случае в уравнения входят мгновенные, или так называемые актуальные, значения температур и скоростей, изменения которых во времени носит пульсационный характер.

Дифференциальное уравнение энергии можно также записать с использованием осредненных во времени значений температур и скоростей. Интервал времени для осреднения актуальных параметров турбулентного потока выбирается таким, чтобы осредненное значение не зависело от величины интервала. При выводе уравнения энергии в осредненных параметрах плотность теплового потока можно оценить с помощью закона Фурье, если коэффициент тепло-
проводности λ заменить на сумму $\lambda + \lambda_T$, где λ_T — коэффициент турбулентного переноса теплоты.

Величина λ_T зависит от расстояния до стенки: вблизи от стенки $\lambda_T \to 0$, а вдали — λ_T может во много раз превышать λ. При использовании осредненных параметров потока уравнение (2.18) приводится к виду

$$c_p \rho \frac{D t}{dt} = \frac{\partial}{\partial x} \left[(\lambda + \lambda_T) \frac{\partial t}{\partial x} \right] + \frac{\partial}{\partial y} \left[(\lambda + \lambda_T) \frac{\partial t}{\partial y} \right] + \frac{\partial}{\partial z} \left[(\lambda + \lambda_T) \frac{\partial t}{\partial z} \right] + q_v. \tag{2.19}$$

В этом уравнении под t и ω понимаются осредненные на небольших интервалах времени величины температуры и скорости.

§ 2. Дифференциальное уравнение теплоотдачи

Дифференциальное уравнение теплоотдачи выводится на основе анализа явления теплообмена в месте соприкосновения теплоносителя со стенкой. Тепловой поток через элементарную площадку поверхности твердой стенки dF можно выразить по закону Фурье через температурный градиент в пристеночном слое жидкости и коэффициент теплопроводности жидкости λ:

$$dQ = -\lambda \left(\frac{\partial t}{\partial n} \right)_{n=0} dF. \tag{2.20}$$

Этот же тепловой поток можно определить формулой Ньютона

$$dQ = \alpha (t_t - t_w) dF = \alpha \Delta t dF. \tag{2.21}$$

Приравнивая правые части равенств (2.20) и (2.21), после перестановки членов уравнения получим

$$\alpha = -\frac{\lambda}{\Delta t} \left(\frac{\partial t}{\partial n} \right)_{n=0}. \tag{2.22}$$

Это и есть дифференциальное уравнение теплоотдачи.

§ 3. Дифференциальное уравнение массообмена

Дифференциальное уравнение массообмена получается на основе закона сохранения вещества для i-го компонента газовой смеси и закона Фика. Для неподвижного элементарного параллелепипеда баланс массы компонента газовой смеси позволяет записать

$$dG_1 + dG_2 = dG_3, \tag{2.23}$$

260
где dG_1 — разность между массой компонента, вошедшей и вышедшей из элементарного объема за время dt; dG_2 — масса компонента, появившаяся или исчезнувшая в этом объеме за время dt в результате действия источников или стоков массы; dG_3 — изменение массового содержания компонента за время dt в том же объеме.

Для определения dG_1 используется такая же методика, как для определения dQ_1 в § 1 настоящей главы, а в результате получается выражение, аналогичное формуле (2.5)

$$dG_1 = -\left(\frac{\partial g_x^*}{\partial x} + \frac{\partial g_y^*}{\partial y} + \frac{\partial g_z^*}{\partial z} \right) dV \, dt,$$

(2.24)

где g_x^*, g_y^* и g_z^* — составляющие плотности потока массы по осям координат.

Величина dG_2 определяется мощностью внутренних источников вещества g^*_i, измеряемой в кг/м3 сеч

$$dG_2 = g^*_i \, dV \, dt.$$

(2.25)

Изменение концентрации i-го вещества в объеме dV за время dt составит $\frac{\partial C_i}{\partial t} \, dt$. Поэтому

$$dG_3 = dV \, \frac{\partial C_i}{\partial t} \, dt.$$

(2.26)

Подстановка выражений (2.24), (2.25) и (2.26) в уравнение баланса массы (2.23) приводит к уравнению

$$\frac{\partial C_i}{\partial t} = -\left(\frac{\partial g_x^*}{\partial x} + \frac{\partial g_y^*}{\partial y} + \frac{\partial g_z^*}{\partial z} \right) + g^*_i.$$

(2.27)

Массовые потоки вещества обусловлены концентрационной диффузией и вынужденным движением смеси. Так для g_x^* можно записать

$$g_x^* = g^*_x \text{ диф} + g^*_x \text{ конв}.$$

Используя закон Фика для диффузионной составляющей массового потока, перепишем это равенство в виде

$$g_x^* = w_x C_i - D_C \frac{\partial C_i}{\partial x}.$$

Дифференцирование этого уравнения при $D_C = \text{const}$ позволяет получить

$$\frac{\partial g_x^*}{\partial x} = w_x \frac{\partial C_i}{\partial x} - C_i \frac{\partial w_x}{\partial x} - D_C \frac{\partial^2 C_i}{\partial x^2}.$$

(2.28)
Аналогичные формулы получаются для \(\frac{\partial g_y}{\partial y} \) и \(\frac{\partial g_z}{\partial z} \). Подстановка их в уравнение (2.27) после несложных преобразований приводит к дифференциальному уравнению массообмена

\[
\frac{\partial C_i}{\partial t} + w_x \frac{\partial C_i}{\partial x} + w_y \frac{\partial C_i}{\partial y} + w_z \frac{\partial C_i}{\partial z} = D_C \nabla^2 C_i + g_{v_i}^*.
\]

(2.29)

Воспользовавшись понятием субстанциальной производной

\[
\frac{DC_i}{dt} = \frac{\partial C_i}{\partial t} + w_x \frac{\partial C_i}{\partial x} + w_y \frac{\partial C_i}{\partial y} + w_z \frac{\partial C_i}{\partial z},
\]

приведем дифференциальное уравнение массообмена в окончательной форме

\[
\frac{DC_i}{dt} = D_C \nabla^2 C_i + g_{v_i}^*.
\]

(2.30)

При использовании этого уравнения для турбулентного потока в него должны подставляться актуальные значения концентраций и скоростей.

Плотность массового потока вещества может быть выражена через градиент осредненной во времени концентрации, но в этом случае в законе Фика коэффициент молекулярной диффузии \(D_C \) надо заменить на \(D_C + D_{C_r} \), где \(D_{C_r} \) — коэффициент турбулентного переноса вещества. В этом случае дифференциальное уравнение массообмена для турбулентного потока приводится к виду

\[
\frac{DC_i}{dt} = \frac{\partial}{\partial x} \left[(D_C + D_{C_r}) \frac{\partial C_i}{\partial x} \right] + \frac{\partial}{\partial y} \left[(D_C + D_{C_r}) \frac{\partial C_i}{\partial y} \right] + \frac{\partial}{\partial z} \left[(D_C + D_{C_r}) \frac{\partial C_i}{\partial z} \right] + g_{v_i}^*.
\]

(2.31)

Здесь \(C_i \) и \(w \) — осредненные во времени значения концентрации и скорости.

§ 4. Дифференциальные уравнения движения и сплошности

Дифференциальные уравнения энергии и массообмена содержат скорость среды, участвующей в теплообмене. Поэтому при математическом описании явлений теплообмена приходится использовать гидродинамические уравнения.

В классической гидродинамике уравнение движения вязкой несжимаемой жидкости записывается в форме дифференциального уравнения Навье — Стокса, которое получается на основе второго закона Ньютона.
Выбрав для оси \(z \) направление, параллельное массовой силе \(F \), для изотермического движения несжимаемой жидкости при постоянном динамическом коэффициенте вязкости (\(\mu = \text{const} \)) проекции уравнения движения на оси координат можно записать в виде*:

\[
\begin{align*}
\text{а) } & \rho \frac{\partial w_x}{\partial t} + \rho \left(w_x \frac{\partial w_x}{\partial x} + w_y \frac{\partial w_x}{\partial y} + w_z \frac{\partial w_x}{\partial z} \right) = - \frac{\partial p}{\partial x} + \mu \nabla^2 w_x, \\
\text{б) } & \rho \frac{\partial w_y}{\partial t} + \rho \left(w_x \frac{\partial w_y}{\partial x} + w_y \frac{\partial w_y}{\partial y} + w_z \frac{\partial w_y}{\partial z} \right) = - \frac{\partial p}{\partial y} + \mu \nabla^2 w_y, \\
\text{в) } & \rho \frac{\partial w_z}{\partial t} + \rho \left(w_x \frac{\partial w_z}{\partial x} + w_y \frac{\partial w_z}{\partial y} + w_z \frac{\partial w_z}{\partial z} \right) = F - \frac{\partial p}{\partial z} + \mu \nabla^2 w_z.
\end{align*}
\]

Здесь \(F = j \rho \) — массовая сила, отнесенная к единице объема; \(j \) — ускорение, определяющее массовую силу. Ограничимся случаем, когда массовая сила обусловлена ускорением силы тяжести \(g \). Тогда \(F = g \rho_0 \). При отсутствии вынужденного движения градиент давления вдоль оси \(z \) определяется плотностью основной массы жидкости \(\rho_0 \):

\[
\frac{\partial p}{\partial z} = g \rho_0.
\]

При этом при свободном движении два первых члена правой части уравнения (2.32, в) запишутся так

\[
g \rho - \frac{\partial p}{\partial z} = g \rho - g \rho_0 = g \rho \beta \Delta t.
\]

Здесь \(\Delta t \) — разность температур, определяющая величину подъемной силы.

Коэффициент объемного расширения записывается формулой

\[
\beta = \frac{\rho_0 - \rho}{\rho \Delta t}.
\]

Кроме того, при свободном движении жидкости

\[
\frac{\partial p}{\partial x} = \frac{\partial p}{\partial y} = 0.
\]

* При описании турбулентных потоков в этих уравнениях используются актуальные значения скоростей и давления,
Для турбулентного течения несжимаемой жидкости проекции уравнения движения на оси координат можно записать через параметры осредненного движения:

$$
\rho \frac{\partial w_x}{\partial t} + \rho \left(w_x \frac{\partial w_x}{\partial x} + w_y \frac{\partial w_x}{\partial y} + w_z \frac{\partial w_x}{\partial z} \right) = - \frac{\partial p}{\partial x} + \mu \nabla^2 w_x + X,
$$

$$
\rho \frac{\partial w_y}{\partial t} + \rho \left(w_x \frac{\partial w_y}{\partial x} + w_y \frac{\partial w_y}{\partial y} + w_z \frac{\partial w_y}{\partial z} \right) = - \frac{\partial p}{\partial y} + \mu \nabla^2 w_y + Y,
$$

$$
\rho \frac{\partial w_z}{\partial t} + \rho \left(w_x \frac{\partial w_z}{\partial x} + w_y \frac{\partial w_z}{\partial y} + w_z \frac{\partial w_z}{\partial z} \right) = - \frac{\partial p}{\partial z} + \mu \nabla^2 w_z + Z.
$$

(2.34)

Здесь ρ и w — осредненные во времени значения давления и скорости, а члены X, Y и Z отражают потерю энергии в результате переноса количества движения объемами жидкости, перемещающимися в результате турбулентных пульсаций скорости.

Для стационарного двумерного параллельного оси x потока, в котором $\frac{\partial^2 w_x}{\partial x^2} \ll \frac{\partial^2 w_y}{\partial y^2}$, два последних члена уравнения (2.34) для оси x приводятся к виду

$$
\mu \nabla^2 w_x + X = \frac{\partial}{\partial y} \left[(\mu + \mu_T) \frac{\partial w_x}{\partial y} \right],
$$

где μ_T — коэффициент турбулентного переноса количества движения.

Закон сохранения массы позволяет получить дифференциальное уравнение сплошности для несжимаемой жидкости в виде

$$
\frac{\partial w_x}{\partial x} + \frac{\partial w_y}{\partial y} + \frac{\partial w_z}{\partial z} = 0.
$$

(2.35)

§ 5. Математическая формулировка задач теплообмена и виды краевых условий

Дифференциальные уравнения описывают целый класс физических явлений одинаковой природы. Решение дифференциальных уравнений содержит константы интегрирования и потому не является однозначным. Для оценки этих констант необходимо задать частные особенности изучаемого явления. Математическую формулировку частных особенностей явления называют краевыми условиями или условиями однозначности.
Различают четыре вида условий однозначности: геометрические, физические, граничные и временные. Геометрические условия отражают форму и размеры тел или их поверхностей, участвующих в теплообмене. Физические условия характеризуют физические свойства участвующих в теплообмене тел. Граничные условия определяют особенности протекания явлений на границах изучаемой системы. Временные условия определяют начальное состояние системы и изменение граничных условий во времени. Временные условия задаются только при нестационарном режиме теплообмена.

Математическая формулировка задачи теплопроводности включает дифференциальное уравнение энергии для неподвижного тела \((\omega_x = \omega_y = \omega_z = 0) \). В этом случае геометрические условия однозначности определяют форму и размеры тела, участвующего в процессе, а физические условия — коэффициенты его теплопроводности и температуропроводности.

Граничные условия для этой задачи могут быть заданы в трех различных вариантах.

Граничные условия первого рода состоят в задании температуры на поверхностях тела, участвующего в теплообмене, и ее изменения во времени.

Граничные условия второго рода состоят в задании распределения плотности теплового потока на поверхностях тела и ее изменения во времени.

Граничные условия третьего рода состоят в задании температуры сред, омывающих поверхности тела, и условий теплообмена между средами и поверхностями (коэффициенты теплообмена).

Система уравнений, описывающая явление теплоотдачи, включает дифференциальные уравнения энергии (для теплоносителя), теплоотдачи, массообмена, движения и сплошности. Для процессов, в которых перенос вещества имеет второстепенное значение, уравнение массообмена не рассматривается.

Геометрические условия однозначности для процесса теплоотдачи отражают форму и размеры поверхности соприкосновения теплоносителя с телом, физические условия — свойства теплоносителя (теплопроводность, вязкость и др.). Граничные условия описывают распределение скоростей, температур и концентраций на границах изучаемой системы.

§ 6. Основы теории подобия физических явлений

Теория подобия — это учение о подобных явлениях. В приложении к физическим явлениям теория подобия применяется по двум направлениям: как средство обобщения результатов физического и математического эксперимента и как теоретическая основа для моделирования технических устройств. Таким образом, теория подобия позволяет на основании отдельных опытов или численных расчетов получить обобщенную зависимость и открывает
возможность изучения рабочих процессов технических устройств на моделях.

Термин «помибие» заимствован из геометрии, где изучается помибие геометрических фигур. У подобных фигур пропорциональны сходственные линейные элементы (длины сторон треугольника, граней призмы и т. п.) Так, из условия подобия двух геометрических фигур, изображенных на рис. 2.2, можно записать

\[
\frac{l_1'}{l_1} = \frac{l_2'}{l_2} = \frac{l_3'}{l_3} = \frac{l_4'}{l_4} = C_l,
\]

где \(C_l\) — константа геометрического подобия.

Для реализации подобия физических явлений необходимо пропорциональность не только геометрических элементов систем, в которых протекают явления, но и других физических характеристик, определяющих эти явления (скоростей, температур, плотностей и т. п.).

Введем понятия одноименных величин, сходственных точек и сходственных моментов времени, которые используются при изучении подобных явлений. Одноименными называются величины, имеющие одинаковый физический смысл и одинаковую размерность. Сходстvenными называются такие точки систем, координаты которых удовлетворяют геометрическому подобию. Сходственные моменты времени наступают по истечении периодов времени \(\tau'\) и \(\tau''\), имеющих общее начало отсчета и связанных между собой константой подобия по времени \(C_\tau\):

\[
\frac{\tau''}{\tau'} = C_\tau.
\]

Подобными называются физические явления, протекающие в геометрически подобных системах, если у них во всех сходственных точках в сходственные моменты времени отношения одноименных величин есть постоянные числа. Эти постоянные числа называются константами подобия.

Так, явление теплопотдачи определяется распределением температур в системе, скоростью движения теплоносителя, его физическими свойствами, формой и размерами поверхности теплообмена. Следовательно, для подобия двух явлений теплопотдачи необходимо выполнить условия:

\[
\frac{t''}{t'} = C_t; \quad \frac{w''}{w'} = C_w; \quad \frac{\lambda''}{\lambda'} = C_\lambda;
\]

\[
\frac{\mu''}{\mu'} = C_\mu; \quad \frac{l''}{l'} = C_l \text{ и т. п.}
\]
Следует заметить, что подобными могут быть только явления одинаковой природы, описывающиеся одинаковыми аналитическими зависимостями. Так, формулы для плотности теплового потока при теплопроводности (закон Фурье) и для плотности массового потока при молекулярной диффузии (закон Фика) имеют одинаковую структуру. Но явления теплопроводности и диффузии качественно различны и потому не могут быть подобными. Явления, описывающие однородными уравнениями (или системой уравнений), но имеющие различную физическую природу, называются аналогоичными.

Параметры, определяющие физическое явление, связаны между собой, поэтому и константы подобия также взаимосвязаны. Связь между параметрами, определяющими физическое явление, выражается одним или несколькими уравнениями, отражающими закономерности протекания процесса. Эти уравнения могут быть использованы для выявления связи между константами подобия.

Воспользуемся дифференциальным уравнением теплоотдачи (3.22) для выявления связи между константами подобия. Запишем это уравнение для сходственных точек двух подобных между собой явлений: для первого явления

$$\alpha' = -\frac{\lambda'}{\Delta t'} \left(\frac{\partial t'}{\partial n'} \right)_{n'=0};$$

для второго явления

$$\alpha'' = -\frac{\lambda''}{\Delta t''} \left(\frac{\partial t''}{\partial n''} \right)_{n''=0} .$$

Константы подобия имеет одинаковое значение для параметров и их приращений. С учетом этого обозначим:

$$C_a = \frac{\alpha''}{\alpha'} ; \quad C_\lambda = \frac{\lambda''}{\lambda'} ; \quad C_t = \frac{\Delta t''}{\Delta t'} = \frac{t''}{t'} ; \quad C_n = \frac{n''}{n'} = \frac{l''}{l'} .$$

Здесь l — характерный размер системы.

Из определения констант подобия следует, что

$$\alpha'' = C_a \alpha' ; \quad \lambda'' = C_\lambda \lambda' ; \quad \Delta t'' = C_t \Delta t' ; \quad t'' = C_t t' ; \quad n'' = C_t n'.$$

Подставив эти выражения в равенство (2.37), переставив члены и сократив на C_t, получим

$$\alpha' = -\frac{C_\lambda}{C_a C_t} \frac{\lambda'}{\Delta t'} \left(\frac{\partial t'}{\partial n'} \right)_{n'=0} .$$

Уравнения (2.36) и (2.39) тождественны, так как они выражают связь между параметрами процесса, обусловленную дифференциальным уравнением теплоотдачи, для одной и той же точки первой системы. Из условия тождественности уравнений следует, что

$$\frac{C_\lambda}{C_a C_t} = 1 .$$

267
Это и есть связь между константами подобия, обусловленная уравнением (2.22).

Заменим константы подобия в уравнении (2.40) из (2.38). Тогда уравнение (2.40) можно переписать в виде

$$\frac{\alpha'}{\lambda'} = \frac{\alpha''}{\lambda''}. \quad (2.41)$$

Следовательно, существуют такие безразмерные соотношения параметров, характеризующих процесс, которые у подобных явлений в сходственных точках имеют численно одинаковые значения. Эти безразмерные соотношения называются числами подобия. Число подобия, записанное уравнением (2.41), называется числом Нуссельта* и обозначается Nu. Следовательно, равенство (2.41) можно переписать в виде

$$Nu = \frac{\alpha l}{\lambda} = \text{idem}^{**}.$$

Число Нуссельта получено из дифференциального уравнения теплоотдачи методом констант подобия. Числа подобия можно также получить путем приведения уравнения к безразмерному виду.

Число подобия может представлять собой отношение двух величин одинаковой природы (например, отношение длины трубы к ее диаметру). В этом случае оно называется симплексом.

Произведение чисел подобия и частное от их деления также представляют собой числа подобия.

Таким образом, для характеристики подобия явлений можно использовать константы подобия и числа подобия. Константы подобия сохраняют числовое значение только для двух подобных явлений, но они остаются одинаковыми для всех сходственных точек рассматриваемых систем. Числа подобия сохраняют свое значение в сходственных точках всех подобных между собой систем, сколько бы их ни было, но в различных точках одной и той же системы числа имеют разные значения. Поэтому константами подобия удобно пользоваться при моделировании технических устройств, когда необходимо получить подобие только между двумя явлениями, а числами подобия — при обработке опытных данных или численных расчетов, когда на основании изучения единичных явлений необходимо получить обобщенную зависимость, пригодную для всех подобных между собой явлений.

Числа подобия получаются из уравнений связи между величинами, характеризующими явление. Если для исследуемого явления таких уравнений нет, то числа подобия можно получить на основе анализа размерностей. Этот метод дает менее надежные результаты.

Основу теории подобия физических явлений составляют три теоремы. Две первых теоремы исходят из факта существования подобия и формулируют основные свойства подобных между собой яв-

* Числа подобия принято называть именами крупных ученых.

** idem заменяет слова «одно и то же значение».

26
лений. Третья теорема — обратная. Она устанавливает признаки, по которым можно узнатъ, подобны ли два явления друг другу.

Первую теорему можно сформулировать так: у подобных явлений одноименные числа подобия одинаковы. Содержание этой теоремы отражено в формулировке понятия числа подобия.

Из первой теоремы следует, что результаты одного опыта или расчета, представленные в виде количественных значений чисел подобия, позволяют судить не только об исследованном явлении, но и обо всех явлениях, подобных исследованному. Поэтому, обрабатывая результаты экспериментов в виде уравнения связи между числами подобия, получаем формулы, характеризующие не только исследованные явления, но и все явления, подобные исследованным.

Формулы связи между числами подобия называются уравнениями подобия.

Конкретная совокупность значений чисел подобия, полученная обработкой одного опыта или расчета, характеризует группу подобных между собой явлений, а уравнение подобия в целом — большое число неподобных между собой групп. Поэтому каждое уравнение подобия может применяться только для таких значений чисел подобия, которые наблюдались в опытах или использовались в расчетах, послуживших основанием для получения этого уравнения.

Содержание второй теоремы подобия сводится к следующему: если физическое явление описывается системой дифференциальных уравнений, то интеграл этой системы можно представить как функцию чисел подобия, полученных из дифференциальных уравнений.

Вторая теорема указывает путь получения чисел подобия: числа подобия могут быть получены из дифференциальных уравнений, описывающих исследуемое явление.

Третья теорема определяет минимальные условия, при которых явления будут подобными. Ее можно сформулировать так: подобны те явления, условия однозначности которых подобны*

В соответствии с третьей теоремой для того чтобы подобие двух явлений имело место, необходимо обеспечить геометрическое подобие систем (геометрические условия однозначности), подобие полей величин, определяющих явление на границах системы (граничные условия однозначности), и подобие параметров, характеризующих физические свойства теплоносителя (физические условия однозначности). Для нестационарных процессов дополнительно необходимо иметь подобие явлений в начальный момент времени и подобное изменение граничных условий во времени (временные условия однозначности).

* Виды условий однозначности рассмотрены в предыдущем параграфе.
Таким образом, для установления факта подобия двух явлений нет необходимости проверять подобие параметров (скорости, температуры и т. п.) во всех точках рассматриваемых систем. Достаточно установить подобие полей этих величин на границах систем, а подобие во всем объеме установится как следствие подобия на границах.

Числа подобия, которые составлены из величин, входящих в условия однозначности, называются критериями подобия. Если два явления имеют подобные условия однозначности, то их критерии подобия одинаковы. Поэтому третью теорему можно сформулировать так: подобные явления, критерии подобия которых одинаковы.

Третья теорема подобия позволяет установить границы применимости полученных опытным или расчетным путем зависимостей. С помощью этой теоремы можно выделить группу явлений, на которую распространяются полученные в результате опыта или численного расчета уравнения подобия.

Таким образом, теория подобия дает способ получения обобщенных формул на основе опытного или численного исследования явлений и устанавливает границы возможного использования этих зависимостей.

Следует заметить, что в виде уравнений подобия удобно представлять также и формулы, полученные в результате интегрирования дифференциальных уравнений.

ГЛАВА III

ТЕПЛОПРОВОДНОСТЬ И ТЕПЛОПЕРЕДАЧА ПРИ СТАЦИОНАРНОМ РЕЖИМЕ

Количественные соотношения для теплопередачи получаются в результате рассмотрения явления теплопроводности при граничных условиях третьего рода. Поэтому количественную оценку теплопроводности и теплопередачи удобно рассмотреть в одной главе.

§ 1. Коэффициент теплопроводности λ

Величина коэффициента теплопроводности зависит от природы вещества, его структуры, температуры и других факторов. Наибольшим коэффициентом теплопроводности обладают металлы, наименьшим — газы.

Коэффициенты теплопроводности металлов и сплавов имеют значения от 490 до 7 \(\text{Bt/(м \cdot град)} \). С увеличением температуры \(\lambda \) большинства металлов уменьшается.

При \(t = 0^\circ \text{C} \) коэффициент теплопроводности некоторых металлов равен: меди — 390, алюминия — 209, железа — 74 \(\text{Bt/(м \cdot град)} \).

Коэффициент теплопроводности металлов может резко изменяться из-за наличия примесей. Так, следы мышьяка в меди уменьшают ее коэффициент теплопроводности до 142 \(\text{Bt/(м \cdot град)} \).
Коэффициент теплопроводности смеси материалов обычно не изменяется пропорционально количеству входящих в смесь компонентов. Кроме того, он зависит от вида термической и механической обработки металла. Все это затрудняет оценку коэффициентов теплопроводности сплавов. Надежным способом оценки коэффициентов теплопроводности металлов и их сплавов является непосредственный эксперимент.

Неметаллические материалы имеют значительно меньшие величины $\lambda = 0,023-2,9 \text{ Bt} / (\text{m} \cdot \text{град})$. Среди них наибольший интерес представляют теплоизоляционные, керамические и строительные материалы. Большинство этих материалов имеет пористое строение, поэтому их коэффициент теплопроводности учитывается не только способность вещества проводить теплоту соприкосновением структурных частиц, но и радиационно-конвективный теплообмен в порах.

Структура вещества и вид газа или жидкости, заполняющих поры, существенно влияют на коэффициент теплопроводности, поэтому при его оценке необходимо учитывать плотность и влажность материала. С увеличением пористости вещества его коэффициент теплопроводности уменьшается.

Материалы, имеющие λ при $t = 50-100^\circ \text{C}$ меньше 0,25 $\text{Bt} / (\text{m} \cdot \text{град})$, называют теплоизоляторами. Некоторые теплоизоляционные материалы используются в их естественном состоянии, другие получаются искусственно. Из естественных теплоизоляторов широко применяются: асбест, слюда, дерево, пробка, опилки и др., из искусственных — минеральная вата, шерстяная вата, зонолит и др.

Хорошие теплоизоляторы получаются при добавлении пенообразующих веществ к различным химикатам. Такие материалы называют пенопластами. Например, пенопласты К-40 и ПУ-101 имеют коэффициенты теплопроводности 0,046 и 0,057 $\text{Bt} / (\text{m} \cdot \text{град})$ соответственно.

Теплоизоляторы пористого происхождения используются при температурах, не превышающих 150$^\circ \text{C}$. Для тепловой изоляции при высоких температурах используются жароупорные материалы.

У теплоизоляционных и строительных материалов коэффициент теплопроводности с ростом температуры увеличивается.

Некоторые неметаллические материалы обладают анизотропией. Так, дуб проводит теплоту вдоль волюнок примерно в два раза лучше, чем поперек волокон. Теплопроводность ориентированного пирографита вдоль пластин в сто раз больше, чем в перпендикулярном направлении.

Обнаружено также, что теплопроводность неметаллических материалов существенно изменяется под воздействием облучения нейтронами и γ-квантами.

Жидкости (кроме расплавленных металлов) имеют небольшую величину $\lambda = 0,093-0,7 \text{ Bt} / (\text{m} \cdot \text{град})$. У большинства жидкостей

* Исключением является графит, который в зависимости от плотности имеет λ от 75 до 350 $\text{Bt} / (\text{m} \cdot \text{град})$.

271
(кроме воды и глицерина) коэффициент теплопроводности уменьшается с увеличением температуры.

Жидкие металлы и сплавы обладают значительно большей теплопроводностью \([\lambda = 7-86 \text{ вт/(м·град)}]\).

Газы и пары плохо проводят теплоту теплопроводностью \([\lambda = 0,006-0,58 \text{ вт/(м·град)}]\). Коэффициенты теплопроводности газов увеличиваются с ростом температуры.

Представление о теплопроводности газов, как о переносе энергии при соударении газовых молекул, позволяет установить связь между коэффициентом теплопроводности, средней арифметической скоростью движения молекул \(w_m\), средней длиной свободного пробега молекул \(\Delta\), изохорной теплоемкостью \(c_v\), плотностью газа \(\rho\) и показателем аднабаты \(k\).

В кинетической теории газов доказывается, что

\[
\lambda = \frac{9k - 5}{8} \Delta c_v \rho. \tag{3.1}
\]

Эта формула позволяет объяснить зависимость коэффициента теплопроводности от температуры и плотности газов.

При увеличении температуры возрастает средняя скорость движения молекул и их теплоемкость, а в результате увеличивается коэффициент теплопроводности.

Рассмотрим влияние плотности на коэффициент теплопроводности газа.

При изменении плотности изменяются величины \(\Delta\) и \(\rho\), входящие в правую часть формулы (3.1), но пока газ подчиняется уравнению состояния идеальных газов, произведение этих величин остается постоянным.

При очень высоких давлениях (свыше 2000 бар) проявляются силы межмолекулярного притяжения, и, как показали опыты, с ростом давления коэффициент теплопроводности заметно возрастает. Зависимость коэффициента теплопроводности паров от давления более существенна. Эту зависимость необходимо учитывать при любом давлении.

При понижении давления способность газа проводить теплоту теплопроводностью изменяется только в случае, когда теплота переносится через ограниченный газовый слой. При глубоком разрежении газа, когда длина свободного пробега молекул превышает расстояние между стенками, ограничивающими газовый слой, соударение молекул перестает определять процесс теплообмена. Каждая молекула поочередно ударяется о горячую и холодную стенки и переносит теплоту (рис. 3.1). При таком механизме теплообмена число молекул в газовом слое определяет перенос теплоты и, следовательно, при уменьшении давления теплопроводность газового слоя уменьшается.

При малых размерах газового слоя влияние разрежения на его теплопроводность может проявиться даже при небольшом пони-
женіи давления. Так, польскому ученому М. Смолуховскому удалось наблюдать этот эффект для воздуха, содержащегося в порах очень тонкой копоти, при абсолютном давлении порядка 10 мм рт. ст.

Анализ зависимости коэффициента теплопроводности от температуры показывает, что для большинства твердых тел, жидкостей и газов при умеренных температурах эта зависимость приближенно может быть оценена линейной формулой

$$\lambda = \lambda_0 (1 \pm bt),$$ (3.2)

gде λ_0 — коэффициент теплопроводности материала при $t = 0^\circ C$; b — экспериментальная константа.

В практических расчетах коэффициент теплопроводности обычно считаются одинаковым для всего тела и определяют его по среднезначимой из крайних значений температур тела. При выборе коэффициента теплопроводности следует пользоваться справочной литературой [2], [13], [20].

§ 2. Теплопроводность плоской стенки

Рассмотрим температурное поле и тепловой поток при стационарной теплопроводности через однородную плоскую стенку, площадь боковой поверхности которой настолько велика, что теплообмен через торцы ее можно пренебречь. Участок такой стенки изображен на рис. 3.2. Стенка имеет толщину δ и одинаковый для всей стенки коэффициент теплопроводности λ. Температуры на границах стенки t_w и t_0, а изотермические поверхности имеют форму плоскостей, параллельных поверхностям стенки.

При рассматриваемых условиях теплота может распространяться только вдоль оси x, и температурное поле будет одномерным. Температурные градиенты вдоль остальных осей координат равны нулю, следовательно,

$$\frac{\partial^2 t}{\partial y^2} = \frac{\partial^2 t}{\partial z^2} = 0.$$

Дифференциальное уравнение энергии (2.15) для стационарной одномерной задачи о теплопроводности плоской стенки без внутренних источников теплоты приводится к виду

$$\frac{d^2 t}{dx^2} = 0.$$

Проинтегрировав это уравнение дважды, найдем:

$$\frac{dt}{dx} = C_1,$$ (3.3)

$$t = C_1x + C_2.$$ (3.4)
Следовательно, температурное поле однородной плоской стенки при постоянном коэффициенте теплопроводности выражается линейной зависимостью температуры от координаты (рис. 3.2).

Определим константы интегрирования в уравнении температурного поля. Границные условия первого рода для рассматриваемой задачи запишутся равенствами:

при \(x = 0 \) \(t = t_{w_1} \);
при \(x = \delta \) \(t = t_{w_2} \).

Подстановка этих условий в формулу (3.4) дает

\[
C_2 = t_{w_2} ; \quad C_1 = \frac{t_{w_2} - t_{w_1}}{\delta} .
\]

Заменив константы интегрирования в формуле (3.4) найденными выражениями, получим уравнение температурного поля вида

\[
t = \frac{t_{w_2} - t_{w_1}}{\delta} x + t_{w_2} . \quad (3.5)
\]

Определим плотность теплового потока через плоскую стенку. В соответствии с законом Фурье с учетом равенства (3.3) можно записать

\[
q = -\lambda \frac{dt}{dx} = -\lambda C_1 = -\lambda \frac{t_{w_2} - t_{w_1}}{\delta} .
\]

Следовательно,

\[
q = \frac{\lambda}{\delta} (t_{w_2} - t_{w_1}) . \quad (3.6)
\]

Соотношение \(\frac{\lambda}{\delta} \) называется тепловой проводимостью плоской стенки, а обратная величина \(\frac{\delta}{\lambda} \) — внутренним термическим сопротивлением.

Рассмотрим теперь теплопроводность плоской многослойной стенки, состоящей из \(n \) слоев. На границе раздела двух слоев возникает контактное термическое сопротивление, обусловленное неплотным соприкосновением поверхностей. Термическое сопротивление контакта в отдельных случаях может быть пренебрежимо малым, но иногда общее тепловое сопротивление многослойной стенки благодаря сопротивлению в местах контакта увеличивается в несколько раз.

Тепловую поток через поверхность контакта можно выразить формулой

\[
q = \frac{1}{R_k} (t' - t^\prime) . \quad (3.7)
\]
где \(R_j \) — контактное термическое сопротивление*; \(t' \) и \(t'' \) — температуры контактирующих поверхностей.

Оценим температурное поле и тепловой поток теплопроводностью через многослойную стенку с учетом контактных сопротивлений. Каждый слой имеет заданную толщину \(\delta_l \) и коэффициент теплопроводности \(\lambda_l \) (рис. 3.3).

При стационарном тепловом режиме тепловые потоки через каждый из слоев, а также через зоны контактов будут одинаковы, так как только при этом условии температурное поле не изменяется с течением времени.

Выразим плотности тепловых потоков через отдельные слои и поверхности контактов с помощью формул (3.6) и (3.7):

\[
q = \frac{\lambda_1}{\delta_1} (t_{w_1} - t'_{w_1}), \\
q = \frac{l}{R_{k_1}} (t'_{w_2} - t''_{w_2}), \\
q = \frac{\lambda_2}{\delta_2} (t''_{w_2} - t'_{w_3}), \\
\ldots \\
q = \frac{\lambda_n}{\delta_n} (t'_{w_n} - t_{w_{n+1}}).
\]

Перепишем эти уравнения в виде:

\[
t_{w_1} - t'_{w_1} = q \frac{\delta_1}{\lambda_1}, \\
t'_{w_2} - t''_{w_2} = q R_{k_1}, \\
t''_{w_2} - t'_{w_3} = q \frac{\delta_2}{\lambda_2}, \\
\ldots \\
t''_{w_n} - t_{w_{n+1}} = q \frac{\delta_n}{\lambda_n}.
\]

(3.9)

Просуммировав правые и левые части этих равенств, получим

\[
t_{w_1} - t_{w_{n+1}} = q \left(\frac{\delta_1}{\lambda_1} + R_{k_1} + \frac{\delta_2}{\lambda_2} + \ldots + \frac{\delta_n}{\lambda_n} \right),
\]

откуда

\[
q = \frac{t_{w_1} - t_{w_{n+1}}}{\sum_{l=1}^{n} \frac{\delta_l}{\lambda_l} + \sum_{l=1}^{n-1} R_{k_l}}.
\]

(3.10)

Здесь \(l \) — номер слоя.

Более подробно вопрос о контактном термическом сопротивлении рассмотрен в § 6 этой главы.
Если при решении какой-либо задачи контактными термическими сопротивлениями можно пренебречь, то в этой формуле следует положить

\[\sum_{t}^{n-1} R_{ki} = 0. \]

Для построения температурного поля многослойной стенки необходимо оценить температуру на поверхности каждого слоя в отдельности. Система уравнений (3.9) позволяет получить расчетные формулы для определения температуры на поверхности любого слоя. Так, просуммировав три первых равенства этой системы, получим формулу для определения температуры \(t'_{w} \),

\[t'_{w_i} = t_{w_i} - q \left(\frac{\delta_1}{\lambda_1} + R_{ki} + \frac{\delta_2}{\lambda_2} \right). \]

(3.11)

Температурное поле многослойной стенки изображено на рис. 3.3. Наклон температурной линии в отдельных слоях различен. Это объясняется тем, что для всех слоев

\[q = -\lambda \frac{dt}{dx} = \text{const.} \]

Поэтому слои с меньшим коэффициентом теплопроводности имеют больший температурный градиент и, следовательно, больший наклон температурной линии.

Воспользуемся этим правилом для выяснения действительной формы температурного поля в однородной плоской стенке с учетом зависимости коэффициента теплопроводности от температуры. Разделим однородную стенку на большое число слоев так, чтобы в пределах каждого слоя коэффициент теплопроводности можно было считать постоянным (рис. 3.4). Тогда для материалов, у которых с увеличением температуры величина \(\lambda \) уменьшается (такую за-
висимость \(\lambda \) от \(t \) имеет большинство металлов), в зоне высокой температуры температурная линия будет проходить более круто, а в зоне низких температур — более полого, чем при среднем постоянном коэффициенте теплопроводности. Увеличивая число слоев, в пределе получим криволинейную зависимость \(t \). Для материалов, у которых с увеличением температуры \(\lambda \) также увеличивается (теплоизоляторы), температурное поле изобразится линней 2.

§ 3. Теплопередача через плоскую стенку

Для получения расчетной формулы теплового потока при теплопередаче рассмотрим теплопроводность многослойной плоской стенки при граничных условиях третьего рода. Стенка состоит из \(n \) слоев с известными толщинами и коэффициентами теплопроводности (рис. 3.5). Известны также контактные термические сопротивления между отдельными слоями. Теплоносители имеют температуры \(t_i \) и \(t_{i+1} \), а интенсивность их теплообмена с поверхностями стенки определяется коэффициентами \(\alpha_1 \) и \(\alpha_2 \).

При стационарном режиме теплообмена плотности теплового потока от первого теплоносителя к стенке, через стенку и от стенки ко второму теплоносителю одинаковы. С учетом формул (1.19) и (3.10) для многослойной плоской стенки плотности теплового потока определяются выражениями:

\[
q = \alpha_1 (t_{f_1} - t_{w_1}),
\]

\[
q = \frac{t_{w_1} - t_{w_{n+1}}}{\sum_{i=1}^{n} \frac{\delta_i}{\lambda_i} + \sum_{i=1}^{n-1} R_{k_i}},
\]

\[
q = \alpha_2 (t_{w_{n+1}} - t_{f_2}).
\]

Выразив из этих уравнений разности температур в явном виде и просуммировав левые и правые части полученных равенств, найдем формулу для плотности теплового потока:

\[
q = \kappa (t_{f_1} - t_{f_2}),
\]

где \(\kappa \) — коэффициент теплопередачи, который выражается равенством

\[
\kappa = \frac{1}{\frac{1}{\alpha_1} + \sum_{i=1}^{n} \frac{\delta_i}{\lambda_i} + \sum_{i=1}^{n-1} R_{k_i} + \frac{1}{\alpha_2}}.
\]
Величина, обратная коэффициенту теплопередачи $\frac{1}{\kappa}$, называется общим термическим сопротивлением

$$
\frac{1}{\kappa} = \frac{1}{\alpha_1} + \sum_{i=1}^{n} \frac{\delta_i}{\lambda_i} + \sum_{i=1}^{n-1} R_{ki} + \frac{1}{\alpha_2}.
$$
(3.17)

Из формулы (3.17) видно, что общее термическое сопротивление складывается из внешних термических сопротивлений $\left(\frac{1}{\alpha_1} и \frac{1}{\alpha_2}\right)$, внутренних термических сопротивлений отдельных слоев $\left(\sum_{i=1}^{n} \frac{\delta_i}{\lambda_i}\right)$ и контактных термических сопротивлений между ними $\left(\sum_{i=1}^{n-1} R_{ki}\right)$.

Температуры крайних поверхностей стенки определяются из равенств (3.12) и (3.14):

$$
t_{w_1} = t_{f_1} - \frac{q}{\alpha_1}; \quad t_{w_{n+1}} = t_{f_2} + \frac{q}{\alpha_2}.
$$

Температуры на поверхностях отдельных слоев стенки рассчитываются по формулам теплопроводности. Температурное поле при теплопередаче через плоскую стенку показано на рис. 3.5.

§ 4. Теплопроводность цилиндрической стенки

Рассмотрим теплопроводность однородной цилиндрической стенки большой длины так, чтобы передачей теплоты с торцов трубы можно было пренебречь (рис. 3.6). Если внутренняя и внешняя поверхности поддерживаются при постоянных температурах t_{w_1} и t_{w_n}, то тепловой поток имеет радиальное направление, а изотермические поверхности имеют форму цилиндров. В этих условиях температурное поле $t = f(r)$ будет одномерным.

Размеры стенки оценим радиусами r_1, r_2 и длиной l, а коэффициент теплопроводности будем считать одинаковым для всей стенки.

Для стационарной одномерной задачи о теплопроводности цилиндрической стенки без внутренних источников теплоты дифференциальное уравнение энергии (2.15) с учетом (2.16) приводится к виду

$$
\frac{d^2 t}{dr^2} + \frac{1}{\epsilon} \frac{dt}{dr} = 0.
$$
(3.18)

Введение новой переменной

$$
u = \frac{dt}{dr}
$$
(3.19)

позволяет привести уравнение (3.18) к виду

$$
\frac{du}{dr} + \frac{u}{r} = 0.
$$
(3.20)
После разделения переменных и интегрирования получим

$$\ln u + \ln r = \ln C_1.$$ \hspace{1cm} (3.21)

Потенцирование этого выражения, переход к первоначальным переменным и интегрирование дает

$$t = C_1 \ln r + C_2.$$ \hspace{1cm} (3.22)

Следовательно, зависимость $t = f(r)$ носит логарифмический характер (рис. 3.6).

Искривление линии температурного поля в цилиндрической стенке обусловлено изменением плотности теплового потока при изменении радиуса цилиндра: при уменьшении радиуса площадь поверхности, через которую проходит тепло, также уменьшается. Поэтому на малых радиусах температурная линия проходит более круто. Это правило остается в силе и при обратном направлении теплового потока (пунктир на рис. 3.6).

Граничные условия первого рода записываются равенствами:

при $r = r_1$, $t = t_{w_1}$;
при $r = r_2$, $t = t_{w_2}$.

Подставив эти выражения в равенство (3.22), получим:

$$C_1 = \frac{t_{w_1} - t_{w_2}}{\ln \frac{r_1}{r_2}}; \quad C_2 = t_{w_1} - (t_{w_1} - t_{w_2}) \frac{\ln r_1}{\ln \frac{r_1}{r_2}}.$$ \hspace{1cm} (3.23)

Заменив в уравнении (3.22) константы интегрирования выражениями (3.23), получим формулу температурного поля

$$t = t_{w_1} - \frac{t_{w_1} - t_{w_2}}{\ln \frac{d_2}{d_1}} \ln \frac{d}{d_1},$$ \hspace{1cm} (3.24)

где d_1 и d_2 — внутренний и наружный диаметры цилиндра; d — переменный диаметр.

Тепловой поток через изотермическую поверхность с радиусом r можно оценить по закону Фурье:

$$Q = -\lambda \frac{dt}{dr} 2\pi r t.$$ \hspace{1cm} (3.25)
Из формулы (3.24) получается следующее выражение для температурного градиента:

\[
\frac{dt}{dr} = -\frac{t_{w_1} - t_{w_2}}{\ln \frac{d_2}{d_1}} \cdot \frac{2}{d}. \tag{3.26}
\]

После подстановки выражения (3.26) в (3.25) найдем

\[
Q = \frac{\pi l (t_{w_1} - t_{w_2})}{\frac{1}{2\lambda} \ln \frac{d_2}{d_1}}. \tag{3.27}
\]

Если отнести тепловой поток к единице длины цилиндрической стенки, то формула (3.27) перепишется в виде

\[
q_l = \frac{\pi l (t_{w_1} - t_{w_2})}{\frac{1}{2\lambda} \ln \frac{d_2}{d_1}}. \tag{3.28}
\]

Величину \(\frac{1}{2\lambda} \ln \frac{d_2}{d_1}\) называют внутренним термическим сопротивлением цилиндрической стенки.

Обозначим плотности теплового потока на внутренней и внешней поверхностях через \(q_1\) и \(q_2\). Так как

\[Q = q_l l = q_1 \pi d_1 l = q_2 \pi d_2 l,
\]

то

\[q_l = \pi \frac{q_1}{d_1} = \pi \frac{q_2}{d_2}.
\]

Это выражение можно использовать для подсчета \(q_1\) или \(q_2\) по величине \(q_l\).

Если \(\frac{d_2}{d_1} < 2\), т. е. труба тонкостенная, то кривизна стенки слабо влияет на величину теплового потока. В этом случае (с точностью до 4%) для определения теплового потока вместо выражения (3.28) можно использовать формулу плоской стенки

\[q_l = \frac{2\lambda}{d_2 - d_1} \pi d_{cp} (t_{w_1} - t_{w_2}). \tag{3.29}
\]

где \(d_{cp}\) — средний диаметр цилиндрической стенки.

Выведем формулу для определения теплового потока через многослойную цилиндрическую стенку, состоящую из \(n\) слоев (рис. 3.7), с учетом контактного термического сопротивления. Тепловой поток через поверхность контакта с диаметром \(d\) выразится формулой

\[q_l = \frac{1}{R_K} (t_w - t_w) \pi d. \tag{3.30}
\]
При стационарном режиме величины q_i одинаковы для всех участков теплового тракта. Их можно определить с помощью формул (3.28) и (3.30):

$$ q_i = \frac{\pi \left(t_{w_i} - t'_{w_i} \right)}{\frac{1}{2\lambda_1} \ln \frac{d_2}{d_1}}, $$

$$ q_i = \frac{1}{R_{k_i}} \left(t'_{w_i} - t''_{w_i} \right) \pi d_2, $$

$$ q_i = \frac{\pi \left(t''_{w_i} - t'_{w_i} \right)}{\frac{1}{2\lambda_2} \ln \frac{d_3}{d_2}}, $$

$$ \ldots $$

$$ q_i = \frac{\pi \left(t_{w_n} - t_{w_{n+1}} \right)}{\frac{1}{2\lambda_n} \ln \frac{d_{n+1}}{d_n}}. $$

Выразив из этих равенств в явном виде разности температур и просуммировав левые и правые части равенств, после перестановки членов найдем

$$ q_i = \frac{\pi \left(t_{w_i} - t_{w_{n+1}} \right)}{\sum_{i=1}^{n} \frac{1}{2\lambda_i} \ln \frac{d_{i+1}}{d_i} + \sum_{i=1}^{n-1} \frac{R_{k_i}}{d_{i+1}}}. $$

(3.32)

Если контактными термическими сопротивлениями можно пренебречь, то в формуле (3.32)

$$ \sum_{i=1}^{n-1} \frac{R_{k_i}}{d_{i+1}} = 0. $$

Температуры на поверхностях отдельных слоев определяются по формулам, которые выводятся так же, как для плоской стенки. Так, для оценки температуры t'_{w_a} формула имеет вид

$$ t'_{w_a} = t_{w_i} - \frac{q_i}{\pi} \left(\frac{1}{2\lambda_1} \ln \frac{d_2}{d_1} + \frac{R_{k_i}}{d_2} + \frac{1}{2\lambda_2} \ln \frac{d_3}{d_2} \right). $$

(3.33)

Температурное поле многослойной цилиндрической стенки показано на рис. 3.7.

§ 5. Теплопередача через цилиндрическую стенку

Для расчета теплового потока при теплопередаче через многослойную цилиндрическую стенку (рис. 3.8) необходимо задать диаметры каждого слоя, коэффициенты теплопроводности стенок, контактные термические сопротивления между ними, а также гранич-
ные условия третьего рода — температуры теплоносителей и коэффициенты теплообмена с обеих сторон стенки.

При стационарном режиме теплообмена тепловые потоки, приходящиеся на каждый метр длины цилиндрической стенки, будут одинаковы для всех сечений теплового тракта. С учетом формулы (3.32) тепловые потоки на единицу длины цилиндрической стенки можно выразить уравнениями:

\[
q_i = \pi \alpha_i d_i (t_{i-1} - t_w), \quad (3.34)
\]

\[
q_i = \frac{\pi}{\sum_{i=1}^{n} \frac{1}{2\lambda_i} \ln \frac{d_{i+1}}{d_i} + \sum_{i=n-1}^{n} \frac{R_{n_i}^{i}}{d_{i+1}}} \left(t_{w_{n+1}} - t_{w_i} \right), \quad (3.35)
\]

\[
q_i = \pi \alpha_2 d_{n+1} (t_{w_{n+1}} - t_{i_2}). \quad (3.36)
\]

Если из этих уравнений определить разности температур в явном виде, а затем просуммировать правые и левые части равенств, то для теплового потока \(q_i \) можно получить формулу

\[
q_i = \pi \kappa_i (t_{i_1} - t_{i_2}), \quad (3.37)
\]

где \(\kappa_i \) — линейный коэффициент теплопередачи, который определяется выражением

\[
\kappa_i = \frac{1}{\alpha_i d_i + \sum_{i=1}^{n} \frac{1}{2\lambda_i} \ln \frac{d_{i+1}}{d_i} + \sum_{i=n-1}^{n} \frac{R_{n_i}^{i}}{d_{i+1}}} \frac{1}{\alpha_3 d_{n+1}} . \quad (3.38)
\]

Величина, обратная линейному коэффициенту теплопередачи \(\left(\frac{1}{\kappa_i} \right) \), называется общим линейным термическим сопротивлением.

Температура поверхностей, соприкасающихся с теплоносителем, определяется из формул (3.34) и (3.36):

\[
t_{w_i} = t_{i_1} - \frac{q_i}{\pi \alpha_1 d_1} ; \quad t_{w_{n+1}} = t_{i_2} + \frac{q_i}{\pi \alpha_2 d_{n+1}} .
\]

Температурное поле при теплопередаче через многослойную цилиндрическую стенку показано на рис. 3.8.

§ 6. Контактное термическое сопротивление

При любом способе обработки материала на его поверхности всегда имеются микроскопические выступы и впадины, поэтому в местах соприкосновения поверхностей касание происходит только в отдельных точках, а остальные участки поверхности разделены слоем воздуха или другого газа или жидкости. Опыты показывают,
что при небольших сжимающих усилиях площадь фактического контакта составляет 1—5% от общей поверхности.

Повышение сопротивления тепловому потоку в месте контакта двух поверхностей обусловлено меньшим коэффициентом теплопроводности газовой прослойки по сравнению с твердым телом, отклонением направления теплового потока от нормали к поверхности контакта, повышенным термическим сопротивлением поверхностного слоя из-за окисной пленки и загрязнения.

Если пренебречь радиационным теплообменом между поверхностями, разделенными газовой прослойкой, которым передается не больше 1—2% теплоты, то можно считать, что тепловая проводимость контакта равна сумме тепловых проводимостей фактического контакта \(\frac{1}{R_{\text{в}}} \) и газовой прослойки \(\frac{1}{R_{\text{г}}} \):

\[
\frac{1}{R_{\text{к}}} = \frac{1}{R_{\text{ф}}} + \frac{1}{R_{\text{г}}}. \tag{3.39}
\]

Опыты показывают, что составляющие контактного термического сопротивления соизмеримы. Если соприкасающиеся твердые тела обладают высокой теплопроводностью, то большая часть теплоты передается через точки соприкосновения. Если зазор между контактующими поверхностями заполнен хорошо проводящим газом (например, гелием) или жидкостью, то основное количество передаваемой теплоты пойдет через прослойку.

При увеличении сжимающего усилия термическое сопротивление фактического контакта существенно уменьшается, тогда как термическое сопротивление газовой прослойки изменяется не больше чем на 20%.

Величина контактного термического сопротивления зависит от силы сжатия, от чистоты и твердости соприкасающихся поверхностей, температуры и природы газа или жидкости, заполняющей пространство между поверхностями контакта.

На рис. 3.9 изображены зависимости контактного термического сопротивления от силы сжатия и чистоты обработки поверхности, полученные опытным путем для пары медь — медь. Как видно из рисунка, увеличение нагрузки вызывает сначала резкое уменьшение термического сопротивления, а затем — более плавное. При силе сжатия больше 200 бар контактное термическое сопротивление практически перестает зависеть от величины этой силы. Это правило подтверждается для большинства металлов, особенно при высокой чистоте соприкасающихся поверхностей.
Из рис. 3.9 видно, что с повышением класса чистоты обработки контактное термическое сопротивление уменьшается, и его зависимость от сжимающей силы становится более слабой.

Уменьшение твердости соприкасающихся поверхностей способствует увеличению площади фактического контакта и уменьшению его термического сопротивления.

Температура в зоне контакта также влияет на его термическое сопротивление: с увеличением температуры контактное термическое сопротивление уменьшается. Так, при контакте тел, выполненных из дюрала, увеличение температуры от 88 до 214° С сопровождается уменьшением контактного термического сопротивления на 40—60%.

Контактное термическое сопротивление существенно уменьшается при покрытии соприкасающихся поверхностей мягкими металлами (медь, олово и др.) или при прокладках из мягких материалов.

Контактное термическое сопротивление приводит к резкому изменению температуры на поверхности раздела двух слоев, которое схематично можно рассматривать как скачок температуры. Из формулы (3.7) следует, что величина этого скачка пропорциональна тепловой нагрузке и контактному термическому сопротивлению. Так, при обработке поверхности по 6-му классу чистоты, \(q = 580 \ 000 \ \text{Bt/m}^2 \text{x}^2 \) и \(p = 20—400 \ \text{бар} \) для стали марки Сталь 30 температурный скачок на поверхности контакта составляет от 400 до 100° С, для пары Сталь 30 — дюраль — примерно от 290 до 70° С, для пары Сталь 30 — медь — от 190 до 60° С.

Величину контактного термического сопротивления для средней чистоты обработки поверхностей можно приблизительно рассчитать по методике, изложенной в [24]. Более надежные сведения о величинах контактного термического сопротивления получаются опытным путем.

§ 7. Теплопроводность тел с внутренними источниками теплоты

Рассмотрим температурное поле в телях простейшей формы при объемном тепловыделении для случаев, когда внутренние источники теплоты равномерно распределены по всему объему. Задачи такого вида приходится решать при расчете тепловыделяющих элементов атомных реакторов, при нагреве тел токами высокой частоты и в других случаях.

Пусть неограниченная плоская стенка толщиной \(26 \) имеет объемное тепловыделение с мощностью внутренних источников теплоты \(q_V \) и одинаковые температуры на поверхностях \(t_w \) (рис. 3.10). Коэффициент теплопроводности, одинаковый для всей стенки, \(\lambda \).

При стационарном режиме теплообмена дифференциальное уравнение энергии (2.15) запишется для этого случая выражением

\[
\frac{d^2 t}{dx^2} + \frac{q_V}{\lambda} = 0. \tag{3.40}
\]
Первое и второе интегрирования этого уравнения дают:

$$\frac{dt}{dx} = -\frac{q_v}{\lambda} x + C_1,$$ (3.41)

$$t = -\frac{q_v}{\lambda} \frac{x^2}{2} + C_1 x + C_2. $$ (3.42)

Если начало координат размещено на оси симметрии стенки, то в силу одинаковости условий теплосетема с обеих сторон стенки температурная линия имеет в начале координат максимум и, следовательно, $\frac{dt}{dx} = 0$.

Из формулы (3.41) видно, что при $x = 0$ и $\frac{dt}{dx} = 0$ первая константа интегрирования также обращается в нуль.

Так как при $x = \pm \delta$ $t = t_w$, то из формулы (3.42) получается

$$C_2 = t_w + \frac{q_v}{\lambda} \frac{\delta^2}{2}.$$

Рис. 3.10

Подстановка значения C_2 в формулу (3.42) приводит к следующему выражению, определяющему температурное поле плоской стенки с объемным теплопроводением:

$$t = t_w + \frac{q_v}{2\lambda} (\delta^2 - x^2).$$ (3.43)

Температурное поле изображено на рис. 3.10.

Максимальная температура на оси симметрии стенки может быть подсчитана по формуле

$$t_{max} = t_w + \frac{q_v \delta^2}{2\lambda},$$ (3.44)

которая получается из формулы (3.43) при $x = 0$.

Плотность теплового потока на наружных поверхностях стенки определяется мощностью внутренних источников теплоты

$$q = q_v \delta.$$ (3.45)

Оценим теперь температурное поле в круглом стержне радиусом r_0 и неограниченной длины при объемном теплопроводении (рис. 3.11). Коэффициент теплопроводности также будем считать постоянным.

Согласно закону Фурье через изотермическую поверхность радиусом r пройдет тепловой поток

$$q_i = -\lambda \frac{dt}{dr} 2\pi r.$$ (3.46)
Величина этого теплового потока определяется мощностью внутренних источников \(q_v \)

\[
q_l = q_v \pi r^2. \tag{3.47}
\]

Подставив выражение (3.47) в (3.46) и разделив переменные, получим

\[
dt = -\frac{q_v}{2\lambda} r \, dr.
\]

После интегрирования этого равенства найдем

\[
t = -\frac{q_v}{4\lambda} r^2 + C. \tag{3.48}
\]

Так как при \(r = r_0 \quad t = t_w \), то из выражения (3.48) получается

\[
C = t_w + \frac{q_v}{4\lambda} r_0^2. \tag{3.49}
\]

Подстановка формулы (3.49) в выражение (3.48) дает окончательное выражение для температурного поля

\[
t = t_w + \frac{q_v r_0^2}{4\lambda} \left(1 - \frac{r^2}{r_0^2}\right). \tag{3.50}
\]

Форма температурного поля показана на рис. 3.11.

Максимальная температура на оси стержня (при \(r = 0 \)):

\[
t_{\text{max}} = t_w + \frac{q_v r_0^2}{4\lambda}. \tag{3.51}
\]

Тепловой поток через боковую поверхность стержня равен

\[
q_l = \pi r_0^2 q_v. \tag{3.52}
\]

§ 8. Теплопроводность плоской стенки при двумерном температурном поле

Рассмотренные выше задачи теплопроводности имеют достаточно простые решения потому, что все они сформулированы для одномерного температурного поля. На практике встречаются задачи и с более сложными краевыми условиями, когда температурное поле становится двумерным или даже трехмерным.

Рассмотрим в качестве примера теплопроводность пластины при двумерном температурном поле (рис. 3.12). Двумерность температурного поля в пластине имеет место при теплоизоляции торцов пластины, перпендикулярных оси \(z \), и однородности условий теплообмена вдоль этой оси.
При отсутствии внутренних источников теплоты и \(\lambda = \text{const} \) дифференциальное уравнение энергии (2.15) приводится для этой задачи к виду

\[
\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} = 0. \tag{3.53}
\]

Рассмотрим температурное поле при простейших граничных условиях:

\[
\begin{align*}
x = 0 & \quad t = t_0, \\
x = l & \quad t = t_0, \\
y = 0 & \quad t = t_0, \\
y = \delta & \quad t = f(x).
\end{align*} \tag{3.54}
\]

Введем новую переменную \(T = t - t_0 \). Тогда уравнение (3.53) и граничные условия перепишутся в виде:

\[
\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0; \tag{3.55}
\]

\[
\begin{align*}
x = 0 & \quad T = 0, \\
x = l & \quad T = 0, \\
y = 0 & \quad T = 0, \\
y = \delta & \quad T = f(x) - t_0 = F(x). \tag{3.56}
\end{align*}
\]

Рис. 3.12

Решим уравнение Лапласа (3.55) методом разделения переменных. Зададим решение уравнения в виде произведения двух функций \(X = X(x) \) и \(Y = Y(y) \)

\[
T = XY. \tag{3.57}
\]

Продифференцировав это уравнение, получим

\[
\frac{\partial T}{\partial x} = Y \frac{dX}{dx}, \quad \frac{\partial^2 T}{\partial x^2} = Y \frac{d^2X}{dx^2} \quad \text{и} \quad \frac{\partial^2 T}{\partial y^2} = X \frac{d^2Y}{dy^2}. \]

Подстановка этих выражений в (3.55) приводит к уравнению

\[
Y \frac{d^2X}{dx^2} + X \frac{d^2Y}{dy^2} = 0,
\]

или

\[
-\frac{1}{X} \frac{d^2X}{dx^2} = \frac{1}{Y} \frac{d^2Y}{dy^2}. \tag{3.58}
\]

Это равенство возможно только в том случае, когда его правая и левая части порознь равны постоянной величине.
Обозначим постоянную разделения переменных через μ^2. Тогда из уравнения (3.58) получается:

\[
\frac{d^2X}{dx^2} + \mu^2 X = 0, \quad (3.59)
\]
\[
\frac{d^2Y}{dy^2} - \mu^2 Y = 0. \quad (3.60)
\]

Решения этих уравнений известны:

\[
X = C_1 \cos \mu x + C_2 \sin \mu x,
\]
\[
Y = C_3 e^{\mu y} + C_4 e^{-\mu y}.
\]

Следовательно, в соответствии с выражением (3.57) общее решение имеет вид

\[
T = (C_1 \cos \mu x + C_2 \sin \mu x) (C_3 e^{\mu y} + C_4 e^{-\mu y}). \quad (3.61)
\]

Константы интегрирования, входящие в это уравнение, определяются на основе граничных условий (3.56). Условие $T = 0$ при $y = 0$ выполняется при $C_3 = -C_4$. Чтобы при $x = 0$ выполнялось равенство $T = 0$, необходимо иметь $C_1 = 0$. Условие $T = 0$ при $x = l$ требует, чтобы $\mu = \frac{n\pi}{l}$, где $n = 1, 2, 3...*$. С учетом найденных констант интегрирования на основании уравнения (3.61) можно записать бесконечное число частных решений уравнения (3.55). Общее решение этого уравнения может быть записано как сумма частных решений

\[
T = \sum_{n=1}^{\infty} C_n \left(e^\frac{n\pi y}{l} - e^{-\frac{n\pi y}{l}} \right) \sin \frac{n\pi}{l} x =
\]
\[
= 2 \sum_{n=0}^{\infty} C_n \sinh \frac{n\pi}{l} y \cdot \sin \frac{n\pi}{l} x, \quad (3.62)
\]

где гиперболический синус равен

\[
\sinh \frac{n\pi}{l} y = \frac{e^{\frac{n\pi y}{l}} - e^{-\frac{n\pi y}{l}}}{2}. \quad (3.63)
\]

* Решение, соответствующее $n=0$, является тривиальным, так как в этом случае при любых значениях аргумента $T = 0$. Поэтому оно исключено из рассмотрения.
Последнее граничное условие используется для определения константы C_n. Подставив его в уравнение (3.62), получим

$$F(x) = 2 \sum_{n=1}^{\infty} C_n \sin \frac{n\pi}{l} x = \sum_{n=1}^{\infty} A_n \sin \frac{n\pi}{l} x,$$

где

$$A_n = 2C_n \sin \frac{n\pi}{l} \delta. \quad (3.65)$$

Выражение (3.64) представляет собой разложение функции $F(x)$ в ряд Фурье по синусам (предполагается, что такое разложение возможно). Коэффициенты этого разложения определяются известной формулой

$$A_n = \frac{2}{l} \int_0^l F(x) \sin \frac{n\pi}{l} x \, dx. \quad (3.66)$$

Сопоставляя выражения (3.65) и (3.66), найдем

$$C_n = \frac{1}{l \sin \frac{n\pi}{l} \delta} \int_0^l F(x) \sin \frac{n\pi}{l} x \, dx. \quad (3.67)$$

С учетом этого равенства выражение (3.62), определяющее температурное поле в рассматриваемой задаче, приводится к окончательному виду:

$$T = \frac{2}{l} \sum_{n=1}^{\infty} \frac{\sin \frac{n\pi}{l}}{\sin \frac{n\pi}{l}} \frac{y}{\frac{n\pi}{l}} \sin \frac{n\pi}{l} x \int_0^l F(x) \sin \frac{n\pi}{l} x \, dx. \quad (3.68)$$

Рассмотрим теперь ту же задачу при более сложных граничных условиях: предположим, что два торца пластинки теплоизолированы, а две остальные поверхности характеризуются произвольным распределением температур, т. е.

$$x = 0 \quad \frac{\partial t}{\partial x} = 0, \quad (3.69)$$

$$x = l \quad \frac{\partial t}{\partial x} = 0, \quad (3.69)$$

$$y = 0 \quad t = s(x),$$

$$y = \delta \quad t = f(x).$$
Решение дифференциального уравнения в этой задаче остается прежним (переменную t здесь удобно оставить без замены)

$$t = (C_1 \cos \mu x + C_2 \sin \mu x) (C_3 e^{\mu y} + C_4 e^{-\mu y}).$$

(3.70)

Следовательно,

$$\frac{\partial t}{\partial x} = \mu (C_2 \cos \mu x - C_1 \sin \mu x) (C_3 e^{\mu y} + C_4 e^{-\mu y}).$$

(3.71)

Так как при $x = 0$ должно быть $\partial t/\partial x = 0$, то $C_2 = 0$; условие $\frac{\partial t}{\partial x} = 0$ при $x = l$ удовлетворяется при $\mu = \frac{n\pi}{l}$, где $n = 0, 1, 2, 3, \ldots$ (здесь $n = 0$ не приводит к тривиальному решению).

Общее решение представим как сумму частных решений

$$t = t_0 + \sum_{n=1}^{\infty} t_n.$$

(3.72)

С учетом найденных выше констант интегрирования

$$\sum_{n=1}^{\infty} t_n = \sum_{n=1}^{\infty} \left(A_n e^{\mu y} + B_n e^{-\mu y} \right) \cos \mu x.$$

(3.73)

При $n = 0$ из уравнений (3.59) и (3.60) следует, что

$$X_0 = Dx + E \quad \text{и} \quad Y_0 = Gy + H.$$

Следовательно,

$$t_0 = X_0 Y_0 = (Dx + E)(Gy + H).$$

(3.74)

Чтобы величина $\partial t/\partial x$, определенная по формуле (3.72), при $x = 0$ превращалась в нуль, необходимо условие $t_0 \neq \varphi(x)$. Поэтому $D = 0$ и уравнение (3.74) можно переписать в виде

$$t_0 = A_0 y + B_0.$$

(3.75)

Подставив выражения (3.73) и (3.75) в уравнение (3.72), получим

$$t = A_0 y + B_0 + \sum_{n=1}^{\infty} \left(A_n e^{\mu y} + B_n e^{-\mu y} \right) \cos \mu x.$$

(3.76)

Согласуем это решение с двумя оставшимися граничными условиями. Подстановка этих условий в (3.76) с учетом формулы для μ приводит к выражениям:

$$s(x) = B_0 + \sum_{n=1}^{\infty} (A_n + B_n) \cos \frac{n\pi}{l} x,$$

(3.77)

$$f(x) = A_0 \delta + B_0 + \sum_{n=1}^{\infty} \left(A_n e^{\frac{n\pi}{l} \delta} + B_n e^{-\frac{n\pi}{l} \delta} \right) \cos \frac{n\pi}{l} x.$$

(3.78)
Сравнивая эти выражения с формулами разложения функций в ряд Фурье по косинусам, найдем:

\[B_0 = \frac{1}{l} \int_0^l s(x) \, dx; \]

\[A_n + B_n = \frac{2}{l} \int_0^l s(x) \cos \frac{n \pi x}{l} \, dx; \]

\[A_0 \delta + B_0 = \frac{1}{l} \int_0^l f(x) \, dx; \]

\[A_n e^{i \delta} + B_n e^{-i \delta} = \frac{2}{l} \int_0^l f(x) \cos \frac{n \pi x}{l} \, dx. \]

Эти четыре уравнения позволяют вычислить коэффициенты \(A_0 \), \(B_0 \), \(A_n \) и \(B_n \).

Найденное таким образом распределение температур позволяет определить тепловые потоки, проходящие через поверхности рассматриваемой пластины или через элементы этих поверхностей. Так местная плотность теплового потока к нижней горизонтальной поверхности пластины (рис. 3.12) определяется формулой

\[q_x = -\lambda \left(\frac{\partial t}{\partial y} \right)_{y=0} = \Phi(x), \quad (3.79) \]

в которой температурный градиент вычисляется с помощью уравнений (3.76) или (3.68).

Тепловой поток через нижнюю поверхность

\[Q = h \int_0^l \Phi(x) \, dx, \quad (3.80) \]

где \(h \) — ширина пластины.

ГЛАВА IV

ТЕПЛОПРОВОДНОСТЬ ПРИ НЕСТАЦИОНАРНОМ РЕЖИМАХ

Нестационарные режимы теплообмена так же широко распространены в технике, как и стационарные. Из технических задач, требующих расчетной оценки нестационарных режимов теплообмена, в качестве примеров можно назвать: определение температурного состояния стенок ракетного двигателя твердого топлива за период его работы для оценки их надежности; определение температуры ракетного аппарата при входе его в плотные слои атмосферы с той же целью; определение времени прогрева деталей до заданной температуры при термообработке, которое необходимо для наладки технологического процесса.
§ 1. Условия подобия температурных полей при нестационарной теплопроводности

При оценке нестационарного режима теплообмена цель расчета состоит в определении температурного состояния тела и количества полученной или отданной телом теплоты по истечении определенного периода времени. Зависимость температуры не только от координат, но и от времени затрудняет графическое изображение даже однородного температурного поля. На рис. 4.1 изображено температурное поле для двух точек нагреваемого тела, которое перед нагревом имело однородное температурное поле. На рис. 4.2 показано температурное поле для всех точек (точнее, изотермических по-

Рис. 4.1

Рис. 4.2

верхностей) однородной плоской стенки при одинаковых условиях охлаждения обеих ее поверхностей. При таком изображении поля температурное состояние можно охарактеризовать только в определенные моменты времени τ.

Дифференциальное уравнение энергии (2.15) в твердом теле без внутренних источников теплоты имеет вид

$$\frac{\partial t}{\partial \tau} = a \left(\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2} \right). \quad (4.1)$$

Характер взаимодействия тела с окружающей средой опищем граничными условиями третьего рода

$$\alpha \left(t_w - t_f \right) = - \lambda_{ct} \left(\frac{\partial t}{\partial n} \right)_{n = 0}, \quad (4.2)$$

где λ_{ct} — коэффициент теплопроводности стенки; $\frac{\partial t}{\partial n}$ — температурный градиент в твердом теле.

При равномерном температурном поле в начальный момент процесса теплообмена временные условия имеют простой вид: при $\tau = 0 \quad t = t'$.

292
Обозначим избыточную температуру в любой точке тела в произвольный момент времени через \(\theta \)

\[
\theta = t - t_f. \tag{4.3}
\]

Для точек, расположенных на поверхности и в центре стенки,

\[
\theta_w = t_w - t_f; \quad \theta_0 = t_0 - t_f. \tag{4.4}
\]

Для начального момента времени

\[
\theta' = t' - t_f. \tag{4.5}
\]

Безразмерная избыточная температура

\[
\bar{\theta} = \frac{\theta}{\theta'}. \tag{4.6}
\]

Обозначим безразмерные координаты через:

\[
\frac{x}{l} = \bar{x}; \quad \frac{y}{l} = \bar{y}; \quad \frac{z}{l} = \bar{z},
\]

где \(l \) — характерный размер тела.

Приведем уравнение (4.1) к безразмерному виду. Так как

\[
\frac{\partial^2 \theta}{\partial x^2} = \frac{\theta'}{l^2} \frac{\partial^2 \bar{\theta}}{\partial \bar{x}^2}; \quad \frac{\partial^2 \theta}{\partial y^2} = \frac{\theta'}{l^2} \frac{\partial^2 \bar{\theta}}{\partial \bar{y}^2};
\]

\[
\frac{\partial^2 \theta}{\partial z^2} = \frac{\theta'}{l^2} \frac{\partial^2 \bar{\theta}}{\partial \bar{z}^2}; \quad \frac{\partial \theta}{\partial t} = \frac{\theta'}{l^2} \frac{\partial \bar{\theta}}{\partial \bar{t}},
\]

то уравнение (4.1) имеет вид

\[
\frac{\partial \bar{\theta}}{\partial \frac{\alpha t}{l^2}} = \frac{\partial^2 \bar{\theta}}{\partial \bar{x}^2} + \frac{\partial^2 \bar{\theta}}{\partial \bar{y}^2} + \frac{\partial^2 \bar{\theta}}{\partial \bar{z}^2}. \tag{4.7}
\]

Следовательно, для сходственных точек, у которых \(\bar{x} = \text{idem} \), \(\bar{y} = \text{idem} \) и \(\bar{z} = \text{idem} \), безразмерная температура \(\bar{\theta} \) зависит от числа Фурье \(\text{Fo} = \frac{\alpha t}{l^2} \). Однако связь величин \(\theta \) и \(\text{Fo} \) неоднозначна, так как интеграл уравнения (4.7) зависит от формы тела, а константы интегрирования — от условий на границах.

Анализ уравнения (4.2), определяющего условия теплообмена на границах, методами теории подобия показывает, что подобные процессы теплообмена на границе тела определяется числом Био

\[
\text{Bi} = \frac{\alpha t}{\lambda_{es}}. \tag{4.8}
\]

Следовательно, для конкретной формы тела температурные поля \(\theta = f(x, y, z) \) будут подобны, а безразмерные избыточные температуры \(\bar{\theta} \) в сходственных точках будут одинаковы при условии:

\[
\text{Fo} = \text{idem}; \quad \text{Bi} = \text{idem}.
\]

293
Потому температурное поле при нестационарной теплопроводности определяется общенным выражением

$$\bar{\theta} = f \left(F_0, B_i, \bar{x}, \bar{y}, \bar{z} \right), \quad (4.9)$$

вид функции в котором зависит от формы тела.

§ 2. Результаты аналитического решения

Температурное поле при нестационарном режиме теплообмена можно найти на основе аналитического решения задачи.

Рассмотрим расчетные зависимости, полученные аналитическим методом, на примере плоской стенки, размеры которой вдоль осей y и z настолько велики, что теплообменом с торцов можно пренебречь. Будем считать условия теплообмена с обеих поверхностей одинаковыми ($t_1 = \text{const}$ и $\alpha = \text{const}$). Тогда температурное поле будет симметричным относительно середины стенки, поэтому ее толщину удобно обозначить через 2δ (рис. 4.3).

В приложении к одномерной задаче о плоской стенке с учетом принятых ранее обозначений для избыточных температур дифференциальное уравнение (4.1) сводится к виду

$$\frac{\partial \theta}{\partial \tau} = a \frac{\partial^2 \theta}{\partial x^2}. \quad (4.10)$$

Граничные условия для обеих поверхностей при $x = \pm \delta$

$$= \lambda c_{\tau} \left(\frac{\partial \theta}{\partial x} \right)_{\partial} = \alpha \theta_{\partial}. \quad (4.11)$$

Временные условия: при $\tau = 0 \theta = \theta'$. Решим эту задачу методом разделения переменных. Представим искомую функцию θ в виде произведения переменных $T (\tau)$ и $X (x)$, из которых первая зависит только от времени, а вторая — только от координаты

$$\theta = T X. \quad (4.12)$$

Дифференцированием этого выражения найдем

$$\frac{\partial \theta}{\partial \tau} = X \frac{dT}{d\tau}; \quad \frac{\partial \theta}{\partial x} = T \frac{dX}{dx}; \quad \frac{\partial^2 \theta}{\partial x^2} = T \frac{d^2 X}{dx^2}.$$

Подставив эти выражения в уравнение (4.10), получим

$$X \frac{dT}{d\tau} = a T \frac{d^2 X}{dx^2}.$$
или
\[\frac{1}{a} \frac{1}{T} \frac{dT}{d\tau} = \frac{1}{X} \frac{d^2X}{dx^2} = -\beta^2, \]
где \(\beta^2 \) — постоянная разделяния переменных.
Из выражения (4.13) получается два дифференциальных уравнения:
\[\frac{dT}{d\tau} + a\beta^2T = 0; \]
\[\frac{d^2X}{dx^2} + \beta^2X = 0, \]
решения которых известны
\[T = Ae^{-a\beta^2\tau}, \]
\[X = B\cos\beta x + C\sin\beta x. \]
Эти формулы c учетом (4.12) позволяют записать
\[\theta = (C_1\cos\beta x + C_2\sin\beta x) e^{-a\beta^2\tau}. \]
В силу симметрии температурного поля замена \(x \) на \(-x\) не должна отражаться на значении \(\theta \). Это условие выполняется при \(C_2 = 0 \) и потому решение уравнения (4.18) приводится к виду
\[\theta = Ce^{-a\beta^2\tau}\cos\beta x. \]
Значение постоянной разделяния переменных найдем из граничного условия.
Из выражения (4.19) при \(x = \pm \delta \) легко найти
\[\left(\frac{\partial \theta}{\partial x} \right)_w = \mp \beta e^{-a\beta^2\tau}\sin\beta\delta; \]
\[\theta_w = Ce^{-a\beta^2\tau}\cos\beta\delta. \]
Подставив эти выражения в условие (4.11), получим
\[\beta\sin\beta\delta = \frac{\alpha}{\lambda_{ct}} \cos\beta\delta \]
или
\[\operatorname{ctg} \mu = \frac{\mu}{\text{Bi}}, \]
где
\[\mu = \beta\delta; \quad \text{Bi} = \frac{\alpha\delta}{\lambda_{ct}}. \]
Каждому значению числа Bi отвечает бесчисленное множество корней \((\mu_1, \mu_2, \mu_3, ...) \) трансцендентного уравнения (4.22). Это уравнение решается обычно графическим путем (рис. 4.4) и значения \(\mu \) при различных Bi сводятся в таблицу.
Каждному значению μ соответствует частное решение уравнения (4.10) в форме (4.19). Следовательно, общее решение этого уравнения имеет вид

$$
\theta = \sum_{n=1}^{\infty} C_n e^{-\mu_n^2 Fo \delta} \cos \frac{\mu_n x}{\delta}.
$$

(4.23)

При записи этого уравнения сделана замена $a_\beta \tau = a \frac{\mu^2}{\delta^2} \tau = \mu^2 \frac{\alpha \tau}{\delta^2} = \mu^2 Fo$.

Коэффициенты ряда C_n определяются из начального условия, подстановка которого в уравнение (4.23) позволяет получить

$$
\theta' = \sum_{n=1}^{\infty} C_n \cos \frac{\mu_n x}{\delta}.
$$

(4.24)

Умножив обе части этого уравнения на $\cos \frac{\mu_n x}{\delta} dx$ и проинтегрировав все члены полученного равенства в пределах от $-\delta$ до $+\delta$, получим*

$$
\theta' \int_{-\delta}^{\delta} \cos \frac{\mu_n x}{\delta} dx = C_1 \int_{-\delta}^{\delta} \cos \frac{\mu_1 x}{\delta} \cos \frac{\mu_n x}{\delta} dx +
$$

$$
+C_2 \int_{-\delta}^{\delta} \cos \frac{\mu_2 x}{\delta} \cos \frac{\mu_n x}{\delta} dx + ...
$$

$$
... + C_n \int_{-\delta}^{\delta} \cos^2 \frac{\mu_n x}{\delta} dx + ...
$$

(4.25)

Вычислим отдельные интегралы. Интеграл, входящий в левую часть уравнения, равен

$$
\int_{-\delta}^{\delta} \cos \frac{\mu_n x}{\delta} dx = \frac{2\delta \sin \mu_n}{\mu_n}.
$$

(4.26)

Все интегралы, входящие в правую часть уравнения (4.25), кроме интеграла, содержащего квадрат косинуса, после вычисления*

* В курсах математического анализа доказывается, что ряд (4.24) равномерно сходящийся, и потому операция почленного интегрирования правомерна.
оказываются равными нулю. Интеграл, содержащий квадрат косинуса, определяется выражением

$$\int_{-\delta}^{\delta} \cos^2 \frac{\mu_n x}{\delta} \, dx = \delta \left(1 + \frac{1}{2\mu_n} \sin 2\mu_n \right). \tag{4.27}$$

Подставив интегралы (4.26) и (4.27) в выражение (4.25), получим

$$C_n = 2\theta' \frac{\sin \mu_n}{\mu_n + \sin \mu_n \cos \mu_n}. \tag{4.28}$$

С учетом этого выражения формула (4.23), отражающая распределение температуры в пластине, приводится к виду

$$\theta = 2\theta' \sum_{n=1}^{\infty} \frac{\sin \mu_n \cos \mu_n x}{\mu_n + \sin \mu_n \cos \mu_n} e^{-\mu_n^2 Fo} \tag{4.29}$$

или

$$\overline{\theta} = 2 \sum_{n=1}^{\infty} \frac{\sin \mu_n \cos \mu_n \overline{x}}{\mu_n + \sin \mu_n \cos \mu_n} e^{-\mu_n^2 Fo}, \tag{4.30}$$

gде \(\overline{x} = x/\delta\).

Форма температурного поля, соответствующая уравнению (4.30), показана на рис. 4.3.

Использование полученного уравнения на практике связано с необходимостью выполнения трудоемких расчетов. Поэтому с помощью этой формулы построены графики

$$\overline{\theta} = f(Fo, Bi, \overline{x}). \tag{4.31}$$

использование которых сводит расчеты к весьма простым операциям. Каждый график построен для \(\overline{x} = \text{const}\). Наиболее широко в справочной литературе распространены графики при \(\overline{x} = 0\) и \(\overline{x} = 1\), которые соответственно характеризуют температуру плоскости симметрии и боковых поверхностей стенки, но имеются также графики при \(\overline{x} = 0,2; 0,4; 0,6; 0,8\) [27]. На рис. 4.5 показана такая зависимость при \(x = 0\).

Из рис. 4.5 видно, что при \(Bi \gg 100\) температура стенки пере- стает зависеть от условий теплообмена на границах тела. Это объясняется тем, что при этом тепловое сопротивление внешнего теплообмена становится несопоставимо малым по сравнению с внутренним сопротивлением, и поэтому температурное поле определяется условиями распространения теплоты внутри тела.

Количество полученной или отданной стенкой теплоты также определяется числами \(Fo\) и \(Bi\). Обозначим через \(Q'\) количество потерянной (или полученной) теплоты при \(\tau \to \infty\) (когда температуры тела и среды выравниваются), а через \(Q_t\) теплоту, отданную по
истечении времени t. Тогда для стенки с плотностью материала ρ и теплоемкостью c можно записать:

$$Q' = 2\delta c (t' - t_f) = 2\delta c \theta',$$

$$Q_t = 2\delta c (t' - t_m) = 2\delta c (\theta' - \theta_m),$$

где t_m — средняя температура стенки по истечении периода времени t.

Поделив почленно второе равенство на первое, получим

$$\frac{Q_t}{Q'} = 1 - \frac{\theta_m}{\theta'} = 1 - \bar{\theta}_m.$$

В каждый момент времени температурное поле стенки определяется числами Fo и Bi, поэтому и средняя температура стенки будет зависеть только от этих чисел. Следовательно,

$$\frac{Q_t}{Q'} = f(Fo, Bi). \tag{4.32}$$

График этой функции имеется в справочной литературе. Иногда вместо этой функции приводится зависимость для средней безразмерной температуры стенки

$$\bar{\theta}_m = f(Fo, Bi). \tag{4.33}$$

Расчетные соотношения для теплопроводности плоской стенки в нестационарных условиях получены для симметричных условий теплообмена на обеих поверхностях стенки. Эти соотношения могут быть использованы для одного часто встречающегося случая несимметричных условий теплообмена, когда одна из поверхностей стенки теплоизолирована, а другая участвует в теплообмене. В этом случае рассчитываемая стенка толщиной δ заменяется фиктивной стенкой толщиной 2δ (рис. 4.6) и к ней применяются все полученные выше соотношения. Температура в плоскости симметрии фиктивной стенки равна температуре теплоизолированной поверхности реальной стенки.

Аналогичные решения задач о температурном поле и количестве переданной теплоты в нестационарных условиях теплообмена, а также графики, облегчающие их использование, имеются для бесконечно длинного цилиндра и для шара. В качестве характерного размера для этих тел выбран радиус.

Аналитические выражения, определяющие температурные поля бесконечно длинного сплошного цилиндра и сплошного шара, имеют вид:

$$\bar{\theta} = 2 \sum_{n=1}^{\infty} \frac{1}{\mu_n} \frac{J_1(\mu_n) J_0(\mu_n R)}{J_0(\mu_n) + J_0(\mu_n) e^{-\mu_n^2 Fo}}, \tag{4.34}$$

$$\bar{\theta} = 2 \sum_{n=1}^{\infty} \frac{\sin \mu_n - \mu_n \cos \mu_n}{\mu_n - \sin \mu_n \cdot \cos \mu_n} \frac{\sin \mu_n R}{\mu_n R} e^{-\mu_n^2 Fo}. \tag{4.35}$$
Здесь J_0 и J_1 — функции Бесселя первого рода нулевого и первого порядков; $\overline{R} = R/R_0$.

Величины μ для цилиндра и шара определяются равенствами:

$$\mu \frac{J_1(\mu)}{J_0(\mu)} = \text{Bi}$$

(4.36)

$$\mu \operatorname{ctg} \mu = 1 - \text{Bi}.$$

(4.37)

Результаты решения задачи нестационарной теплопроводности для одномерного температурного поля могут быть использованы при расчете температуры некоторых тел с двумерным и трехмерным температурными полями.

![Diagram](image)

Рис. 4.6

В качестве примера рассмотрим охлаждение бруса бесконечной длины с прямоугольным сечением (рис. 4.7, а). Теплота передается брусом в окружающую среду через вертикальные и горизонтальные грани. Предположим, что горизонтальные грани бруса теплоизолированы (рис. 4.7, б). Тогда безразмерную температуру $\overline{\theta}_1$ любой плоскости, параллельной плоскости 1-1, можно определить по формуле (4.30) или по графику, аналогичному рис. 4.5. При этом в качестве характерного следует взять размер δ_1.

Если предположить, что теплоизолированы вертикальные грани (рис. 4.7, в), то аналогично определяется безразмерная температура $\overline{\theta}_2$ плоскости, параллельной 2-2. В этом случае характерным размером будет δ_2.

Величина θ_1 характеризует уменьшение избыточной температуры рассматриваемой вертикальной плоскости к заданному моменту времени по сравнению с начальной избыточной температурой θ' благодаря теплообмену вертикальных поверхностей. Аналогично величина $\overline{\theta}_2$ характеризует уменьшение избыточной температуры рассматриваемой горизонтальной плоскости благодаря теплообмену горизонтальных поверхностей.

Когда в теплообмене участвуют все боковые поверхности бруса, снижение температуры на линии пересечения рассматриваемых
плоскостей определяется одновременным влиянием теплообмена вертикальных и горизонтальных поверхностей. Поэтому безразмерная температура на этой линии равна произведению безразмерных температур, определенных отдельно для теплообмена вертикальных и горизонтальных граней

\[\theta = \bar{\theta}_1 \bar{\theta}_2. \]

(4.38)

Таким путем может быть определена температура в любой точке параллелепипеда (на пересечении трех плоскостей). При этом необходимо определить три безразмерных температуры, пользуясь методикой для бесконечной плоской стенки, а безразмерная температура в рассматриваемой точке будет равна их произведению.

При оценке температуры внутри цилиндра ограниченной длины определяется безразмерная температура на цилиндрической поверхности заданного радиуса по закономерностям для бесконечного длинного цилиндра и для плоскости, параллельной основанием цилиндра, по формуле температурного поля пластины, толщина которой равна длине цилиндра. Безразмерная температура на пересечении цилиндрической поверхности и плоскости равна произведению безразмерных температур для каждой из этих поверхностей.

Рассмотренный выше метод известен под названием теоремы о перемещении решений, с доказательством которой можно ознакомиться в [15].

§ 3. Метод регулярного режима

Выявим закон изменения температуры в теле сначала для наиболее простого случая, когда внутренним тепловым сопротивлением тела по сравнению с внешним сопротивлением можно пренебречь, а потому в каждый момент времени температуру всего тела можно считать одинаковой. Равномерность температурного поля увеличивается с ростом коэффициента теплопроводности тела и с уменьшением коэффициента его теплообмена с окружающей средой. При \(\text{Bi} < 0,1 \) с достаточной для практики точностью температурное поле тела можно считать равномерным.

Запишем для тела, имеющего объем \(V \), поверхность соприкосновения с окружающей средой \(F \) и равномерное температурное поле, тепловой баланс за время \(dt \). Избыточная температура, определяемая формулой (4.3), будет одинаковой для всех точек тела, причем при \(dt > 0 \) и \(t_1 = \text{const} \) всегда \(d\theta < 0 \). При отсутствии внутренних источников теплоты изменение энтальпии равно рассеянной поверхностью теплоте

\[- V \rho c \, d\theta = \alpha \theta F \, dt. \]

Этому равенству можно придать вид

\[\frac{d\theta}{\theta} = -m_p \, dt, \]

(4.39)
где \(m_p \) — коэффициент пропорциональности, называемый темпом охлаждения (или нагревания) и определяемый формулой

\[
m_p = \frac{F}{V} \frac{\alpha}{c \rho}.
\] (4.40)

Считая теплофизические характеристики тела независящими от температуры и \(\alpha = \text{const} \), после интегрирования уравнения (4.39) получим

\[
\ln \theta = -m_p \tau + C.
\] (4.41)

Это и есть основная закономерность регулярного режима, состоящая в том, что при теплообмене в регулярном режиме натуральный логарифм избыточной температуры связан со временем линейной зависимостью. Коэффициент пропорциональности [формула (4.40)] определяет темп охлаждения только для тел с равномерным температурным полем.

Подставив в уравнение (4.41) начальное условие \((\theta = \theta' \text{ при } \tau = 0) \), найдем, что \(C = \ln \theta' \), и, следовательно, уравнению (4.41) можно придать вид

\[
\ln \tilde{\theta} = -m_p \tau.
\] (4.42)

Эта формула может использоваться в практических расчетах для тел любой формы при \(\Bi < 0,1 \). Безразмерная избыточная температура определяется формулой (4.6).

Рассмотрим теперь общий случай, когда неравномерностью распределения температуры в теле пренебречь нельзя.

Анализ формул (4.30), (4.34) и (4.35) показывает, что безразмерную избыточную температуру \(\tilde{\theta} \) можно выразить суммой произведений из трех величин

\[
\tilde{\theta} = \sum_{n=1}^{\infty} A_n U_n e^{-m_n \tau},
\] (4.43)

где \(A_n \) — величина, не зависящая ни от координат, ни от времени;
\(U_n \) — функции координат;
\(m_n \) — ряд положительных чисел, которые быстро возрастают с увеличением номера члена ряда.

Такая форма записи безразмерной температуры пригодна не только для простейших тел правильной формы, но и для любых других тел, форма которых отражается на виде множителей \(A_n \) и \(U_n \) [11].

При небольшой продолжительности процесса теплообмена температурное поле определяется не только первым, но и последующими членами ряда. Это так называемая неупорядоченная стадия процесса охлаждения или нагревания, в течение которой величина температуры в некоторых точках тела и скорость ее изменения зависят от начального распределения температур в теле.

Благодаря неравенству

\[m_1 < m_2 < m_3 \ldots \]
увеличение времени τ приводит к тому, что каждый последующий член ряда (4.43) убывает скорее, чем предыдущий. После некоторого значения $\tau > \tau^*$ все члены ряда становятся пренебрежимо малыми по сравнению с первым. Тогда из (4.43) с достаточной точностью можно записать (индексы опущены)

$$\bar{\theta} = A U e^{-m \tau}. \quad (4.44)$$

С учетом равенства $\bar{\theta} = \theta/\theta'$ после логарифмирования выражения (4.44) получается

$$\ln \theta = -m \tau + C, \quad (4.45)$$

где $C = \ln \theta'AU$ — функция от координат.

Следовательно, при $\tau > \tau^*$ наступает регулярный режим теплообмена, при котором изменение температуры во времени для всех точек тела подчиняется единому закону (линейная зависимость $\ln \theta$ от τ), а начальное распределение температур в теле не оказывает влияния на форму этого закона.

Из сопоставления формул (4.44) с выражениями (4.30), (4.34) и (4.35) следует, что

$$m = a \frac{\mu^2}{l^2}; \quad (4.46)$$

величина μ представляет собой наименьший положительный корень уравнений (4.22), (4.36) или (4.37). Из формул (4.46) видно, что темп охлаждения (нагревания) m не зависит от времени и определяется величиной критерия Bi, физическими свойствами, формой и размерами тела.

Теория регулярного режима дает простой и достаточно точный метод определения физических характеристик вещества (a, λ, c), коэффициентов излучения и коэффициентов теплоотдачи. Так, определение коэффициента температуропроводности a основано на первой теореме Кондрадтева, в силу которой при $Bi \to \infty$ (практически при $Bi \gg 100$)

$$a = Km_\infty, \quad (4.47)$$

где K — коэффициент формы, зависящий от конфигурации и размеров тела.

Справедливость этой теоремы проиллюстрируем на примере шара. Из формулы (4.46) следует, что для рассматриваемого случая

$$a = \frac{l^2}{\mu^2} m_\infty. \quad (4.48)$$

Из (4.37) видно, что при $Bi \to \infty \mu \cotg \mu \to -\infty$, а величина μ стремится к значению, равному π. Подставив в формулу (4.48) $\mu = \pi$ с учетом того, что для шара $l = R$, получим

$$a = \frac{R^2}{\pi^2} m_\infty. \quad (4.49)$$
Это выражение подтверждает справедливость первой теоремы Кondrатьева и позволяет получить формулу для коэффициента формы шара

\[K = \frac{R^2}{\tau^3}. \] (4.50)

Таким образом, задача экспериментатора сводится к определению темпа охлаждения \(m \). Для этого образцу испытуемого материала придаю форму, для которой величина \(K \) легко подсчитывается, и в одной из его точек заделывают спай термопары. Образец помещается в термостат, температура жидкости в котором выше температуры образца, а затем регистрируется разность температур тела и жидкости в различные моменты времени. Построив затем график \(\ln \theta = f(\tau) \) (рис. 4.8), выявляют область, в которой реализуется линейная зависимость \(\ln \theta = f(\tau) \), т.е. наблюдается регулярный режим.

Если при регулярном режиме в момент времени \(\tau_1 \) и \(\tau_2 \) избыточная температура в точке замера составляет \(\theta_1 \) и \(\theta_2 \), то в соответствии с формулой (4.45)

\[\ln \theta_1 = -m\tau_1 + C; \]
\[\ln \theta_2 = -m\tau_2 + C. \]

Исключив из этих равенств константу \(C \), найдем

\[m = \frac{\ln \frac{\theta_1}{\theta_2}}{\Delta \tau}, \] (4.51)

где

\[\Delta \tau = \tau_2 - \tau_1. \]

§ 4. Численные методы расчета температурных полей

Сложная форма тела, неоднородность его теплофизических характеристик, сложный характер граничных и временных условий однозначности часто не позволяют оценить температурные поля рассмотренными выше методами. Для таких задач можно использовать численные методы расчета температурных полей.
При численном методе расчета изучаемое тело подразделяется на элементы (слои или параллелепипеды), а рассматриваемый отрезок времени — на небольшие периоды. В течение каждого периода времени теплообмен между соседними элементами материала или между поверхностью тела и средой считается стационарным. Составляя баланс теплоты для каждого элемента тела, определяют изменение его энтальпии за каждый отрезок времени. Последовательный расчет температуры всех элементов позволяет выявить температурное поле тела при нестационарном режиме.

Упрощающие предположения численных методов расчета делают их приближенными. Для повышения точности метода необходимо уменьшать элементы тела и продолжительность расчетного периода времени, при этом объем вычислительной работы возрастает. Применение электронных вычислительных машин позволяет преодолеть этот недостаток численных методов и получить при расчете необходимую точность.

Для иллюстрации численного метода расчета температурного поля рассмотрим одномерную задачу — плоскую стенку, объем которой можно подразделить на элементарные слои. Три таких слоя показаны на рис. 4.9. Схематизируя задачу, заменим слои узловыми точками 1, 2, 3 и т. д., соединенными теплопроводящими стержнями. Теплофизические характеристики вещества будем считать одинаковыми для всех элементов стенки.

Составим баланс теплоты для первой узловой точки. Для стены без внутренних источников теплоты подведенная к рассматриваемому элементу теплота определяет изменение его энтальпии

$$Q_{21} + Q_{31} = c_p V (t'_1 - t_1), \quad (4.52)$$

где V — объем элемента; t_1 — температура элемента в момент времени t; t'_1 — та же температура в момент времени $t + \Delta t$.

Величины Q_{21} и Q_{31} определяются по формуле плоской стенки для стационарного режима теплообмена

$$Q_{21} = \frac{\lambda}{\delta} (t_2 - t_1) F \Delta t; \quad Q_{31} = \frac{\lambda}{\delta} (t_3 - t_1) F \Delta t,$$

где F — площадь боковой поверхности стенки.

С учетом этих выражений баланс теплоты (4.52) приводится к виду

$$\frac{\lambda}{\delta} (t_2 - t_1) \Delta t + \frac{\lambda}{\delta} (t_3 - t_1) \Delta t = c_p \delta (t'_1 - t_1).$$
Следовательно.

\[t' = F_0 \left[t_2 + t_3 + t_1 \left(\frac{1}{F_0} - 2 \right) \right], \quad (4.53) \]

где \(F_0 = \frac{a \Delta t}{\delta^2} \) — число Фурье.

Эта формула позволяет рассчитать температуру всех элементов в момент времени \(t + \Delta t \) по известному распределению температур в момент времени \(t \).

Анализ уравнения (4.53) показывает, что удовлетворительные результаты получаются только при \(F_0 \ll \frac{1}{2} \). Поэтому при выборе отрезка времени необходимо соблюдать неравенство

\[\Delta t \ll \frac{\delta^2}{2a}. \quad (4.54) \]

Методика решения более сложных задач нестационарной теплопроводности численными методами рассмотрена в [15], [25].

ГЛАВА V
ТЕПЛООТДАЧА И МЕТОДЫ ЕЕ ИССЛЕДОВАНИЯ

§ 1. Физика явления теплоотдачи

В процессе теплоотдачи поверхность твердого тела обменивается тепловой с омывающим ее потоком жидкости или газа. Частицы теплоносителя, непосредственно соприкасающиеся с твердой поверхностью, передают теплоту стенке теплопроводностью, в остальной части потока передача теплоты осуществляется теплопроводностью и конвективным переносом. В ламинарной части потока теплота передается в основном теплопроводностью, но благодаря перестроению профиля продольной составляющей скорости по длине омываемой стенки в потоке возникает нормальная составляющая скорости, а следовательно, и конвективный перенос теплоты. В турбулентной части потока конвективный перенос теплоты играет решающую роль.

Жидкости и газы имеют небольшие коэффициенты теплопроводности, поэтому ламинарная часть потока теплоносителя создает большое термическое сопротивление потоку теплоты. Любой фактор, способствующий перемешиванию жидкости, в том числе и турбулентность, создают благоприятные условия для распространения теплоты в жидкости.

Таким образом, механизм переноса теплоты между жидкостью и поверхностью твердого тела, а также интенсивность его зависят прежде всего от условий движения теплоносителя.

На начальном участке поверхности, как правило, образуется ламинарный пограничный слой*, толщина которого увеличивается

* При входе в канал предварительно турбулизированного потока пограничный слой может иметь турбулентный характер на всем протяжении стенки, начиная от входа.
по мере удаления от входной кромки (рис. 5.1). Увеличение толщины ламинарного слоя приводит к уменьшению его устойчивости и на расстоянии от входа x_{np} ламинарный пограничный слой переходит в турбулентный. При этом у поверхности стенки образуется ламинарный подслой. В опытах Б. С. Петухова и Е. А. Краснощекова переход ламинарного пограничного слоя в турбулентный при течении жидкости по трубе наблюдался на расстоянии 2—20 диаметров от входа.

Переход ламинарного пограничного слоя в турбулентный сопровождается изменением интенсивности теплоотдачи. Ламинарный подслой тоньше ламинарного пограничного слоя, поэтому интенсивность теплоотдачи при турбулентном пограничном слое значительно выше, чем при ламинарном.

На рис. 5.2 изображено температурное поле в жидкости при теплоотдаче, когда пограничный слой имеет турбулентный характер. Резкое изменение температуры в ламинарном подслое свидетельствует о большом термическом сопротивлении этой части потока. В турбулентной части потока, где решающую роль играет конвективный перенос теплоты, наблюдается слабое изменение температуры по толщине слоя жидкости.

Движение теплоносителя вдоль стенки может быть вынужденным или свободным. При вынужденном движении скорость потока во много раз больше, чем при свободном. Толщина пограничного слоя существенно зависит от скорости: чем больше скорость, тем меньше толщина этого слоя. При этом увеличение скорости способствует более раннему переходу ламинарного слоя в турбулентный и расширению области турбулентного пограничного слоя. Поэтому при вынужденном движении теплоотдача протекает значительно более интенсивно, чем при свободном.

Вынужденное движение теплоносителя всегда сопровождается свободным, но его влияние на интенсивность теплоотдачи обнаруживается только при небольших скоростях вынужденного движения.

Интенсивность теплоотдачи зависит также от физических свойств теплоносителя.
Теплопроводность жидкости влияет на термическое сопротивление ламинарной части потока жидкости.

Вязкость жидкости оказывает влияние на толщину пограничного слоя и на условия перемешивания жидкости. При прочих равных условиях в более вязкой жидкости образуется более толстый пограничный слой, а условия перемешивания становятся менее благоприятными. Поэтому в вязких жидкостях теплоотдача протекает менее интенсивно.

Плотность теплоносителя также влияет на условия формирования пограничного слоя. Уменьшение плотности газа (например, воздуха с увеличением высоты полета) ведет к увеличению кинематического коэффициента вязкости, благодаря чему увеличивается толщина пограничного слоя. Поэтому уменьшение плотности газа ведет к уменьшению интенсивности теплоотдачи.

Важной зависимостью также является связь плотности с температурой, которую можно охарактеризовать коэффициентом объемного расширения. Этот коэффициент определяет подъемную силу, которая возникает в подогретой жидкости, и, следовательно, влияет на интенсивность свободного движения.

Теплоемкость жидкости влияет на интенсивность конвективного переноса теплоты. При одинаковых условиях перемешивания жидкость с большей теплоемкостью переносит больше теплоты, поэтому интенсивность теплоотдачи также возрастает.

Физические свойства теплоносителей зависят от температуры и потому изменяются в соответствии с температурным полем. Характер изменения физических свойств теплоносителя по нормали к поверхности зависит от направления теплового потока. При теплоотдаче от стенки в газовые частицы, непосредственно прилегающие к стенке, имеют наибольшую для рассматриваемой системы температуру и, следовательно, наибольшую величину коэффициента теплопроводности, вязкости, теплоемкости и наименьшую величину плотности. При изменении направления теплового потока изменяется и поле физических величин.

Диапазон изменения физических параметров в системе зависит от разности температур между стенкой и теплоносителем или, как принято говорить, от тепловой нагрузки.

Характер изменения теплофизических свойств жидкости по нормали к поверхности теплообмена влияет на профиль скоростей и температуру и в конечном итоге отражается на интенсивности процесса теплоотдачи.

Важную роль в процессе теплоотдачи играет форма обтекаемой поверхности. Так, при внешнем обтекании форма продольного сечения тела в значительной мере определяет условия формирования пограничного слоя. Удобообтекаемые тела имеют значительную поверхность, покрытую ламинарным пограничным слоем, и, следовательно, неблагоприятные условия для теплообмена. Плавный вход в канал способствует увеличению длины участка с ламинарным пограничным слоем и уменьшению интенсивности теплоотдачи на начальном участке.
Тепловой поток при теплоотдаче определяется формулой Ньютона (1.11), но эта формула не отражает в явном виде влияние всего многообразия факторов на интенсивность теплоотдачи: все эти факторы должны учитываться коэффициентом теплоотдачи.

Следовательно, коэффициент теплоотдачи зависит от скорости течения \(\omega \), от коэффициента теплопроводности \(\lambda \), вязкости \(\mu \), плотности \(\rho \) и теплоемкости \(c_p \), от температур стенки и жидкости, которые определяют диапазон изменения физических параметров теплоносителя, от формы \(\Phi \) и размеров тела \(l_1, l_2, \ldots \), т. е. \(a = f(\omega, \lambda, \mu, \rho, c_p, t_1, t_w, \Phi, l_1, l_2, \ldots) \).

(5.1)

Следует заметить, что при некоторых специфических условиях теплообмена число влияющих факторов может увеличиться. Так, если теплоотдача сопровождается изменением агрегатного состояния теплоносителя, то на интенсивность теплообмена существенное влияние будут оказывать другие физические характеристики (например, коэффициент поверхностного натяжения жидкости или плотность сухого насыщенного пара).

Большое число факторов, влияющих на коэффициент теплоотдачи, затрудняет его расчетную оценку. Поэтому при изучении теплоотдачи основная цель состоит в том, чтобы ознакомиться с методикой исследования этого явления и приемами расчетной оценки коэффициентов теплоотдачи при различных условиях теплообмена.

§ 2. Способы получения расчетных формул для определения коэффициента теплоотдачи

Математическая формулировка задачи для явления теплоотдачи была рассмотрена в § 5 главы II. Система дифференциальных уравнений, описывающая процесс теплоотдачи, при современном состоянии математического аппарата даже при введении упрощающих предположений решается только для некоторых простейших случаев. Например, путем интегрирования системы дифференциальных уравнений получена формула для определения коэффициента теплоотдачи при ламинарном течении несжимаемой жидкости в круглой абсолютно гладкой трубе, но из-за большого числа упрощающих предположений эта формула плохо согласуется с опытными данными.

Уравнения движения значительно упростятся, если предположить, что силы вязкости (трения) имеют существенное значение только в пределах пограничного слоя, а в остальной части потока ими можно пренебречь. Эта гипотеза была выдвинута в 1904 г. Л. Прандтлем и в большинстве практически важных случаев (при малой вязкости и большой скорости движения потока) хорошо согласуется с опытом.

Гипотеза Прандтля позволила преодолеть математические трудности при решении уравнений движения и послужила основанием для создания теории пограничного слоя, которая используется для аналитической оценки напряжения трения на поверхности стенки и теплоотдачи.
Количественные соотношения для расчета теплоотдачи можно получить с помощью идей О. Рейнольдса о единстве механизмов переноса теплоты и количества движения в потоке жидкости. Единство материальных частиц, участвующих в переносе количества движения и теплоты, приводит к подобию полей скорости и температуры в неизотермическом потоке, взаимодействующем со стенкой. Существование такого подобия будет доказано в § 5 настоящей главы на основе анализа уравнений движения и энергии, определяющих распределение скоростей и температур в системе. Подобие этих полей позволяет установить связь между характеристиками интенсивности теплоотдачи и трения на поверхности стенки.

Благодаря электронным вычислительным машинам появилась возможность численного решения систем дифференциальных уравнений (математический эксперимент). Эта возможность используется и при исследовании процессов теплоотдачи. В ряде случаев решение системы дифференциальных уравнений, описывающих теплоотдачу, для конкретных краевых условий позволяет рассчитать коэффициент теплоотдачи. Полученная таким образом информация обобщается на основе теории подобия физических явлений и представляется в виде уравнений подобия.

Теоретические методы исследования теплоотдачи ценные тем, что они дают наиболее общие закономерности и позволяют анализировать факторы, определяющие явление, в широком диапазоне изменения аргументов. Но при аналитическом решении задачи всегда исследуется упрощенная схема явления, и потому точность полученных результатов оценивается путем сопоставления их с экспериментальными данными.

Во многих случаях физический эксперимент остается единственным способом получения закономерностей, определяющих теплоотдачу. Чтобы с помощью эксперимента получить наиболее общую формулу для определения коэффициента теплоотдачи, пригодную не только для исследованных явлений, но и для всех явлений, подобных исследованным, постановку эксперимента и обработку опытных данных необходимо осуществлять на основе теории подобия физических явлений.

§ 3. Применение теории подобия к явлению теплоотдачи

При постановке эксперимента по теплоотдаче и обработке его результатов на основе теории подобия необходимо прежде всего знать числа подобия, которые войдут в уравнения подобия. Система дифференциальных уравнений, описывающих явление теплоотдачи (2.15), (2.22), (2.32) и (2.35), позволяет выявить структуру этих чисел.

Из дифференциального уравнения теплоотдачи в § 6 главы II было получено число Нusselta.

Проанализируем теперь дифференциальное уравнение энергии методами теории подобия. Для двух сходственных точек, подобных

310
между собой систем, уравнение (2.15) при \(q_v = 0 \) записывается в виде:

\[
\frac{\partial t''}{\partial t'} + \omega_x \frac{\partial t''}{\partial x'} + \omega_y \frac{\partial t''}{\partial y'} + \omega_z \frac{\partial t''}{\partial z'} = \]

\[
= a' \left(\frac{\partial^2 t''}{\partial x''} + \frac{\partial^2 t''}{\partial y''} + \frac{\partial^2 t''}{\partial z''} \right); \tag{5.2}
\]

\[
\frac{\partial t'''}{\partial t''} + \omega_x \frac{\partial t'''}{\partial x''} + \omega_y \frac{\partial t'''}{\partial y''} + \omega_z \frac{\partial t'''}{\partial z''} = \]

\[
= a'' \left(\frac{\partial^2 t'''}{\partial x''} + \frac{\partial^2 t'''}{\partial y''} + \frac{\partial^2 t'''}{\partial z''} \right). \tag{5.3}
\]

Обозначим константы подобия:

\[
C_{\omega} = \frac{\omega''}{\omega'} = \frac{\omega_x}{\omega'} = \frac{\omega_y}{\omega'} = \frac{\omega_z}{\omega'}; \tag{5.4}
\]

\[
C_t = \frac{t''}{t'} = \frac{x''}{x'} = \frac{y''}{y'} = \frac{z''}{z'}; \quad C_a = \frac{a''}{a'}.
\]

Заменим параметры второй системы, входящие в формулу (5.3), параметрами первой системы с помощью равенств (5.4).

Предобразование вторых производных выполняется так:

\[
\frac{\partial^2 t''}{\partial x''} = \frac{\partial}{\partial x''} \frac{\partial t''}{\partial x''} = \frac{\partial}{\partial C_t x'} \frac{\partial C_t t'}{\partial x'} = \frac{C_i}{C_i'} \frac{C_i}{\partial x'} \frac{\partial^2 t'}{\partial x'}.
\]

После преобразования уравнение (5.3) получает вид

\[
\frac{C_i}{C_a' C_t} \frac{\partial t'}{\partial t'} + \frac{C_{\omega} C_i}{C_a} \left(\omega_x \frac{\partial t'}{\partial x'} + \omega_y \frac{\partial t'}{\partial y'} + \omega_z \frac{\partial t'}{\partial z'} \right) = \]

\[
= a' \left(\frac{\partial^2 t'}{\partial x'} + \frac{\partial^2 t'}{\partial y'} + \frac{\partial^2 t'}{\partial z'} \right). \tag{5.5}
\]

Тождественность уравнений (5.2) и (5.5) позволяет заключить, что

\[
\frac{C_i}{C_a C_t} = 1 \quad \text{и} \quad \frac{C_{\omega} C_i}{C_a} = 1.
\]

Эти равенства можно переписать:

\[
\frac{a' \tau'}{t''} = \frac{a'' \tau''}{t''^2} \quad \text{и} \quad \frac{\omega' l'}{a'} = \frac{\omega'' l''}{a''}.
\]

311
Первый из этих безразмерных комплексов представляет собой уже рассмотренное в предыдущей главе число Фурье \(\text{Fo} \), второй называется числом Пекле \(\text{Pe} \). Следовательно, у подобных явлений теплоотдачи числа \(\text{Fo} \) и \(\text{Pe} \) имеют одинаковые значения, т. е.

\[
\text{Fo} = \frac{\alpha \tau}{l^2} = \text{idem} \quad \text{и} \quad \text{Pe} = \frac{\omega l}{a} = \text{idem}.
\]

Здесь \(\tau \) — период времени от начала отсчета до рассматриваемого момента.

Анализ уравнения движения позволяет получить еще ряд чисел подобия:

- число гомохронности — \(\text{Ho} = \frac{\omega l}{l} \);
- число Эйлера — \(\text{Eu} = \frac{p}{\rho \omega^2} \);
- число Рейнольдсса — \(\text{Re} = \frac{\omega l}{v} \);
- число Грасгофа — \(\text{Gr} = \beta \frac{g l^3}{v^2} \Delta t \).

Здесь \(v \) — кинематический коэффициент вязкости; \(g \) — ускорение силы тяжести.

Число Грасгофа получается из уравнения движения, которое при отсутствии вынужденного перемещения жидкости преобразуется с помощью выражения (2.33).

Число гомохронности характеризует нестационарность процесса движения и его используют при изучении теплообмена в нестационарных (например, пульсирующих) потоках. Число Эйлера определяет подобие полей давления. В подобных системах это число является однозначной функцией числа Рейнольдсса и потому в уравнение подобия не вводится.

Из уравнения сплошности чисел подобия не получается.

При исследовании теплоотдачи вместо числа Пекле часто используют число Прандтля, равное отношению чисел Пекле и Рейнольдсса:

\[
\text{Pr} = \frac{\text{Pe}}{\text{Re}} = \frac{v}{a} = \frac{\nu c}{\lambda} = \frac{\mu c}{\lambda}.
\]

Удобство использования этого числа состоит в том, что оно зависит только от физических свойств теплоносителя.

Вместо числа \(\text{Nu} \) иногда используют число Стантона \(\text{St} \)

\[
\text{St} = \frac{\text{Nu}}{\text{Re} \cdot \text{Pr}} = \frac{\alpha}{c \rho \omega}.
\]

Таким образом, чтобы в результате опытного исследования стационарного процесса теплоотдачи получить формулу, пригодную для оценки не только исследованных явлений, но и всех явлений,
подобных исследованным, результаты опытов необходимо представить в виде зависимости

$$\text{Nu} = f (\text{Re}, \text{Gr}, \text{Pr})$$.

При изучении теплоотдачи число Нussельта в уравнении подобия всегда является искомым, так как в него входит общая характеристика интенсивности теплоотдачи — коэффициент теплоотдачи α.

Числа подобия, входящие в правую часть уравнения, учитывают влияние различных факторов на коэффициент теплоотдачи и являются критериями подобия.

Критерий Рейнольдса отражает влияние вынужденного движения, критерий Грасгофа — влияние свободного движения и критерий Прандтля — влияние физических свойств жидкости на коэффициент теплоотдачи.

Свободное движение всегда сопутствует явлению теплоотдачи, но при развитом турбулентном движении оно имеет второстепенное значение и не отражается на величине коэффициента теплоотдачи. Поэтому для таких задач уравнение подобия не включает критерий Грасгофа

$$\text{Nu} = f (\text{Re}, \text{Pr})$$.

При отсутствии вынужденного движения в уравнение подобия не входит критерий Рейнольдса

$$\text{Nu} = f (\text{Gr}, \text{Pr})$$.

Критерий Прандтля для газов изменяется не существенно в значительном диапазоне изменения температуры. Поэтому уравнение подобия для конкретных газов может не включать критерия Pr, его среднее значение войдет в постоянную уравнения. Например, для воздуха при турбулентном движении можно записать

$$\text{Nu} = f (\text{Re})$$.

Для удобства обработки опытных данных уравнение подобия принято представить в виде степенной функции

$$\text{Nu} = c \text{Re}^\alpha \text{Gr}^m \text{Pr}^n$$,

где c, α, m, n — опытные коэффициенты.

Характерный размер системы l, входящий в числа подобия, называется определяющим. Для труб в качестве определяющего размера обычно выбирается диаметр. Для каждого уравнения подобия вид определяющего размера специально оговаривается.

Температура не входит в числа подобия, но от ее величины зависят физические свойства теплоносителя. В системе, где происходят теплообмен, температура жидкости изменяется как вдоль омываемой поверхности, так и в поперечном направлении. В соответствии с температурой изменяются и физические свойства жидкости. При определении значений чисел подобия в процессе обработки опытных данных невозможно учесть всю совокупность возможных значений физических параметров жидкости в системе. Поэтому ус-
ловно эти физические параметры выбираются по какой-либо одной температуре, а влияние этих параметров в соответствии с температурным полем всей системы учитывается специальным членом в уравнении подобия.

Температура, по которой выбираются физические параметры теплоносителя, входящие в числа подобия, называется определяющей. В качестве определяющей можно выбрать среднюю температуру жидкости t_f, среднюю температуру стенки t_w или среднюю температуру пограничного слоя t_m

$$t_m = \frac{t_w + t_f}{2}.$$

Наиболее часто средняя температура теплоносителя принимается как определяющая.

При использовании уравнений подобия в качестве определяющих должны быть выбраны та же температура и тот же размер, которые использовались при обработке опытных данных. Числа подобия в уравнении снабжаются индексами, указывающими вид определяющей температуры. Например, если за определяющую выбрана температура t_f, числа подобия имеют индекс f.

§ 4. Влияние тепловой нагрузки и направления теплового потока на коэффициент теплоотдачи

Величина тепловой нагрузки и направление теплового потока определяют температурное поле при теплоотдаче и как следствие — поле физических параметров, влияющих на коэффициент теплоотдачи.

Числа подобия, подсчитанные по определяющей температуре, не могут учитывать влияния полей физических параметров на процесс, поэтому составленные из них уравнения подобия правильно описывают явление теплоотдачи только при небольших температурных напорах. То же можно сказать о теоретических формулах для коэффициентов теплоотдачи, полученных в предположении о независимости теплофизических свойств от температуры.

Чтобы уравнение подобия давало возможность правильно оценивать коэффициент теплоотдачи при больших температурных напорах и при различном направлении теплового потока, необходимо ввести в это уравнение член, который учитывал бы диапазон и характер изменения физических параметров теплоносителя.

В настоящее время нет общепризнанного метода учета влияния полей физических параметров на коэффициент теплоотдачи.

Академик М. А. Михеев для учета этого фактора предложил ввести в уравнение подобия, в котором в качестве определяющей выбрана средняя температура жидкости, множитель $\left(\frac{Pr_f}{Pr_{tw}}\right)^{0.25}$.

Экспериментальное исследование показало, что для неметаллических жидкостей введение этого множителя в уравнение подобия
удовлетворительно учитывает влияние полей физических параметров на коэффициент теплоотдачи. Для газообразных теплоносителей этот множитель дает менее удовлетворительное обобщение опытных данных по теплоотдаче с различными полями физических параметров. Это можно объяснить тем, что число Прандтля не зависит от плотности, которая у газов изменяется пропорционально абсолютной температуре.

Для газообразных теплоносителей влияние полей физических параметров на коэффициент теплоотдачи можно учесть с помощью температурного фактора, который обычно записывают в виде соотношения \(\frac{T_f}{T_w} \).

С. С. Кутателадзе и Н. И. Иващенко предлагают учитывать влияние полей физических параметров на коэффициент теплоотдачи в трубах и каналах множителем \(\varepsilon_t \) в уравнении подобия*:

при \(T_w < T_f \) \(\varepsilon_t = 1,27 - 0,27 \frac{T_w}{T_f} \);

при \(T_w > T_f \) \(\varepsilon_t = \left(\frac{T_f}{T_w} \right)^{0,55} \).

Для большинства капельных жидкостей характерно существенное влияние температуры на динамический коэффициент вязкости и слабое влияние — на остальные теплофизические характеристики. На этом основании Е. Эйдер и Г. Тэт для ламинарного течения капельных жидкостей предложили поправку \(\varepsilon_t \) в форме

\[\varepsilon_t = \left(\frac{\mu_f}{\mu_w} \right)^{0,14}. \]

При расчете нагрева турбулентного потока капельной жидкости можно пользоваться поправкой, предложенной Б. С. Петуховым

\[\varepsilon_t = \left(\frac{\mu_f}{\mu_w} \right)^{0,11}. \]

Когда в качестве теплоносителя используется расплавленный металл, величина тепловой нагрузки и направление теплового потока слабо влияют на коэффициент теплоотдачи и этим влиянием можно пренебречь.

§ 5. Связь между теплоотдачей и трением

Рассмотрим стационарное безнапорное ламинарное течение жидкости с физическими свойствами, независящими от температуры, при отсутствии массовых сил в системе. Если ось \(x \) совместить с поверхностью, с которой взаимодействует поток, то проекцию

* Уравнение должно иметь определяющую температуру \(t_f \).
уравнения движения \([(2.32, a)]\) на эту ось с учетом указанных упрощений можно привести к следующей форме:

\[
\frac{\partial \bar{w}_x}{\partial x} + \bar{w}_y \frac{\partial \bar{w}_x}{\partial y} + \bar{w}_z \frac{\partial \bar{w}_x}{\partial z} = \frac{\nu}{l} \left(\frac{\partial^2 \bar{w}_x}{\partial x^2} + \frac{\partial^2 \bar{w}_x}{\partial y^2} + \frac{\partial^2 \bar{w}_x}{\partial z^2} \right). \tag{5.6}
\]

Здесь \(\bar{w}_x = \frac{w_x}{w_\infty}, \bar{x} = x/l; \bar{y} = y/l; \bar{z} = z/l; w_\infty\) — скорость потока за пределами пограничного слоя; \(l\) — характерный размер системы.

При стационарном процессе теплоотдачи в жидкости без внутренних источников теплоты с теплофизическими свойствами, независящими от температуры, распределение температуры около поверхности теплообмена определяется дифференциальным уравнением энергии (2.15), которое можно привести к виду

\[
\frac{\partial \bar{t}}{\partial \bar{x}} + \frac{\partial \bar{t}}{\partial \bar{y}} + \frac{\partial \bar{t}}{\partial \bar{z}} = \frac{a}{l} \left(\frac{\partial^2 \bar{t}}{\partial \bar{x}^2} + \frac{\partial^2 \bar{t}}{\partial \bar{y}^2} + \frac{\partial^2 \bar{t}}{\partial \bar{z}^2} \right). \tag{5.7}
\]

Здесь \(\bar{t} = \frac{t-t_w}{t_f-t_w}\).

При \(\nu = a\) или, что то же самое, \(Pr = 1\), уравнения (5.6) и (5.7) тождественны относительно величин \(\bar{w}_x\) и \(\bar{t}\), а граничные значения этих величин численно одинаковы: на поверхности теплообмена \(\bar{t} = \bar{w}_x = 0\), а вдали от этой поверхности \(\bar{t} = \bar{w}_x = 1\).

Следовательно,

\[
\frac{w_x}{w_\infty} = \frac{t-t_w}{t_f-t_w}. \tag{5.8}
\]

Из этого равенства следует, что при рассмотренных выше условиях распределения \(w_x = f(n)\) и \(t - t_w = \varphi(n)\) в одной и той же системе подобны.

Если для анализа связи между теплоотдачей и трением использовать дифференциальные уравнения энергии и движения, записанные для турбулентного течения, то при тех же упрощающих предположениях уравнения, записанные в безразмерной форме, оказываются тождественными, а распределения скоростей и избыточных температур подобными при условии

\[c(\mu + \mu_t) = \lambda + \lambda_t.\]

Для выполнения этого условия необходимо, чтобы \(Pr = 1\) и \(Pr_t = c\frac{\mu_t}{\lambda_t} = 1\) (\(Pr_t\) — турбулентное число Прандтля). Теоретическое исследование двумерного потока жидкости, выполненное с использованием длины пути перемешивания, предложенное Прандтлем, показало, что всегда \(Pr_t \approx 1\). Экспериментальное из-
мерение этой величины подтверждает, что она близка к единице. Следовательно, выражение (5.8) может применяться для турбулентных потоков без каких-либо дополнительных ограничений.

Используем подобие скоростных и температурных полей для получения количественной связи между интенсивностью теплоотдачи и трением.

В непосредственной близости от стенки теплота передается через жидкость теплопроводностью и потому абсолютная величина плотности теплового потока может быть оценена законом Фурье

\[q = \lambda \left(\frac{\partial t}{\partial n} \right)_{n=0}. \]
(5.9)

Напряжение трения выражается через градиент скорости у поверхности стенки и динамический коэффициент вязкости по закону Ньютона

\[\tau = \mu \left(\frac{\partial w_x}{\partial n} \right)_{n=0}. \]
(5.10)

Почленное деление уравнений (5.9) и (5.10) дает

\[\frac{q}{\tau} = \frac{\lambda}{\mu} \frac{(\partial t/\partial n)_{n=0}}{(\partial w_x/\partial n)_{n=0}}. \]
(5.11)

Дифференцированием выражения (5.8) легко получить

\[\frac{(\partial t/\partial n)_{n=0}}{(\partial w_x/\partial n)_{n=0}} = \frac{t_f - t_w}{w_\infty}. \]

С учетом этого равенства из уравнения (5.11) найдем

\[q = \tau \frac{\lambda}{\mu} \frac{t_f - t_w}{w_\infty}. \]
(5.12)

Из этого выражения могут быть получены конкретные формулы связи коэффициента теплоотдачи с коэффициентом сопротивления трения при течении жидкости в канале \(\xi \) или при внешнем обтекании тел \(c_f \).

При течении теплоносителя в трубах и каналах \(t_f \) и \(w_\infty \) в формуле (5.12) заменяются на средние значения. Напряжение трения

\[\tau = \frac{\xi}{8} \rho \omega^2, \]
(5.13)

и тепловой поток

\[q = \alpha (t_f - t_w). \]
(5.14)

Подстановка этих выражений в (5.12) позволяет получить

\[\alpha = \frac{\xi}{8} \frac{\lambda}{\nu} \frac{\omega}{w_\infty}. \]
Это уравнение легко приводится к зависимости между числами подобия

\[\text{Nu} = \frac{\text{Gr}}{8} \text{Re}. \]

Влияние физических свойств жидкости при \(\text{Pr} \neq 1 \) можно учесть в этом уравнении множителем \(\text{Pr}^n \). Окончательно для труб и каналов получается

\[\text{Nu} = \frac{\text{Gr}}{8} \text{Re} \text{Pr}^n. \quad (5.15) \]

При внешнем обтекании тел напряжение трения определяется через коэффициент сопротивления трения выражением

\[\tau = c_f \frac{\rho \omega'_f}{2}. \quad (5.16) \]

Подстановка \(\tau \) из формулы (5.16), а \(q \) из выражения (5.14), где \(\overline{t}_f \) заменяется на \(t_f \), в формулу (5.12) дает

\[\alpha = \frac{c_f}{2} \frac{\lambda}{\nu} \omega_\infty, \]

или

\[\text{Nu} = \frac{c_f}{2} \text{Re}. \quad (5.17) \]

Распространяя полученное решение на случай \(\text{Pr} \neq 1 \), окончательно получим

\[\text{Nu} = \frac{c_f}{2} \text{Re} \text{Pr}^n. \quad (5.18) \]

Теоретические и опытные исследования показывают, что \(n = 0,33 - 0,43 \).

Зависимость между теплоотдачей и трением глубоко вскрывает физический смысл явления теплоотдачи и позволяет использовать величины коэффициентов сопротивления, определенные опытным или теоретическим путем*, для оценки коэффициентов теплоотдачи.

Экспериментальное определение коэффициентов сопротивления обычно значительно проще, чем коэффициентов теплоотдачи. Поэтому для систем, явление теплоотдачи в которых экспериментальным путем не изучалось, полученные выше соотношения могут служить средством получения расчетных формул для коэффициентов теплоотдачи.

* Аналитическая оценка коэффициентов сопротивления возможна на основе теории пограничного слоя.
§ 6. Понятие о теории пограничного слоя

При обтекании твердого тела потоком жидкости или газа вблизи поверхности благодаря силам вязкости происходит резкое уменьшение скорости, и на поверхности тела она становится равной нулю. Слои жидкости, в котором скорость движения изменяется наиболее существенно, называются динамическим пограничным слоем.

Теоретически изменение скорости может наблюдаться на большом расстоянии от поверхности, но вдали от тела скорость изменяется несущественно. Толщина динамического пограничного слоя δ условно считать расстояние от твердой стенки до поверхности, где скорость составляет 99% от скорости невозмущенного потока w_∞ (рис. 5.3).

Толщина динамического пограничного слоя зависит от вязкости и скорости потока, а также от положения рассматриваемого сечения на поверхности: чем меньше вязкость жидкости и больше ее скорость, чем меньше расстояние рассматриваемого сечения от начала формирования пограничного слоя, тем тоньше пограничный слой.

Переход ламинарного пограничного слоя в турбулентный происходит при критическом значении критерия Рейнольдса* . Опыт и теоретическое исследование показывают, что для тонкой пластины такой переход имеет место примерно при

$$Re_{kr} = \frac{w_\infty x_{kr}}{v} = 5 \cdot 10^5.$$

Расстояние x_{kr} обозначено на рис. 5.1.

Возмущения, обусловленные толстой кромкой пластины, и другие факторы, вызывающие турбулентизацию потока, приводят к уменьшению Re_{kr}.

Величина Re_{kr} зависит также от тепловой нагрузки и направления теплового потока. Как показали опыты, отвод теплоты от пограничного слоя вызывает увеличение Re_{kr} (рис. 5.4).

При исследовании теплоотдачи можно воспользоваться понятием теплового пограничного слоя. Под тепловым пограничным слоем понимается область потока с резким изменением температуры по нормали к поверхности теплообмена (рис. 5.5).

* Точнее, существует целая область значений критерия Re, в которой ламинарный пограничный слой превращается в турбулентный.
Теоретический анализ показывает, что при ламинарном пограничном слое

\[\frac{\delta}{\delta_t} = Pr^{1/3}. \]

(5.19)

Здесь \(\delta_t \) — толщина теплового пограничного слоя.

Следовательно, при \(Pr = 1 \) толщина теплового и динамического пограничных слоев одинакова. При \(Pr < 1 \) (такое значение числа \(Pr \) характерно для газов) тепловой пограничный слой толще динамического, а при \(Pr > 1 \) — наоборот.

Как будет показано ниже, при больших значениях числа Рейнольдса толщины динамического и теплового пограничных слоев будут небольшими. При малой толщине динамического пограничного слоя давление по всей его толщине можно считать постоянным \((\partial p/\partial y = 0)\).

Расчетные формулы для определения коэффициента теплоотдачи могут быть получены на основе теории динамического и теплового пограничных слоев.

Дифференциальные уравнения динамического пограничного слоя получаются на основе дифференциальных уравнений движения и сплошности. Получим дифференциальные уравнения ламинарного пограничного слоя.

Для двумерного стационарного несжимаемого потока жидкости, в котором можно пренебречь влиянием гравитационных массовых сил на распределение скоростей в системе, уравнение движения в проекции на ось \(x \), как это следует из (2.32), запишется в виде

\[\rho w_x \frac{\partial w_x}{\partial x} + \rho w_y \frac{\partial w_x}{\partial y} = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 w_x}{\partial x^2} + \frac{\partial^2 w_x}{\partial y^2} \right). \]

(5.20)

Скорость \(w_x \) изменяется в пределах пограничного слоя от 0 до \(w_\infty \). Поэтому значение производной можно записать в виде

\[\frac{\partial w_x}{\partial y} \sim \frac{w_\infty}{\delta}, \quad \text{a} \quad \frac{\partial^2 w_x}{\partial y^2} \sim \frac{\partial w_x}{\partial y} \sim \frac{w_\infty}{\delta^2}. \]

(5.21)

* Сами выражение (5.19) будет получено в следующей главе.
Аналогично по оси х изменение скорости от 0 до \(w_\infty \) может произойти на длине, равной характерному размеру \(l \). Поэтому

\[
\frac{\partial w_x}{\partial x} \sim \frac{w_\infty}{l} \quad \text{и} \quad \frac{\partial^2 w_x}{\partial x^2} \sim \frac{w_\infty}{l^2}.
\] (5.22)

Так как \(\delta \ll l \), то

\[
\frac{\partial^2 w_x}{\partial x^2} \ll \frac{\partial^2 w_x}{\partial y^2}.
\] (5.23)

Анализ порядков величин, которые входят в уравнение движения, записанное для оси \(y \), позволяет привести это уравнение к виду

\[
\frac{\partial p}{\partial y} = 0.
\] (5.24)

Таким образом, для двумерного пограничного слоя давление зависит только от координаты \(x \). С учетом этого вывода и неравенства (5.23) уравнение (5.20) можно записать в виде

\[
\rho w_x \frac{\partial w_x}{\partial x} + \rho w_y \frac{\partial w_y}{\partial y} = -\frac{\partial p}{\partial x} + \mu \frac{\partial^2 w_x}{\partial y^2}.
\] (5.25)

Уравнение сплошности для двумерного несжимаемого пограничного слоя записывается в виде

\[
\frac{\partial w_x}{\partial x} + \frac{\partial w_y}{\partial y} = 0.
\] (5.26)

Аналогично получается дифференциальное уравнение ламинарного теплового пограничного слоя.

При двумерной постановке задачи и стационарных условиях теплообмена без внутренних источников теплоты дифференциальное уравнение энергии (2.15) можно представить так:

\[
\omega_x \frac{\partial t}{\partial x} + \omega_y \frac{\partial t}{\partial y} = \frac{\lambda}{c_p \rho} \left(\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} \right).
\] (5.27)

Анализ порядков величин для производных температуры по координатам позволяет заключить, что при небольшой толщине теплового пограничного слоя

\[
\frac{\partial^2 t}{\partial x^2} \ll \frac{\partial^2 t}{\partial y^2}.
\] (5.28)

С учетом этого уравнение (5.27) можно переписать в виде

\[
c_p \rho \omega_x \frac{\partial t}{\partial x} + c_p \rho \omega_y \frac{\partial t}{\partial y} = \frac{\lambda}{c_p \rho} \frac{\partial^2 t}{\partial y^2}.
\] (5.29)

Это уравнение включает составляющие скорости потока. Поэтому тепловой пограничный слой описывается системой дифференциальных уравнений, в которую, кроме уравнения (5.29), входят уравнения (5.25) и (5.26).
Аналогично можно получить и дифференциальные уравнения для турбулентных динамического и теплового пограничных слоев на основе уравнений движения и энергии, записанных в форме (2.34) и (2.19).

Кроме дифференциальных уравнений, в теории пограничного слоя часто применяют интегральные уравнения. Некоторые формы интегральных уравнений пограничного слоя будут рассмотрены в следующей главе.

Дифференциальные и интегральные уравнения динамического и теплового пограничных слоев используются в качестве аналитической основы при получении расчетных формул для коэффициента теплоотдачи. При решении этих уравнений, особенно для турбулентного пограничного слоя, часто приходится использовать дополнительную информацию, полученную из опыта, в форме эмпирических коэффициентов или зависимостей.

Уравнения динамического пограничного слоя используются для определения напряжения трения на поверхности теплообмена, по которому на основе зависимости между теплоотдачей и трением находится величина коэффициента теплоотдачи. Уравнение теплового пограничного слоя используется для оценки распределения температуры с последующим определением теплового потока и коэффициента теплоотдачи.

Теория пограничного слоя широко используется при получении расчетных формул для коэффициента теплоотдачи. Но так как при составлении уравнений пограничного слоя и при их решении вводятся упрощающие предположения, то полученные результаты не всегда обладают высокой точностью, поэтому теоретические формулы нуждаются в опытной проверке.

Систематическое изложение теории пограничного слоя дано в монографиях [14], [23].

ГЛАВА VI
ТЕПЛООТДАЧА ПРИ ВНЕШНЕМ ОБТЕКАНИИ ТЕЛ

В настоящей главе рассматриваются только явления теплоотдачи без изменения агрегатного состояния теплоносителя, при умеренных скоростях, при достаточно плотных нерегулярных средах и отсутствии инерционных массовых сил*.

§ 1. Интегральные уравнения теплового и динамического пограничных слоев при безнапорном обтекании пластины

Рассмотрим участок плоской поверхности, которая имеет температуру \(t_w \) и омывается потоком несжимаемой жидкости с температурой \(t_f \). Ширину этой поверхности примем за единицу. На расстоянии

* Это замечание относится также и к главе VII. Теплоотдача при большой скорости газа и в других специфических условиях рассмотрена в главах VIII—XII.
нини x от начала координат выделим элемент теплового пограничного слоя $ABCD$ длиной dx; две боковые поверхности элемента образованы вертикальными плоскостями, нормальными к оси x, верхняя — совпадает с границей теплового пограничного слоя и нижняя — с поверхностью теплообмена (рис. 6.1).

Тепловой баланс рассматриваемого элемента при стационарных условиях теплообмена и отсутствии в жидкости внутренних источников теплоты запишется так:

$$Q_x - Q_{x+dx} + dQ'_x = dQ'_x.$$ \hspace{1cm} (6.1)

Два первых члена теплового баланса определяют изменение энталпии теплоносителя при течении его между поверхностями AB и CD, третий член — подвод теплоты вместе с теплоносителем, поступившим в рассматриваемый элемент через поверхность BC. Правая часть уравнения (6.1) отражает теплообмен между поверхностью и теплоносителем.

Величину Q_{x+dx} найдем разложением теплового потока Q_x в ряд Тэйлора. Ограничившись двумя первыми членами ряда, получим

$$Q_{x+dx} = Q_x + \frac{dQ_x}{dx} dx.$$ \hspace{1cm} (6.2)

С другой стороны, пренебрегая распространением теплоты вдоль оси x путем теплопроводности, найдем

$$Q_x = \int_0^{\delta_x} \rho c_p w_x t dy.$$ \hspace{1cm} (6.3)

где w_x — переменная по толщине пограничного слоя скорость потока.

Подставив выражение (6.3) в (6.2), получим

$$Q_x - Q_{x+dx} = -\frac{d}{dx} \left(\int_0^{\delta_x} \rho c_p w_x t dy \right) dx.$$ \hspace{1cm} (6.4)

Величина dQ'_x, входящая в выражение (6.1), записывается формулой

$$dQ'_x = c_p t_f dG'_x.$$ \hspace{1cm} (6.5)
Здесь dG_x — массовый расход вещества через поверхность BC. Так как

$$G_x = \int_0^{\delta_T} \rho w_x \, dy \quad \text{и} \quad dG'_x = \frac{d}{dx} \left(\int_0^{\delta_T} \rho w_x \, dy \right) \, dx,$$

то выражение (6.5) перепишется в виде

$$dQ'_x = t_f \frac{d}{dx} \left(\int_0^{\delta_T} \rho c_p w_x \, dy \right) \, dx. \quad (6.6)$$

Теплота, проходящая через поверхность теплообмена, равна

$$dQ_x = q \, dx. \quad (6.7)$$

После подстановки выражений (6.4), (6.6) и (6.7) в (6.1) получим

$$t_f \frac{d}{dx} \int_0^{\delta_T} \rho c_p w_x \, dy - \frac{d}{dx} \int_0^{\delta_T} \rho c_p w_x \, tdy = q. \quad (6.8)$$

Считая, что теплофизические характеристики теплоносителя от температуры не зависят, выражение (6.8) перепишем в виде

$$\frac{d}{dx} \int_0^{\delta_T} \left(t_f - t \right) w_x \, dy = \frac{q}{\rho c_p}. \quad (6.9)$$

Подставив в это выражение тепловую нагрузку из закона Фурье, в котором температурный градиент взят по абсолютной величине, окончательно получим

$$\frac{d}{dx} \int_0^{\delta_T} \left(t_f - t \right) w_x \, dy = a \left(\frac{dt}{dy} \right)_{y=0}. \quad (6.10)$$

Это уравнение называется интегральным уравнением для теплового пограничного слоя. Впервые оно было получено Г. Н. Кружилиным в 1936 г.

Аналогично выводится интегральное уравнение для динамического пограничного слоя, которое часто называют интегральным соотношением количества движения. В окончательной форме оно записывается так:

$$\frac{\tau}{\rho \omega_{\infty}^2} = \frac{d \delta^{**}}{dx}, \quad (6.11)$$
где τ — напряжение трения на поверхности теплообмена; δ^{**} — толщина потери импульса, которая для несжимаемой жидкости вычисляется по формуле

$$\delta^{**} = \int_0^\delta \frac{w_x}{w_\infty} \left(1 - \frac{w_x}{w_\infty}\right) dy. \quad (6.12)$$

Интегральные уравнения выводятся без введения каких-либо предпосылок о характере течения жидкости, поэтому они пригодны как для ламинарного, так и для турбулентного пограничного слоя.

§ 2. Теплоотдача пластины при ламинарном пограничном слое.

Решение на основе теории динамического пограничного слоя

Теплоотдачу пластины, омываемой свободным потоком жидкости (градиент давления вдоль пластины равен нулю), при ламинарном пограничном слое можно рассчитать на основе теории динамического пограничного слоя с использованием интегрального соотношения количества движения. Схема такой пластины показана на рис. 5.3. Все теплофизические свойства теплоносителя считаются независящими от температуры.

Зададим форму профиля скоростей в пограничном слое степенным многочленом *

$$\frac{w}{w_\infty} = a_0 + \frac{y}{\delta} + a_2 \left(\frac{y}{\delta}\right)^2 + a_3 \left(\frac{y}{\delta}\right)^3. \quad (6.13)$$

Для оценки коэффициентов используем граничные условия: при $y = 0 \quad w = 0$ и $\frac{\partial^2 w}{\partial y^2} = 0^{**}$; при $y = \delta \quad w = w_\infty$ и $\frac{\partial w}{\partial y} = 0$ (плавность сопряжения профилей скорости на внешней границе пограничного слоя).

Подстановка этих условий в формулу (6.13) дает:

$$a_0 = 0; \; a_1 = 3/2; \; a_2 = 0; \; a_3 = -1/2.$$

Следовательно, многочлен (6.13) перепишется так:

$$\frac{w}{w_\infty} = \frac{3}{2} \frac{y}{\delta} - \frac{1}{2} \left(\frac{y}{\delta}\right)^3. \quad (6.14)$$

Подставив выражение (6.14) в формулу (6.12), вычислим толщину потери импульса. Для несжимаемой жидкости получается

$$\delta^{**} = \frac{39}{280} \delta. \quad (6.15)$$

* Индекс «x» при продольной составляющей скорости в дальнейшем опущен.

** Это условие получается из уравнения (5.25). При $y = 0 \quad w_x = w_y = 0$, кроме того, для рассматриваемых условий $dp/dx = 0$. Поэтому из (5.25) для поверхности стенки получается условие $\frac{\partial^2 w_x}{\partial y^2} = 0$.
По закону Ньютона напряжение трения на поверхности пластины

\[\tau = \mu \left(\frac{\partial w}{\partial y} \right)_{y=0} . \]

Из выражения (6.14)

\[\left(\frac{\partial w}{\partial y} \right)_{y=0} = \frac{3}{2} \frac{w_\infty}{\delta} . \]

следовательно,

\[\tau = \frac{3}{2} \mu \frac{w_\infty}{\delta} , \]

(6.16)

Заменив \(\tau \) и \(\delta \) в уравнении (6.11) формулами (6.15) и (6.16) и разделив переменные, получим

\[\frac{3}{2} \mu \frac{w_\infty}{\rho w_\infty^2} \frac{280}{39} \ dx = \delta d\delta. \]

После интегрирования от нуля до \(x \) найдем

\[\delta = 4,64 \sqrt{\frac{\mu x}{\rho w_\infty}} \text{ или } \frac{\delta}{x} = \frac{4,64}{\sqrt{\frac{w_\infty \rho x}{\mu}}} = \frac{4,64}{\sqrt{Re}} . \]

(6.17)

Эта формула с учетом выражения (5.19) показывает, что при \(x = \text{idem} \) с увеличением числа \(Re \) толщина теплового и динамического пограничных слоев уменьшается.

Подстановка \(\delta \) в формулу (6.16) приводит к выражению

\[\tau = 0,33\rho w_\infty^2 / \sqrt{Re} , \]

или в соответствии с формулой (5.16)

\[\frac{c_f}{2} = 0,33 / \sqrt{Re} . \]

(6.18)

Примем в соответствии с [23] показатель степени при числе Прандтля в уравнении (5.18) \(n = 1/3 \). Тогда подстановка равенства (6.18) в (5.18) позволяет получить уравнение подобия для местного коэффициента теплоотдачи

\[Nu = 0,33Re^{1/2} Pr^{1/3} . \]

(6.19)

Средний коэффициент теплоотдачи на участке пластины длиной \(l \) находится следующим образом:

\[\overline{\alpha} = \frac{1}{l} \int_0^l \alpha \ dx = \frac{1}{l} \int_0^l 0,33 \frac{\lambda}{x} Re^{1/2} Pr^{1/3} \ dx = \]

\[= \frac{1}{l} \int_0^l 0,33\lambda \left(\frac{w_\infty}{v_x} \right)^{1/2} Pr^{1/3} dx = 0,66 \frac{\lambda}{l} Re^{1/2} Pr^{1/3} . \]

326
Следовательно,

\[\bar{N}u = 0.66 \text{Re}^{1/2} \text{Pr}^{-1/3}. \]

(6.20)

При больших температурных напорах и изменении давления вдоль поверхности необходимо учитывать сжимаемость газа, т. е. зависимость \(\rho = f(T, \rho) \), а также изменение других физических параметров — теплопроводности и вязкости.

§ 3. Теплоотдача пластины при ламинарном пограничном слое.

Решение на основе теории теплового пограничного слоя

Как и в предыдущей задаче, теплофизические свойства теплоносителя будем считать независимыми от температуры. Кроме того, введем предположение о постоянстве температуры поверхности теплообмена \(t_w = \text{const} \).

Введем обозначения \(\theta = t - t_w \) и \(\theta_\infty = t_i - t_w \), а связь между безразмерной избыточной температурой и безразмерной координатой запишем в форме степенного многочлена третьей степени аналогично уравнению (6.13)

\[\frac{\theta}{\theta_\infty} = b_0 + b_1 \frac{y}{\delta_T} + b_2 \left(\frac{y}{\delta_T} \right)^2 + b_3 \left(\frac{y}{\delta_T} \right)^3, \]

(6.21)

где \(\delta_T \) — толщина теплового пограничного слоя.

Из уравнения (5.29) следует, что на поверхности теплообмена, где \(\omega_x = \omega_y = 0 \), \(\partial^2 t / \partial y^2 = 0 \). Поэтому граничные условия, которые определяют коэффициенты уравнения (6.21), можно сформулировать так:

при \(y = 0 \) \(\theta = 0 \), \(\frac{\partial^2 \theta}{\partial y^2} = 0 \); при \(y = \delta_T \) \(\theta = \theta_\infty \), \(\frac{\partial \theta}{\partial y} = 0 \).

Однаковая форма многочленов (6.13), (6.21) и граничных условий, определяющих их коэффициенты, по аналогии с (6.14) позволяет записать

\[\frac{\theta}{\theta_\infty} = \frac{3}{2} \frac{y}{\delta_T} - \frac{1}{2} \left(\frac{y}{\delta_T} \right)^3. \]

(6.22)

Из этой формулы следует, что

\[\left(\frac{\partial \theta}{\partial y} \right)_{y=0} = \frac{3}{2} \frac{\theta_\infty}{\delta_T}. \]

(6.23)

Применяя к поверхности теплообмена формулу Ньютона и закон Фурье с учетом того, что при \(\frac{\partial \theta}{\partial y} > 0 \) \(q < 0 \), получим

\[-\alpha \theta_\infty = -\lambda \left(\frac{\partial \theta}{\partial y} \right)_{y=0}. \]
Эта формула с учетом выражения (6.23) имеет вид

\[\alpha = \frac{3}{2} \frac{\lambda}{\delta_t} . \]

(6.24)

Дальнейшее решение задачи связано с оценкой величины \(\delta_t \), которую можно найти с помощью интегрального уравнения для теплового пограничного слоя. Преобразуем интеграл, входящий в левую часть уравнения (6.10)*,

\[\int_0^{\delta_t} (t_f - t) \, w \, dy = \int_0^{\delta_t} (\theta - \theta) \, w \, dy = \]

\[= \theta_\infty w_\infty \cdot \int_0^{\delta_t} \left(1 - \frac{\theta}{\theta_\infty} \right) \frac{w}{w_\infty} \, dy. \]

(6.25)

При \(\delta_t \ll \delta \) безразмерные величины, входящие в подынтегральное выражение, определяются уравнениями (6.14) и (6.22). При \(\delta_t > \delta \) на части интервала интегрирования скорость потока не изменяется (\(\omega/w_\infty = 1 \)).

Ограничимся пока случаем, когда \(\delta_t \ll \delta \). Подстановка уравнений (6.14) и (6.22) в (6.25) позволяет получить

\[\int_0^{\delta_t} (t_f - t) \, w \, dy = \theta_\infty w_\infty \int_0^{\delta_t} \left[1 - \frac{3}{2} \frac{y}{\delta_t} + \frac{1}{2} \left(\frac{y}{\delta_t} \right)^3 \right] \times \]

\[\times \left[\frac{3}{2} \frac{y}{\delta} - \frac{1}{2} \left(\frac{y}{\delta} \right)^8 \right] \, dy = \theta_\infty w_\infty \delta \left[\frac{3}{20} \left(\frac{\delta_t}{\delta} \right)^4 - \frac{3}{280} \left(\frac{\delta_t}{\delta} \right)^4 \right]. \]

(6.26)

При \(\delta_t \ll \delta \) вторым членом полученного выражения можно пренебречь по сравнению с первым. С учетом этого подстановка уравнений (6.26) и (6.23) в (6.10) приводит к равенству

\[\frac{1}{10} w_\infty \frac{d}{dx} \left[\delta \left(\frac{\delta_t}{\delta} \right)^2 \right] = \frac{a}{\delta_t} . \]

(6.27)

После выполнения операции дифференцирования в левой части уравнения получается

\[\frac{w_\infty}{10} \left[2 \delta_t \frac{d}{dx} \left(\frac{\delta_t}{\delta} \right) + \left(\frac{\delta_t}{\delta} \right)^2 \frac{d\delta}{dx} \right] = \frac{a}{\delta_t} . \]

(6.28)

В настоящем решении предполагается, что безразмерная форма профилей скорости и температуры не зависит от координаты \(x \), а сами зависимости относительной скорости и относительной избыточной температуры от безразмерной координаты \(y/\delta \) или \(y/\delta_t \) одинаковы

* Индекс «\(x \)» при скорости опущен.
Из формулы (6.17) дифференцированием получим

\[
\frac{d\delta}{dx} = 2,32 \sqrt{\frac{v}{\omega_\infty x}}.
\] (6.30)

Перемножив правые и левые части равенств (6.17) и (6.30), найдем

\[
\delta \frac{d\delta}{dx} = 10,7 \frac{v}{\omega_\infty}.
\] (6.31)

Подставив (6.31) в (6.29) и приняв \(\sqrt{1,07} \approx 1,0\), получим

\[
\frac{\delta_t}{\delta} = \sqrt{\frac{a}{v}} = \frac{1}{\sqrt[3]{Pr}}.
\] (6.32)

Подставив значение \(\delta_t\) из (6.32) в (6.24) с учетом (6.17), получим формулу

\[
\alpha = 3 \frac{\lambda}{2 \times 4,64x} Re^{1/2} Pr^{1/3},
\]
или

\[
Nu = \frac{\alpha x}{\lambda} = 0,33 Re^{1/2} Pr^{1/3}.
\] (6.33)

Из уравнения (6.32) следует, что условие \(\delta_t \leq \delta\), для которого получена формула (6.33), соответствует \(Pr \gg 1\), т. е. выполняется для капельных жидкостей. Для газов \(Pr = 0,6 - 1\). При \(Pr = 0,6\) \(\delta_t/\delta = 1,18\). Опыт показывает, что такое отличие \(\delta_t/\delta\) от 1 практически не отражается на количественных соотношениях для коэффициента теплоотдачи. Поэтому формулу (6.33) можно применять и для газов.

Сопоставление формул (6.33) и (6.19) показывает, что теория теплового и динамического пограничных слоев приводит к одинаковым результатам. Экспериментальное исследование этой задачи также дает аналогичные результаты. При ламинарном пограничном слое результаты исследования средних коэффициентов теплоотдачи на пластине для \(t_w = const\) обобщены формулой

\[
\overline{Nu}_f = 0,66 Re_f^{0,5} Pr_f^{0,43} \left(\frac{Pr_t}{Pr_{tw}} \right)^{0,25}.
\] (6.34)

При \(q_w = const\)

\[
\overline{Nu}_f = 0,5 Re_f^{0,5} Pr_f^{0,43} \left(\frac{Pr_t}{Pr_{tw}} \right)^{0,28}.
\] (6.35)

Эти зависимости приближенно могут использоваться до $Re \approx \approx 10^5$, однако уже при $Re \gtrsim 10^4$ возможно возникновение переходных режимов, на которых коэффициенты теплоотдачи будут больше их величин, вычисленных по формулам (6.34) и (6.35).

§ 4. Теплоотдача пластины при турбулентном пограничном слое

Как и в предыдущих параграфах, предполагаем, что пластина омывается безнапорным потоком жидкости, физические свойства которой не зависят от температуры.

Расчет теплоотдачи пластины при турбулентном пограничном слое можно выполнить на основе теории динамического пограничного слоя с использованием интегрального соотношения количества движения, однако отсутствие надежных уравнений для определения напряжения трения на поверхности теплообмена затрудняет этот расчет и заставляет прибегать к информации, полученной из эксперимента.

Из опыта известно, что распределение скоростей в турбулентной части пограничного слоя удовлетворительно описывается степенным законом

$$
\frac{w}{w_\infty} = \left(\frac{y}{8} \right)^n,
$$

(6.36)

величина степени в котором зависит от Re. При $Re = 5 \cdot 10^5 - 10^7$ можно принять $n = 1/7$.

Л. Прандтль и Т. Карман предложили определить напряжение трения на пластине при турбулентном пограничном слое с помощью результатов экспериментального исследования гидравлического сопротивления при течении жидкости в трубе.

Напряжение трения на стенке трубы связано с коэффициентом гидравлического сопротивления формулой (5.13).

Для турбулентного режима течения в трубе имеется экспериментальная зависимость коэффициента сопротивления трения от условий движения (закон сопротивления Блазиуса)

$$
\xi = \frac{0.3164}{\left(\frac{\bar{w}d}{v} \right)^{0.25}},
$$

(6.37)

где \bar{w} — среднерахсодная скорость течения жидкости в трубе; d — диаметр трубы.

Подставив выражение (6.37) в формулу (5.13), получим

$$
\frac{\tau}{\rho \bar{w}^2} = \frac{1}{8} \frac{0.3164}{\left(\frac{\bar{w}d}{v} \right)^{0.25}}.
$$

(6.38)
При развитом турбулентном режиме течения толщина динамического пограничного слоя совпадает с радиусом трубы, т. е. $\delta = d/2$. Кроме того, при $n = 1/7$ из выражения (6.36) следует, что $\omega = 0,8 \omega_\infty$. С учетом этого выражение (6.38) приводится к виду

$$\frac{\tau}{\rho \omega_\infty^2} = \frac{0,0225}{\left(\frac{\omega_\infty \delta}{\nu}\right)^{0,25}}. \quad (6.39)$$

Подстановка выражения (6.36) при $n = 1/7$ в формулу (6.12) дает

$$\delta^{**} = \frac{7}{72} \delta. \quad (6.40)$$

После замены левой части интегрального соотношения количества движения (6.11) по формуле (6.39) и преобразования правой части с помощью (6.40) получим

$$\frac{72}{7} \frac{0,0225}{\left(\frac{\omega_\infty \delta}{\nu}\right)^{0,25}} dx = \delta^{0,25} d\delta. \quad (6.41)$$

Проинтегрируем это выражение в пределах от 0 до x (толщина пограничного слоя при этом изменяется от 0 до δ). После извлечения из правой и левой частей равенства корня степени 1,25 получим

$$\frac{\delta}{x} = \frac{0,37}{Re^{0.2}}. \quad (6.42)$$

Подсчитаем коэффициент сопротивления трения для пластины. С учетом выражения (6.39)

$$\frac{c_f}{2} = \frac{\tau}{\rho \omega_\infty^2} = \frac{0,0225}{\left(\frac{\omega_\infty \delta}{\nu}\right)^{0,25}}. \quad (6.43)$$

Заменим в этом выражении δ его значением (6.42)

$$\frac{c_f}{2} = \frac{0,029}{Re^{0.2}}. \quad (6.44)$$

Подставив соотношение (6.44) в формулу (5.18) и приняв для турбулентного пограничного слоя степень при критерии Pr равной 0,4, окончательно получим

$$Nu = 0,029 Re^{0.8} Pr^{0.4}. \quad (6.45)$$

Для среднего коэффициента теплоотдачи

$$\bar{Nu} = 0,037 Re^{0.6} Pr^{0.4}. \quad (6.46)$$
При \(\text{Re} = 10^7 - 10^9 \) распределение скоростей в турбулентном пограничном слое лучше описывается логарифмической зависимостью

\[
\frac{w}{\sqrt{\frac{\tau}{\rho}}} = 2,5 \ln \left(\frac{\sqrt{\frac{\tau}{\rho}}}{\nu} \right) + 5,5,
\]

на основе которой получается следующее уравнение подобия для среднего коэффициента теплоотдачи

\[
\overline{\text{Nu}} = 0,227 \text{Re} (\lg \text{Re}) - 2,58 \text{Pr}^{0,4}.
\] (6.47)

Экспериментальное исследование местных коэффициентов теплоотдачи при \(\text{Re} = 10^5 - 2 \cdot 10^6 \) позволило получить результаты, близкие к формуле (6.45),

\[
\text{Nu}_f = 0,0296 \text{Re}_f^{0,8} \text{Pr}_f^{0,43} (\text{Pr}_f/\text{Pr}_w)^{0,26}.
\] (6.48)

§ 5. Теплоотдача при внешнем обтекании труб

Картина течения при поперечном обтекании трубы показана на рис. 6.2. На фронтовой части трубы образуется пограничный слой, толщина которого достигает наибольшей величины вблизи \(\phi = 90^\circ \). В этой зоне происходит отрыв потока от поверхности, и кромовая часть трубы омывается сильно завихренным потоком с обратными циркуляционными токами.

На рис. 6.3 показана типичная зависимость отношения местного коэффициента теплоотдачи \(\alpha_f/\overline{\alpha} \) к среднему его значению для всей трубы от угла \(\phi \), который определяет местоположение точки на окружности. Как видно из рисунка, теплоотдача протекает наиболее интенсивно вблизи лобовой образующей цилиндра. Вблизи участков поверхности, где ламинарный пограничный слой достигает наибольшей толщины, коэффициент теплоотдачи имеет минимальное значение.
Средняя теплоотдача трубь определяется уравнением, полученным экспериментальным путем,

\[\overline{Nu_f} = c \text{Re}_f^n \text{Pr}_f^{0.36} \left(\frac{Pr_f}{Pr_w} \right)^{0.25}, \]
(6.49)

в котором при \(\text{Re}_f < 10^3 \) \(c = 0.56 \) и \(n = 0.5 \), а при \(\text{Re}_f > 10^3 \) \(c = 0.28 \) и \(n = 0.6 \).

За определяющий размер в этом уравнении принят диаметр трубы, а критерий \(\text{Re} \) вычисляется по скорости невозмущенного потока.

Если направление движения потока составляет с осью трубы угол \(\phi \), отличный от 90°, то коэффициент теплоотдачи, определенный по формуле (6.49), надо умножить на поправку \(\varepsilon_\phi \), числовое значение которой приводится в справочниках. При \(\phi < 90^\circ \) величина \(\varepsilon_\phi < 1 \).

Теплоотдача труб, составляющих трубный пучок, зависит от расположения труб в пучке, а также от номера ряда, в котором труба находится. Характер движения теплоносителя показан при коридорном расположении на рис. 6.4, а, при шахматном на рис. 6.4, б. При шахматном расположении труб теплоноситель перемещается лучше, и теплообмен протекает более интенсивно.

Первый ряд труб омывается невозмущенным потоком жидкости и потому этот ряд имеет наименьший коэффициент теплоотдачи. В последующих рядах труб теплоотдача протекает более интенсивно, но с достаточной для практики точностью можно считать, что третий и последующие ряды труб имеют одинаковый средний коэффициент теплоотдачи.

Если в качестве определяющего размера выбрать диаметр трубы, а критерий \(\text{Re} \) подсчитывать по скорости в наиболее узком сечении пучка (в сечении, где расположены трубы), то независимо от расстояния между трубами коэффициент теплоотдачи третьего и последующего рядов можно определять по уравнению (6.49). Числовые значения коэффициентов \(c \) и \(n \) зависят от вида пучка. При \(\text{Re}_f < 10^3 \) для обоих видов пучков труб \(c = 0.56, n = 0.5 \). При \(\text{Re}_f > 10^3 \) для коридорного пучка \(c = 0.22, n = 0.65 \), для шахматного \(c = 0.4, n = 0.6 \).
Коэффициенты теплоотдачи первого и второго рядов подсчиты-ваются через коэффициент теплоотдачи третьего ряда. Для кори-дорного расположения труб: \(\alpha_1 = 0,6\alpha_3; \ \alpha_2 = 0,9\alpha_3; \) для шахмат-ного расположения труб: \(\alpha_1 = 0,6\alpha_3; \ \alpha_2 = 0,7\alpha_3. \)

Когда направление скорости потока составляет с осью труб угол \(\psi < 90^\circ, \) рассчитанный по формуле (6.49) коэффициент теплоотдачи надо скорректировать поправкой \(\varepsilon \).

Закономерности теплоотдачи зависят от формы сечения поперечно обтекаемого тела и от ориентировки тела по отношению к набе-гающему потоку. Уравнения подобия для тел с различной формой поперечного сечения приводятся в справочной литературе [13].

ГЛАВА VII

ТЕПЛООТДАЧА ПРИ ВЫНУЖДЕННОМ ТЕЧЕНИИ ЖИДКОСТИ В ТРУБАХ И КАНАЛАХ

§ 1. Физические основы процесса теплоотдачи в трубах и каналах

На поверхности трубы, через которую течет жидкость, образуется динамический пограничный слой, который может иметь ламинар-ный или турбулентный характер. На рис. 7.1 показана картина формирования турбулентного пограничного слоя. На некотором расстоянии от входа пограничные слои смыкаются и после этого в поперечном сечении устанавливается стационарное распределение скоро-стей, которое при ламинарном потоке имеет параболический ха-рактер, а при турбулентном распределение скоростей зависит от величины критерия Re и характеризуется разными зависимостями в турбулентном ядре и ламинарном подслое.

Расстояние от входа в трубу или канал до сечения, в котором динамические пограничные слои смыкаются, называется гидродина-мическим начальным участком, или участком гидродинамической стабилизации.

Аналогично развивается тепловой пограничный слой. Участок от начала трубы до смыкания тепловых пограничных слоев назы-вается тепловым начальным участком.

Режим течения жидкости в трубе зависит от величины критерия

\[
\text{Re} = \frac{\bar{w}d}{v},
\]

где \(\bar{w} \) — средняя по сечению трубы скорость жидкости; \(d \) — диаметр трубы.

При \(\text{Re} \leq 2 \cdot 10^3 \) наблюдается ламинарное течение жидкости. Однако при большом температурном напоре в поперечном сечении ламинарного потока может возникнуть свободное движение, обус-ловленное гравитационными силами. Поэтому среди низотермиче-ских ламинарных потоков различают вязкостный и вяз-костно-гравитационный режимы течения. В первом случае силы вязкости превалируют над силами гравита-
ции и свободное движение не возникает. Во втором случае свободное движение нарушает ламинарность потока и только условно его можно назвать ламинарным.

При \(Re \geq 10^4 \) поток становится турбулентным, но в начале трубы по-прежнему сохраняется участок с ламинарным пограничным слоем. При \(Re \geq 5 \cdot 10^4 \) турбулентный пограничный слой начинает формироваться практически с начала трубы.

При \(Re = 2 \cdot 10^3 - 10^4 \) наблюдается переходный режим течения и теплообмена.

Изменение толщины и структуры пограничного слоя определяет изменение коэффициента теплоотдачи по длине трубы. На рис. 7.2, a показано изменение местного \(\alpha \) и среднего \(\bar{\alpha} \) коэффициентов теплоотдачи при одинаковой по всей длине структуре пограничного слоя.

На рис. 7.2, b показано изменение среднего и местного коэффициентов теплоотдачи по длине трубы, в начале которой наблюдается ламинарный пограничный слой, переходящий затем в турбулентный.

Для турбулентного течения длина теплового начального участка, на котором изменяется местный коэффициент теплоотдачи, составляет \((10—15)d\), а средний коэффициент теплоотдачи изменяется на длине \(\sim 50d \).

§ 2. Аналитический метод расчета теплоотдачи в трубе

Аналитический метод получения расчетных формул для теплоотдачи в трубе интересен тем, что он раскрывает органическую связь процессов теплообмена с условиями течения жидкости и таким образом способствует глубокому пониманию механизма процесса теплообмена между потоком и стенкой в условиях внутренней задачи.

Рассмотрим гидродинамически и термически стабилизированное течение жидкости в прямой круглой трубе. Будем предполагать, что жидкость несжимаема, ее физические свойства от температуры
не зависят, а теплотой трения можно пренебречь. Для этих условий дифференциальное уравнение энергии, описывающее стационарное осесимметричное течение, имеет вид

$$\rho c_p \left(w_r \frac{\partial t}{\partial r} + w_x \frac{\partial t}{\partial x} \right) = \lambda \left(\frac{\partial^2 t}{\partial r^2} + \frac{1}{r} \frac{\partial t}{\partial r} + \frac{\partial^2 t}{\partial x^2} \right). \quad (7.1)$$

Так же, как в теории пограничного слоя, можно принять, что $\frac{\partial^2 t}{\partial x^2} \ll \frac{\partial^2 t}{\partial r^2}$; кроме того, при постоянной площади поперечного сечения и стабилизированном профиле скоростей $w_r = 0$. С учетом этого уравнение (7.1) упростится

$$\rho c_p \omega_x \frac{\partial t}{\partial x} = \lambda \frac{\partial^2 t}{\partial r^2} + \frac{\lambda}{r} \frac{\partial t}{\partial r}. \quad (7.2)$$

Это уравнение можно переписать в виде

$$\lambda \frac{\partial}{\partial r} \left(r \frac{\partial t}{\partial r} \right) = \rho c_p \omega_x r \frac{\partial t}{\partial x}. \quad (7.3)$$

Уравнение (7.3) пригодно только для ламинарного потока. Для обобщения его на случай турбулентного потока жидкости коэффициент теплопроводности λ необходимо заменить на $\lambda + \lambda_t$, как это было сделано при выводе дифференциального уравнения энергии (2.19). С учетом этого, что $\lambda_t = f(r)$, уравнение (7.3) для турбулентного течения можно записать в виде

$$\frac{\partial}{\partial r} \left[(\lambda + \lambda_t) r \frac{\partial t}{\partial r} \right] = \rho c_p \omega_x r \frac{\partial t}{\partial x}. \quad (7.4)$$

Ограничив задачу условием $q_w = \text{const}$ и найдем произ водную $\partial t/\partial x$, входящую в правую часть уравнения (7.4). Так как $\frac{\partial^2 t}{\partial x^2} = 0$, то $\frac{\partial t}{\partial x} = \text{const}$. Величину этой константы можно найти из баланса теплоты.

Для элемента трубы длиной dx баланс теплоты имеет вид

$$Gc_p \overline{\tau_f} = q_w dF, \quad (7.5)$$

где $\overline{\tau_f}$ — средняя по сечению температура жидкости.

Используя выражения $G = \pi r_0^2 \omega_x \rho$, $dF = 2\pi r_0 dx$ (где r_0 — радиус внутренней поверхности трубы), уравнение (7.5) легко привести к виду

$$\frac{\overline{\tau_f}}{dx} = \frac{2q_w}{c_p \rho \omega_x r_0} = \text{const.} \quad (7.6)$$

Следовательно, температура $\overline{\tau_f}$ линейно изменяется по длине трубы.
Теплообмен на стабилизированном участке характеризуется постоянством коэффициента теплоотдачи. Поэтому

$$\frac{q_w}{\alpha} = t_w - \bar{t}_j = \text{const.} \quad (7.7)$$

Следовательно, t_w есть также линейная функция от x. Из выражения (7.7) следует, что

$$\frac{dt_w}{dx} = \frac{dt}{dx}. \quad (7.8)$$

С учетом (7.6) это равенство переписывается так:

$$\frac{dt_w}{dx} = \frac{2q_w}{c_p \rho \omega_x r_0}. \quad (7.9)$$

При $r=r_0$, $\frac{dt}{dx} = \frac{dt_w}{dx}$. Следовательно,

$$\frac{dt}{dx} = \frac{2q_w}{c_p \rho \omega_x r_0} = \text{const.} \quad (7.10)$$

Так как $\frac{dt}{dx} = \text{const}$, то из уравнения (7.4) можно заключить, что распределение температуры по радиусу автомодельно относительно координаты x. Подстановка выражения (7.10) в уравнение (7.4) позволяет получить

$$\frac{d}{dr} \left[(\lambda + \lambda_T) r \frac{dt}{dr} \right] = 2q_w \frac{\omega_x}{\omega_x} \frac{r}{r_0}. \quad (7.11)$$

Введем безразмерные величины

$$\frac{\omega_x}{\omega_x} = W; \quad \frac{r}{r_0} = R.$$

С учетом этих обозначений уравнению (7.11) можно придать вид

$$d \left[(\lambda + \lambda_T) R \frac{dt}{dR} \right] = 2q_w r_0 W R dR. \quad (7.12)$$

Проинтегрировав это уравнение от 0 до R, получим

$$(\lambda + \lambda_T) R \frac{dt}{dR} = 2q_w r_0 \int_0^R W R dR,$$

откуда

$$dt = \left[\frac{2q_wr_0}{(\lambda + \lambda_T) R} \int_0^R W R dR \right] dR. \quad (7.13)$$
Обратимся теперь к формуле среднекалориметрической температуры. При постоянных c_r и ρ средняя по сечению трубы температура жидкости определяется по формуле

$$\bar{t}_f = \frac{1}{l_0 \omega x} \int_0^{l_0} \omega x \, t \, df. \quad (7.14)$$

С учетом того, что $f = \pi r^2$ и $f_0 = \pi r_0^2$, эта формула приводится к виду

$$\bar{t}_f = \frac{2}{r_0^2 \omega x} \int_0^{r_0} \omega x \, tr \, dr = 2 \int_0^{1} tW \, RdR. \quad (7.15)$$

Найдем этот интеграл по частям в соответствии с правилом

$$\int_a^b u \, dv = uv \bigg|_a^b - \int_a^b v \, du. \quad (7.16)$$

Обозначим $t = u$, $dv = W \, RdR$, т. е. $v = \int_0^R W \, RdR$. С учетом этих обозначений и правила (7.16) выражение (7.15) перепишется в виде

$$\bar{t}_f = 2 \left[t \int_0^R W \, RdR \right] - \int_0^R \left(\int_0^t W \, RdR \right) \, dt =$$

$$= 2 \left[t_w \int_0^1 W \, RdR \right] - \int_0^1 \left(\int_0^t W \, RdR \right) \, dt \quad (7.17).$$

Подсчитаем первый из интегралов, входящих в выражение (7.17),

$$\int_0^1 W \, RdR = \frac{1}{\omega x} r_0^2 \int_0^{r_0} \omega x \, r \, dr =$$

$$= \frac{1}{2f_0 \omega x} \int_0^{f_0} \omega x \, df = \frac{1}{2}.$$

С учетом этого выражение (7.17) примет вид

$$\bar{t}_f = t_w - 2 \int_0^1 \left(\int_0^t W \, RdR \right) \, dt. \quad (7.18)$$
Подставив в это уравнение dt из формулы (7.13), найдем

$$t_f = t_w - \frac{4q_w r_0}{\lambda} \int_0^1 \left(\frac{R \nu R dR}{1 + \frac{\lambda_T}{\lambda}} \right)^2 \frac{dR}{\nu R dR}.$$

Перепишем это уравнение в виде

$$\frac{t_w - t_f}{2q_w r_0} = \frac{\lambda}{2\nu \alpha d} = \frac{1}{\nu},$$

Так как

$$\frac{t_w - t_f}{2q_w r_0} = \frac{\lambda}{\alpha d} = \frac{1}{\nu},$$

то окончательно получается

$$\frac{1}{\nu} = 2 \int_0^1 \left(\frac{R \nu R dR}{1 + \frac{\lambda_T}{\lambda}} \right)^2 \frac{dR}{\nu R dR}.$$ \hspace{1cm} (7.19)

Это так называемое уравнение Лайона, которое пригодно как для ламинарного, так и для турбулентного течения жидкостей.

Достаточно просто это уравнение разрешается для ламинарного потока, для которого

$$\lambda_T = 0, \quad \nu_x = 2 \bar{\nu}_x [1 - (r/r_0)^2], \quad \text{т. е.} \quad \nu = 2(1 - R^2).$$

Подставив эти данные в выражение (7.19), получим

$$\nu = \frac{48}{11} = 4.36.$$ \hspace{1cm} (7.20)

При $t_w = \text{const}$ и ламинарном потоке аналогичный анализ позволяет заключить, что $\nu = 3.66$.

Эти цифры характеризуют теплоотдачу в трубе за пределами участка тепловой и гидродинамической стабилизации. Они могут существенно отличаться от действительности из-за зависимости физических свойств теплоносителя от температуры, а также из-за свободного движения. Поэтому на практике предпочитают пользоваться результатами экспериментального исследования теплоотдачи в трубах и каналах.
§ 3. Результаты экспериментального исследования теплоотдачи в трубах и каналах

Опытные данные по средним коэффициентам теплоотдачи в трубах и каналах при турбулентном режиме течения теплоносителя (Re $\geq 10^4$) хорошо описываются формулой М. А. Михеева

$$
\overline{Nu_f} = 0,021 \text{Re}_f^{0,8} \text{Pr}_f^{0,43} \left(\frac{Pr_f}{Pr_{lu}} \right)^{0,25},
$$

(7.21)

которая справедлива при Re$_f = 10^4 - 5 \cdot 10^6$ и Pr$_f = 0,6 - 2500$. Свободное движение не оказывает влияния на теплоотдачу при турбулентном режиме течения, и потому критерий Грасгофа не входит в уравнение подобия.

Уравнение (7.21) справедливо для различной формы поперечного сечения канала, в том числе для кольцевого ($d_2/d_1 = 1 - 5,6$) и щелевого ($a/b = 1 - 40$).

За определяющую здесь взята средняя температура жидкости. Определяющий размер для круглых труб — диаметр, для каналов любого сечения — эквивалентный диаметр, равный

$$
d_{экв} = \frac{4f}{u},
$$

где u — периметр канала; f — площадь его поперечного сечения.

Формула (7.21) позволяет рассчитывать коэффициенты теплоотдачи при длинах труб и каналов больше пятидесяти эквивалентных диаметров. При $\frac{l}{d_{экв}} < 50$ полученный по формуле коэффициент теплоотдачи надо умножить на поправку ε, числовые значения которой приводятся в справочной литературе.

Поправка $\varepsilon_i > 1$, это обусловлено характером изменения местного α и среднего $\overline{\alpha}$ коэффициентов теплоотдачи вдоль стенки канала, показанным на рис. 7.2.

Для газов в широком диапазоне изменения температур Pr $\equiv \approx$ const. Поэтому для конкретных газов формулу (7.21) можно упростить. Например, для воздуха она приводится к виду

$$
\overline{Nu_f} = 0,018 \text{Re}_f^{0,8}.
$$

(7.22)

Для оценки теплоотдачи в трубах и каналах при Re$_f < 2000$ и вязкостно-гравитационном режиме течения академик М. А. Михеев рекомендует следующее уравнение:

$$
\overline{Nu_f} = 0,15 \text{Re}_i^{0,33} \text{Pr}_i^{0,43} \text{Gr}_i^{0,1} \left(\frac{Pr_f}{Pr_{lu}} \right)^{0,25}.
$$

(7.23)

Это уравнение определяет среднюю теплоотдачу в трубах и каналах различного поперечного сечения. За определяющий размер здесь принят диаметр трубы или эквивалентный диаметр канала. При $\frac{l}{d} < 50$ полученный из формулы коэффициент теплоотдачи надо
умножить на поправку ε, величина которой приводится в справочной литературе.

При переходном режиме течения теплоотдача не может быть описана единным уравнением подобия, так как при этих условиях характер движения и теплообмен зависит от многих факторов, трудно поддающихся количественной оценке. При $Re = \text{idem}$ соотношение между возможными максимальными и минимальными коэффициентами теплоотдачи составляет 20—100. Поэтому для этой области режимов теплообмена можно определить только наиболее вероятные значения коэффициентов теплоотдачи по уравнению

$$\overline{Nu} = K_0 Pr_f^{0,13} \left(\frac{Pr_f}{Pr_{wo}} \right)^{0,25}. \quad (7.24)$$

Величина K_0 выбирается в зависимости от величины критерия Re из табл. 7-1.

<table>
<thead>
<tr>
<th>$Re_f\cdot10^{-3}$</th>
<th>2,2</th>
<th>2,3</th>
<th>2,5</th>
<th>3,0</th>
<th>3,5</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_0</td>
<td>2,2</td>
<td>3,6</td>
<td>4,9</td>
<td>7,5</td>
<td>10</td>
<td>12,2</td>
<td>16,5</td>
<td>20</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>33</td>
</tr>
</tbody>
</table>

§ 4. Теплоотдача расплавленных металлов

Жидкокометаллические теплоносители обеспечивают высокую интенсивность процесса теплоотдачи и могут использоваться при высоких температурах без повышения давления в системе.

Физические свойства расплавленных металлов существенно отличаются от свойств обычных теплоносителей. Для жидкых металлов характерны высокие значения коэффициентов теплопроводности и небольшие теплоемкости. Критерий Прандтля для таких теплоносителей значительно меньше единицы.

Опытное исследование теплоотдачи жидких металлов показало, что интенсивность теплообмена зависит от загрязненности металла окислами и от смачиваемости омыляемой поверхности. Для чистых расплавленных металлов (без окислов) смачиваемость поверхности незначительно влияет на интенсивность теплоотдачи. При наличии окислов теплоотдача несмачиваемой поверхности протекает менее интенсивно, чем смачиваемой. Это обусловлено, по-видимому, тем, что окислы легче осаждаются на несмачиваемой поверхности и создают дополнительное тепловое сопротивление.

Опытное и теоретическое изучение теплоотдачи расплавленных металлов показало, что вместо критериев Re и Pr в уравнение подобия удобнее ввести критерий $Pe = RePr$.

Результаты опытного исследования теплоотдачи жидких металлов при турбулентном течении в трубах описываются следующими
уренениями подобия. Для хорошо очищенных от окислов металлов при условии надежного смачивания стенки трубы

\[\overline{Nu}_f = 4.8 + 0.014 \text{Pe}_f^{0.8}. \] (7.25)

Для условий, когда возможно загрязнение металла, а поверхность теплообмена не смачивается

\[\overline{Nu}_f = 3.3 + 0.014 \text{Pe}_f^{0.5}. \] (7.26)

Эти уравнения справедливы при \(\text{Re} \geq 10^4, \text{Pe} = 2 \cdot 10^2 - 2 \cdot 10^4, \text{Pr} = 4 \cdot 10^{-3} - 3 \cdot 10^{-2} \) и \(\frac{l}{d} \geq 30 \). Для более коротких труб коэффициент теплоотдачи, определяемый из уравнения подобия, надо умножить на поправку \(\varepsilon_t \), которая определяется равенством

\[\varepsilon_t = 1.72 \left(\frac{d}{l} \right)^{0.16}. \]

ГЛАВА VIII
ТЕПЛООТДАЧА В ПОЛЯХ МАССОВЫХ СИЛ

В настоящей главе рассматриваются процессы, в которых инерционные и гравитационные массовые силы оказывают существенное влияние на интенсивность теплоотдачи.

Инерционные массовые силы существенно влияют на теплоотдачу во вращающихся элементах систем охлаждения газовых турбин и электрических машин, в теплообменных аппаратах, где для интенсификации теплообмена используется закрутка жидкости, и т. п.

§ 1. Активное и консервативное воздействие массовых сил на поток

При установившемся течении, частицы жидкости или газа находятся под действием сил давления, обусловленных внешним механическим воздействием и создающих вынужденное движение потока, вязкостных сил, возникающих в результате внутреннего трения и массовых сил, возникающих в результате воздействия силового поля на движущуюся жидкость. Воздействие массовых сил на поток также сопровождается возникновением сил давления. Инерционные массовые силы возникают при криволинейном движении теплоносителя, а также при ускоренном или вращательном движении системы, в которой имеются потоки жидкости. Гравитационные массовые силы возникают в результате воздействия на жидкость ускорения силы тяжести.

Массовые силы могут оказывать на поток активное или консервативное воздействие. В первом случае массовые силы способствуют развитию случайных возмущений, увеличивая составляющих пульсационных скоростей по направлению
действия массовой силы и могут привести к образованию вторичных течений. Во втором случае массовые силы подавляют случайные возмущения и способствуют уменьшению составляющих пульсационных скоростей по направлению действия массовой силы.

Рассмотрим движение жидкости по криволинейной траектории (рис. 8.1). Частица жидкости \(I \) перемещается по криволинейной траектории радиусом \(r \) в том случае, если массовая центробежная сила \(F \) уравновешена силой \(F' \), обусловленной градиентом давления, который является результатом воздействия стенки на поток.

Если частица 2 под действием случайных причин переместилась с траектории радиуса \(r_0 \) на траекторию радиуса \(r \), то действующая на нее сила в общем случае не равна \(F \), поэтому \(F_0 \neq F' \).

Обозначим

\[
\Delta F = F' - F_0. \tag{8.1}
\]

При \(\Delta F > 0 \) \(F' > F_0 \), и частица будет стремиться вернуться на первоначальную траекторию, т. е. массовая сила оказывает консервативное воздействие на поток. При \(\Delta F < 0 \) \(F' < F_0 \), и массовые силы способствуют развитию случайного перемещения, т. е. оказывают активное воздействие на поток.

Рис. 8.2

Характер воздействия массовых сил на поток связан с распределением массовых сил в системе. Для выявления этой связи рассмотрим движение жидкости, обусловленное неоднородностью температуры в поле гравитационных массовых сил.

На рис. 8.2, а показано распределение температуры и массовой силы \(F = g \rho \) около горизонтальной стенки, охлаждающей жидкость. В этих условиях массовые силы не вызывают циркуляции жидкости, а если она имеет вынужденное движение вдоль поверхности теплообмена, то массовые силы способствуют подавлению возмущений, обусловленных вынужденным движением. Поэтому массовые силы имеют здесь консервативный характер. В рассматриваемой системе
плотность жидкости и обусловленная ею массовая сила уменьшаются по мере удаления от стенки, и, следовательно, векторы F и $\frac{\partial F}{\partial n}$ совпадают по направлению (в производной F берется по модулю).

При нагреве жидкости около горизонтальной стенки, изображенной на рис. 8.2, б, массовые силы способны вызвать циркуляцию, т. е. они имеют активный характер. В этом случае векторы F и $\frac{\partial F}{\partial n}$ имеют противоположные направления.

При свободном движении около вертикальной стенки (рис. 8.2, в) массовые силы также вызывают конвективные токи, а векторы F и $\frac{\partial F}{\partial n}$ взаимно перпендикулярны.

Рассмотренные примеры показывают, что при совпадении направлений векторов F и $\frac{\partial F}{\partial n}$ массовые силы имеют консервативный характер, при несовпадении — активный. Это правило может быть использовано и для оценки характера воздействия массовых сил на потоки в полях инертционных массовых сил.

§ 2. Дополнительное условие подобия потоков в полях массовых сил

Массовые силы влияют на распределение скоростей жидкости в потоке, от которого зависит интенсивность теплоотдачи. Поэтому дополнительное условие подобия таких потоков можно получить из анализа дифференциального уравнения движения.

Для выявления дополнительного условия подобия потоков, обусловленного влиянием инерционных массовых сил на движение жидкости и ее теплообмен со стенкой, массовую силу в уравнении движения надо записать в явном виде, т. е. она должна быть внешней по отношению к рассматриваемому движению. Для этого система координат, в которой рассматривается движение жидкости, должна перемещаться так, чтобы направление движения и скорость ее совпадали с направлением и скоростью движения, благодаря которому возникают инерционные массовые силы. Если, например, инерционные массовые силы возникают благодаря ускоренному или замедленному поступательному движению аппарата, то система координат должна быть жестко связана с движущимся аппаратом.

При условии параллельности вектора массовой силы и оси z дифференциальное уравнение движения для этого случая записывается в виде (2.32), т. е. будет иметь такую же форму, как и при наличии гравитационного поля массовых сил в системе.

Анализ, проведенный в § 4 главы II ч. II, для случая, когда массовая сила определяется ускорением силы тяжести, показывает, что при отсутствии вынужденного движения

$$ F - \frac{\partial p}{\partial z} = F - F_0 = \Delta F, \tag{8.2} $$

t. е. два первых члена правой части уравнения (2.32в) представляют собой разность массовых сил в двух точках системы, равную избыточной массовой силе ΔF [см. выражение (2.33)]. Следовательно,
массовые силы могут вызвать движение жидкости или изменить его форму только при неоднородном поле массовых сил, т.е. при $\Delta F \neq 0$.

После подстановки (8.2) в (2.32) анализ уравнения движения методами подобия позволяет получить дополнительное число подобия, характеризующее влияние массовых сил на поток [26]

$$ K = \frac{\ell \Delta F}{\rho \omega^2}. \quad (8.3) $$

При отсутствии вынужденного движения скорость потока не входит в условия однозначности. Поэтому умножением числа K на Re^2 можно получить более удобное для практического использования число

$$ P = K Re^2 = \frac{l^3 \Delta F}{\rho v^2}. \quad (8.4) $$

При оценке чисел подобия под избыточной силой ΔF следует понимать разность между максимальной и минимальной массовыми силами.

Для системы с постоянной величиной ускорения, определяющего массовую силу, избыточная массовая сила записывается формулой $\Delta F = j \Delta \rho$, поэтому число P превращается в обобщенное число Архимеда

$$ Ar = \frac{l^3}{v^2} \Delta \rho \rho, \quad (8.5) $$

а при отсутствии фазовых превращений — в обобщенное число Грасгофа

$$ Gr = \frac{l^3}{v^2} \beta \Delta t. \quad (8.6) $$

При изучении изотермических несжимаемых потоков число P приводится к числу

$$ S = \frac{l^3 \Delta j}{v^2}. \quad (8.7) $$

Для числа S за определяющий размер выбирают расстояние между точками поперечного сечения потока, в которых массовая сила имеет максимальное и минимальное значения.

Число S можно использовать также и в неизотермических системах, где избыточная массовая сила определяется в основном изменением ускорения, характеризующего величину массовой силы.

§ 3. Теплоотдача при свободном движении в гравитационном поле массовых сил

В гравитационном поле массовых сил свободное движение возникает в результате различной плотности холодных и горячих объемов теплоносителя. Нагреваемые от стенки объемы теплоносителя всплывают, а охлаждаемые опускаются.
Характер движения теплоносителя около стенки зависит от формы поверхности, ее положения в пространстве и направления теплового потока. На рис. 8.3 показана картина движения теплоносителя около охлаждаемой вертикальной стенки (a), около охлаждаемых (b и d) и около нагреваемых горизонтальных поверхностей (c и g).

Движение теплоносителя вдоль охлаждаемой вертикальной стенки в нижней части имеет ламинарный характер, выше — переходный, а затем — вихревой. В случае нагреваемой стенки теплоноситель перемещается сверху вниз, и характер течения изменяется в той же последовательности. Режим течения определяется главным образом температурным напором, с увеличением которого сокращается длина участка, занятого ламинарным потоком, и увеличивается зона вихревого движения. На участке ламинарного движения коэффициент теплоотдачи уменьшается в соответствии с увеличением толщины ламинарного слоя теплоносителя. В зоне вихревого движения коэффициент теплоотдачи имеет практически одинаковое значение для всей поверхности.

Характер движения теплоносителя около плоских горизонтальных поверхностей зависит от их расположения и направления теплового потока. При картине движения, отвечающей схемам в и g, поверхность стесняет движение теплоносителя, и потому теплообмен протекает менее интенсивно, чем в случаях b и d.

Анализ многочисленных экспериментальных исследований теплоотдачи при свободном движении теплоносителя в неограниченном пространстве, выполненный академиком М. А. Михеевым, показал, что для средних коэффициентов теплоотдачи можно записать уравнение подобия, которое справедливо для различных форм поверхности теплообмена

$$\overline{Nu}_m = c (Gr \cdot Pr)^n.$$ (8.8)

Значения величин c и n в этом уравнении зависят от произведения чисел Gr·Pr и приводятся в табл. 8-1.

<table>
<thead>
<tr>
<th>Gr·Pr</th>
<th>c</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-3}−5·10^4</td>
<td>1,18</td>
<td>1/8</td>
</tr>
<tr>
<td>5·10^2−2·10^7</td>
<td>0,54</td>
<td>1/4</td>
</tr>
<tr>
<td>2·10^7−10^{14}</td>
<td>0,135</td>
<td>1/3</td>
</tr>
</tbody>
</table>

Таблица 8-1
За определяющую здесь принята средняя температура погра ничного слоя. Определяющий размер зависит от формы и расположения поверхности теплообмена: для труб и шаров за определяющий размер следует принимать их диаметр, для вертикальных плит — их высоту, для горизонтальных плоских поверхностей — наименьший горизонтальный размер.

Для горизонтальных плоских поверхностей, движение теплоносителя около которых соответствует схемам, показанным на рис. 8.2, б и в, полученное из уравнения (8.8) значение коэффициента теплоотдачи надо увеличить на 30%, а для схем, показанных на рис. 8.3, в и г, — уменьшить на 30%.

Теплоотдача плоских поверхностей, которые составляют с вертикально угол \(\varphi \), также может быть оценена с помощью уравнения (8.8) путем введения в него поправки, зависящей от угла \(\varphi \). Коэффициент теплоотдачи наклонной поверхности определяется как коэффициент теплоотдачи вертикальной поверхности, умноженный на поправочный множитель \((\cos \varphi)^{-0.25}\)

для поверхностей, обращенных вверх, и \((\cos \varphi)^{0.25}\)

для поверхностей, обращенных вниз.

Характер свободного движения теплоносителя в ограниченном пространстве зависит от формы и взаимного расположения поверхностей, образующих прослойку, а также от расстояния между ними.

Движение теплоносителя по-разному протекает в замкнутых и открытых прослойках.

На рис. 8.4 рассмотрены два случая теплоотдачи при свободном движении теплоносителя в ограниченном пространстве: теплоотдача в замкнутой прослойке (а) и теплоотдача в открытом зазоре при одинаковой температуре стенок, образующих зазор (б).

При теплоотдаче в замкнутом пространстве перенос теплоты осуществляется одним и тем же теплоносителем, который циркулирует между горячей и холодной стенками, образуя замкнутые контуры. В этом случае трудно отделить теплоотдачу около охлаждаемой и нагреваемой поверхностей. Поэтому процесс теплообмена в замкнутой прослойке оценивают в целом, определяя плотность теплового потока формулой теплопроводности

\[
q = \frac{\lambda_{экв}}{\delta} (t_w_1 - t_w_2),
\]

где \(\lambda_{экв} \) — эквивалентный коэффициент теплопроводности; \(\delta \) — толщина прослойки.
Эквивалентный коэффициент теплопроводности учитывает интенсивность циркуляции в прослойке и определяется через коэффициент теплопроводности теплоносителя формулой

\[\lambda_{экв} = \varepsilon_n \lambda. \]

Здесь \(\varepsilon_n \) — коэффициент конвекции.

Опытное исследование теплоотдачи в замкнутом пространстве показало, что независимо от формы прослойки коэффициент конвекции можно определить из уравнения

\[\varepsilon_n = c (\text{Gr} \cdot \text{Pr})^n, \tag{8.10} \]

в котором \(c \) и \(n \) зависят от величины произведения \(\text{Gr} \cdot \text{Pr} \). При \((\text{Gr} \cdot \text{Pr})_f = 10^5 \sim 10^6 \) значения \(c = 0,105 \) и \(n = 0,3 \), при \((\text{Gr} \cdot \text{Pr})_f = 10^6 \sim 10^{10} \) \(c = 0,4 \) и \(n = 0,2 \). При \((\text{Gr} \cdot \text{Pr})_f \leq 10^3 \) \(\varepsilon_n = 1 \), т.e. циркуляция отсутствует, и теплота передается только теплопроводностью.

В уравнении (8.10) за определяющую выбрана средняя температура теплоносителя, равная полусумме температур стенок, а за определяющий размер — толщина прослойки \(\delta \).

Опытное изучение теплоотдачи в открытом зазоре при свободном движении воздуха между вертикальными стенками, имеющими одинаковую температuru, показало, что существует критическая величина зазора, при которой теплообмен достигает наибольшей интенсивности. При зазорах меньше критического интенсивность теплообмена резко ухудшается, а при зазорах больше критического — остается практически неизменной. При теплоотдаче в воздухе критическая величина зазора определяется из равенства

\[\text{Gr}_m \frac{\delta}{2h} \approx 20, \tag{8.11} \]

где \(\delta \) — расстояние между стенками; \(h \) — высота стенки.

При подсчете числа \(\text{Gr} \) за определяющий размер принята полюсина расстояния между стенками.

Максимальная интенсивность теплообмена достигается при условиях, когда толщина пограничного слоя становится равной половине расстояния между стенками.

Теплоотдача в зазоре протекает более интенсивно, чем при свободном движении около одиночной пластины. При расстояниях между вертикальными стенками, близких к критическим \((\text{Gr}_m \frac{\delta}{2h} = 10 \sim 100) \), опытные данные по теплоотдаче удовлетворительно описываются уравнением

\[\overline{\text{Nu}}_m = 0,65 \left(\text{Gr}_m \cdot \text{Pr}_m \frac{\delta}{2h} \right)^{0,25}. \tag{8.12} \]

Определяющий размер здесь выбирается так же, как в уравнении (8.11).

348
§ 4. Теплоотдача при свободном движении в инерционных силовых полях

Когда изменение плотности в системе является единственной или основной причиной неоднородности поля массовых сил, механизм взаимодействия потока со стенкой в гравитационном и инерционном силовых полях одинаков, но инерционное силовое поле отличается большей величиной ускорения, характеризующего поля, и соответственно большей величиной числа Gr.

В глухом вращающемся канале (типа охлаждаемой турбинной лопатки), схема которого показана на рис. 8.5, изменение плотности жидкости по поперечному сечению канала вызывает ее радиальное перемещение. Это перемещение приводит к возникновению кориолисовых сил, действующих в плоскости поперечного сечения канала.

А. Г. Романов получил формулы для расчета теплоотдачи в глухом канале на основе теории пограничного слоя без учета кориолисовых сил и проверил их с помощью опытов в неподвижных и вращающихся каналах. В стационарных условиях опыты проводились на трубках с \(l/d = 11 - 2 \), а при вращении с \(l/d = 8,3 - 17,5 \). Близкое совпадение результатов исследования теплоотдачи, полученных на неподвижных и вращающихся каналах, показывает, что кориолисовы силы в рассматриваемых условиях не оказывают существенного влияния на теплообмен.

Средний коэффициент теплоотдачи определяется выражениями:

при

\[
(Gr \cdot Pr)_f < 10^8 \quad Nu_f = \frac{0,676}{\varepsilon} (Gr \cdot Pr)_f^{0.25},
\]

при

\[
(Gr \cdot Pr)_f = 10^8 - 2 \cdot 10^{12} \quad Nu_f = 0,0192 (Gr \cdot Pr)_f^{0.4}.
\]

Здесь инерционное ускорение, входящее в число Gr, подсчитывается по среднему радиусу вращения канала; определяющая температура принимается равной полусумме температур жидкости на входе и выходе из канала; число Грасгофа определяется по разности между температурой стенки и температурой ядра потока; определяющий размер — длина канала; \(\varepsilon = f (Pr) \).

Рассмотренные формулы правильно отражают условия теплообмена только до смыкания пограничных слоев на оси канала, после чего интенсивность теплообмена уменьшается.

Формула (8.14) является результатом теоретического решения и проверена экспериментально до \((Gr \cdot Pr)_f = 2 \cdot 10^{12} \).
Теоретическое решение задачи о теплообмене в замкнутом пространстве между вращающимися дисками с различной температурой плоских поверхностей (рис. 8.6) получено В. М. Капинсом на основе теории осесимметричного пограничного слоя. Направление движения жидкости в пограничном слое показано на рис. 8.6 для случая \(t_1 > t_2 \).

При \(Gr/Re^2 = 0.4 \) и \(Pr = 0.72 \) теоретические решения для среднего коэффициента теплоотдачи аппроксимируются простыми зависимостями.

Для поверхности с течением пограничного слоя от оси вращения к периферии

\[
\overline{Nu} = 0.0195 Gr^{0.4}. \tag{8.15}
\]

При течении пограничного слоя к оси вращения

\[
\overline{Nu} = 0.0259 Gr^{0.4}. \tag{8.16}
\]

Здесь

\[
\overline{Nu} = \frac{\alpha R}{\lambda}; \quad Gr = \omega^2 R^4 \frac{\Delta t}{v^2};
\]

\[
Re = \frac{\omega R^2}{v}; \quad \Delta t = t_m - t_w
\]

где \(t_m \) — температура ядра потока, которая определяется формулой

\[
t_m = \frac{t_1 + \frac{\alpha_2}{\alpha_1} t_2}{1 + \frac{\alpha_2}{\alpha_1}} \tag{8.17}
\]

и рассчитывается последовательными приближениями; \(\alpha_1 \) и \(\alpha_2 \) — коэффициенты теплоотдачи на поверхностях дисков.

§ 5. Теплоотдача в змеевиках

Экспериментальное исследование структуры потока в криволинейных трубах показывает, что под воздействием массовых сил в перечном сечении потока возникают вторичные течения в форме парного вихря (рис. 8.7). Направление вращения жидкости в замкнутых контурах определяется направлением действия массовых сил: благодаря наибольшей скорости осевого движения потока в центральной части трубы здесь возникает наибольшая центробежная сила, которая заставляет перемещаться частицы жидкости от оси изгиба трубы к периферии. При этом вблизи стенок, лежащих в плоскости изгиба, возникают обратные токи (к оси изгиба).

При течении жидкости через криволинейные трубы и каналы возможны ламинарный, ламинарный с макровихрями и турбулентный режимы течения.
Воздействие массовых сил на процесс теплообмена можно оценить с помощью числа S [формула (8.7)]; для змеевиков эта формула имеет вид

$$S = \frac{\kappa^2}{4} \text{Re}^2 \frac{d}{D},$$ \hspace{1cm} (8.18)

где κ — соотношение между максимальной (на оси трубы) и среднечасовой скоростями движения жидкости; D — средний диаметр изгиба трубы.

При исследовании устойчивости потока в змеевиках используется число Дина

$$\text{De} = \text{Re} \sqrt{\frac{d}{D}}. \hspace{1cm} (8.19)$$

Сопоставляя формулы (8.18) и (8.19), получим

$$S = \frac{\kappa^2}{4} \text{De}^2. \hspace{1cm} (8.20)$$

Для ламинарных потоков $\kappa = 2$, и, следовательно, число Дина однозначно определяет влияние массовых сил на процессы теплообмена. Для турбулентного потока $\kappa = f(\text{Re})$, поэтому число S зависит от Re и d/D в отдельности. В качестве дополнительного числа подобия в этих условиях удобно использовать симплекс d/D.

Анализ опытных данных по гидравлическому сопротивлению в змеевиках позволил заключить, что граница между ламинарным режимом течения и ламинарным с макровихрами в длинных змеевиках характеризуется условием $\text{De}_{кр} = 11,6$ или

$$\text{Re}_{кр}' = 11,6 \sqrt{\frac{D}{d}}. \hspace{1cm} (8.21)$$

Переход ламинарного течения с макровихрами в турбулентное в длинных змеевиках происходит при

$$\text{Re}_{кр} = 18 500 \left(\frac{d}{D}\right)^{0.3}. \hspace{1cm} (8.22)$$

Количественные соотношения для расчета теплоотдачи в длинных змеевиках получены путем обобщения опытных данных. В ламинарном потоке массовые силы не влияют на процесс теплообмена. Для ламинарного течения с макровихрами при $\text{De} = 26 — 7 \cdot 10^3$ и $D/d = 6,2 — 62,5$ уравнение подобия имеет вид

$$\overline{\text{Nu}}_f = 0,0575 \text{Re}_f^{0.33} \text{De}_f^{0.42} \text{Pr}_f^{0.43} \left(\frac{\text{Pr}_f}{\text{Pr}_{ш}}\right)^{0.25}. \hspace{1cm} (8.23)$$
для турбулентного течения при \(\text{Re} = \text{Re}_{\text{KP}} = 6,7 \cdot 10^4 \) и \(D/d = 6,2 - 104 \) обобщение опытных данных приводит к уравнению

\[
\overline{\text{Nu}} = 0,0266 \left[\text{Re}^{0,85} \left(\frac{d}{D} \right)^{0,15} + 0,225 \left(\frac{D}{d} \right)^{1,55} \right] \text{Pr}^{0,4}. \quad (8.24)
\]

За определяющий размер в уравнениях подобия принимается внутренний диаметр трубы.
Массовые силы увеличивают коэффициент теплоотдачи змеевика по сравнению с прямой трубой. Интенсификация теплообмена с помощью вторичных течений, обусловленных искривлением канала, с точки зрения энергетических затрат часто оказывается более целесообразной, чем достижение того же эффекта за счет увеличения скорости. Так, для исходной системы с \(\text{Re} = 10^4 \) увеличение коэффициента теплоотдачи в 1,3 раза вследствие искривления трубы сопровождается увеличением энергетических затрат на перемещение жидкости в 1,37 раза. Такая же интенсификация теплообмена за счет увеличения скорости движения жидкости приводит к увеличению энергетических затрат в 1,76 раза.

§ 6. Теплоотдача в закрученных потоках

Закрутка потоков в трубах используется в качестве средства интенсификации теплообмена. Она может осуществляться равномерно по всей трубе или только на ее начальном участке. В первом случае процесс можно назвать закруткой с постоянным по длине шагом, и во втором — местной закруткой потока.

Закрутку потока с постоянным по длине шагом можно создать с помощью закрученной в виде винта ленты или шнековой вставки. Местную закрутку потока можно осуществить с помощью лопаточного завихрителя, короткой ленточной или шнековой вставкой, путем подвода всей жидкости или части ее через тангенциальные щели или сверления.

Рассмотрим теплоотдачу в трубе с ленточным завихрителем, схема которой показана на рис. 8.8. Закрутка потока приводит к появлению неоднородного поля массовых сил в поперечном сечении потока, которое имеет много общего с полем массовых сил в змеевике. Канал, образованный ленточным завихрителем и стенкой трубы, представляет собой змеевик с поперечным сечением в форме полукруга. Поэтому в закрученном потоке, как и в змеевике, возникает парный вихрь (рис. 8.8), а режим течения может быть ламинарным, ламинарным с макровихрями и турбулентным.

Средний радиус изгиба канала \(D \), образованного стенкой трубы и ленточным завихрителем, зависит от шага ленточного завихрителя \(s \) (см. рис. 8.8) и определяется с помощью геометрического анализа

\[
\frac{D}{d} = 0,5 + \frac{8}{\pi^2} \left(\frac{s}{d} \right)^2. \quad (8.25)
\]
Одинаковый механизм движения жидкости в трубах с ленточными завихрительями и в змеевиках позволяет применить для обобщения опытных данных одинаковые числа подобия. Для труб с ленточными завихрительами число Дина имеет вид

\[\text{De}^* = \frac{\omega d_{\text{экв}}}{v} \sqrt{\frac{d}{D}} = \text{Re}^* \sqrt{\frac{d}{D}}, \] (8.26)

где \(d_{\text{экв}} \) — эквивалентный диаметр канала, образованного стенками трубы и ленточной вставки.

Границы режимов течения жидкости в трубах с ленточными завихрительями определены на основе опытных данных по гидравлическому сопротивлению. Граница ламинарного течения и ламинарного с макровихрями определяется величиной критерия Рейнольдса

\[\text{Re}_{\text{kр}} = 11.6 \sqrt{0.5 + \frac{8}{d^2} \left(\frac{s}{d} \right)^2}. \] (8.27)

Для границы между ламинарным течением с макровихрями и турбулентным потоком

\[\text{Re}_{\text{kр}}^* = 38900 \left(\frac{d}{s} \right)^{1.10} + 2300. \] (8.28)

Количественные соотношения, характеризующие теплообмен в трубах с ленточными завихрительями, получены на основе обобщения экспериментальных данных. Интенсификация теплообмена в закрученном потоке осуществляется не только за счет массовых сил, но и вследствие эффекта оребрения внутренней поверхности трубы скрученной лентой. Методика оценки этого эффекта рассмотрена в [26]. Однако этот эффект проявляется только при достаточно плотной посадке ленты в трубе и в большинстве случаев не оказывает существенного влияния на интенсивность теплоотдачи. В опытных исследованиях, на основе которых получены уравнения подобия, эффект оребрения не выделялся и косвенным путем учтен в коэффициенте теплоотдачи.
Для ламинарного течения с макровихрями при $\text{De}^* = 150 – 8 \cdot 10^3$ и $s/d = 2,5 – 11$ теплоотдача в длиной трубе с ленточными завихрителями описывается следующим уравнением:

$$\overline{\text{Nu}} ^{\dagger} = 0,3 \text{Re}^{0.33} \text{De}^{0.27} \text{Pr}^{0.43},$$

где

$$\overline{\text{Nu}} ^{\dagger} = \overline{a}d_{\text{обр}}/\lambda.$$

Для турбулентных потоков при $\text{Re}^* = \text{Re}_{\text{кр}} = 5,9 \cdot 10^4$ и $s/d = 1,79 – 13$

$$\overline{\text{Nu}} ^{\dagger} = 0,079 \varepsilon_t \text{Re}^{0.74} \left(\frac{d}{D}\right)^{0.11} \text{Pr}^{0.43}. $$

Здесь ε_t — множитель, учитывающий влияние направления теплового потока и величины тепловой нагрузки. Для газов и капельных жидкостей ε_t выражается соответственно формулами

$$\varepsilon_t = \left(\frac{T_f}{T_w}\right)^{0.575}; \quad \varepsilon_t = \left(\frac{\mu_f}{\mu_w}\right)^{0.36}. $$

Уравнение (8.30) обобщает опытные данные, полученные при нагреве теплоносителей.

§ 7. Теплоотдача в кольцевых каналах между вращающимися цилиндрами

Рассматриваемая задача отличается многообразием возможных схем. Рассмотрим сначала движение жидкости, расположенной между вращающимися цилиндрическими поверхностями и не имеющей осевого перемещения.

Характер воздействия массовых сил на поток зависит от взаимного направления угловых скоростей цилиндрических поверхностей и от величины этих скоростей. При неподвижном внешнем цилиндре окружная скорость жидкости в зазоре увеличивается от нуля на поверхности внешнего цилиндра до скорости вращения поверхности внутреннего цилиндра (рис. 8.9, а). В этом случае массовая сила и производная $\partial F/\partial n$ имеют противоположные направления и, следовательно, поле массовых сил оказывает активное воздействие на поток. В такой системе под влиянием массовых сил возникают вихри Тейлора, имеющие форму торов (рис. 8.10, а). Соседние вихри вращаются в противоположных направлениях.

В канале с внутренним неподвижным цилиндром (8.9, б) направления массовой силы и производной $\partial F/\partial n$ совпадают, и потому воздействие массовых сил на поток имеет консервативный характер.

При вращении цилиндров в одном направлении (рис.8.9, б) в зависимости от соотношения угловых скоростей массовая сила может увеличиваться или уменьшаться с увеличением радиуса и соответственно влияние массовых сил будет консервативным или активным.

При противоположных направлениях вращения цилиндров (рис. 8.9, в) в слое жидкости, примыкающем к внутреннему цилиндре,
ру, массовые силы имеют активный, а в наружном слое — консервативный характер. Однако при опытном исследовании структуры потока в этих условиях обнаружено два ряда вихрей с противоположным направлением вращения: вихри Тейлора, возникшие в неустойчивой части потока, путем контакта по внешней поверхности воздействуют на остальную часть жидкости, вызывая в ней вихри с противоположным направлением вращения (рис. 8.10, б).

Рис. 8.9

Наиболее широко распространена и наиболее полно изучена система с внутренним вращающимся цилиндром (рис. 8.9, а). Рассмотрим для этой системы количественные соотношения, характеризующие теплообмен*.

Число S, характеризующее воздействие массовых сил на поток в рассматриваемой системе, приводится к виду

$$S = \frac{\omega_1^2}{\nu^2} b^8 r_1,$$

(8.32)

где ω_1 — угловая скорость вращения внутреннего цилиндра; b — ширина зазора (расстояние между цилиндрическими поверхностями); r_1 — радиус внутреннего цилиндра.

При получении этой формулы из выражения (8.7) за определяющий размер выбрана величина b.

* Теплообмен в системах, изображенных на рис. 8.9, а и 8.9, з, рассмотрен в [26]
При анализе устойчивости потока в рассматриваемой системе для небольшой величины зазора между цилиндрами Тейлор получил число, которое позже было названо его именем

\[Ta = \frac{\omega}{v} \frac{b^{3/2}}{r_1^{1/2}} \]

(8.33)

Сопоставление выражений (8.32) и (8.33) показывает, что \(S = Ta^2 \), поэтому при обобщении опытных данных по теплообмену можно пользоваться числом Тейлора.

Для рассматриваемых условий возможно ламинарное течение, ламинарное с макровихрами и турбулентное с макровихрами. Теоретический анализ, выполненный Тейлором для небольшой величины зазора, показал, что макровихри возникают в ламинарном потоке при \(Ta_{kr} = 41,2 \). Эта величина хорошо подтверждается опытом. Граница между ламинарным течением с макровихрами и турбулентным течением с макровихрами характеризуется величиной \(Ta_{kr} \approx 10^4 \).

Оценим интенсивность теплообмена между двумя цилиндрическими поверхностями суммарным коэффициентом теплоотдачи

\[\alpha^* = \frac{q_1}{t_1 - t_2}, \]

(8.34)

где \(q_1 \) — плотность теплового потока на поверхности внутреннего цилиндра; \(t_1 \) и \(t_2 \) — температуры цилиндрических поверхностей.

При ламинарном течении теплота передается теплопроводностью. На основе закона теплопроводности легко найти

\[Nu^* = \frac{2b/r_1}{\ln (1 + b/r_1)}, \]

(8.35)

где \(Nu^* = 2\alpha^*b/\lambda \). При \(b/r_1 \to 0 \) \(Nu^* \to 2 \).

Опытные данные по теплообмену для ламинарного течения с макровихрами при \(Ta = 10^2 - 10^4 \) и \(b/r_1 = 0,03 - 0,91 \) обобщены уравнением

\[Nu^f = 0,42 (Ta^2 Pr)^{1/4}. \]

(8.36)

Уравнение подобия для теплоотдачи в условиях турбулентного течения с макровихрами обобщает опытные данные при \(Ta = 10^4 - 6 \cdot 10^5 \) и \(b/r_1 = 0,06 - 3,5 \)

\[Nu^f = 0,092 (Ta^2 Pr)^{1/3}. \]

(8.37)

В уравнениях (8.36) и (8.37) за определяющую принята температура \(t_f = \frac{1}{2} (t_1 + t_2) \).

При осевом течении жидкости через кольцевой канал с внутренним вращающимся цилиндром влияние массовых сил на поток также учитывается числом \(Ta \), а влияние внешних сил давления — числом \(Re = 2b\omega/v \) (\(\omega \) — среднераходная скорость осевого потока).
На рис. 8.11 показаны области различных режимов течения, найденные опытным путем на основе анализа полей скоростей и статических давлений. Изучение структуры потока показывает, что в рассматриваемых условиях возможны режимы: ламинарный (I), ламинарный с макровихрями (II), турбулентный (III) и турбулентный с макровихрями (IV).

При ламинарном течении вращение не влияет на процесс теплообмена.

Возникновение макровихрей в потоке приводит к увеличению коэффициента теплоотдачи в 2—4 раза. Для ламинарного течения с макровихрями при $T_a = \text{idem}$ увеличение осевой скорости движения жидкости способствует уменьшению макровихревого движения и ведет к уменьшению коэффициента теплоотдачи.

Зависимость интенсивности теплообмена от скорости вращения при турбулентных режимах течения показана на рис. 8.12 (графики построены в логарифмической шкале). Как видно из рисунка, при $Re = \text{idem}$ увеличение скорости вращения при турбулентном режиме (область I) не отражается на интенсивности теплообмена. При турбулентном течении с макровихрями (область II) интенсивность теплообмена зависит одновременно от условий осевого и вращательного движения. При дальнейшем увеличении скорости вращения зависимость $Nu^* = f(T_a)$ становится общей для различных значений критерия Re. Этот режим, при котором теплоотдача определяется только вращением, называется развитым турбулентным течением с макровихрями. Коэффициент теплоотдачи на этом режиме определяется формулой (8.37).

Из анализа опытных данных по теплообмену следует, что переход турбулентного течения к турбулентному с макровихрями имеет место примерно при

$$T_a^* = 0,702 Re^{0.845}.$$ \hspace{1cm} (8.38)
Переход к развитому турбулентному течению с макровихрями можно охарактеризовать величиной

$$T_{кр} = 133.5 \, Re^{0.445}.$$ (8.39)

При турбулентном течении с макровихрями тепловой поток можно рассматривать как сумму двух составляющих, из которых одна определяется только вращательным, а другая — только поступательным движением жидкости. Возможность использования такой методики проверена экспериментально.

При ламинарном и турбулентном режимах течения теплообмен рассчитывается так же, как в неподвижных каналах.

§ 8. Теплоотдача вращающихся дисков

Условия теплообмена на поверхности вращающегося диска зависят от того, вызывается ли движение среды относительно поверхности вращением самого диска или имеется вынужденное движение теплоносителя, вращается ли диск в неограниченном пространстве или имеется ограждающий кожух. Здесь рассматривается простейшая из этих задач — теплоотдача около боковой поверхности диска при вращении его в неограниченном пространстве.

В рассматриваемых условиях центробежные массовые силы являются основным источником движения. Они действуют нормально к поперечному сечению потока и не могут вызвать вторичных течений.

Кориолисовы массовые силы действуют в плоскости, перпендикулярной к скорости потока, при этом они равны нулю на границах динамического погра ничного слоя и достигают максимальной величины в пределах этого слоя. Неоднородное поле кориолисовых массовых сил может привести к возникновению макровихревого движения. На рис. 8.13 показаны следы каолина на поверхности диска после вращения его со скоростью 3000 об/мин. По рис. 8.13 можно заключить, что в центральной части диска движение жидкости носит ламинарный характер, на больших радиусах — макровихревой и затем — турбулентный.

Рис. 8.13
При расчете коэффициента теплоотдачи на боковой поверхности диска различают обычно только ламинарный и турбулентный пограничный слой, граница между которыми характеризуется условием

$$Re_{кр} = \frac{\nu r}{v} = (2,4 - 3) \cdot 10^6,$$

где v — окружная скорость поверхности диска радиуса r.

Исследование теплоотдачи в рассматриваемых условиях проводилось на основе теории пограничного слоя, а также экспериментальным путем, причем оба способа приводят к близко совпадающим результатам. При ламинарном пограничном слое средние и местные коэффициенты теплоотдачи для воздуха при вращении диска около горизонтальной оси определяются уравнением

$$Nu = 0,36 \ Re_f^{0,5}.$$

(8.41)

Для дисков, вращающихся около вертикальной оси, коэффициент теплоотдачи оказывался выше рассчитанного по формуле (8.41) примерно на 25%. Это обусловлено, по-видимому, влиянием гравитационной конvectionи на процесс теплообмена.

При турбулентном пограничном слое для воздуха средний и местный коэффициенты теплоотдачи определяются выражениями:

$$\bar{Nu} = 0,0151 \ Re_f^{0,8},$$

(8.42)

$$Nu = 0,0196 \ Re_f^{0,8}.$$

(8.43)

Средний коэффициент теплоотдачи, подсчитанный по формуле (8.42), характеризует интенсивность теплоотдачи только около той части диска, где пограничный слой имеет турбулентный характер. Теплоотдача около поверхности с ламинарным пограничным слоем рассчитывается отдельно по формуле (8.41).

В формулах (8.41) — (8.43) за определяющую выбрана температура среды.

ГЛАВА IX
ТЕПЛООТДАЧА В ХИМИЧЕСКИ РЕАГИРУЮЩИХ ПОТОКАХ

Теплообмен между стенкой и химически реагирующей газовой смесью представляет интерес, главным образом, для высокотемпературных систем. Здесь будут рассмотрены такие системы, в которых стенка не участвует в химической реакции и не изменяет своего агрегатного состояния, а в газовой среде не проявляются эффекты, обусловленные разреженностью и большими скоростями.
§ 1. Особенности теплоотдачи в химически реагирующем газе

Процесс теплообмена между химически реагирующими газом и стенкой обладает рядом характерных особенностей, которые существенно изменяют условия его протекания.

При распаде молекул и образовании новых веществ освобождается или затрачивается энергия. Поэтому в таких условиях теплообмен сопровождается выделением или поглощением теплоты в процессе химической реакции.

В инертных системах* физические параметры теплоносителя (вязкость, теплопроводность и др.) изменяются в потоке в соответствии с изменением температуры. В реагирующем газе имеют место неоднородность состава. Поэтому изменение физических параметров в потоке определяется не только температурным полем, но и изменением состава газовой смеси в системе.

Важное значение для процессов теплообмена в реагирующем газе имеет диффузия. Различают баро-, термо- и концентрационную диффузию. Два первых вида диффузии возникают как в инертных, так и в реагирующих системах, но их влияние на процессы теплообмена незначительно и они обычно пренебрегают. Концентрационная диффузия, т. е. диффузия, обусловленная неоднородностью состава газовой смеси, изменяет условия теплообмена коренным образом. Благодаря концентрационной диффузии перенос теплоты через газовую смесь может увеличиться во много раз.

Поток вещества при концентрационной диффузии определяется градиентом концентрации и коэффициентом диффузии. Поэтому коэффициент диффузии будет дополнительным физическим параметром теплоносителя, влияющим на интенсивность теплоотдачи.

Изменение состава смеси по поперечному сечению газового потока зависит от скорости химических реакций, в результате которых распадаются или образуются ее компоненты. Если химическая реакция образования или распада i-го компонента идет бесконечно медленно, то охлаждение (или разогрев) газовой смеси около стенки не приведет к изменению ее химического состава, и массовая концентрация этого компонента C_i в поперечном сечении потока изменяться не будет (рис. 9.1). Такой процесс называют крайне неравновесным, а смесь — замороженной.

Другой крайний случай — бесконечно большая скорость химической реакции. Когда химическая реакция протекает мгновенно, состав смеси в каждом сечении потока определяется ее параметрами

* Инертными называют системы, в которых химических реакций нет.
состояния: температурой и давлением (рис. 9.1). В таких условиях имеет место локальное химическое равновесие. Получающуюся при этом газовую смесь называется химически равновесной.

Действительные процессы около поверхности теплообмена характеризуются конечными величинами скоростей химических реакций и потому кривая, определяющая действительное изменение концентрации в потоке, располагается между линиями, определяющими изменение концентрации при равновесном и крайне неравновесном процессах (пунктир на рис. 9.1).

Оценка действительного изменения концентрации реагирующих веществ по поперечному сечению потока с учетом кинетики химических реакций представляет большие трудности. С другой стороны, интересные для практики явления теплообмена при наличии химических реакций протекают обычно в условиях высоких температур, когда естественно ожидать большие скорости реакций. Поэтому современные расчеты процессов теплообмена между стенкой и химически реагирующими газом чаще всего основываются на равновесном составе газовой смеси.

В инертном теплоносителе процесс теплоотдачи сопровождается изменением температуры или энталпии его частиц. В реагирующем потоке теплоотдача сопровождается не только изменением энталпии частиц теплоносителя, но и тепловыми эффектами реакции. Поэтому изменение температуры и энталпии не может служить достаточной характеристикой процесса передачи теплоты. В этих условиях удобно пользоваться понятием полной энталпии газа (l), под которой понимается сумма энталпии и химической энергии образования данного вещества из элементов

$$l_i = c_{pi} T + X_i,$$ \hspace{2cm} (9.1)

где c_p — средняя теплоемкость; X — химическая энергия образования вещества из элементов (индекс i означает, что формула (9.1) записывается для каждого компонента газовой смеси в отдельности).

Химическая энергия X_i определяется тепловыми эффектами реакции, поэтому ее можно найти из уравнений химических реакций.

Следует подчеркнуть, что химическая энергия каждого компонента определяется строением молекул и атомов, участвующих в реакции веществ, и потому не зависит от условий (температура, давление), в которых вещество находится.

Формула (9.1) определяет полную энталпию каждого компонента смеси. Полная энталпия всей смеси

$$l = \sum_{i=1}^{N} g_i l_i,$$ \hspace{2cm} (9.2)

где g_i — массовая доля компонента; N — число компонентов газовой смеси.

361
§ 2. Формула теплового потока

Вблизи поверхности теплообмена течение газа носит ламинарный характер, поэтому перенос теплоты к стенке конвекцией может не приниматься во внимание. В этих условиях теплота передается в направлении стенки путем теплопроводности q_λ и вместе с диффундирующим веществом q_d

$$ q = q_\lambda + q_d. \quad (9.3) $$

Теплота, передаваемая вместе с диффундирующим веществом, определяется плотностью потока массы каждого компонента g_i и его полной энталпийей

$$ q_d = \sum_{i=1}^{N} g_i I_i. \quad (9.4) $$

Для простоты последующих преобразований реагирующую смесь будем считать двухкомпонентной, однако полученные при этом выводы могут быть использованы при рассмотрении многокомпонентной смеси.

В соответствии с законом Фика

$$ g_i^* = -D_{ij} \frac{\partial C_i}{\partial n}. \quad (9.5) $$

где D_{ij} — коэффициент диффузии бинарной смеси, характеризующий распространение вещества i в среде j; n — нормаль к поверхности постоянной концентрации.

Для бинарной газовой смеси

$$ D_{ij} = D_{ji} = D. \quad (9.6) $$

Тогда уравнение (9.3) с учетом закона Фурье, формулы (9.4) и (9.5) примет вид

$$ q = -\lambda \frac{\partial T}{\partial n} - D \sum I_i \frac{\partial C_i}{\partial n}. \quad (9.7) $$

Выразим $\frac{\partial T}{\partial n}$ через градиент концентрации. Для этого продифференцируем выражение (9.2) по n

$$ \frac{\partial I_i}{\partial n} = \sum I_i \frac{\partial g_i}{\partial n} + \sum g_i \frac{\partial l_i}{\partial n}. \quad (9.8) $$

Так как $I_i = c_{pi} T + X_i$, а X_i — фиксированная величина, то принимая c_{pi} независящей от температуры, получим

$$ \frac{\partial l_i}{\partial n} = c_{pi} \frac{\partial T}{\partial n}. \quad (9.9) $$

* Коэффициенты диффузии определены по изменению концентрации, но индекс «c» опущен.
** В последующем изложении пределы суммы не указываются.
После подстановки выражения (9.9) в (9.8) получаем

$$\frac{\partial l}{\partial n} = \sum I_i \frac{\partial g_i}{\partial n} + \sum g_i c_{pi} \frac{\partial T}{\partial n}. \quad (9.10)$$

Так как

$$g_i = \frac{C_i}{\rho}, \quad \text{и} \quad \sum g_i c_{pi} = c_p,$$

то уравнение (9.10) можно придать вид

$$\frac{\partial l}{\partial n} = \frac{1}{\rho} \sum I_i \frac{\partial C_i}{\partial n} + c_p \frac{\partial T}{\partial n}. \quad (9.11)$$

Следовательно,

$$\frac{\partial T}{\partial n} = \frac{1}{c_p} \left(\frac{\partial l}{\partial n} - \frac{1}{\rho} \sum I_i \frac{\partial C_i}{\partial n} \right). \quad (9.12)$$

Подставив формулу (9.12) в (9.7), получим

$$q = -\frac{\lambda}{c_p} \left(\frac{\partial l}{\partial n} - \frac{1}{\rho} \sum I_i \frac{\partial C_i}{\partial n} \right) - D \sum I_i \frac{\partial C_i}{\partial n}, \quad (9.13)$$

или окончательно

$$q = -\frac{\lambda}{c_p} \left[\frac{\partial l}{\partial n} + \left(\frac{D \rho c_p}{\lambda} - 1 \right) \frac{1}{\rho} \sum I_i \frac{\partial C_i}{\partial n} \right]. \quad (9.14)$$

Безразмерный комплекс, составленный из физических характеристик газовой смеси, представляет собой число Льюиса—Семенова

$$Le = \frac{D \rho c_p}{\lambda} = \frac{D}{a}. \quad (9.15)$$

Здесь a — коэффициент температуропроводности.

Число Льюиса—Семенова является важной характеристикой реагирующей смеси. Для смесей, содержащих атомы углерода, бора, кислорода, азота и их соединений $Le = 1 - 1,5$. При наличии в смеси легких газов число Le изменяется в значительно более широких пределах. Например, для смесей, содержащих водород, число $Le = 0,25 - 3,5$.

Рассмотрим простейший, но практически возможный случай, когда $Le = 1$. Для этих условий формула для плотности теплового потока (9.14) приводится к виду

$$q = -\frac{\lambda}{c_p} \frac{\partial l}{\partial n}. \quad (9.16)$$

Если эту формулу использовать для оценки теплообмена между реагирующим газом и твердой стенкой, то получим

$$q = -\frac{\lambda_{\infty}}{c_{p,\infty}} \left(\frac{\partial l}{\partial n} \right)_{n=0}. \quad (9.17)$$
При изучении теплоотдачи в инертных теплоносителях закон Фурье служит логическим основанием для записи формулы Ньютона, формально определяющей плотность теплового потока при теплоотдаче.

Аналогично, на основании формулы (9.17) можно построить формальное выражение для плотности теплового потока при теплоотдаче в реагирующих смесях, выразив его через полные энталпии

$$ q = \frac{c}{c p_w} (l_f - l_w). $$

Формула (9.18) отражает одну из основных особенностей теплообмена химически реагирующей газовой смеси в явном виде. Из формулы видно, что теплота, переданная в процессе теплоотдачи, определяется разностью полных энталпий. Этот вывод можно использовать следующим образом. Если частица инертного теплоносителя с температурой T_f достигла стенки с температурой T_w, то переданная стенке теплота определяется разностью энталпий, которая пропорциональна разности температур. В химически реагирующим газе изменение температуры частицы означает не только изменение ее энталпии. Из-за изменения условий химического равновесия в частице произойдут химические реакции с поглощением или выделением теплоты. Переданная частицей теплота определяется изменением ее энталпии и тепловым эффектом химической реакции, т. е. изменением полной энталпии.

Следует заметить, что учет этой особенности теплоотдачи в условиях химических реакций приводит к существенным количественным изменениям. Например, при горении керосина в кислороде температура газов составляет 3500° К. При температуре стенки камеры сгорания 1000° К получается

$$ T_f - T_w = 2500°; \frac{l_f - l_w}{c p_w} = 3500°. $$

Формула (9.18) является общепринятым выражением для плотности теплового потока при теплоотдаче в условиях химических реакций. При ее использовании для оценки коэффициента теплоотдачи должны учитываться влияние на теплообмен концентрационной диффузии при $Le = 1$, степени химической равновесности смеси и зависимости ее физических характеристик от состава.

§ 3. Физические свойства равновесно диссоциирующего газа

При оценке теплообмена в реагирующей смеси необходимо учитывать изменение физических параметров газа во всей системе. Поэтому расчету теплообмена должна предшествовать оценка зависимости физических параметров реагирующей смеси от температуры или полной энталпии.
Физические параметры газа определяются составом смеси, который в свою очередь рассчитывается с помощью констант равновесия химических реакций. Следует подчеркнуть, что в условиях химических реакций состав газовой смеси существенно зависит не только от температуры, но и от давления: при увеличении температуры степень диссоциации увеличивается, а при увеличении давления, как правило, — уменьшается.

Для двухкомпонентной смеси наглядное представление о составе дает степень диссоциации \(\alpha^* \). На рис. 9.2 показана зависимость \(\alpha^* = f(T, p) \) для реакции диссоциации водорода*.

\[\text{H}_2 \rightleftharpoons 2\text{H}. \quad (9.19) \]

Из рисунка видно, что при атмосферном давлении диссоциация водорода становится заметной, начиная с температуры \(\approx 3000^\circ \text{K} \), а повышение давления существенно подавляет диссоциацию.

Введем понятие

\[\text{эффективного коэффициента теплопроводности}. \]

Плотность теплового потока при наличии химических реакций определяется формулой (9.3). Если принять форму закона Фурье не только для \(q_\lambda \), но и для \(q_\Delta \), то члены правой части формулы (9.3) запишутся так:

\[q_\lambda = - \lambda \frac{\partial T}{\partial n}, \quad q_\Delta = - \lambda_{\text{хим}} \frac{\partial T}{\partial n}, \]

где \(\lambda \) — коэффициент теплопроводности инертной смеси; \(\lambda_{\text{хим}} \) — коэффициент, отражающий влияние диффузии на тепловой поток.

Подставив эти формулы в (9.3), получим

\[q = -(\lambda + \lambda_{\text{хим}}) \frac{\partial T}{\partial n} = - \lambda_{\text{эфф}} \frac{\partial T}{\partial n}. \quad (9.20) \]

Здесь \(\lambda_{\text{эфф}} = \lambda + \lambda_{\text{хим}} \) — эффективный коэффициент теплопроводности реагирующей смеси.

Плотность теплового потока \(q_\Delta \) можно записать выражением (9.4). Плотность массового потока \(i \)-го компонента представляет

* Графики, иллюстрирующие зависимость состава и физических свойств диссоциирующего водорода от температуры и давления, взяты из статьи Б. С. Петухова, В. Н. Попова, журнал «Теплофизика высоких температур», 1964, № 4.
собой результат взаимодействия этого компонента со всеми остальными составляющими газовой смеси и выражается формулой*:

\[g_i^* = - \sum_{j=1}^{N} \frac{m_i}{m} D_{ij}^* \frac{\partial C_j}{\partial n}, \]

(9.21)

где \(m_i \) и \(m \) — молекулярные массы \(i \)-го компонента и смеси; \(D_{ij}^* \) — коэффициент диффузии многокомпонентной смеси; \(C_j \) — концентрация \(j \)-го компонента.

Коэффициенты диффузии многокомпонентных смесей \(D_{ij}^* \) в отличие от коэффициентов диффузии бинарных смесей \(D_{ij} \) в сильной мере зависят от химического состава смеси. Коэффициент диффузии бинарной смеси представляет собой частный случай коэффициента диффузии многокомпонентной смеси при \(N = 2 \).

Коэффициенты диффузии многокомпонентной смеси вычисляются по коэффициентам диффузии бинарной смеси с помощью детерминантов [31].

Подстановка формулы (9.21) в (9.3) позволяет получить для многокомпонентной газовой смеси

\[q = -\lambda \frac{\partial T}{\partial n} - \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{m_i}{m} I_i \frac{D_{ij}^*}{m} \frac{\partial C_j}{\partial n}. \]

(9.22)

Сопоставляя формулы (9.20) и (9.22), найдем

\[\lambda_{\text{эфф}} = \lambda + \frac{1}{\frac{\partial T}{\partial n}} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{m_i}{m} I_i D_{ij}^* \frac{\partial C_j}{\partial n}. \]

(9.23)

При локальном химическом равновесии

\[\frac{\partial C_j}{\partial n} = \frac{\partial C_j}{\partial T} \frac{\partial T}{\partial n}, \]

(9.24)

поэтому формула для \(\lambda_{\text{эфф}} \) приводится к виду

\[\lambda_{\text{эфф}} = \lambda + \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{m_i}{m} I_i D_{ij}^* \frac{\partial C_j}{\partial T}. \]

(9.25)

Коэффициент теплопроводности инертной газовой смеси вычисляется по теплопроводности компонентов [19]. Для некоторых веществ коэффициенты бинарной диффузии имеются в [21], но в большинстве случаев их приходится оценивать на основе молекулярной теории строения газов.

* Д. Г. Р. Ф. Е. Проблемы движения головной части ракет дальнего действия. ИЛ, 1959.
На рис. 9.3 показана зависимость $\lambda_{aф} = f(T, p)$ для диссоциирующего водорода при локальном химическом равновесии, полученная расчетным путем. Из рисунка видно, что зависимость $\lambda_{aф} = f(T)$ имеет максимум. Это обусловлено тем, что с ростом температуры диссоциация приводит сначала к усилению неоднородности состава смеси, что вызывает увеличение массовых потоков диффундирующего вещества и величины $\lambda_{aф}$, а затем — к уменьшению неоднородности состава, так как при распаде всех молекул на атомы газ снова будет однородным. Если газовая смесь содержит несколько диссоциирующих веществ, то зависимость $\lambda_{aф} = f(T)$ имеет несколько маккимумов.

Состав газа позволяет также рассчитать теплоемкость газовой смеси. Однако кроме обычной теплоемкости, которую в данном случае называют замороженной, представляет интерес эффективная теплоемкость, которая определяется изменением полной энталпии единицы массы при изменении ее температуры на 1°. Выразим связь изменения полной энталпии в зависимости от изменения температуры формулой

$$l_2 - l_1 = c_{pф}(T_2 - T_1).$$

(9.26)

Следовательно,

$$c_{pф} = \frac{l_2 - l_1}{T_2 - T_1} = \frac{\Delta l}{\Delta T}. \tag{9.27}$$

Характер зависимости $c_{pф} = f(T, p)$ для диссоциирующего водорода при локальном химическом равновесии показан на рис.9.4. Как видно из рисунка, зависимость $c_{pф}$ от T также характеризуется кривыми с максимумом.

В соответствии с составом смеси изменяется также ее динамический коэффициент вязкости.
§ 4. Система дифференциальных уравнений, описывающих теплоотдачу при химических реакциях

Процесс течения и теплоотдачи химически реагирующего потока описывается дифференциальными уравнениями движения, сплошности, энергии, массообмена, теплоотдачи, а для сжимаемых сред еще и уравнением состояния.

Уравнения движения, сплошности и состояния отличаются от уравнений для инертного теплоносителя только тем, что входящие в них параметры, характеризующие физические свойства газа, зависят не только от температуры и давления, но и от состава смеси. Рассмотрим особенности остальных уравнений.

Для среды с внутренними источниками теплоты дифференциальное уравнение энергии (2.18) можно записать в виде

\[
\rho \frac{D_i}{d\tau} = - \left(\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial q_z}{\partial z} \right) + q_V
\]

или

\[
\rho \frac{D_i}{d\tau} = - \text{div} \; q - q_V. \tag{9.28}
\]

Здесь \(i = c_p t. \)

Мощность внутренних источников теплоты при теплообмене в химически реагирующем газе определяется тепловыми эффектами реакции. Поэтому действие внутренних источников теплоты можно учесть заменой энтальпии на полную энтальпию и уравнению (9.28) придать вид

\[
\rho \frac{D_I}{d\tau} = - \text{div} \; q, \tag{9.29}
\]

или с учетом (9.20)

\[
\rho \frac{D_I}{d\tau} = \text{div} \; (\lambda_{\text{ад}} \; \text{grad} \; T). \tag{9.30}
\]

Дифференциальное уравнение массообмена (2.30) с учетом (9.21) приводится к виду

\[
\frac{D C_i}{d\tau} = \text{div} \sum_{i=1}^{N} \frac{m_i}{m} D_{ii}^* \text{grad} \; C_j + g^{v_i}. \tag{9.31}
\]

Мощность внутренних источников или стоков вещества \(g^{v_i} \) определяется разностью скоростей прямой и обратной реакций для \(i \)-го компонента. Для химически равновесного состояния газовой смеси \(g^{v_i} = 0. \)

При локальном химическом равновесии состав газа в различных участках системы определяется только параметрами состояния — температурой и давлением. Поэтому для определения состава газа
в различных участках потока решать уравнение массообмена нет необходимости.

Рассмотрим теперь дифференциальное уравнение теплоотдачи. В соответствии с формулой (9.20) плотность теплового потока на поверхности теплообмена можно записать формулой

\[q = - \lambda_{\text{eff}} \left(\frac{\partial T}{\partial n} \right)_{n=0}. \]
(9.32)

Приравнивая тепловые потоки по формулам (9.32) и (9.18), получим дифференциальное уравнение теплоотдачи

\[\alpha = - \frac{\lambda_{\text{eff}}}{\lambda_i} \left(\frac{\partial T}{\partial n} \right)_{n=0}. \]
(9.33)

§ 5. Дополнительное условие подобия потоков при наличии равновесных химических реакций

Система дифференциальных уравнений, описывающая теплообмен между стенкой и химически реагирующей смесью газов, позволяет выявить числа, характеризующие подобие рассматриваемых явлений. Дополнительные числа подобия могут, очевидно, появиться только из тех уравнений, которые для химически реагирующих смесей записываются иначе, чем в обычных условиях.

Дополнительные числа подобия, характеризующие теплоотдачу в условиях химических реакций, можно выразить через эффективные параметры химически реагирующего газа или через обычные параметры смеси.

Получим числа подобия из дифференциального уравнения энергии. Ограничившись случаем стационарного процесса и заменив \(\lambda_{\text{eff}} \) по формуле (9.23), представим уравнение (9.30) в виде

\[\rho \left(\omega_x \frac{\partial l}{\partial x} + \omega_y \frac{\partial l}{\partial y} + \omega_z \frac{\partial l}{\partial z} \right) = \]

\[= \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} + \sum_{i=1}^{N} \sum_{m=i}^{N} \frac{m_i}{m} l_i \frac{\partial C_j}{\partial x} \right) + \]

\[+ \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} + \sum_{i=1}^{N} \sum_{m=i}^{N} \frac{m_i}{m} l_i \frac{\partial C_j}{\partial y} \right) + \]

\[+ \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} + \sum_{i=1}^{N} \sum_{m=i}^{N} \frac{m_i}{m} l_i \frac{\partial C_j}{\partial z} \right). \]
(9.34)

Для удобства анализа в этом уравнении можно сделать замену

\[\frac{\partial T}{\partial x} = \frac{1}{c_{pi}} \frac{\partial (c_{pi} T + X_i)}{\partial x} = \frac{1}{c_{pi}} \frac{\partial l_i}{\partial x}. \]
(9.35)

369
Аналогично для других координат

\[
\frac{\partial T}{\partial y} = \frac{1}{c_{\rho i}} \cdot \frac{\partial l_i}{\partial y} \quad \text{и} \quad \frac{\partial T}{\partial z} = \frac{1}{c_{\rho i}} \cdot \frac{\partial l_i}{\partial z}
\]

(9.36)

Заметим также, что константы подобия по какому-либо параметру для каждого компонента и для смеси в целом одинаковы. На этом основании константы подобия по концентрации и по плотности смеси также одинаковы, так как массовая концентрация представляет собой плотность каждого компонента смеси.

С учетом этих замечаний анализ уравнения (9.34) методом констант подобия приводит к следующим равенствам:

\[
\frac{C_{\rho} C_{w} C_{l}}{C_{l}} = \frac{C_{\lambda} C_{l}}{C_{\rho} C_{l}^{*}} = \frac{C_{l} C_{D} C_{\rho}}{C_{l}^{*}}
\]

(9.37)

где \(C_{\rho}, C_{w}, C_{l}, C_{l}, C_{\rho}, C_{\lambda}, C_{D}\) — константы подобия по плотности, скорости, полной энталпии, линейному размеру, теплоемкости, коэффициентам теплопроводности и диффузии.

Из соотношения (9.37) получается

\[
Re = \frac{\omega l}{a} = \text{idem;} \quad Le = \frac{D^{*}}{a} = \text{idem.}
\]

Заменив в дифференциальном уравнении теплоотдачи эффективный коэффициент теплопроводности из формулы (9.23) с учетом выражения

\[
\frac{\partial T}{\partial n} = \frac{1}{c_{\rho i}} \cdot \frac{\partial l_i}{\partial n}
\]

получим

\[
a = \frac{\lambda_i}{\Delta l} \cdot \frac{c_{w w}}{c_{\rho i}} \left(\frac{\partial l_i}{\partial n} \right)_{n=0} - \frac{c_{w w}}{\Delta l} \sum_{i=1}^{N} \sum_{l=1}^{N} m_{li} \cdot \frac{D_{i}^{*}}{D_{i}} \cdot \frac{\partial C_{j}}{\partial n}
\]

(9.38)

Применив к уравнению (9.38) метод констант подобия, найдем

\[
Nu = \frac{\alpha l}{\lambda} = \text{idem} \quad \text{и} \quad Le = \frac{D^{*}}{a} = \text{idem.}
\]

Таким образом, при исследовании теплообмена между стенкой и химически реагирующей газовой смесью дополнительное условие подобия — Le = idem.

Если дифференциальные уравнения энергии и теплоотдачи записать с использованием эффективного коэффициента теплопроводности, а в уравнениях энергии дополнительно ввести замену

\[
\frac{\partial l}{\partial x} = c_{\rho\text{эфф}} \frac{\partial T}{\partial x}; \quad \frac{\partial l}{\partial y} = c_{\rho\text{эфф}} \frac{\partial T}{\partial y}; \quad \frac{\partial l}{\partial z} = c_{\rho\text{эфф}} \frac{\partial T}{\partial z}
\]

то получаются числа подобия

\[
Pr_{\text{эфф}} = \frac{\mu c_{\rho\text{эфф}}}{\lambda_{\text{эфф}}} \quad \text{и} \quad Nu_{\text{эфф}} = \frac{\alpha l}{\lambda_{\text{эфф}}}.
\]

370
§ 6. Связь числа Le с физическими свойствами реагирующего газа при локальном химическом равновесии

Найдем связь числа Le с физическими свойствами реагирующего газа для бинарной смеси.

Заменив в формуле (9.7) плотность теплового потока выражением (9.20), найдем

$$\sum I_t \frac{\partial C_t}{\partial n} = \frac{\lambda_{\text{эфф}} - \lambda}{D} \frac{\partial I}{\partial n}. $$

Подставим это выражение в формулу (9.14), заменив в ней плотность теплового потока также значением из (9.20)

$$-\lambda_{\text{эфф}} \frac{\partial T}{\partial n} = -\frac{\lambda}{c_\mu} \left[\frac{\partial I}{\partial n} + (\text{Le} - 1) \frac{\lambda_{\text{эфф}} - \lambda}{D_{\text{эфф}}} \frac{\partial T}{\partial n} \right]. \quad (9.39)$$

Так как при локальном химическом равновесии

$$\frac{\partial I}{\partial n} = \frac{\partial I}{\partial T} \frac{\partial T}{\partial n} = c_{\rho_{\text{эфф}}} \frac{\partial T}{\partial n}, $$

то из уравнения (9.39) получается

$$\frac{\lambda_{\text{эфф}}}{\lambda} = 1 - \text{Le} + \text{Le} \frac{c_{\rho_{\text{эфф}}}}{c_\mu}. \quad (9.40)$$

При рассмотрении многокомпонентной газовой смеси можно использовать понятием эффективного коэффициента диффузии и, таким образом, обобщить формулу (9.40) на многокомпонентные газовые смеси. При введении понятия эффективного коэффициента диффузии многокомпонентную газовую смесь разделяют на две группы компонентов, в каждой из которых собраны газы с примерно одинаковыми атомными или молекулярными массами и одинаковыми поперечными сечениями столкновений*.

Коэффициент диффузии, определяющий проникновение одной группы компонентов в другую, и будет эффективным. К оценке этого коэффициента можно подойти с другой стороны. Если эффективный коэффициент теплопроводности вычислить через коэффициенты диффузии многокомпонентной смеси, то формула (9.40) может служить более строгим основанием для вычисления эффективного коэффициента диффузии смеси и числа Le:

$$\text{Le} = \frac{\frac{\lambda_{\text{эфф}}}{\lambda} - 1}{\frac{c_{\rho_{\text{эфф}}}}{c_\mu} - 1} \quad \frac{D_{\text{эфф}}}{a \text{Le}}. \quad (9.41)$$

* Под поперечным сечением столкновений понимают сечение воображаемой сферы, окружающей молекулу, внутри которой не может проникнуть центр какой-либо другой молекулы.
§ 7. Коэффициент теплоотдачи в химически равновесных реагирующих средах

При локальном химическом равновесии система дифференциальных уравнений, описывающая процесс теплоотдачи между стенкой и химически реагирующим газом, имеет такую же форму, как и для инертного теплоносителя.

Как отмечалось выше, при локальном химическом равновесии дифференциальное уравнение массообмена не определяет изменения концентрации компонентов в потоке и потому может не рассматриваться. Уравнение сплошности и движения имеет такую же форму, как и для инертных теплоносителей. Воспользовавшись понятием эффективной теплоемкости, дифференциальному уравнению (9.30) можно придать такую же форму, как для инертных теплоносителей

\[c_{\text{эфф}} \frac{dT}{dt} = \text{div} (\lambda_{\text{эфф}} \text{grad} T). \]

(9.43)

Дифференциальному уравнению теплоотдачи реагирующего газа (9.33) можно придать такой же вид, как и для инертного газа

\[\alpha_{\text{эфф}} = - \frac{\lambda_{\text{эфф}}}{\Delta T} (\frac{\partial T}{\partial t})_{n=0}, \]

(9.44)

где

\[\alpha_{\text{эфф}} = \frac{\alpha \Delta l}{c_{\rho} \Delta T} = \alpha \frac{c_{p_{\text{эфф}}}}{c_{\rho_{\text{эфф}}}}. \]

(9.45)

Здесь \(c_{p_{\text{эфф}}} \) — среднее значение изобарной эффективной теплоемкости газовой смеси в диапазоне температур от \(T_f \) до \(T_w \).

Таким образом, теплоотдача в реагирующем газе при локальном химическом равновесии и в инертном потоке описывается одинаковыми уравнениями. Этот вывод дает возможность использовать формулы, полученные теоретически и экспериментальным способом при исследовании теплоотдачи в инертных средах, для химически реагирующих потоков путем простой замены в них \(\lambda, c_{p_{\text{эфф}}} \) и \(\alpha \) на \(\lambda_{\text{эфф}}, c_{p_{\text{эфф}}} \) и \(\alpha_{\text{эфф}} \). Таким образом, если для инертной среды получено уравнение подобия

\[\text{Nu} = c \text{Re}^m \text{Pr}^n, \]

(9.46)

то его можно использовать для оценки теплоотдачи в химически реагирующим газе, придав ему форму

\[\text{Nu}_{\text{эфф}} = c \text{Re}^m \text{Pr}_{\text{эфф}}^n, \]

(9.47)

где

\[\text{Nu}_{\text{эфф}} = \frac{\alpha_{\text{эфф}} l}{\lambda_{\text{эфф}}}, \quad \text{Pr}_{\text{эфф}} = \frac{\mu c_{p_{\text{эфф}}}}{\lambda_{\text{эфф}}}. \]
Почленное деление уравнения (9.47) на (9.46) позволяет получить
\[
\frac{\alpha}{\alpha_n} = \left(\frac{\lambda_{\text{эфф}}}{\lambda} \frac{c_p}{c_{n_{\text{эфф}}}} \right)^{1-n} \frac{c_{\rho_{\text{эфф}}}}{c_p} \frac{c_{\text{эфф}}}{c_{n_{\text{эфф}}}},
\]
(9.48)
где \(\alpha_n \) — коэффициент теплоотдачи в инертной (нереагирующей) среде.

Теплофизические характеристики реагирующей среды \(\lambda_{\text{эфф}}/\lambda \) и \(c_{n_{\text{эфф}}}/c_p \) могут изменяться в широком диапазоне, а их изменение по температуре может иметь немонотонный характер. Поэтому в формуле (9.48) логично использовать средненинтегральное значение этих характеристик.

Тогда формулу (9.48) можно переписать так:
\[
\frac{\alpha^*}{\alpha_n} = \left(\frac{\lambda_{n_{\text{эфф}}}}{\lambda} \frac{c_{n_p}}{c_{n_{\text{эфф}}}} \right)^{1-n},
\]
(9.49)
где \(\alpha^* = \alpha \frac{c_{n_p}}{c_{n_{\text{эфф}}}} \), а \(\lambda_{n_{\text{эфф}}} \), \(\lambda^* \), \(c_{n_{\text{эфф}}}^* \) и \(c_p^* \) — средненинтегральные значения параметров.

Коэффициент \(\alpha^* \) также представляет собой коэффициент теплоотдачи химически реагирующей среды, только при его использовании формулу для плотности теплового потока (9.18) следует записать в виде
\[
q = \frac{\alpha^*}{c_p} (I_I - I_w).
\]
(9.50)

При разности температур среды и стенки \(\Delta T \to 0 \) средненинтегральные характеристики реагирующей среды стремятся к их локальным значениям. Для этих условий формула (9.49) приводится к виду
\[
\frac{\alpha^*}{\alpha_n} = \left(\frac{\lambda_{\text{эфф}}}{\lambda} \frac{c_p}{c_{n_{\text{эфф}}}} \right)^{1-n}.
\]
(9.51)

В § 5 настоящей главы было показано, что влияние химических реакций на коэффициент теплоотдачи отражается числом Le. Из формул (9.46) и (9.47) видно, что влияние чисел Re и Pr на коэффициент теплоотдачи равновесно реагирующих и нереагирующих сред одинаково. Из этого можно заключить, что
\[
\frac{\alpha^*}{\alpha_n} = c \text{Le}^\kappa.
\]
(9.52)

Здесь Le — локальное значение числа Льоиса — Семенова, и потому формула (9.52) справедлива при \(\Delta T \to 0 \).

Коэффициенты зависимости (9.52) можно выявить с помощью формул (9.41) и (9.51), одна из которых определяет величину \(\alpha^*/\alpha_n \), а вторая — величину Le. Эта зависимость, выявленная на основе расчетной оценки величин \(\lambda_{\text{эфф}}/\lambda \) и \(c_{n_{\text{эфф}}}/c_p \) для реакций диссоциации.
H₂, N₂O₄, Al₂Cl₆ и продуктов сгорания двух пар ракетных топлив при \(n = 0,33 \) и \(n = 0,43 \), показана на рис. 9.5.

Из рис. 9.5 видно, что в уравнении (9.52) \(c = 1 \), а величина \(\kappa \) зависит от \(n \) и диапазона изменения числа \(Le \). Обобщение расчетных точек позволило найти для \(Le < 1 \) и \(Le > 1 \) соответственно \(\kappa = 0,582(1 - n) \) и \(\kappa = 0,717 (1 - n) \). Так при \(n = 0,33 \) для \(Le < 1 \) и \(Le > 1 \) получается \(\kappa = 0,39 \) и \(\kappa = 0,48 \).

При расчете реальных систем \(\Delta T \neq 0 \) и потому в формулу (9.52) следует вводить среднепрограммное значение числа Льониса — Семенова \(Le^* \). Расчетная формула в этом случае имеет вид

\[
\frac{\alpha^*}{\alpha_n} = Le^{*} (1 - n), (9.53)
\]

в которой при \(Le^* < 1 \) \(s = 0,582 \), при \(Le^* > 1 \) \(s = 0,717 \).

Из формулы (9.53) следует, что при \(Le^* = 1 \) \(\alpha^* = \alpha_n \).

Для определения среднепрограммального значения числа Льониса — Семенова необходимо зависимость \(Le = f (T) \) при давлении реагирующей смеси. Эта зависимость может быть найдена по характеристикам реагирующей смеси \(\lambda_{оф} / \lambda = \psi (T) \) с помощью формулы (9.41).

Тепловой пограничный слой может целиком состоять из реагирующей среды или включать зону, в которой состав не изменяется в зависимости от температуры, т. е. среда становится инертной. Для высокотемпературных систем характерна вторая схема пограничного слоя, так как температура стенки обычно меньше температуры \(T_s \), при которой начинается диссоциация среды, участвующей в теплообмене.

При \(T < T_s \) в соответствии с формулой (9.53) следует принять \(Le = 1 \), так как при \(T < T_s \) влияние числа \(Le \) на теплообмен отсутствует и \(\alpha^*/\alpha_n = 1 \).
Для системы, в которой $T_w < T_s < T_f$,

$$
Le^* = \frac{1}{T_f - T_w} \int_{T_w}^{T_f} Le \, dT = \frac{T_s - T_w}{T_f - T_w} + \frac{1}{T_f - T_w} \int_{T_s}^{T_f} Le \, dT. \quad (9.54)
$$

При $T_w > T_s$ первый член этой формулы следует положить равным нулю.

ГЛАВА X

ТЕПЛООТДАЧА ПРИ БОЛЬШОЙ СКОРОСТИ ДВИЖЕНИЯ ГАЗА

Необходимость исследования теплоотдачи при большой скорости движения газа диктуется, главным образом, развитием авиационной и ракетной техники. При исследовании этой проблемы широко используется теория пограничного слоя и эксперимент.

§ 1. Дополнительные условия

подобия потоков при движении газа

с большой скоростью

Когда теплоноситель движется с небольшой скоростью, кинетической энергией по сравнению с его энтальпийей можно пренебречь. В этих условиях дифференциальное уравнение энергии выводится на основании равенства

$$
dQ = di, \quad (10.1)
$$

где dQ — теплота, подведенная к элементарному объему газа; di — изменение его энтальпии.

При записи уравнения энергии в форме (10.1) предполагается, что изменение скорости газа не может привести к заметному изменению его энтальпии.

При большой скорости движения газа изменение энтальпии определяется не только теплообменом, но и изменением кинетической энергии потока*. Поэтому при большой скорости движения газа баланс энергии имеет вид

$$
dQ = di + d\varphi, \quad (10.2)
$$

где φ — кинетическая энергия.

Выявим дополнительные числа подобия, которые появляются при использовании уравнения энергии в такой форме. Запишем уравнение (10.2) для двух сходственных точек подобных между собой систем:

$$
dQ' = di' + d\varphi', \quad (10.3)
$$

$$
dQ'' = di'' + d\varphi''. \quad (10.4)
$$

* Предполагается, что в процессе разогрева газ не изменяет своего состава.
Обозначим константы подобия:

\[C_Q = \frac{\varphi}{Q'}; \quad C_i = \frac{i''}{i'}; \quad C_\varphi = \frac{\varphi''}{\varphi'} . \]

Заменим величины, входящие в уравнение (10.4), через параметры первой системы, используя константы подобия

\[C_Q dQ' = C_i di' + C_\varphi d\varphi' . \]

Выражения (10.3) и (10.5) тождественны, следовательно,

\[C_Q = C_i \quad \text{и} \quad C_i = C_\varphi . \]

Первое из этих равенств не приведет к появлению новых чисел подобия, так как его можно получить из уравнения (10.1), записанного для небольших скоростей движения газа. Второе равенство можно переписать в виде

\[\frac{i''}{i'} = \frac{\varphi''}{\varphi'} . \]

Таким образом,

\[\frac{\varphi'}{i'} = \frac{\varphi''}{i''} , \]

или

\[\frac{\varphi}{i} = \text{idem} . \]

Преобразуем соотношение \(\frac{\varphi}{i} = \frac{\varphi}{\varphi'} = \frac{w^2/2}{R \frac{k}{k-1} \frac{1}{T}} = \frac{k-1}{2} \frac{w^2}{kRT} . \)

где \(k \) — показатель адиабаты.

Произведение \(kRT \) равно квадрату местной скорости звука \(a^2 \), а отношение скорости потока к скорости звука представляет собой число Маха:

\[M = \frac{\omega}{a} . \]

Поэтому

\[\frac{\varphi}{i} = \frac{k-1}{2} M^2 . \]

* Соотношение \(\varphi/i \) можно выразить также через коэффициент скорости газа \(\lambda \):

\[\frac{\varphi}{i} = \frac{1}{1 - \frac{k-1}{k+1} \lambda^2} - 1 . \]
Таким образом, подобие явлений теплоотдачи при большой скорости движения газа, кроме чисел подобия, рассмотренных в § 3 главы V, будет определяться числом Маха или, точнее, комплексом $\frac{k-1}{\nu} M^2$. Этот вывод справедлив для газовых потоков, которые не изменяют своего состава в процессе взаимодействия со стенкой. Если разогрев газа приведет к его диссоциации, то для подобия явлений теплоотдачи дополнительными будут условия $M = \text{idem}$, $Le = \text{idem}$.

§ 2. Особенности процесса теплоотдачи при движении газа с большой скоростью

В поперечном сечении газового потока, омывающего стенку, благодаря силам вязкости скорость газа уменьшается от максимального значения вдали от стенки до нуля на ее поверхности. При большой скорости движения торможение газа, сопровождаемое переходом кинетической энергии газа в тепловую, ведет к повышению его температуры.

Температура адабабатически заторможенного газового потока T_i^* связана с термодинамической температурой T_f выражением

$$ T_i^* = T_f \left(1 + \frac{k-1}{2} M^2\right). \quad (10.6) $$

При обтекании газом теплоизолированной стенки температура ее поверхности равна адабабатной температуре стенки T_r, которая близка к температуре торможения и определяется по формуле

$$ T_r = T_f \left(1 + \frac{k-1}{2} M^2\right), \quad (10.7) $$

где r — коэффициент восстановления температуры.

Температурное поле при обтекании теплоизолированной стенки показано на рис. 10.1 (punktir).

Величина адабабатной температуры стенки зависит от результирующего эффекта двух параллельно протекающих процессов: выделения теплоты, обусловленное торможением газа в пограничном слое, которое вызвано силами вязкости; отвода теплоты в поток, который осуществляется в основном путем теплопроводности благодаря температурному градиенту в пограничном слое. При $Pr = 1$ эти эффекты уравновешиваются и $r = 1$, а $T_r = T_f$. При $Pr < 1$ коэффициент восстановления температуры также меньше единицы.

Величина коэффициента восстановления температуры зависит, главным образом, от структуры пограничного слоя и значения числа Прандтля.

При ламинарном пограничном слое для пластины можно считать:

$$ r = \sqrt{Pr}. \quad (10.8) $$

По данным Эккера, при $Pr = 0.65 - 0.75$ эта формула дает удовлетворительные результаты вплоть до $M = 20$, если число Прандт-
ля выбирать по так называемой эффективной температуре, определение которой дано в следующем параграфе.

Формула (10.8) может применяться не только для плоских пластин, но и для тел иной конфигурации. Так, опытные данные, полученные при обтекании конусов до \(M = 4,6 \) и \(Re = 5 \cdot 10^6 \), хорошо совпадают с расчетами по этой формуле.

При турбулентном пограничном слое коэффициент восстановления температуры определяется выражением

\[r = \sqrt[3]{Pr}. \]

(10.9)

В качестве определяющей здесь также выбирается эффективная температура.

Рассмотрим температурные поля при теплоотдаче в условиях большой скорости газа, изображенные на рис. 10.1. Теплота будет отдаваться от стенки к газу при условии \(T_w > T_r \) (температура стенки \(T_r \)). Передача теплоты от газа к стенке возможна только при \(T_w < T_r \). Следовательно, величина и направление теплового потока между газом и стенкой определяются в этих условиях не термодинамической температурой \(T_f \), а адабатной температурой стенки \(T_r \), которая зависит от скорости движения газа.

Для теплоотдачи между охлаждаемой стенкой и быстро движущимся потоком газа характерно температурное поле в виде кривой с максимумом. При температурном поле 2 (рис. 10.1) температура стенки больше термодинамической температуры газа, но газ отдает теплоту стенке, так как \(T_w < T_r \).

Аналитическое решение задачи в форме температурного поля в газе, не изменяющем своего состава с ростом температуры, позволило получить формулу для оценки максимальной температуры в ламинарном пограничном слое при \(Pr = 1 \)

\[\frac{T_{max} - T_w}{T_f - T_w} = \frac{1}{4} \left(\frac{1 - \frac{T_w}{T_f}}{\frac{k - 1}{2} \cdot \frac{M^2}{c_p}} \right) + 1. \]

(10.10)

Например, при движении тела в воздухе с \(M = 20 \), при \(T_f = 300^\circ K, T_w = 1200^\circ K \) в соответствии с формулой (10.10) \(T_{max} = 6700^\circ K \).

Для процессов теплоотдачи при большой скорости движения характерны большие диапазоны изменения температуры газа около стенки, поэтому его физические параметры в пограничном слое могут изменяться в широких пределах.

Явление существенного изменения плотности газа называют сжимаемостью. В пограничном слое существенную роль играет не только сжимаемость газа, но и изменение других свойств: вязкости, теплопроводности, теплоемкости.

Большие температурные градиенты и тепловые потоки от газа к стенке, возникающие при большой скорости движения, способст-
вуют повышению устойчивости ламинарного пограничного слоя. Понижение температуры стенки при прочих равных условиях способствует увеличению критического числа Рейнольдса, отвечающего переходу ламинарного пограничного слоя в турбулентный. В опытах, проведенных на пластинах при сверхзвуковых скоростях до \(M \approx 4 \), переходная область получилась при \(Re = (1,5 - 3,5)10^8 \).

Сверхзвуковое течение газа сопровождается возникновением скачков уплотнения. Такие скачки могут возникать при течении газа в трубах и каналах, а также при внешнем обтекании тел. Взаимодействие скачков уплотнения с пограничным слоем вызывает измение его толщины и отражается на интенсивности теплообмена. В области скачка уплотнения наблюдается повышенная интенсивность теплоотдачи.

При обтекании сверхзвуковым потоком тела с тупой передней кромкой перед телом возникает отсоединенная ударная волна, в которой сверхзвуковой поток переходит в звуковой. При этом газ сильно разогревается и турбулизируется, что способствует интенсификации теплообмена.

Когда температура достигает 3000° К и выше, существенное влияние на процесс теплообмена начинает оказывать диссоциация составляющих воздух газов (азота и кислорода), а также реакции окисления азота, окислы которого затем также диссоциируют. При температуре 5000—6000° К начинается ионизация воздуха: появляются ионы атомарного кислорода и азота, ионы окиси азота и свободные электроны. Зависимость равновесного состава воздуха от температуры показана на рис. 10.2.

Диссоциация и ионизация сопровождаются изменением состава газа и его физических свойств, а также поглощением теплоты. Поэтому температура заторможенного потока при этих явлениях ниже, чем следует из формулы (10.6). На рис. 10.3 сопоставлены температуры полного торможения воздуха с учетом и без учета диссоциации.
Из предыдущей главы известно, что диссоциация газа приводит к увеличению интенсивности теплоотдачи. Ионизация также улучшает способность газа передавать тепло.

Особенности теплоотдачи, обусловленные высокой скоростью движения, возникают главным образом из-за разогрева газа в пограничном слое, а степень разогрева определяется величиной числа Маха. Следовательно, по величине этого числа можно судить о возможности проявления той или иной особенности теплообмена и интенсивности ее влияния на процесс.

Заметное повышение температуры газа в пограничном слое вследствие торможения появляется при дозвуковых скоростях движения. При $M = 0,2$ абсолютная температура торможения превышает температуру потока на 0,8%, при $M = 0,5$ — на 5%; при $M = 1$ — на 20%.

Допуская погрешность в определении температуры потока на 3%, можно не считаться с разогревом газа вследствие торможения до $M = 0,4$ (для воздуха при нормальной температуре это соответствует скорости 130м/сек), допуская погрешность в 10% — до $M = 0,7$ (скорость воздуха $\sim 230 \text{м/сек}$).

Остальные особенности теплоотдачи при движении газа с большой скоростью проявляются при сверхзвуковых скоростях. Поля физических параметров газа в пограничном слое начинают заметно влиять на теплоотдачу при $M > 1,6$. Существенное влияние процессов диссоциации на теплообмен для воздуха начинается с $M \approx 10$. Влияние ионизации на процесс теплообмена для воздуха проявляется, начиная с температуры $\sim 7000^\circ \text{К}$, т.е. при $M > 25$. При $M = 20$ ионизируется приблизительно 1% молекул и атомов воздуха, что не приводит еще к существенному изменению условий теплообмена.

§ 3. Уравнения пограничного слоя при больших скоростях движения газа

Дифференциальные уравнения пограничного слоя при больших скоростях течения газа отражают изменение плотности в зависимости от температуры и давления, а также зависимость других теплофизических параметров от температуры. Кроме того, они учитывают взаимное превращение тепловой и кинетической энергии и выделение теплоты за счет работы сил давления. Система дифференциальных уравнений плоского ламинарного пограничного слоя состоит из
уравнений движения, энергии, сплошности, состояния и зависимости теплофизических характеристик от температуры. При \(c_p = \text{const} \) три первых уравнения этой системы имеют вид:

\[
\rho \frac{d\omega_x}{dx} + \rho \frac{d\omega_y}{dy} = -\frac{dp}{dx} + \frac{\partial}{\partial y} \left(\lambda \frac{d\omega_x}{dy} \right); \quad (10.11)
\]

\[
c_p \rho \frac{\partial T}{\partial x} + c_p \rho \frac{\partial T}{\partial y} = \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \mu \left(\frac{\partial \omega_x}{\partial y} \right)^2 + \omega_x \frac{dp}{dx}; \quad (10.12)
\]

\[
\frac{\partial \omega_x}{\partial x} + \frac{\partial \omega_y}{\partial y} = 0. \quad (10.13)
\]

В уравнении энергии (10.12) предпоследний член правой части отражает выделение теплоты вследствие торможения газового потока, а последний — тепловыделение за счет работы сил давления, которая имеет место при наличии продольного градиента давления.

Преобразуем уравнение энергии, заменив в этом уравнении градиент давления \(\frac{dp}{dx} \) его значением из уравнения (10.11). С учетом того, что

\[
\omega_x \frac{\partial \omega_x}{\partial y} = \frac{\partial (\omega_x^2/2)}{\partial y}; \quad \omega_y \frac{\partial \omega_x}{\partial x} = \frac{\partial (\omega_x^2/2)}{\partial x};
\]

\[
\omega_x \frac{\partial}{\partial y} \left(\mu \frac{\partial \omega_x}{\partial y} \right) = \frac{\partial}{\partial y} \left(\mu \frac{\partial (\omega_x^2/2)}{\partial y} \right) - \mu \left(\frac{\partial \omega_x}{\partial y} \right)^2,
\]

уравнение (10.12) приводится к виду

\[
\rho \omega_x \left[c_p \frac{\partial T}{\partial x} + \frac{\partial (\omega_x^2/2)}{\partial x} \right] + \rho \omega_y \left[c_p \frac{\partial T}{\partial y} + \frac{\partial (\omega_x^2/2)}{\partial y} \right] = \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial y} \left[\mu \frac{\partial (\omega_x^2/2)}{\partial y} \right]. \quad (10.14)
\]

Так как

\[
T^* = T + \frac{\omega_x}{2c_p}; \quad (10.15)
\]

то уравнение (10.14) можно переписать так:

\[
c_p \omega_x \frac{\partial T^*}{\partial x} + c_p \omega_y \frac{\partial T^*}{\partial y} = \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \mu \frac{\partial (\omega_x^2/2)}{\partial y}. \quad (10.16)
\]
Из формул (10.15) легко найти
\[
\frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) = \frac{\partial}{\partial y} \left(\lambda \frac{\partial T^*}{\partial y} \right) - \frac{\partial}{\partial y} \left[\frac{\lambda}{c_p} \frac{\partial \left(\omega_x^2 / 2 \right)}{\partial y} \right].
\] (10.17)

Подставим это выражение в уравнение (10.16). С учетом того, что \(\mu c_p / \lambda = Pr \), получаем
\[
c_p \rho \frac{\partial T^*}{\partial x} + c_p \rho \omega_y \frac{\partial T^*}{\partial y} = \frac{\partial}{\partial y} \left(\lambda \frac{\partial T^*}{\partial y} \right) + \\
+ \frac{\partial}{\partial y} \left[\mu \left(1 - \frac{1}{Pr} \right) \frac{\partial \left(\omega_x^2 / 2 \right)}{\partial y} \right].
\] (10.18)

Это уравнение было предложено М. Ф. Широковым. Оно может быть использовано вместо уравнения энергии. При \(Pr = 1 \) это уравнение приводится к виду
\[
c_p \rho \frac{\partial T^*}{\partial x} + c_p \rho \omega_y \frac{\partial T^*}{\partial y} = \frac{\partial}{\partial y} \left(\lambda \frac{\partial T^*}{\partial y} \right).
\] (10.19)

§ 4. Методика расчетной оценки теплоотдачи

Уравнение энергии (5.29) для небольшой скорости движения теплоносителя и уравнение (10.19) для высокоскоростных газовых потоков одинаковы по форме, только при большой скорости движения газа вместо термодинамической температуры фигурирует температура заторможенного потока. Следовательно, при большой скорости движения газа температура заторможенного потока играет такую же роль, как термодинамическая температура в потоках малой скорости.

Этот же вывод можно получить на основе анализа температурных полей при теплоотдаче. При небольшой скорости движения теплоносителя теплообмен потока со стенкой возможен при условии \(T_f \neq T_w \). При большой скорости течения газа и \(Pr = 1 \) теплообмен возможен при \(T_r \neq T_w \), а в общем случае при \(T_r \neq T_w \). Поэтому при скоростях течения, когда разогрев газа в пограничном слое вследствие его торможения становится уже заметным, в формуле Ньютона для теплоотдачи термодинамическую температуру потока следует заменить на адабатную температуру стенки. Обобщенная формула Ньютона имеет вид
\[
q = \alpha (T_r - T_w).
\] (10.20)

Для газовых потоков, у которых величина числа Прандтля близка единице, плотность теплового потока можно записать также через температуру торможения
\[
q = \alpha (T_r^* - T_w).
\] (10.21)

Если теплообмен между газом и стенкой сопровождается химическими реакциями, то количество переданной теплоты будет за-
висеть от разности полных энталпий газа. Поэтому при наличии химических реакций формулы плотности теплового потока запишутся так:

\[q = \frac{\alpha}{c_{\rho w}} (l_r - l_w); \quad (10.22) \]

\[q = \frac{\alpha}{c_{\rho w}} (l^* - l_w), \quad (10.23) \]

где \(l_r, * \) и \(l_w \) — полные энталпии газа при адиабатной температуре стенки, при температурах торможения и стенки; \(c_{\rho w} \) — теплоемкость газа при температуре стенки.

Рассмотренные выше обобщения формулы Ньютона на случай теплоотдачи в условиях движения газа с большой скоростью позволяют при расчете тепловых потоков непосредственно учить только две особенности этого процесса: разогрев газа в пограничном слое и изменение его полной энталпии из-за химических реакций. Остальные особенности учитываются при оценке коэффициента теплоотдачи.

Для скоростей до \(M = 1,6 \) коэффициент теплоотдачи можно определить из обычных уравнений подобия, полученных при небольших скоростях движения газа.

При больших скоростях движения газа расчетные формулы для коэффициента теплоотдачи получают на основе теории пограничного слоя или экспериментальным путем.

При получении расчетных формул с помощью теории пограничного слоя используется уравнение связи между коэффициентами теплоотдачи и трения, полученного в § 5 главы V. Оно сохраняется при больших скоростях движения газа. В самом деле дифференциальное уравнение (10.19), полученное при \(Pr = 1 \), и уравнение (10.11) при \(\frac{dp}{dx} = 0 \) имеют одинаковую форму и после перехода к безразмерным температурам и скоростям* позволяют сделать заключение о тождественном распределении безразмерных параметров

\[\frac{T^*-T_w}{T^*\bar{T}-T_w} = \frac{w_x}{w_\infty}. \]

Следовательно, в высокоскоростном потоке при \(Pr = 1 \) и \(dp/dx = 0 \) имеет место подобие полей скоростей и избыточных температур торможения, т. е. сохраняется основа для получения зависимости \(\alpha = f(c_f) \).

При получении расчетных формул для коэффициентов теплоотдачи на основе теории пограничного слоя с учетом изменения физических параметров газа по поперечному сечению газового потока поля физических параметров учитываются при интегрировании

* Для малых скоростей движения теплоносителя такой анализ выполнен в § 5 главы V.
уравнений. Сами параметры (вязкость, плотность) входят в формулы при температурах, соответствующих пределам интегрирования.

Для учета влияния полей физических параметров на теплообмен при \(M > 1,6 \) в опытные уравнения подобия теплоотдачи вводится число \(M \) и температурный фактор \(T_w/T_e \).

Для учета влияния полей физических параметров на коэффициент теплоотдачи при большой скорости движения газа разработан также метод определяющей температуры. При расчете процессов теплоотдачи в соответствии с этим методом физические параметры газа необходимо выбирать по некоторой эффективной температуре, которая зависит от грех температур, определяющих форму температурного поля при большой скорости течения газа: температуры поверхности \(T_w \), аднабатной температуры стенки \(T_s \), и температуры на внешней границе пограничного слоя \(T_e \). По Э. Эккерту, эффективная температура определяется формулой

\[
T_e = 0,5 (T_w + T_s) + 0,22 (T_e - T_s).
\]

(10.24)

При обтекании тела без скачков уплотнения и отсоединенных ударных волн температура на внешней границе пограничного слоя принимается равной температуре газа в невозмущенном потоке. В противном случае под \(T_e \) надо понимать температуру газа за ударной волной или за скачком уплотнения.

Подсчет определяющей температуры по выражению (10.24) позволяет использовать для оценки коэффициента теплоотдачи формулы, полученные решением уравнений пограничного слоя без учета изменения физических параметров газа. Сопоставление результатов расчета трения и теплоотдачи по определяющей температуре \(T_e \) и по методике, учитывающей поля физических параметров, показало, что при \(M = 0,2 - 22 \) разница в результатах не превышает 3%.

Использование температуры, подсчитанной по формуле (10.24), в качестве определяющей при обработке опытных данных позволяет получить более простое уравнение подобия, так как в него не войдут число Маха и температурный фактор.

Следует подчеркнуть, что выбором определяющей температуры нельзя учесть особенности теплоотдачи, обусловленные химическими реакциями. Поэтому для учета этих особенностей в уравнение подобия можно ввести критерий Льюиса—Семенова. Форма этой поправки рассмотрена в § 7 главы IX.

§ 5. Решения, полученные на основе теории пограничного слоя

В главе VI на основе теории пограничного слоя были получены формулы для расчета теплоотдачи при обтекании плоских поверхностей теплоносителем с небольшой скоростью движения. Если влияние изменения физических параметров в пограничном слое, обусловленное торможением высокоскоростного потока, на интенсивность теплоотдачи учесть выбором определяющей температуры, а влияние химических реакций --- множителем \(Le^{*s (1-n)} \), то эти формулы мож-
но распространить на большие скорости движения газа. Так, для ламинарного пограничного слоя при большой скорости газа формулы для местного (6.19) и среднего (6.20) коэффициентов теплоотдачи имеют вид:

\[\text{Nu}_n = 0.33 \text{Re}^{0.5} \text{Pr}^{0.33} \text{Le}^{0.67}, \quad (10.25) \]

\[\overline{\text{Nu}}_n = 0.66 \text{Re}^{0.5} \text{Pr}^{0.33} \text{Le}^{0.67}. \quad (10.26) \]

При \(\text{Le}^* < 1 \) \(s = 0.582 \), при \(\text{Le}^* > 1 \) \(s = 0.717 \).

Эти формулы можно использовать также при расчете теплоотдачи на боковой поверхности конуса. По мере удаления от вершины конуса ширина пограничного слоя увеличивается, поэтому толщина его растет медленнее, чем на плоской поверхности. Этот фактор приводит к увеличению интенсивности теплоотдачи на поверхности конуса по сравнению с пластиной. Его влияние можно учесть введением в правую часть уравнений (10.25) и (10.26) поправки, равной \(\sqrt{3} \). При расчете теплоотдачи конуса величина скорости газа должна определяться по параметрам потока за ударной волной.

Аналогично при турбулентном пограничном слое на плоской поверхности (\(\text{Re} = 5 \cdot 10^6 \div 10^7 \)) формулы (6.45) и (6.46) для больших скоростей движения газа можно записать в виде:

\[\text{Nu}_n = 0.029 \text{Re}^{0.8} \text{Pr}^{0.4} \text{Le}^{0.67}, \quad (10.27) \]

\[\overline{\text{Nu}}_n = 0.037 \text{Re}^{0.8} \text{Pr}^{0.4} \text{Le}^{0.67}. \quad (10.28) \]

На основании теории пограничного слоя получены также формулы, позволяющие рассчитывать теплообмен вблизи передней критической точки поверхностей, которые имеют затупленные передние кромки. Такое тело может быть осесимметричным (например, корпус ракеты) или плоским (например, крыло самолета).

Образование ударной волны около тела иллюстрируется рис. 10.4. Вблизи критической точки число Re имеет небольшое значение и поэтому можно предположить, что пограничный слой имеет ламинарный характер.

Для определения коэффициента теплоотдачи вблизи передней критической точки при обтекании осесимметричного тела диссоциирующим воздухом Фэй и Риддл решали дифференциальные уравнения ламинарного пограничного слоя численным методом для условий движения со скоростью 1,77—7 км/сек на высоте 7,6—37 км при температуре стенки \(T_w = 300 — 3000^{\circ} \text{K} \). В расчетах принималось \(\text{Pr} = 0.71; \text{Le} = 1 — 2 \). Расчеты выполнены для равновесного состава диссоциирующей смеси с учетом изменения физических па-
параметров по поперечному сечению пограничного слоя. Результаты
численных решений аппроксимированы формулой

$$N_{u_w} = 0,763 \text{Re}_w^{0,5} \text{Pr}^{0,4} \left(\frac{\rho^* \mu^*}{\rho_w \mu_w} \right)^{0,4} \left[1 + \left(\text{Le}^{0,52} - 1 \right) \frac{h}{l^*} \right]. \quad (10.29)$$

Здесь звездочной отмечены параметры заторможенного потока;
h — средняя энергия диссоциации на единицу массы атомов, равная
сумме произведений концентрации атомов на химическую энергию
их образования; $N_{u_w} = \frac{\alpha x}{\lambda_w}$, $\text{Re}_w = \frac{\omega x}{v_w}$; ω — скорость потока на
внешней границе пограничного слоя.

Роуз и Старк сопоставили результаты опытного исследования
коэффициента теплоотдачи, проведенного на цилиндрическом теле
с полусферическим носом в ударной трубе со скоростью воздуха
dо 7,9 km/sec, с формулой (10.29). Результаты опытов удовлетвори-
тельно согласуются с формулой (10.29) при $\text{Le} = 1,4$ и $\text{Pr} = 0,71$.

§ 6. Результаты опытного исследования
теплоотдачи при больших скоростях
движения газа

В соответствии с рабочим процессом газотурбинного двигателя
tурбинные лопатки омываются высокоскоростным газовым потоком.
Теплообмен между турбинной лопаткой и газом имеет ряд особен-
ностей. Турбинные лопатки образуют серию криволинейных кана-
лов (решетки) изменяющегося поперечного сечения (рис. 10.5).
Криволинейный характер течения газа приводит к возникновению инерцион-
ных массовых сил и влияет на условия теплоотдачи. Для врачающихся реше-
tок (рабочее колесо турбины) дополнительное воздейсitleние на теплоотдачу
может оказать поле центробежных и кориолисовых массовых сил, обусловлен-
ное вращением.

Обобщение результатов опытного исследования 18 неподвижных
tурбинных решеток, выполненное В. И. Локаем для среднего коэффи-
циента теплоотдачи, позволило получить следующее уравнение
подобия

$$\overline{N_{u_f}} = 0,206 \text{Re}^{0,8} S^{-0,58}, \quad (10.30)$$

где $\overline{N_{u}} = \frac{\alpha_{b_0}}{\lambda}$; $\text{Re} = \frac{\omega_{b_0}}{v}$; S — число подобия, отражающее влияние
поворота потока на процесс теплоотдачи. Формула для числа S,
полученная на основе выражения (8.7) с учетом геометрических ха-
кратеристик лопаток (рис. 10.5), имеет вид

\[
S = \frac{\sin \beta_1}{\sin \beta_2} \sqrt{\frac{2b}{s \sin (\beta_1 + \beta_2) \cos^2 \frac{\beta_1 - \beta_2}{2}}} - 1.
\]

Здесь обозначено: \(\alpha \) — средний для всего профиля лопатки коэф-
фициент теплоотдачи; \(b \) — ширина решетки; \(b_0 \) — хорда профиля;
\(s \) — шаг решетки; \(w \) — скорость газа на выходе из решетки; \(\beta_1 \)
и \(\beta_2 \) — углы, характеризующие форму профиля лопатки.

За определяющую при-
нятая температура газа на
выходе из решетки.

Формула (10.30) обоб-
щает опытные данные при
\(\text{Re} = 2 \cdot 10^5 - 1.5 \cdot 10^6; \)
\(S = 1.5 - 6; \) \(T_w/T_r = 1 -
-0.45; \) \(M \) до 1,0.

Рассмотрим некоторые
результаты опытного ис-
следования теплоотдачи в
сверхзвуковом газовом по-
токе.

В 1958 г. опубликованы результаты экспериментального исследо-
вания теплоотдачи пластины при \(M = 1.7 - 4 \). Результаты опытов по оценке местных значений коэффициентов теплоотдачи при турбу-
лентном пограничном слое хорошо описываются следующим урав-
нением:

\[
\text{Nu}_w = 0.029 \text{Re}_w^{0.8} \text{Pr}_w^{0.4} \left(\frac{T_w}{T_r} \right)^{0.39} \left(1 + r \frac{k - 1}{2} \frac{M^2}{2} \right)^{0.11}. \quad (10.31)
\]

Здесь в качестве определяющего размера выбрано расстояние от
начала пластины до участка, на котором определяется местный коэф-
фициент теплоотдачи. За определяющую взята температура поверх-
ности пластины. При обработке опытных данных коэффициент теп-
лоотдачи определялся по формуле (10.20). При проведении опытов
число Рейнольдса изменялось от 5 \(\cdot 10^5 \) до 2 \(\cdot 10^7 \), а температурный
фактор \(T_w/T_r \) — от 0,55 до 0,95.

Сопоставление результатов расчета теплоотдачи по этой формуле
с опытными данными других исследователей до \(M = 9 \) дает удов-
летворительное совпадение.

Формула (10.31) позволяет выявить результирующее влияние
числа \(M \) на коэффициент теплоотдачи. На рис. 10.6 показана за-
висимость, построенная с помощью этой формулы (\(\text{Nu}_0 \) — число
Нуссельта при \(M = 0 \)). Графики показывают, что увеличение числа
\(M \) при \(\text{Re} = \text{idem} \) и прочих равных условиях в исследованном диа-
пазоне скоростей сопровождается уменьшением коэффициента теплоподачи.

В работе Б. С. Петухова и В. В. Кириллова описаны результаты экспериментального исследования теплоотдачи при течении сверхзвукового потока в трубе. Опыты проводились при \(M = 0,5 - 4 \) (коэффициент скорости \(\lambda = 0,55 - 2,14 \))

\[Re = 4 \cdot 10^4 - 9 \cdot 10^6; x/d = 1 - 27 \text{ и } T_w/T_r = 0,85 = \text{const}. \]

Обобщение опытных данных по местному коэффициенту теплоотдачи позволило получить следующую формулу:

\[Nu_f = 0,044 \varepsilon Re_f^{0,73} Pr_f^{0,43} \left(1 - \frac{k-1}{k+1} \lambda^2 \right)^{1/3}, \tag{10.32} \]

где \(\varepsilon \) — поправка на начальный участок.

При \(x/d < 10 \) \(\varepsilon = 1,3(x/d)^{-0,12} \). При \(x/d \geq 10 \) \(\varepsilon = 1,0 \).

За определяющий размер принят диаметр трубы, а за определяющую температуру взята средняя по поперечному сечению температура потока.

При обработке опытных данных коэффициент теплоотдачи определялся по формуле (10.20). Для дозвуковых потоков коэффициент восстановления считался неизменным и равным 0,88.

Для сверхзвуковых потоков использована эмпирическая формула

\[r = 0,876 - 0,027 (2,18 - \lambda) \frac{x}{d}. \]

Следует заметить, что формула (10.32) непригодна для оценки теплоотдачи в области прямого скачка и за ним.

Обработка опытных данных Б. С. Петухова и В. В. Кириллова с использованием в качестве определяющей эффективной температуры \(T_3 \), которая подсчитывается по уравнению (10.24), подтвердила возможность получения уравнения подобия, описывающего теплоотдачу при большой скорости движения, без введения числа \(M \) (или \(\lambda \)) в явном виде. В такой обработке для воздуха уравнение подобия имеет вид

\[Nu_3 = 0,035 \varepsilon Re_3^{0,73}. \tag{10.33} \]

Здесь поправка \(\varepsilon \) вычисляется так же, как и для уравнения (10.32).

§ 7. Теплоотдача в соплах

Теплообмен в соплах Лаваля, являющихся неотъемлемой частью ракетных двигателей, протекает также в условиях больших скоростей и температур газового потока. Характерным для сопла является существенное уменьшение давления и температуры газового потока по тракту сопла и увеличение его скорости. Условия формирования пограничного слоя в соплах отличаются от условий в трубе не только тем, что по тракту сопла изменяется периметр попереч-
ного сечения потока, но и тем, что отрицательный градиент давления в потоке оказывает стабилизирующее влияние на пограничный слой. На входе в сопло пограничный слой имеет обычно турбулентный характер. Экспериментальные исследования теплообмена в соплах позволяют предположить, что при определенных условиях в зоне критического сечения сопла пограничный слой может снова стать ламинарным.

Высокая температура продуктов сгорания, представляющих собой газовую смесь, и значительное уменьшение ее около стенок приводит к резкому изменению состава и свойств газа в пределах теплового пограничного слоя. При сгорании некоторых топлив в газовом потоке появляется конденсированная фаза — большое количество мелких твердых или жидких частиц, которые также влияют на процесс взаимодействия потока со стенкой. Некоторое влияние на теплообмен оказывают также форма проточной части сопла и его абсолютные размеры. Поверхность сопла обменивается теплотой с газовым потоком путем соприкосновения и излучения.

Многообразие факторов, влияющих на процесс теплообмена в соплах, и недостаточно полное экспериментальное исследование этого процесса затрудняют построение единой методики расчета. Имеется несколько методов расчетной оценки теплоотдачи* в соплах, более или менее полно отражающих специфику процессов теплообмена в этих условиях. Наиболее простой метод расчета предложен Бартцем. Он основан на теории турбулентного пограничного слоя и не учитывает влияния отрицательного градиента давления на развитие пограничного слоя. В соответствии с этим методом местный коэффициент теплоотдачи определяется уравнением

$$Nu = cRe^{0.8} Pr^{0.4}.$$

(10.34)

За определяющий размер выбирается местный диаметр сопла.

Для учета изменения свойств газа в поперечном сечении пограничного слоя, обусловленного изменением температуры, автор метода предлагает использовать в качестве определяющей среднюю температуру пограничного слоя. При больших значениях чисел M эта

* Здесь рассматривается только расчет теплоотдачи. Расчет лучистого теплообмена между стенкой и газовым потоком рассмотрен в главе XIII.
задача лучше решается при выборе в качестве определяющей эффективной температуры газа [формула (10.24)]. Поэтому при использовании уравнений (10.34) для расчета теплоотдачи в соплах в качестве определяющей следует выбирать температуру T_w.

Коэффициент c для дозвуковой части сопла и критического сечения принимается равным 0,026, а для сверхзвуковой части — 0,023.

Расчет и экспериментальное исследование теплообмена в соплах Лавыля показывают, что коэффициент теплоотдачи интенсивно изменяется вдоль сопла: в дозвуковой части сопла коэффициент теплоотдачи увеличивается, достигает максимального значения вблизи критического сечения сопла, а затем уменьшается. На рис. 10.7 показано изменение коэффициента теплоотдачи по длине сопла при давлении воздуха перед соплом 98 бар и температуре 2000° К, рассчитанное по формуле (10.34). В расчетах принято $T_w = 800°$ К, $d_{кр} = 50$ мм. Здесь α и $\alpha_{кр}$ — местные коэффициенты теплоотдачи в рассматриваемом и критическом сечениях сопла.

ГЛАВА XI
ТЕПЛООТДАЧА В РАЗРЕЖЕННЫХ ГАЗАХ

Необходимость исследования теплоотдачи в условиях разреженного газа диктуется развитием многих отраслей техники. Значительный интерес эта проблема представляет для ракетной техники, техники эксперимента, металлургии. Здесь будет рассмотрено, главным образом, явление теплоотдачи при внешнем обтекании тел разреженным потоком газа.

§ 1. Особенности течения и теплообмена в разреженных газах

Взаимодействие поверхности теплообмена с потоками жидкости или достаточно плотного газа рассматривается на основе представлений о теплоносителе как о сплошной среде — континууме. Особенность разреженных потоков газа состоит в том, что механизм их взаимодействия с поверхностями твердых тел можно объяснить только с учетом молекулярного строения газа. Поэтому количественные характеристики этого взаимодействия устанавливаются на основе молекулярно-кинетической теории газов.

Расстояние, которое проходит молекула между соударениями, называют длиной свободного пробега. Это расстояние различно у разных молекул и у одной и той же молекулы в разные моменты времени. Важной характеристикой совокупности молекул, составляющих поток, является средняя длина свободного пробега, которая увеличивается при уменьшении давления и увеличении температуры газа. Когда средняя длина свободного пробега молекул имеет одинаковый порядок с размерами тела, газ называют разреженным.
Движение молекул газа после соударения их с поверхностью твердого тела может иметь различный характер.

После соударения со стенкой молекула может зеркально отразиться от нее, но может на некоторое время остаться около поверхности. В последнем случае движение отлетающих от стенки молекул носит диффузионный характер, т. е. молекулы симметрично рассеиваются по всем направлениям полусферы.

Время пребывания молекулы около стенки определяет ее энергообмен с поверхностью. При зеркальном отражении энергообмена не происходит. При достаточно большом времени пребывания молекул на стенке их кинетическая энергия приходит в соответствие с температурой стенки.

Кнудсен предложил оценивать полноту обмена энергией газовых молекул со стенкой коэффициентом аккомодации, определяя его как отношение энергии, переданной молекулами разреженного газа стенке, к энергии, которую они передали бы при условии, что при соударении со стенкой скорость вынужденного движения становится равной нулю, а скорость теплового движения приходит в соответствие с температурой стенки. Коэффициент аккомодации выражается формулой

\[\sigma = \frac{E_{\text{пад}} - E_{\text{отр}}}{E_{\text{пад}} - E_{\text{ст}}} \]

где \(E_{\text{пад}} \) и \(E_{\text{отр}} \) — энергия падающих и отраженных от стенки молекул; \(E_{\text{ст}} \) — энергия молекул при температуре стенки.

При зеркальном отражении энергия молекулы в процессе соударения не изменяется и потому \(\sigma = 0 \). При полном энергообмене \(\sigma = 1 \). Следовательно, в общем случае \(\sigma = 0 — 1 \).

Действительные значения коэффициентов аккомодации зависят в основном от природы газа, материала стенки и состояния ее поверхности. В опытах, проведенных с воздухом при различных видах твердой поверхности, получены \(\sigma = 0,87 — 0,97 \). Но величина \(\sigma \) может иметь значительно меньшие значения. Например, при взаимодействии с вольфрамовой нитью водорода получено \(\sigma = 0,2 \), а для гелия — \(\sigma = 0,02 \).

При диффузионном рассеянии отраженных от стенки молекул средняя величина тангенциальной составляющей скорости летящих от стенки молекул равна нулю. Так как тангенциальная составляющая подлетающих к поверхности молекул не равна нулю, то и средняя тангенциальная скорость всех молекул, подлетающих к стенке и улетающих от нее, также не равна нулю и представляет собой скорость ско""льжен""я газового потока \(\omega \) (рис. 11.1). Еще в большей мере этот эффект проявится при \(\sigma < 1 \).

При взаимодействии со стенкой газа, температура которого отлична от температуры стенки, на поверхности теплообмена возникает температурный скачок \(\Delta T = T_s - T_w \) (рис. 11.2). Этот скачок обусловлен тем, что кинетическая энергия подлетающих к стенке молекул отличается от энергии, соответствующей температуре поверхности теплообмена. Поэтому средняя тем-
пература находящегося в непосредственной близости от стенки газа не равна температуре стенки.
Следует заметить, что скорость скольжения и температурный скачок наблюдаются в газах любой плотности, однако в плотных газах их величины пренебрежимо малы. По мере увеличения разреженности газа увеличивается средняя длина свободного пробега молекул, увеличивается тангенциальная составляющая скорости подлетающих к поверхности молекул и разность температур между поверхностью и непосредственно прилегающим к ней слоем газа. Поэтому чем больше степень разреженности, тем больше \(w_s \) и \(\Delta T \).

![Рис. 11.1](image1)

![Рис. 11.2](image2)

На основании молекулярно-кинетической теории газов Максвелл показал, что температурный скачок определяется формулой

\[
\Delta T = T_s - T_w = \varphi \frac{\Lambda}{Pr} \left(\frac{\partial T}{\partial x} \right)_{x=0},
\]

где \(\Delta \) — средняя длина свободного пробега молекул;

\[
\varphi = \frac{2 - \alpha}{\alpha} \frac{2k}{k + 1};
\]

\(k \) — показатель адиабаты;

\(\frac{\partial T}{\partial x} \) — температурный градиент в газе по нормали к поверхности.

Формула (11.2) определяет температурный скачок при свободной конvectionи и небольших скоростях течения газа. При больших числах Маха формула температурного скачка усложняется. В этих условиях температурный скачок зависит от скорости скольжения [22].

При течении газа со скольжением около поверхности тела образуется пограничный слой, толщина которого увеличивается по мере увеличения разрежения, а интенсивность изменения скорости и температуры в нем уменьшается. При очень глубоком разрежении,
когда средняя длина свободного пробега молекул во много раз пре-
восходит размеры тела, влиянием межмолекулярных столкновений
на распределение скоростей в газовом потоке, омывающем тело,
можно пренебречь. В этих условиях пограничного слоя нет, и взаи-
модействие газового потока с поверхностью можно представить как
бомбардировку поверхности отдельными молекулами невозмущен-
ного газового потока. Такой режим течения газа называется свобод-
но-молекулярным, а газ — ультраразреженным. В этих условиях
скорость скольжения достигает величины тангенциальной скорости
невозмущенного потока, а температурный скачок равен разности
температуру невозмущенного потока и стенки.

При большой скорости потока по мере увеличения разреженности
газа скачки уплотнения становятся более слабыми, а при свободно-
молекулярном режиме они совсем исчезают.

Степень разреженности газового потока отражается на интенсив-
ности его теплообмена со стенкой.

При внешнем обтекании тел уменьшение плотности газового по-
тока сопровождается увеличением толщины пограничного слоя и со-
ответственно уменьшением интенсивности теплоотдачи. Возникнове-
ние температурного скачка приводит к дополнительному ухудше-
нию интенсивности теплообмена. Как видно из рис. 11.2, появление
температурного скачка сопровождается уменьшением температур-
ного градиента в газе, а так как коэффициент теплопроводности газа
при этом не изменяется, то тепловой поток к поверхности теплооб-
мена также уменьшается.

Переход к свободно-молекулярному режиму течения связан
с дальнейшим ухудшением интенсивности теплообмена. В этом слу-
чае перенос теплоты между газом и стенкой определяется коэффи-
циентом аккомодации и ухудшается с уменьшением числа взаимо-
действующих с поверхностью молекул.

Для количественной оценки взаимодействия разреженного пото-
ка газа с поверхностью необходимо знать динамические характе-
ристики каждой молекулы или групп молекул перед сходарением
их со стенкой. Для оценки этих характеристик в молекулярно-ки-
нетической теории используется функция распределения молекул
по скоростям, которая описывается уравнением Больцмана. Для
случа, когда молекулы взаимодействуют между собой в форме пар-
ных столкновений и нет других факторов, возмущающих движение
молекул, а газ находится в стационарном состоянии, функция рас-
пределения найдена и известна под названием функция распределе-
ния Максвелла. Она используется при расчетной оценке теплоотда-
чи поверхности в свободно-молекулярном потоке газа.

Для режимов течения, при которых возмущающим влиянием по-
верхности на разреженный поток газа пренебречь нельзя, т. е. когда
отлетающие от стенки молекулы соударяются с молекулами, подле-
тающими к стенке, функция распределения в настоящее время мо-
жет быть найдена лишь на основе приближенного решения уравне-
ния Больцмана. Это затрудняет решение задачи о теплоотдаче сколь-
зящего потока.
§ 2. Дополнительное условие подобия разреженных потоков

Средняя длина свободного пробега молекул, характеризующая степень разреженности газа, зависит от параметров его состояния. На рис. 11.3 показана зависимость средней длины свободного пробега молекул воздуха от температуры и давления \((p_0) — давление при нормальных условиях\).

С увеличением высоты над поверхностью Земли плотность воздуха резко уменьшается, а средняя длина свободного пробега молекул возрастает. На высоте 120 км средняя длина свободного пробега молекул составляет около 130 см, а на высоте 200 км — доходит до 300 м.

Возможность возникновения особенностей течения и теплообмена в разреженных газах зависит не только от средней длины свободного пробега газовых молекул, но и от размеров тела. Поэтому для характеристики условий, в которых могут возникать эффекты, обусловленные разреженностью газа, удобно пользоваться соотношением между длиной среднего пробега молекул \(\Delta\) и характерным линейным размером \(l\). Это соотношение получило название числа Кнудсена:

\[
Kn = \frac{\Delta}{l}.
\]

(11.3)

При вынужденном движении газа число Кнудсена можно выразить через числа Маха и Рейнольдса. Получим эту связь в предположении, что \(l\) — характерный размер тела.

В молекулярно-кинетической теории газов средняя арифметическая скорость газовых молекул \(\sqrt{\frac{8}{\pi} RT}\) записывается формулами:

\[
\omega_m = \sqrt{\frac{8}{\pi} RT},
\]

\[
Pr = \frac{\nu c_p \rho}{\lambda} = \frac{4k}{9k - 5}.
\]

Здесь \(k\) — показатель адабаты.

С учетом этих выражений уравнение (3.1) преобразуется

\[
v = a\Delta \sqrt{\frac{2}{\pi k}},
\]

(11.4)

где \(a = \sqrt{kRT}\) — местная скорость звука.

394
Подставив значение величины Δ из выражения (11.4) в формулу для числа Кнудсена, получим

$$K_p = \frac{v}{a l \sqrt{\frac{2}{\pi k}}}.$$ \hspace{1cm} (11.5)

Так как

$$a = \frac{w}{M} \text{ и } Re = \frac{w l}{v},$$

то окончательно

$$K_p = 1.26 \sqrt{\frac{k}{\eta}} \frac{M}{Re}.$$ \hspace{1cm} (11.6)

В такой форме число Кнудсена наиболее часто используется для изучения ультраразреженных газов.

Для умеренно разреженных и плотных газов, в которых интенсивность теплоотдачи определяется процессами теплообмена в пограничном слое, степень разреженности можно охарактеризовать соотношением между свободной длиной пробега молекул и толщиной пограничного слоя δ. Для этих условий число Кнудсена записывается так:

$$K_{p\delta} = \Delta / \delta.$$ \hspace{1cm} (11.7)

Перепишем формулу для числа $K_{p\delta}$ в виде

$$K_{p\delta} = \frac{\Delta}{l} \frac{l}{\delta},$$

где l — характерный размер тела.

После замены первого сомножителя правой части этой формулы из уравнения (11.6), а второго — из формулы (6.17) для ламинарного слоя получим

$$K_{p\delta} = 0.28 \sqrt{\frac{k}{\eta}} \frac{M}{V Re}.$$ \hspace{1cm} (11.8)

Рассмотренные формулы числа Кнудсена, строго говоря, могут использоваться только при рассмотрении систем с умеренным диапазоном изменения температуры в системе. Так, для больших скоростей газового потока вместо $M/V Re$ используется $M \sqrt{C/V Re}$, где

$$a = \frac{\mu_r}{\mu_f} \frac{T_f}{T_r},$$

а T_f и T_r — температура невозмущенного потока и адабатная температура стенки.

В зависимости от механизма взаимодействия разреженного газа со стенкой можно выделить три области: область континуума или течение с с прилипанием газа к стенке, область свободно-мOLEKУлярного потока и промежуточную область.
Вопрос о границах областей течения разреженных потоков до конца не изучен. Опыты для определения этих границ, основанные на оценке теплообмена и коэффициентов восстановления температуры для тел различной формы, не дают удовлетворительно совпадающих результатов. Для ориентировочной оценки этих границ можно воспользоваться граничными значениями критерия Кнудсена, которые были предложены Тэйном. Область течения с прилипанием ограничивается условием

\[
\frac{M}{V Re} < 0.01 (Kn_b \lesssim 0.0033),
\]

а область свободно-молекулярного течения

\[
\frac{M}{Re} > 10 (Kn \approx 15).
\]

Границы областей течения разреженного газа показаны на рис. 11.4. Эти же границы будут определять области с различным механизмом теплообмена между газом и стенкой.

На рис. 11.5 показано влияние степени разреженности слоя неподвижного газа (без вынужденного и свободного движения, на интенсивность теплообмена между ограничивающими его параллельными стенками. График построен по данным Ю. А. Кошмарова. Здесь \(q_0\) — плотность теплового потока через плотный газ, а за \(\)}
ределяющий размер в числе Кнудсена взято расстояние между стенками. Линии 1, 2 и 3 соответствуют расчетной интенсивности теплообмена в свободно-молекулярном потоке, в промежуточной области и в области континуума. Крестиками отмечены опытные точки.

Из рисунка видно, что увеличение степени разреженности газа сопровождается уменьшением интенсивности теплообмена, причем наиболее резкое ухудшение интенсивности теплообмена наблюдается в свободно-молекулярной области.

§ 3. Теплоотдача в свободно-молекулярном потоке газа

Теплоотдача в свободно-молекулярном потоке рассчитывается по формулам, полученным на основе молекулярно-кинетической теории газов. Расчет теплоотдачи по этим формулам дает удовлетворительное совпадение с результатами эксперимента.

Выход формул для теплоотдачи в свободно-молекулярном потоке газа основан на предположении, что отлетающие от стенки молекулы не возмущают подходящий к поверхности газовый поток. Поэтому можно считать, что в набегающем потоке имеет место максвелловское распределение скоростей, на которое накладывается скорость вынужденного движения потока. Таким образом, по скоростям вынужденного и теплового движений в невозмущенном потоке определяется энергия \(E_{\text{пад}} \) молекул перед их соприкосновением со стенкой, а полнота энергообмена при соударении со стенкой оценивается с помощью коэффициента аккомодации. На основе формулы (11.1) можно записать

\[
q = E_{\text{пад}} - E_{\text{ср}} = \sigma (E_{\text{пад}} - E_{\text{ср}}). \quad (11.9)
\]

При анализе процесса теплообмена в свободно-молекулярном потоке важную роль играет отношение молекулярных скоростей \(s \), которое представляет собой отношение скорости вынужденного движения \(\omega \) к наиболее вероятной скорости теплового движения молекулы \(\omega^*_m \).

Так как

\[
\omega^*_m = \sqrt{2RT},
\]

do молекулярное отношение скоростей просто выражается через число Маха:

\[
s = \frac{r \omega}{\omega_m^*} = \sqrt{\frac{k}{2}} M.
\]

Рассмотрим элемент поверхности тела, которое взаимодействует со свободно-молекулярным потоком, имеющим скорость вынужденного движения \(\omega \) (рис. 11.6).
Для многоатомного газа энергия падающих молекул $E_{\text{пад}}$ складывается из энергий поступательного движения молекул $E_{\text{пад}}^r$ и их внутренней энергии $E_{\text{пад}}^n$.

Энергия поступательного движения падающих молекул определяется выражением

$$
E_{\text{пад}}^r = \int_{0}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{1}{2} m \omega^2 f \omega_x \omega_y \omega_z \, d\omega_x \, d\omega_y \, d\omega_z,
$$

(11.10)

где m — масса молекулы; f — функция распределения; ω_x, ω_y, ω_z — проекции скорости теплового движения молекул.

Максвелловская функция распределения определяется выражением

$$
f = \frac{\rho_f}{m (2\pi RT_f)^{3/2}} \exp \left[- \frac{(\omega_x - \omega \sin \beta)^2 + (\omega_y + \omega \cos \beta)^2 + \omega_z^2}{2RT_f} \right].
$$

(11.11)

После подстановки выражения (11.11) в уравнение (11.10) и интегрирования получается

$$
E_{\text{пад}}^r = \frac{\rho_f}{V} (RT_f)^{3/2} \left\{ (s^2 + 2) e^{-s \sin \beta} + \sqrt{\pi} \left(s^2 + \frac{5}{2} \right) \times \right.
$$

$$
\left. \times s \sin \beta [1 + \text{erf} \left(s \cdot \sin \beta \right)] \right\}.
$$

(11.12)

Здесь функция $\text{erf} \, x$ представляет собой интеграл вероятности

$$
\text{erf} \, x = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-x^2} \, dx.
$$

(11.13)

Внутренняя энергия падающих в единицу времени на единицу поверхности молекул определяется по формуле

$$
E_{\text{пад}}^n = \frac{mRT_f}{2} N,
$$

(11.14)

где $j = \frac{5 - 3k}{k - 1}$ — число внутренних степеней свободы молекулы; N — число молекул, падающих в единицу времени на единицу поверхности.

Аналогично подсчитывается внутренняя энергия и энергия поступательного движения молекул при температуре стенки

$$
E_{\text{ст}} = (4 + j) \frac{mRT_w}{2} N = \frac{k + 1}{2(k - 1)} mRT_w N.
$$

(11.15)
Приставив выражения (11.12), (11.14) и (11.15) в формулу (11.9), получим

\[q = \frac{\sigma T_f}{\sqrt{2\pi}} (RT_f)^{3/2} \left\{ \frac{1}{2} e^{-s^2 \sin^2 \beta} + \left[e^{-s^2 \sin^2 \beta} - \right. \right. \]
\[- V \pi s \sin \beta \left[1 + \text{erf}(s \cdot \sin \beta) \right] \left[\frac{k+1}{2 (k-1)} \frac{T_w}{T_f} - s^2 - \frac{k}{k-1} \right] \right\}. \]

(11.16)

Тепловой поток по всей поверхности равен

\[Q = \int q dF. \]

(11.17)

После подстановки формулы (11.16) в выражение (11.17) имеем

\[\frac{Q}{\sigma_f R T_f \omega F} = \left[\frac{k+1}{2 (k-1)} \frac{T_w}{T_f} - \frac{k}{k-1} - s^2 \right] (P + K) + \frac{1}{2} P, \]

(11.18)

где

\[P = \frac{1}{F} \int_F e^{-s^2 \sin^2 \beta} \, dF; \]

\[K = \frac{1}{2F} \int_F \sin \beta \left[1 + \text{erf}(s \cdot \sin \beta) \right] dF. \]

Когда температура поверхности достигает адабатной температуры стенки \(T_r \), тепловой поток \(Q = 0 \). Для этого случая из уравнения (11.18) получим

\[\frac{T_r}{T_f} = \frac{2k}{k+1} + 2 \frac{k-1}{k+1} \left(s^2 - \frac{1}{2} \frac{P}{P+K} \right). \]

(11.19)

Исключив из уравнений (11.18) и (11.19) температуру \(T_f \), найдем

\[Q = \frac{k+1}{2 (k-1)} (P + K) (T_w - T_r) \sigma_f R \omega F. \]

(11.20)

Заменив в этом выражении газовую постоянную из формулы \(R = c_p \frac{k-1}{k} \), умножив и разделив правую часть равенства на кинематический коэффициент вязкости \(\nu \) и разделив все уравнение на коэффициент теплопроводности \(\lambda \), выражение (11.20) перепишем в виде

\[\text{Nu} = \sigma \frac{k+1}{2k} (P + K) \Pr \Re, \]

(11.21)

где

\[\text{Nu} = \frac{Q l}{\lambda F (T_w - T_r)} ; \quad \Re = \frac{\omega l}{\nu} ; \quad \Pr = \frac{\rho_f \nu c_p}{\lambda}. \]
На основе формулы (11.21) получаются расчетные соотношения теплоотдачи для тел различной формы. Так, для плоской пластины, расположенной к потоку под углом \(\beta \), выражение (11.21) приводится к виду

\[
Nu = \frac{\sigma}{\sqrt{\pi}} \frac{k + 1}{4k} \frac{Pr \cdot Re}{s} \left[e^{-s \cdot \sin^2 \beta} + \sqrt{\pi} s \cdot \sin \beta \cdot \text{erf} (s \cdot \sin \beta) \right].
\]

(11.22)

При \(\beta = 0 \) это выражение упрощается

\[
Nu = \frac{\sigma}{\sqrt{\pi}} \frac{k + 1}{4k} \frac{Pr \cdot Re}{s} .
\]

(11.23)

Для двухатомного газа \((k = 1,4) \) эта формула принимает вид

\[
Nu = 0,242 \sigma \frac{Re \cdot Pr}{s} = 0,442 \sigma \frac{Pr}{Kn} .
\]

(11.24)

Аналогично для поперечно-обтекаемого цилиндра в свободно-мOLEкулярном потоке двухатомного газа при \(s \geq 2 \) получается следующее уравнение:

\[
Nu = 0,273 \sigma \frac{Re \cdot Pr}{s} = 0,485 \sigma \frac{Pr}{Kn} \cdot s.
\]

(11.25)

При \(s < 2 \) уравнение имеет более сложный вид.

При оценке коэффициентов теплопроводности и вязкости по температуре торможения, а плотности — по параметрам невозмущенного потока, формула (11.25) хорошо совпадает с опытными данными при \(\sigma = 0,9 \). Опытные данные получены при \(s = 1,6 — 2,65 \) и \(Re \approx 0,15 — 0,8 \).

\section*{§ 4. Теплоотдача при температурном скачке на поверхности теплообмена}

Математическое описание течения разреженного газа в промежуточной области приводит к появлению в дифференциальных уравнениях дополнительных членов, которые повышают порядок уравнений и вызывают необходимость формулировки дополнительных граничных условий. Этот путь решения проблемы связан с большими математическими трудностями; он не получил существенного развития, так как оказалось, что область применимости этих уравнений не шире, чем область применимости уравнений Навье—Стокса.

Если для аналитического описания теплообмена в условиях движения газа со скольжением использовать обычную систему дифференциальных уравнений, которая получена для плотного газа, а особенноности разреженного газа учсть только в граничных условиях (температура, скорость скольжения), то решение такой системы не может претендовать на высокую точность. Решения задачи о теплообмене пластины и шара в условиях скольжения,
полученные этим методом, не дают удовлетворительного совпадения с опытными данными.

Теоретическое решение задачи о теплообмене в промежуточной области возможно также на основе моментного метода, основанного на простейшем представлении функций распределения до и после соударения молекул со стенкой и предположении о диффузном характере отражения молекул. Результаты, полученные этим методом для передачи теплоты через плоский слой разреженного газа Ю. А. Кошмаровым, показаны на рис. 11.5 (линия 2).

Возможен также полуэмпирический подход к решению рассматриваемой задачи, предложенный Л. Л. Каванау. Расчетное соотношение для коэффициента теплоотдачи при температурном скачке на поверхности теплообмена получается на основе предположения о том, что условия теплообмена в разреженном газе по сравнению с плотным (при Re = idem) изменяются только за счет контактного сопротивления на поверхности теплообмена, а несоответствие принятой модели реальным условиям учитывается эмпирическим коэффициентом. Рассмотрим это решение более подробно.

Температурные поля для теплоотдачи в плотном и разреженном (с температурным скачком) газах при одинаковом тепловом потоке и одинаковой температуре газа имеют вид, показанный на рис. 11.7. Тепловая нагрузка для плотного газа равна

\[-q = \lambda \left(\frac{\partial T}{\partial x} \right)_{x=0} = \alpha^0 (T_f - T_w), \]

где

\[\alpha^0 (T_f - T_w), \]

а для разреженного газа

\[-q = \lambda \left(\frac{\partial T}{\partial x} \right)_{x=0} = \alpha (T_f - T_w). \]

Из этих формул видно, что при одинаковых тепловых потоках температурные градиенты в плотном и разреженном газах около стенок также будут одинаковы.

Так как

\[T_w = T_0 - \Delta T, \]

то с учетом формул (11.26) и (11.27) равенство тепловых потоков можно записать в виде

\[\alpha^0 (T_f - T_0) = \alpha (T_f - T_w) + \alpha \Delta T, \]

или

\[1 = \frac{\alpha}{\alpha^0} + \frac{\alpha}{\alpha^0} \frac{\Delta T}{T_f - T_0}. \]

(11.28)
Подставив в это равенство значение $T_f - T_w$ из формулы (11.26), а значение ΔT — из формулы (11.2), получим

$$1 = \frac{\alpha}{\alpha^0} + \frac{\alpha}{\kappa} \frac{\varphi \Delta}{Pr}.$$

Это выражение легко преобразуется к виду

$$Nu = \frac{1}{\frac{1}{Nu^0} + \varphi \frac{Kn}{Pr}},$$

где Nu^0 — число Нуссельта, характеризующее теплообмен без температурного скачка. При вынужденном движении газа величина Nu^0 зависит от чисел Re и Pr, а при свободном движении — от чисел Gr и Pr.

Формула (11.29) была использована при обработке опытных данных по теплоотдаче при свободном и вынужденном движении разреженного газа.

Опытное исследование теплоотдачи при свободном движении разреженного газа, выполненное А. К. Ребровым, позволило оценить величину φ для ряда конкретных случаев. Для теплоотдачи цилиндрических полированных образцов с $l = d$ ($d = 9.9$ и 1.31 см) из меди и нержавеющей стали в воздухе получилось соответственно $\varphi = 2.45$ и $\varphi = 2.3$. Для горизонтального цилиндра из нержавеющей стали различной длины и $d = 3.17$ мм получилось $\varphi = 2.35$.

При исследовании медного цилиндра с $d = 9.9$ мм в атмосфере аммиака получено $\varphi = 4.07^*$. За определяющие приняты средняя температура пограничного слоя и диаметр цилиндра.

Обработка опытных данных по среднему коэффициенту теплоотдачи между воздухом и сферой в условиях вынужденного движения, выполненная Каванау в соответствии с формулой (11.29), позволяла получить $\varphi = 2.63$. Опыты проводились в потоке газа при $M = 0.1 - 0.69$ и $Re = 1.75 - 124$. При обработке опытных данных коэффициент теплопроводности определялся по аднабатной температуре стенки, а остальные физические параметры — по термодинамической температуре потока. Определяющий размер — диаметр сферы.

Сопоставление результатов обработки экспериментальных данных на основе формулы (11.29) по теплоотдаче при свободном и вынужденном движении позволяет заключить, что эта формула в основном правильно отражает влияние температурного скачка на процесс теплообмена. Об этом свидетельствует стабильность величины φ, которая для различных условий течения воздуха и разных форм тел имеет почти одинаковое значение. Поэтому для приближенных расчетов формула (11.29) может быть использована и для тел, теплоотдача которых в разреженном газе не исследовалась. Следует, одна-

* При подсчете величины φ по формуле (11.29) принято для воздуха $Pr = 0.7$ и для аммиака $Pr = 0.87$.

402
ко, оговориться, что этой формулой нельзя пользоваться для оценки теплоотдачи при больших числах Маха, так как выражение для температурного скачка \((11.2) \), использованное при ее выводе, для больших скоростей записывается иначе.

Числовые значения \(\Phi \), полученные в опытах, показывают, что при течении газа со скольжением дополнительное теплоовое сопротивление создается не только вследствие температурного скачка, но и вследствие изменения условий теплообмена в пограничном слое. В самом деле, величине \(\Phi = 2.3 \) соответствует коэффициент аккюмодации \(\sigma = 0.573 \), тогда как непосредственно измеренные для воздуха величины коэффициентов аккюмодации \(\sigma = 0.87 - 0.97 \). Следовательно, дополнительное теплоовое сопротивление при течении газа со скольжением больше теплового сопротивления, обусловленного скачком температур.

Формулы для расчета коэффициента теплоотдачи в условиях температурного скачка получаются также путем непосредственного обобщения результатов эксперимента. Так, опытные данные по теплоотдаче шаров в потоке воздуха со скольжением, полученные при \(M = 2.24 - 3.56, \text{ Re } = 16 - 980 \text{ и } M/\sqrt{\text{Re}} = 0.12 - 0.56 \), хорошо описываются уравнением подобия

\[
\text{Nu} = 1.075 \frac{\sqrt{\text{Re}}}{M} - 1.22. \tag{11.30}
\]

Здесь за определяющий размер взят диаметр шарика, а числа \(M \) и \(\text{Re} \) определены по параметрам потока до ударной волны.

§ 5. Коэффициент восстановления температуры в разреженном газовом потоке

При большой скорости течения разреженного газа тепловой поток к стенке или от стенки определяется, как и для плотной среды, по формуле \((10.20) \). Для расчета теплового потока в этих условиях необходимо оценивать коэффициент восстановления температуры \(r \), величина которого зависит от степени разреженности газового потока.

Исключив из формул \((10.6) \) и \((10.7) \) число \(M \), получим выражение для коэффициента восстановления температуры

\[
r = \frac{T_r - T_f}{T^* - T_i}. \tag{11.31}
\]

Из соотношения \((11.19) \) следует, что

\[
\frac{T_r - T_f}{T_f} = \frac{k - 1}{k + 1} + 2 \frac{k - 1}{k + 1} \left(s^2 - \frac{1}{2} \frac{P}{P + K} \right). \tag{11.32}
\]

Из формул \((10.6) \) легко найти

\[
\frac{T^* - T_f}{T_i} = \frac{k - 1}{2} M^2 = \frac{k - 1}{k} s^2. \tag{11.33}
\]

403
Разделив выражение (11.32) на (11.33), получим формулу для коэффициента восстановления температуры в свободно-молекулярном потоке

$$r_{cm} = \frac{k}{k+1} \frac{1}{s^a} \left(1 + 2s^a - \frac{P}{P+K} \right).$$ \hspace{1cm} (11.34)

Из этого выражения можно получить формулы, позволяющие рассчитывать r для тел различной формы. Так, для пластины, расположенной под углом β к свободно-молекулярному потоку, получается

$$r_{cm} = \frac{k}{k+1} \times$$

$$\times \frac{\sqrt{\pi} (2s^a + 1) s \cdot \sin \beta \cdot \text{erf} (s \cdot \sin \beta) + 2s^a e^{-s^a \sin^2 \beta}}{s^a [\sqrt{\pi} s \cdot \sin \beta \cdot \text{erf} (s \cdot \sin \beta) + e^{-s^a \sin^2 \beta}]}.$$ \hspace{1cm} (11.35)

При $\beta = 0$ эта формула приводится к виду

$$r_{cm} = \frac{2k}{k+1}.$$ \hspace{1cm} (11.36)

Из этой формулы видно, что в свободно-молекулярном потоке $r \gg 1$ и больше, чем в плотных потоках. Этот вывод получил экспериментальное подтверждение.

На рис. 11.8 показаны результаты обобщения опытных данных по коэффициентам восстановления температуры r для разреженных потоков, выполненного Дьюон. Коэффициенты r измерены при поперечном обтекании цилиндра воздухом при $M = 1,9 - 5,8$. Здесь

$$\tilde{r} = \frac{r - r_{cm}}{r_{cm} - r_{f}},$$

где r_{f} — коэффициент восстановления в плотном ламинарном потоке, принятый равным 0,94; r — коэффициент восстановления в промежуточной области.

Из рисунка видно, что увеличение степени разреженности газа в промежуточной области течения сопровождается увеличением коэффициента r, который в области свободно-молекулярного течения достигает наибольшего значения.
Глава XII
Теплоотдача при изменении агрегатного состояния и при подводе иноядного вещества в пограничный слой

Фазовые превращения вещества (кипение, испарение, конденсация, сублимация) сопровождаются существенным изменением условий теплообмена около поверхности. Переход теплоносителя из одного агрегатного состояния в другое влияет на механизм и интенсивность теплообмена.

При подводе газа в пограничный слой через пористую стенку фазовое превращение теплоносителя отсутствует, но механизм теплообмена при этом имеет много общего с теплообменом при испарении. Поэтому теплоотдача при подводе вещества в пограничный слой рассматривается также в этой главе.

Процессы теплообмена при изменении агрегатного состояния и при подводе иноядного вещества в пограничный слой имеют большое значение в авиационной и ракетной технике. Эти процессы имеют место в системах тепловой защиты летательных аппаратов и силовых установок, они являются составной частью процесса горения, могут использоваться в теплообменных аппаратах космических силовых установок.

§ 1. Теплоотдача при кипении в большом объеме

При кипении процесс теплообмена между жидкостью и поверхностью нагрева сопровождается превращением жидкости в пар. Изменение температуры по толщине слоя жидкости, кипящей в большом объеме без вынужденного движения при нормальном давлении, показано на рис. 12.1 (l — расстояние от поверхности нагрева).

Пар, находящийся над поверхностью кипящей жидкости, имеет температуру насыщения. По толщине слоя кипящей жидкости температура изменяется слабо, за исключением участка, непосредственно прилегающего к стенке. Большая часть жидкости имеет температуру, которая только на 0,4—0,8° превышает температуру насыщения.

В пристеночном слое жидкость перегревается: ее температура выше температуры насыщенного пара. Перегрев жидкости вблизи стенки оказывается возможным потому, что здесь нет постоянной поверхности раздела жидкости и пара, а процесс парообразования может происходить только после возникновения паровых пузырьков. Такие пузырьки возникают в центрах парообразования.

Вероятность возникновения паровых пузырьков увеличивается с ростом степени перегрева жидкости. Поэтому наиболее благоприятные условия для возникновения пузырьков создаются на поверхности нагрева. При этом центрами парообразования служат шероховатости поверхности нагрева, а также пузырьки воздуха или пара,
выделяющиеся из жидкости или твердой стенки. Пар имеет меньшую теплопроводность, чем жидкость, поэтому вблизи пузырька перевер жи воды на поверхности нагрева увеличивается. Размеры пузырька быстро растут, и под влиянием подъемной силы и конвективных токов он отрывается от стенки и поднимается к свободной поверхности жидкости. Этот процесс периодически повторяется.

Зародившийся в центре парообразования пузырек находится под действием подъемной силы, обусловленной разностью плотностей жидкости и пара, гидродинамической силы, обусловленной движением жидкости и силы поверхностного натяжения. Две первые силы стремятся оторвать пузырек от поверхности нагрева, а последняя сила препятствует этому.

![Рис. 12.1](image)

В процессе роста пузырька соотношение между силами меняется в пользу подъемной и гидродинамической сил. Момент отрыва единичного пузырька в большом объеме неподвижной жидкости может быть установлен из условия равенства подъемной силы — силе поверхностного натяжения. Для диаметра парового пузырька в момент отрыва \(d_0 \) получена следующая теоретическая формула:

\[
d_0 = 0,02\theta \sqrt{\frac{\alpha}{(\rho' - \rho'')g}}, \quad (12.1)
\]

где \(\sigma \) — коэффициент поверхностного натяжения; \(\theta \) — краевой угол, характеризующий смачивание поверхности жидкостью (рис. 12.2); \(\rho' \) и \(\rho'' \) — разность плотностей жидкости и пара; \(g \) — ускорение силы тяжести.

Паровые пузырьки, проходящие через жидкость, перемешивают ее, что приводит к интенсификации теплоотдачи. Поэтому частота отрыва пузырьков и число действующих центров парообразования определяют интенсивность теплообмена при кипении.

Наблюдение за процессом кипения воды показывает, что около 95% пара образуется во время движения пузырей и только 5% — во время пребывания их на поверхности нагрева.
Величина температурного напора $\Delta t = t_w - t_s \approx t_w - t_s$ (где t_s — температура насыщенного пара) определяет механизм парообразования и интенсивность теплообмена.

На рис. 12.3 изображена типичная зависимость коэффициента теплоотдачи и тепловой нагрузки (плотности теплового потока) от температурного напора $\Delta t = t_w - t_s$. При небольших температурных напорах количество отделяющихся от поверхности нагрева пузырьков невелико, и они не способны еще вызывать существенное перемешивание жидкости. В этих условиях интенсивность теплоотдачи определяется только свободным движением жидкости, и коэффициент теплоотдачи слабо увеличивается с ростом Δt. Такой режим кипения называется конвективным (зона A на рис. 12.3). Для воды при абсолютном давлении $p = 1$ bar конвективный режим наблюдается до $\Delta t \approx 5^\circ$, а тепловая нагрузка достигает около 6000 Bt/m^2.

При увеличении температурного напора растет число действующих центров парообразования, несколько увеличивается частота отрыва пузырьков. Когда пузырьки вызывают интенсивное перемешивание жидкости, наступает режим развитого пузырькового кипения, при котором коэффициент теплоотдачи и тепловая нагрузка резко возрастают (зона B).

Непрерывное парообразование на поверхности теплообмена сопровождается поступлением жидкости к этой поверхности. Всплывающие пузырьки пара затрудняют подход жидкости к центрам парообразования. При некоторой величине тепловой нагрузки благодаря большому числу действующих центров парообразования и оттесняющему воздействию пузырьков на жидкость паровые пузырьки объединяются в пленку, которая покрывает сначала отдельные участки поверхности, а затем полностью отделяет жидкость от поверхности нагрева. Пленка непрерывно разрушается и уходит от поверхности нагрева в виде больших пузырей. Вместо разрушающейся паровой пленки возникает новая. Такое кипение называется пленочным. В этих условиях теплота передается от поверхности нагрева к жидкости путем теплопроводности, конвективного переноса и излучения, а испарение происходит с поверхности пленки. Так как теплопроводность пара значительно меньше теплопроводности жидкости, то появление паровой пленки приводит к резкому уменьшению коэффициента теплоотдачи. Тепловая нагрузка при этом также уменьшается (зона C). Когда пленка покрывает всю поверхность нагрева, условия теплообмена стабилизируются и при даль-
нешем увеличении Δt коэффициент теплоотдачи остается практически неизменным, а тепловая нагрузка увеличивается пропорционально Δt (зона D). При этом коэффициент теплоотдачи в 20—30 раз меньше его максимального значения.

В области перехода пузьрькового кипения в пленочное зависимость $q = f(\Delta t)$ имеет максимум. Режим, отвечающий максимальному значению тепловой нагрузки, называют критическим. Критические величины температурного напора, коэффициента теплоотдачи и тепловой нагрузки зависят от природы жидкости и давления, под которым жидкость находится. Например, для воды при атмосферном давлении $\Delta t_{kr} = 25^\circ$, $\alpha_{kr} = 5,8 \cdot 10^4 \text{ Bt/(m}^2 \cdot \text{град})$ и $q_{kr} = 1,45 \cdot 10^6 \text{ Bt/m}^2$; т. е. при этих условиях тепловой поток больше, чем в начале развитого пузьрькового кипения, в 250 раз.

При увеличении давления критическая тепловая нагрузка сначала увеличивается, затем уменьшается. Например, для воды максимум критической тепловой нагрузки достигает при абсолютном давлении около 80 бар, а ее значение в 3,2 раза больше, чем при атмосферном давлении. Анализ опытных данных показывает, что максимум критической тепловой нагрузки получается при $\rho = (0,3 - 0,4) \rho_{kr}$, где ρ_{kr} — давление, при котором удельные объемы кипящей жидкости и сухого насыщенного пара одинаковы.

Переход от пузьрькового кипения к пленочному сопровождается резким увеличением температуры поверхности нагрева и уменьшением теплового потока и может привести к аварии. Поэтому для получения высокой интенсивности теплообмена в эксплуатации желательно реализовать температурные напоры несколько меньше критических, но близкие к ним.

Для криогенных жидкостей, имеющих низкую температуру насыщения, пленочное кипение не связано с чрезмерным повышением температуры поверхности теплообмена и опасностью ее разрушения. С другой стороны, низкие значения коэффициентов теплоотдачи при пленочном кипении способствуют уменьшению потерь жидкости в процессе самопроизвольного кипения. Поэтому для криогенных жидкостей режимы пленочного кипения представляют практический интерес.

Следует заметить, что величины критической тепловой нагрузки, при переходе от пузьрькового кипения к пленочному q_{kr}, и при обратном переходе q_{kr}, получаются различными. Величина q_{kr} значительно больше, чем q_{kr}. В дальнейшем рассматривается только критическая тепловая нагрузка, соответствующая переходу от пузьрькового кипения к пленочному.

Сложность процесса теплоотдачи при кипении, статистический характер основных параметров, определяющих процесс кипения (число действующих центров парообразования, частота отрыва пузьрьков, диаметр пузьрька в момент отрыва*), позволяют описать си-

* При одинаковых условиях процесса эти параметры могут иметь существенно отличные значения в различных участках поверхности нагрева.
стемой дифференциальных уравнений только наиболее вероятное протекание этого процесса при определенной его схематизации.

Для обобщения опытных данных по теплоотдаче при пузырьковом кипении возможны различные системы чисел подобия. Наиболее широко известны уравнения подобия, предложенные Г. Н. Кружилиным, Д. А. Лабунцовым и С. С. Кутателадзе совместно с В. М. Боришанским.

Рассмотрим результаты обобщения опытных данных по теплоотдаче при пузырьковом кипении и по величине критической тепловой нагрузки на основе системы чисел подобия, предложенных Д. А. Лабунцовым.

Обобщение опытных данных по теплоотдаче при пузырьковом кипении различных жидкостей привело к следующему уравнению:

\[\text{Nu}_s = cK_s^{r}Pr_s^{1/3}, \]
(12.2)

где

\[\text{Nu} = \frac{\alpha^*}{\lambda}; \quad K = \frac{q^*}{rp^*v}; \]

\(r \) — теплota испарения жидкости; \(l^* \) — характерный размер, величина которого пропорциональна диаметру пузырька в момент зарождения и определяется формулой

\[l^* = \frac{\sigma T_s \rho' c_p'}{(\rho'' r)^2} \]

(\(T_s \) — температура сухого насыщенного пара; \(\rho' \) и \(c_p' \) — плотность и теплоемкость кипящей жидкости).

Уравнение (12.2) обобщает опытные данные при \(K_s = 10^{-5} \ldots 10^4 \) и \(Pr_s = 0.86 \ldots 7.6 \). При \(K_s > 10^{-2} \) необходимо принимать \(c = 0.125, n = 0.65 \); при \(K_s < 10^3 \ldots c = 0.0625, n = 0.5 \). Для расчета кипения жидких металлов и \(K_s > 0.01 \) показатель степени при числе Прандтля принимается равным показателю степени при числе \(K \). Все физические параметры жидкости в уравнении (12.2) выбираются по \(T_s \).

Для конкретных жидкостей расчетные формулы существенно упрощаются. Например, для пузырькового кипения воды при \(p = 1,0 \ldots 40 \) бар

\[\alpha = 3,14q^{0.7} p^{0.15} \text{Вт} / (\text{м}^2 \cdot \text{град}). \]
(12.3)

При \(Pr' = \frac{\nu'}{\alpha'} = 0.86 \ldots 13.1 \) величина критической тепловой нагрузки определяется уравнением

\[P_{kr_s} = 68Ag^{4/9}Pr'_s, \]
(12.4)

где

\[P_{kr} = \frac{q_{kr} l^*}{rp^*v}; \quad Ag = \frac{g l^*^3}{v^2} \frac{\rho' - \rho''}{\rho'}. \]

Рассмотренные формулы правильно характеризуют процесс теплообмена только для смачивающих жидкостей. Если жидкость
не смачивает поверхность*, то пузырьки имеют форму, показанную на рис. 12.2, б. В этих условиях кипение всегда сопровождается образованием паровой пленки у поверхности нагрева, и потому коэффициенты теплоотдачи имеют небольшие значения.

Изучение пузырькового кипения показывает, что при больших давлениях интенсивность теплообмена выше, так как больше число действующих центров парообразования и частота отрыва пузырьков.

Форма и размеры поверхности нагрева практически не влияют на коэффициент теплоотдачи. Высота слоя жидкости также не влияет на интенсивность теплоотдачи, если она больше 20—30 мм.

Материал и состояние поверхности нагрева влияют на интенсивность теплоотдачи только в начальный период ее работы. По истечении некоторого времени поверхность приобретает «собственную» шероховатость, которая главным образом зависит от природы жидкости.

Критическая тепловая нагрузка зависит от шероховатости и ориентации поверхности нагрева. Шероховатость повышает величину критической тепловой нагрузки; для вертикальной плоскости критическая нагрузка больше, чем для горизонтальной.

§ 2. Теплоотдача при кипении в условиях движения жидкости по трубам

Теплоотдача при кипении жидкости, движущейся по трубам и каналам, имеет ряд особенностей, которые обусловлены изменением температуры стенки и жидкости вдоль трубы. Температура насыщения по длине трубы уменьшается благодаря уменьшению давления из-за гидравлического сопротивления.

По условиям теплообмена трубы можно подразделить на три участка. Во входном участке температура стенки трубы меньше температуры насыщения. Проходя через этот участок, жидкость подогревается, причем теплообмен не сопровождается кипением. На втором участке трубы температура стенки превышает температуру насыщения, но ядро потока не достигло еще этой температуры. Поэтому отделяющиеся от поверхности нагрева пузырьки пара частично или полностью конденсируются в центральной части потока. Такое явление называют кипением недогретой жидкости.

К началу третьего участка центральная часть потока достигает температуры насыщения. На этом участке происходит развитое пузырьковое кипение. Здесь паросодержание может достигать большой величины, и по трубе движется, по существу, двухфазный поток. Увеличение паросодержания сопровождается ростом скорости потока и градиента давления вдоль трубы.

Характер влияния скорости потока на коэффициент теплоотдачи при кипении зависит от величины тепловой нагрузки. При не-

* Например, ртуть не смачивает стальную поверхность.
большой тепловой нагрузке коэффициент теплоотдачи целиком определяется условиями движения и практически не зависит от величины q. При очень больших тепловых нагрузках влиянием условий движения на интенсивность теплообмена можно пренебречь, так как коэффициент теплоотдачи целиком определяется процессом кипения и подчиняется таким же закономерностям, как и при кипении в большом объеме. Существует также область режимов, где влияние движения жидкости и процесса кипения на теплообмен составляет, и коэффициент теплоотдачи зависит от обоих факторов.

Д. А. Лабунцов обработал опытные данные по теплоотдаче кипящих жидкостей, движущихся по трубам, при паросодержании, не превышающем 70%, в виде зависимости

$$\frac{\alpha}{\alpha_w} = f \left(\frac{\alpha_q}{\alpha_w} \right),$$ \hspace{1cm} (12.5)

где α — коэффициент теплоотдачи кипящей жидкости с учетом ее движения; α_w — коэффициент теплоотдачи однофазной жидкости при скорости w; α_q — коэффициент теплоотдачи при развитом пузырьковом кипении в большом объеме.

Эта зависимость показана на рис. 12.4. Из графика видно, что при $\frac{\alpha_q}{\alpha_w} < 0,5$ процесс кипения не влияет на теплообмен, и потому
α = αw. При \(\frac{α_q}{α_w} > 2 \) интенсивность теплоотдачи определяется только кипением, и потому α = αq. Для области, где коэффициент теплоотдачи зависит от скорости потока и тепловой нагрузки (\(\frac{α_q}{α_w} = 0,5—2 \)), рекомендуется следующая интерполяционная формула:

\[
\frac{α}{α_w} = \frac{4α_w + α_q}{5α_w - α_q}.
\]

(12.6)

Коэффициент теплоотдачи при кипении зависит от содержания растворенных в жидкости газов. Пузырьки газа служат дополнительными центрами парообразования и потому интенсифицируют теплообмен. Рассмотренные выше уравнения относятся к дегазированной жидкости. При содержании газа 0,06 — 0,3 см³/л коэффициент теплоотдачи увеличивается на 20—60% по сравнению с кипением дегазированной жидкости.

Критическая нагрузка также зависит от скорости потока, причем эта зависимость имеет место даже и для таких условий движения, при которых коэффициент теплоотдачи от скорости не зависит. Вынужденное движение жидкости вдоль поверхности нагрева затрудняет образование паровой пленки, поэтому с увеличением скорости течения критическая тепловая нагрузка возрастает.

При кипении недогретой жидкости критическая тепловая нагрузка больше, чем при кипении жидкости, имеющей температуру насыщения. Это обусловлено тем, что поступление недогретой жидкости из ядра в пристеночный слой способствует разрушению паровой пленки.

Влияние недогрева жидкости на критическую тепловую нагрузку можно оценить следующей эмпирической формулой:

\[
q_{крθ} = q_{крθ=0} \left[1 + 0,065 \left(\frac{ρ'}{ρ''}\right)^0,8 \frac{cθ}{r}\right],
\]

(12.7)

где \(q_{крθ} \) — критическая тепловая нагрузка при кипении недогретой жидкости; \(θ = t_s - t_j; t_f \) — средняя температура жидкости; \(c — теплоемкость жидкости. \)

При длине трубы меньше 8—10 диаметров увеличение длины сопровождается уменьшением критической тепловой нагрузки; при \(l > (8 — 10) d \) критическая тепловая нагрузка не зависит от длины трубы.

Пульсации потока увеличивают \(q_{кр}. \)

§ 3. Теплоотдача при конденсации

При соприкосновении пара со стенкой, температура которой ниже температуры насыщения, происходит конденсация. Конденсат выпадает на стенке в виде капель или пленки, т. е. конденсация может иметь капельный или пленочный характер. Возможна и сме-
шанная конденсация, когда часть поверхности покрыта пленкой, а часть — капельками конденсата.

Наиболее часто в технических устройствах встречается пленочная конденсация. Капельная конденсация наблюдается только в случаях, когда жидкость не смачивает поверхность.

Освобождающаяся при конденсации теплота передается холодной поверхности. При пленочной конденсации пар отделен от стенки слоем конденсата, который создает значительное термическое сопротивление тепловому потоку. При капельной конденсации возможен непосредственный контакт пара со стенкой, и потому теплообмен протекает во много раз более интенсивно, чем при пленочной конденсации.

На рис. 12.5 показано температурное поле при пленочной конденсации перегретого пара около вертикальной стенки, движение пленки по которой имеет ламинарный характер. Как видно из рисунка, температура поверхности конденсата несколько ниже температуры насыщенного пара. Для водяного пара при атмосферном давлении эта разница составляет 0,02 — 0,05°.

Ламинарное течение пленки наблюдается только в верхней части вертикальной стенки. Затем на поверхности пленки возникают микроволны, благодаря которым средняя толщина пленки и ее термическое сопротивление уменьшаются. Однако сама пленка на некотором участке поверхности остается ламинарной. При дальнейшем увеличении толщины микроволн приводят к возникновению турбулентных пульсаций, и течение в пленке становится турбулентным.

Рассмотрим сначала теплоотдачу при конденсации насыщенного пара и ламинарном течении пленки. Пренебрегая конвективным переносом теплоты в пленке, запишем приближенно тепловую нагрузку формулой теплопроводности

\[q = \frac{\lambda}{\delta} (t_s - t_w). \]

На основе формулы Ньютона

\[j = \alpha (t_s - t_w). \]

Здесь \(\delta \) — толщина пленки; \(\lambda \) — коэффициент теплопроводности конденсата; \(\alpha \) — коэффициент теплоотдачи.

Следовательно,

\[\alpha = \frac{\lambda}{\delta}. \] (12.8)
Из этой формулы видно, что уменьшение толщины пленки конденсата может служить средством интенсификации теплообмена. Например, постановка конденсатоотводных колпачков на вертикальную трубу через каждые 10 см приводит к увеличению коэффициента теплоотдачи в 2—3 раза.

Расчетные формулы для определения коэффициента теплоотдачи при ламинарном движении пленки могут быть получены теоретическим и экспериментальным путем. Теоретическое решение задачи основано на определении толщины пленки из условия равновесия сил трения, тяжести, поверхностного натяжения и инерции для элементарного объема конденсата с последующим определением коэффициента теплоотдачи по формуле (12.8). Впервые такое решение для ламинарной пленки получено Нуссельтом в 1916 г.

Местный и средний коэффициенты теплоотдачи при конденсации неподвижного насыщенного пара, найденные на основе теории Нуссельта для вертикальной стенки, определяются формулами:

$$\alpha = \left[\frac{g \rho^3 \lambda^3 r}{4 \mu (t_s - t_w) x} \right]^{1/4};$$

(12.9)

$$\overline{\alpha} = 0.943 \left[\frac{g \rho^3 \lambda^3 r}{\mu (t_s - t_w) h} \right]^{1/4}.$$

(12.10)

Здесь g — ускорение силы тяжести; ρ, λ и μ — плотность, коэффициент теплопроводности и динамический коэффициент вязкости конденсата; r — теплота парообразования; x — расстояние до рассматриваемого сечения (рис. 12.5); h — высота стенки.

П. Л. Капица показал, что средний коэффициент теплоотдачи благодаря волнобразованию увеличивается на 21% по сравнению с его величиной, рассчитанной по формуле Нуссельта. С учетом этой поправки теоретические формулы удовлетворительно согласуются с экспериментом.

Формула для среднего коэффициента теплоотдачи горизонтальной трубы, полученная на основе теории Нуссельта, имеет вид

$$\overline{\alpha} = 0.728 \left[\frac{g \rho^3 \lambda^3 r}{\mu (t_s - t_w) d} \right]^{1/4},$$

(12.11)

gде d — наружный диаметр трубы.

Физические параметры конденсата в формулах (12.9), (12.11) рекомендуется выбирать по температуре t_s.

Режим течения пленки можно оценить по числу Рейнольдса, выраженному через среднюю скорость жидкости \overline{v} и среднюю толщину пленки $\overline{\delta}$

$$Re_d = \frac{\overline{v} \overline{\delta}}{\nu}.$$

(12.12)

При стационарном режиме теплообмена теплота конденсации равна теплоте, переданной стенке. Поэтому для поверхности высотой x и шириной 1 м можно записать

$$\overline{\alpha} (t_s - t_w) x = \overline{w} \overline{\delta}.$$

(12.13)
Подставив значение δ из выражения (12.13) в соотношение (12.12), получим:

$$ Re_\delta = \frac{a(t_s - t_w) x}{r \mu}. $$

При $Re_\delta \ll 400$ течение пленки носит турбулентный характер. Методика расчета теплоотдачи в этих условиях рассмотрена в [9].

Шероховатость поверхности способствует уменьшению скорости пленки и ухудшает интенсивность теплообмена.

Влияние перегрева пара на коэффициент теплоотдачи невелико. При использовании формул (12.9) — (12.11) для расчета теплоотдачи в условиях конденсации перегретого пара вместо температуры испарения r надо подставлять $r + \Delta t$, где Δt — темпера перегрева пара ($\Delta t = i_n - i''$).

Если пар содержит примеси неконденсирующихся газов, то эти газы скапливаются около поверхности охлаждения и резко ухудшают интенсивность теплообмена. Так, 2% содержания воздуха в паре приводят к уменьшению коэффициента теплоотдачи в три раза.

Средний коэффициент теплоотдачи поверхности зависит от ее формы и взаимного расположения элементов. Коэффициент теплоотдачи для одной горизонтальной трубы больше, чем для вертикальной, но при многорядном расположении горизонтальных труб нижние ряды будут иметь значительно меньший коэффициент теплоотдачи из-за попадания на них конденсата с верхних рядов.

Вынужденное движение пара влияет на величину коэффициента теплоотдачи. Движение пара вдоль вертикальной поверхности вниз увеличивает скорость течения пленки, уменьшает ее толщину и увеличивает коэффициент теплоотдачи. Когда направления движения пара и пленки противоположны, то при небольшой скорости пар тормозит пленку и ухудшает интенсивность теплообмена, но при дальнейшем увеличении скорости пленка сдувается паром, и коэффициент теплоотдачи увеличивается. При увеличении давления влияние скорости пара на коэффициент теплоотдачи при конденсации усиливается.

Значительно более сложный механизм имеет теплоотдачу при конденсации пара, движущегося внутри трубы. В этом случае внутри трубы имеют место два потока — поток пара и поток конденсата, взаимное воздействие которых зависит от направлений их движения и скорости пара. При вертикальном положении трубы эти направления могут быть одинаковыми или противоположными. При горизонтальном положении трубы движение конденсата может определяться только взаимодействием его с потоком пара, только силами тяжести или одновременным воздействием этих факторов.

Скорость пара при движении его по трубе уменьшается; при полной конденсации пара его скорость на выходе равна нулю. Режим течения пара может быть ламинарным или турбулентным, причем турбулентное течение из-за уменьшения скорости на некотором рас-
стоянии от входа может превратиться в ламинарное. Пленка также может иметь ламинарный и турбулентный режим течения.

Сложность явления и многообразие возможных ситуаций не позволили пока получить полное решение этой проблемы. Но отдельные вопросы этой проблемы решены. Так, для турбулентного режима течения пленки конденсата в условиях, когда движение пленки определяется ее взаимодействием с движущимся паром, Е. П. Анакиев, Г. Н. Кружилин и Л. Д. Бойко предложили теоретическую формулу, полученную на основе связи между трением и теплоотдачей. Для местного коэффициента теплоотдачи

\[\text{Nu} \approx 0,023 \text{Re}^{0.8} \text{Pr}^{0.4} \sqrt{1 + \left(\frac{\rho'}{\rho''} - 1 \right) x}. \] \quad (12.14)

Здесь

\[\text{Nu} = \frac{\alpha d}{\lambda_f}; \quad \text{Re} = \frac{4G_{cm}}{n d \mu_f}, \]

где \(G_{cm} \) — массовый расход смеси; \(\rho' \) и \(\rho'' \) — плотность жидкости и пара; \(x \) — массовое паросодержание в рассматриваемом сечении; \(\lambda \) и \(\mu \) — коэффициент теплопроводности и динамический коэффициент вязкости жидкости.

За определяющую выбрана температура насыщения.

§ 4. Теплоотдача при подводе инородного газа в пограничный слой

В системе пористого охлаждения* газ-охладитель продувается через пористую стенку и выходит на поверхность, омываемую горячим потоком газа (рис. 12.6). Поперечный поток охладителя на поверхности соприкосновения горячего газа со стенкой изменяет условия течения в пограничном слое. Вытекающий из пор охладителя уменьшает скорость движения горячего газа вблизи стенки, а расход газа в пограничном слое возрастает за счет добавки охладителя. Поэтому увеличивается толщина динамического пограничного слоя (рис. 12.7, а). Уменьшение градиента скорости у поверхности стенки приводит к уменьшению напряжения трения.

Подвод инородного газа к поверхности теплообмена ведет к уменьшению устойчивости ламинарного слоя, и потому переход к турбулентному пограничному слою происходит при меньших значениях числа Re.

* Система пористого охлаждения рассматривается в главе XVI, ч. II.
При подводе охладителя к поверхности теплообмена увеличивается также толщина теплового пограничного слоя, и температурное поле приобретает вид, показанный на рис. 12.7, б.

Диффузионный и конвективный потоки охладителя направлены в сторону, противоположную тепловому потоку, и потому интенсивность теплообмена между горячим газом и стенкой уменьшается.

Изменение интенсивности теплообмена при подводе инородного газа в пограничный слой зависит от плотности потока массы этого газа $g_0 \ k_2/(m^2 \cdot sek)$. С увеличением плотности потока массы охладителя интенсивность теплообмена уменьшается.

Явление теплоотдачи при подводе инородного газа в пограничный слой описывается системой дифференциальных уравнений, в которую, кроме уравнений движения, сплошности, теплоотдачи и энергии, входит уравнение массообмена.

Грандиентные условия для этой задачи также имеют особенности. При вдувании газа в пограничный слой скорость w_0 (по нормали к стенке) отличается от нуля. Она равна скорости охладителя u_0, подсчитанной в предположении равномерного распределения массового потока охлаждающего газа по поверхности теплообмена.

Анализ системы дифференциальных уравнений и граничных условий методами теории подобия позволяет заключить, что для вынужденного движения газа влияние поперечного потока вещества отражается в уравнении подобия следующими безразмерными комплексами:

$$ K = \frac{g_0}{w_0}; \quad \frac{m}{m_0}; \quad \frac{c_{p0}}{c_p}. $$

Здесь l — определяющий размер; m_0 и m — молекулярные массы охладителя и горячего газа; c_{p0} и c_p — теплоемкости охладителя и горячего газа.

Симплексы m/m_0 и c_{p0}/c_p отражают разницу в свойствах основного и вдуваемого потоков газов. Учитывая то, что теплоемкость газа зависит от его молекулярного веса, при обобщении опытных данных по теплообмену для различных пар компонентов иногда используется только первый из этих симплексов.
Для ламинарного пограничного слоя вместо числа K часто использует число K/\sqrt{Re}.
Так как

$$g_0^* = \rho_0 \nu_0,$$

то

$$\frac{K}{\sqrt{Re}} = \frac{K}{Re} \sqrt{Re} = \frac{\rho_0 \nu_0}{\nu} \sqrt{\nu \rho / \nu} = \frac{\rho_0 \nu_0}{\nu \rho \omega} \sqrt{Re} = f. \quad (12.16)$$

Для турбулентного пограничного слоя вместо числа K используется K/Re

$$B' = \frac{K}{Re} = \frac{\rho_0 \nu_0}{\rho \omega}.$$

(12.17)

Кроме того, используются числа B_0 и B, которые часто называют параметрами проницаемости

$$B_0 = \frac{\rho_0 \nu_0}{\rho \omega} \frac{1}{St^0}; \quad B = \frac{\rho_0 \nu_0}{\rho \omega} \frac{1}{St}.$$

(12.18)

Число St включает коэффициент теплоотдачи при вдувании газа в пограничный слой, а St^0 — коэффициент теплоотдачи без вдувания.

Количественные соотношения для коэффициента теплоотдачи при вдувании газа через поверхность теплообмена зависят прежде всего от структуры пограничного слоя и физических свойств вдуваемого и основного потоков газа.

При ламинарном пограничном слое коэффициент теплоотдачи в условиях подвода иностраничного газа к поверхности теплообмена может рассчитываться по формулам, полученным теоретическим и экспериментальным путем. Аналитические решения получены на основе теории пограничного слоя.

Для теплоотдачи проницаемой пластины решение найдено при условии $f = const$ [см. формулу (12.16)]. Показем, что в этом случае распределение массовых потоков по поверхности пропорционально изменению теплового потока около непроницаемой стенки. Из уравнения подобия для непроницаемой плоской пластины следует, что коэффициент теплоотдачи (или плотность теплового потока) уменьшается вдоль пластины пропорционально $1/Vx$. Если плотность потока массы охладителя уменьшать пропорционально $1/Vx$, то при постоянной температуре стенки величина f, определяемая формулой (12.16), будет одинакова для всей поверхности

$$\frac{\rho_0 \nu_0}{\rho \omega} \sqrt{Re} = const.$$

(12.19)

Аналитическое решение при условии (12.19) для случая однородной природы горячего газа и охладителя позволило получить следующие уравнения.
Для местного коэффициента теплоотдачи, который определяется из формулы (10.23), при течении горячего газа вдоль пластины и конуса получено уравнение

$$Nu_f = b \Re_f^{0.5} Pr_f^{1/3}.$$ \hspace{1cm} (12.20)

Для плоской пластины $b = h_{пл}$, для конуса $b = \sqrt{3} \, b_{пл}$. Зависимость $b_{пл} = \varphi (f)$, по данным В. С. Авдуевского, показана на рис. 12.8. Графики построены при $\frac{l_f}{l} = 1$.

Величина f для пластины определяется равенством (12.16), а для конуса $f = f_{пл}/\sqrt{3}$.

За определяющую здесь принята температура невозмущенного потока; определяющий размер — расстояние от начала пластины или от вершины конуса вдоль образующей до рассматриваемого сечения x.

Для коэффициента теплоотдачи в окрестности передней критической точки плоского и осесимметричного тела расчетные уравнения имеют вид:

$$Nu_w = c_{пл} \times \times \left(\frac{Re_w}{\lambda} \right)^{0.5} Pr^{1/3};$$ \hspace{1cm} (12.21)

$$Nu_w = \sqrt{3} \, c_{оо} \left(\frac{Re_w}{\lambda} \right)^{0.5} Pr^{1/3},$$ \hspace{1cm} (12.22)

где λ — коэффициент скорости газа.

Зависимости $c_{пл}$ и $c_{оо}$ от f по данным Эккера и Лайвенгиды даны на рис. 12.8. Величина f для этих случаев подсчитывается по формулам:

$$f_{пл} = \frac{\rho_0 v_0}{2 \rho_w \sqrt{\beta v_w}}; \quad f_{оо} = \frac{\sqrt{3}}{4} \frac{\rho_0 v_0}{\rho_w \sqrt{\beta v_w}}.$$

Здесь $\beta = \frac{a_{кр}}{l}$; $a_{кр}$ — критическая скорость потока; l — характерный размер.
Для закругленного торца в качестве характерного размера следует выбирать половину толщины кромки; при сферическом или цилиндрическом закруглении за характерный размер принимается расстояние от критической точки до точки при $\varphi = 45^\circ$ (рис. 10.4).

Обработка опытных данных по теплоотдаче плоской пластины в условиях подвода инородного газа в ламинарный пограничный слой, полученных при использовании различных видов газов — охладителей, позволила получить следующую связь коэффициентов теплоотдачи при вдувании охладителя α и для непроницаемой стенки α^0:

$$\frac{\alpha}{\alpha^0} = 1 - 1,82 \left(\frac{m_0}{m_n} \right)^{1/3} \frac{\rho_0 v_n}{\rho w} \sqrt{Re}. \quad (12.23)$$

Здесь m_0 и m_n — молекулярные массы охладителя и воздуха. Величина ρ_0 определяется по температуре стенки, а ρ и v, входящие в число Re, — по эффективной температуре.

Для теплоотдачи вблизи передней критической точки при вдувании газов различной природы в воздух и в азот обобщение результатов численных расчетов позволило получить

$$\frac{\alpha}{\alpha^0} = 1 - \left(\frac{m_f}{m_0} \right)^{0.25} \exp \left[0.2303 (0.3B_0 - 0.45) \right], \quad (12.24)$$

где m_f — молекулярная масса газа в основном потоке.

Теоретические исследования теплоотдачи при вдувании газа в турбулентный пограничный слой выполнены или в предположении о том, что вдувание влияет только на характеристики ламинарного подслоя или с учетом изменений, происходящих во всем пограничном слое. В последнем случае для оценки параметров турбулентной части пограничного слоя используются полуэмпирические теории турбулентности и предположения о логарифмическом или степенном профиле скоростей.

В. Д. Совершенный получил решение рассматриваемой задачи для пластины при одинаковой природе основного и вдуваемого газа на основе полуэмпирической теории Прандтля и предположения о степенном законе для длины перемешивания, которое удовлетворительно согласуется с экспериментальными данными. Аппроксимация результатов этого решения позволила получить следующую расчетную формулу:

$$\frac{\alpha}{\alpha^0} = \frac{B_0 \exp \left(\frac{1 - Pr}{1 + Pr} B_0 \right)}{1 + \frac{2}{1 + Pr} B_0 \exp \left(\frac{B_0}{1 + Pr} \right) - \exp \left(\frac{1 - Pr}{1 + Pr} B_0 \right)}. \quad (12.25)$$

Результаты экспериментального исследования теплоотдачи при вдувании в турбулентный пограничный слой воздушного потока газов
различной природы при $B_0 \frac{c_{p_n}}{c_{v_n}} = 0 - 3,0$ и $m_n/m_0 = 0,24 - 14,5$ позволили получить следующую формулу:

$$\frac{\alpha'}{\alpha} = \exp \left\{ 0,48B_0 \frac{c_{p_0}}{c_{p_0}} \left[1 - 1,575 \ln \left(\frac{m_n}{m_0} + 0,89 \right) \right] \right\}. \quad (12.26)$$

Здесь α' характеризует интенсивность теплоотдачи при вдувании с учетом отличия физических свойств вдуваемого газа от свойств газа в основном потоке. Величина α этих отличий не учитывается и подсчитывается по формуле (12.25).

Теоретическое и экспериментальное исследования процесса теплоотдачи при подводе инородного газа в пограничный слой позволили выявить основные факторы, определяющие эффективность этого способа уменьшения интенсивности теплообмена.

Интенсивность теплоотдачи существенно зависит от природы газа. Из формул (12.23) и (12.26) видно, что уменьшение молекулярного веса охладителя при прочих равных условиях ведет к уменьшению коэффициента теплоотдачи. Это положение иллюстрируется графиками (рис. 12.9), построенными по результатам опытного исследования теплоотдачи на пластине при турбулентном пограничном слое. Линия 1 соответствует вдуванию гелия в воздух, линия 2 — воздуха в воздух. Высокая эффективность использования легких газов для уменьшения интенсивности теплообмена обусловлена, главным образом, большой величиной их теплоемкости.

Влияние вдувания газа на интенсивность теплообмена зависит от структуры пограничного слоя. При ламинарном пограничном слое благодаря вдуванию интенсивность теплообмена снижается значительно, чем при турбулентном пограничном слое.

Рассмотренные выше количественные соотношения относятся, главным образом, к теплоотдаче при безнапорном обтекании пластины. Для ламинарного пограничного слоя градиент давления оказывает существенное влияние на интенсивность теплоотдачи при вдувании. Отрицательные градиенты давления при прочих равных условиях увеличивают поток теплоты к стенке, а положительные — уменьшают интенсивность теплообмена. При турбулентном пограничном слое влияние градиента давления на интенсивность теплообмена невелико и при расчете может не приниматься во внимание.
Влияние числа M на теплоотдачу при вдувании в турбулентный пограничный слой до конца не изучено. При экспериментальном исследовании этого вопроса отмечается слабое влияние числа M на интенсивность теплообмена в рассматриваемых условиях или полное отсутствие этого влияния.

В зависимости от условий теплообмена (скорость горячего газа, возможность химических реакций) тепловой поток к стенке определяется по формуле Ньютона или по уравнениям (10.20) или (10.22).

При подводе инородного газа в пограничный слой коэффициент восстановления температуры уменьшается. На рис. 12.10 показано влияние вдуваемого воздуха на коэффициент восстановления при обтекании плоской пластини и ламинарном пограничном слое. Этот график получен расчетами на основании теории пограничного слоя.

§ 5. Особенности процесса теплоотдачи при испарении

В системе пористого охлаждения вместо газа-охладителя можно использовать жидкость. Тогда поверхность соприкосновения стенки с горячим газом будет покрыта тонкой пленкой жидкости. На непроницаемой поверхности пленку можно получить выдавливанием жидкости через щелевые каналы*. Теплообмен между поверхностью пленки и горячим газом сопровождается испарением жидкости. Механизм теплоотдачи при постепенности пара в пограничный слой горячего газа такой же, как и при подводе к поверхности газа-охладителя, но фазовый переход на поверхности теплообмена приводит к появлению некоторых особенностей.

При стационарном процессе теплообмена часть поступающей к поверхности пленки теплоты компенсирует теплоту испарения жидкости, а остальная часть передается в стенку. Если подведенная к поверхности пленки теплота равна теплоте, затраченной на испарение жидкости, то по всей толщине пленка будет иметь постоянную температуру, и теплота в стенку передаваться не будет. Такой процесс испарения называют адабатным.

Аналогично протекает процесс испарения твердого тела. Если температура поверхности меньше температуры в тройной точке фазовой диаграммы, то вещество переходит из твердого состояния в парообразное, минуя жидкую fazу. Такой процесс испарения называют сублимацией.

* Система пленочного охлаждения рассмотрена в главе XVI, ч. 11.
При вдувании через пористую стенку расход газа-охладителя ничем не ограничен и является независимым параметром системы. При испарении и сублимации увеличение расхода пара с поверхности сопровождается, с одной стороны, увеличением затраты теплоты на превращение жидкого или твердого вещества в пар, с другой стороны, — уменьшением интенсивности теплообмена между основным потоком и поверхностью из-за вдувания пара в пограничный слой основного потока. Поэтому стационарный процесс испарения или сублимации при заданных условиях течения внешнего потока наступает при такой скорости испарения, при которой интенсивность теплообмена обеспечивает баланс теплоты

\[\alpha \Delta t = q_w + g_n^* \Delta i, \]

где \(q_w \) — плотность теплового потока к стенке; \(g_n^* \) — плотность массового потока пара \(\left[\text{кг/(м}^2 \cdot \text{сек)} \right] \); \(\Delta i = c \Delta t + r \) — изменение энталпии вещества при испарении или сублимации; \(r \) — теплота испарения жидкости или сублимации тела; \(c \Delta t \) — теплота, необходимая для подогрева вещества до равновесной температуры испарения или сублимации; \(\alpha = f \left(g_n^* \right) \) — коэффициент теплоотдачи.

Следовательно, расчет теплообмена при испарении и сублимации не может быть выполнен без оценки массообмена, т. е. без расчета плотности массового потока пара.

Перенос пара в поток осуществляется путем молекулярной и конвективной диффузии.

Плотность молекулярного потока у поверхности испарения можно определить по закону Фика

\[g_n^m = -D_c \left(\frac{\partial C}{\partial n} \right)_{n=0}, \]

где \(\left(\frac{\partial C}{\partial n} \right)_{n=0} \) — градиент концентрации пара у поверхности испарения; \(D_c \) — коэффициент диффузии.

Так как концентрация горячего газа при приближении к поверхности испарения уменьшается, то по направлению к поверхности возникает молекулярный поток горячего газа, который можно выразить формулой, аналогичной формуле (12.28). Но поверхность непроницаема для горячего газа, и потому этот поток газа должен быть компенсирован конвективным потоком парогазовой смеси. Вместе с этим потоком от стенки уносится пар. Плотность конвективного парового потока определяется формулой

\[g_n^c = \nu C_w, \]

где \(\nu \) — скорость конвективного движения смеси; \(C_w \) — концентрация пара у поверхности испарения.

Конвективный поток пара был обнаружен Стефаном и потому часто называется стёфановым потоком.
Формулы (12.28) и (12.29) позволяют записать

\[g_n = -D_C \left(\frac{\partial C}{\partial n} \right)_{n=0} + vC_w. \]

(12.30)

Для практических расчетов величину \(g_n^* \) удобно выразить через коэффициент массоотдачи \(\beta_c \)

\[g_n^* = \beta_c (C_w - C_0). \]

(12.31)

При небольшой скорости испарения вторым членом уравнения (12.30) можно пренебречь; для этих условий, сопоставляя уравнения (12.30) и (12.31), найдем

\[\beta_c = \frac{D_C}{\Delta C} \left(\frac{\partial C}{\partial n} \right)_{n=0}. \]

(12.32)

Это уравнение называется дифференциальным уравнением массоотдачи. Ему можно придать безразмерную форму

\[\text{Nu}_D = -\left(\frac{\partial \tilde{C}}{\partial \tilde{n}} \right)_{\tilde{n}=0}, \]

(12.33)

где \(\text{Nu}_D = \frac{\beta_C l}{D_C} \) — диффузионное число Нуссельта; \(\tilde{C} = \frac{C-C_0}{C_w-C_0} \) — безразмерная концентрация; \(\tilde{n} = n/l \) — безразмерная нормаль.

К такой же форме легко привести дифференциальное уравнение теплоотдачи (2.22)

\[\text{Nu} = -\left(\frac{\partial \tilde{t}}{\partial \tilde{n}} \right)_{\tilde{n}=0}, \]

(12.34)

где \(\tilde{t} = \frac{t-t_f}{t_w-t_f} \) — безразмерная температура.

Распределение концентраций и температур в системе определяется дифференциальными уравнениями массообмена и энергии. Для стационарных условий при ламинарном течении и отсутствии внутренних источников теплоты и вещества, при \(D_C = \text{const} \) и \(\lambda = \text{const} \) эти уравнения (2.30 и 2.15) легко привести к виду:

\[\omega_x \frac{\partial \bar{C}}{\partial x} + \omega_y \frac{\partial \bar{C}}{\partial y} + \omega_z \frac{\partial \bar{C}}{\partial z} = \frac{D_C}{l} \left(\frac{\partial^2 \bar{C}}{\partial x^2} + \frac{\partial^2 \bar{C}}{\partial y^2} + \frac{\partial^2 \bar{C}}{\partial z^2} \right); \]

(12.35)

\[\omega_x \frac{\partial \bar{t}}{\partial x} + \omega_y \frac{\partial \bar{t}}{\partial y} + \omega_z \frac{\partial \bar{t}}{\partial z} = \frac{a}{l} \left(\frac{\partial^2 \bar{t}}{\partial x^2} + \frac{\partial^2 \bar{t}}{\partial y^2} + \frac{\partial^2 \bar{t}}{\partial z^2} \right). \]

(12.36)

Здесь \(l \) — характерный размер системы; \(\bar{x} = x/l; \quad \bar{y} = y/l; \quad \bar{z} = z/l. \)

Распределение скоростей в системе при тепло- и массообмене определяется дифференциальными уравнениями движения и сплошности, которые одинаковы для обоих процессов.
Однаковая форма уравнений, описывающих процессы тепло- и массоотдачи, позволяет заключить, что эти процессы аналогичны. Следовательно, результаты исследования процессов теплоотдачи можно использовать для количественной оценки процессов массоотдачи.

Уравнения (12.35) и (12.36) будут тождественны относительно \(\overline{C} \) и \(\overline{t} \), если \(D_C = a \), т. е. при условии

\[
Le = \frac{D_C}{a} = 1 \text{ или } Pr = Pr_D.
\]

Предполагается, что тепло- и массообмен протекает в одной и той же системе, и потому определяющий размер \(l \) имеет одно и то же значение.

Таким образом, системы уравнений, определяющие \(Nu_D \) и \(Nu \) тождественны. Кроме того, определяющие их величины \(\overline{C} \) и \(\overline{t} \) на границах системы численно одинаковы: на поверхности тела \(\overline{C} = \overline{t} = 1 \), вдали от стенки \(\overline{C} = \overline{t} = 0 \). Следовательно, \(Nu_D = Nu \). Это равенство с учетом того, что \(Pr = Pr_D \), позволяет получить из уравнения подобия для теплоотдачи в какой-либо системе

\[
Nu = c \ Re^m \ Pr^n; \quad (12.37)
\]

уравнение подобия для массоотдачи

\[
Nu_D = c \ Re^m \ Pr^n_D. \quad (12.38)
\]

Коэффициенты \(c, m \) и \(n \) в этой формуле будут такими же, как и в (12.37).

Аналогичный анализ уравнений (2.31) и (2.19) позволяет заключить, что для турбулентных потоков аналогия процессов тепло- и массоотдачи имеет место при условии \(Le = 1 \) и \(Le_t = c_p \ \frac{D_C}{\lambda_t} = 1 \) (\(Le_t \) — турбулентное число Льюиса—Семенова). По данным ряда исследователей, условие \(Le_t < 1 \) выполняется всегда.

В реальных процессах аналогия тепло- и массоотдачи нарушается по ряду причин. Уравнение (12.32), использованное для доказательства существования аналогии, справедливо только при отсутствии конвективных потоков пара. Следовательно, наличие конвективных потоков нарушает аналогию.

Равенство \(Pr \) и \(Pr_D \) также практически никогда не имеет места, кроме того, эти числа зависят от температуры и их величина изменяется по толщине пограничного слоя. Аналогия нарушается также вследствие взаимного влияния одновременно протекающих процессов тепло- и массоотдачи. Все это приводит к тому, что расчет массоотдачи, выполненный на основе аналогии, может дать результаты, существенно отличающиеся от действительности.
Анализ уравнения переноса пара с учетом и без учета конвективного потока показывает, что благодаря конвективному потоку соотношение $\frac{Nu_D}{Nu} \neq 1$ и определяется формулой

$$
\frac{Nu_D}{Nu} = \frac{p}{p_{\omega} - p_{\omega f}} \ln \frac{p - p_{\omega f}}{p - p_{\omega}} \approx \frac{p}{p - p_{\omega}},
$$

(12.39)

где p — давление парогазовой смеси; p_{ω} и $p_{\omega f}$ — парциальные давления пара у поверхности испарения и в потоке.

Анализ полей энтальпий и концентраций, полученных на основе решения дифференциальных уравнений турбулентного пограничного слоя на плоской пластине с вдуванием инородного газа с учетом неравенства чисел Pr и Pr$_D$ в ламинарном подслое, позволил получить формулу для соотношения St_D/ St, характеризующую изменение коэффициента массоотдачи из-за нарушения аналогии

$$
\frac{St_D}{St} = \frac{T_w}{T_f} \left[1 + 0,82 b^2 \left(\frac{m_f}{m_0} \right)^{1,04} \right] Lero.
$$

(12.40)

Здесь

$$
b = \frac{p_0 \cdot c_0}{\rho_{\omega}} \cdot \frac{2}{c_f}, \quad b_0 = \frac{p_0 \cdot v_0}{\rho_{\omega}} \cdot \frac{2}{c_{f0}};
$$

$$
c_f = \left[\exp - \left(\frac{m_f}{m_0} \right)^{0,5} \right] \frac{b_0}{2} c_{f0} — \text{коэффициент трения};
$$

$$
St_D = Nu_D/ (Re \cdot Pr_D) = \beta_c/ \omega; \quad St = \frac{\alpha}{\rho_f c_{\mu} \omega};
$$

при $Pr_D \leq 1,0;
$$
St_D = Nu_D/ (Re \cdot Pr_D) = \beta_c/ \omega; \quad St = \frac{\alpha}{\rho_f c_{\mu} \omega};
$$

при $Pr_D > 1;
$$
\quad c_{f0} = 0,0263 \ Re^{-1/7} \left(\frac{2}{T_w/T_f} \right)^{1,6} — \text{коэффициент трения на пластине без вдувания}.
$$

Формула (12.40) отражает изменение коэффициента массоотдачи из-за нарушений аналогии процессов тепло- и массоотдачи, обусловленных неравенством $Pr_D \neq Pr$ в ламинарном подслое, неизотермичностью системы, неодинаковостью свойств пара и газа в основном потоке и конвективными потоками пара.

Процессы массообмена исследуются также экспериментальным путем. Л. Д. Берман обобщил результаты исследования массообмена при адабатном испарении воды, стекающей в виде пленки по внутренней поверхности трубы, в воздух следующим уравнением:

$$
Nu_D = 0,023 \ Re^{0,8} Pr_D^{0,4} \left(\frac{p}{p - p_{\omega}} \right)^{0,82}.
$$

(12.41)

Опыты проводились при $Re = 2500 — 9000$ и $\frac{\rho}{p - p_{\omega}} = 1,25 — 6,65$. Определяющий размер — диаметр трубопровода, определяю-
щая температура — средняя температура парогазовой смеси. В число Re входила скорость движения парогазовой смеси относительно пленки.

При расчетной оценке потока пара необходимо знать температуру поверхности испарения. Величина этой температуры при равновесном состоянии системы находится только после выполнения всего теплового расчета. Поэтому подсчет парового потока с последующим определением коэффициента теплоотдачи α приходится выполнять для нескольких значений температур \(t_w \), меньших температуры насыщения при заданном давлении газа. При увеличении температуры поверхности поток пара возрастает, а тепловой поток от горячего газа к поверхности уменьшается. Количество поглощаемой в процессе фазового перехода теплоты пропорционально потоку пара. Условие теплового баланса на поверхности позволяет выявить равновесное состояние системы и отвечающие ему значения парового потока и температуры поверхности испарения. Графическое определение равновесного состояния системы по результатам расчета тепловых потоков при нескольких значениях температур \(t_w \) показано на рис. 12.11. На рисунке обозначено: \(q = \alpha (T_r - T_w) + \frac{q_{иал}}{} \) — плотность теплового потока, поступающего от внешней среды к поверхности испарения, \(q_{иал} \) — плотность теплового потока к поверхности испарения путем излучения; \(q = g_{m}^{*}r + q_{w} \) — плотность теплового потока, расходуемого на испарение, и отводящегося внутрь стенки \((q_{w}) \); \(g_{m}^{*} \) — плотность массового потока пара; \(t_{w}^{*} \) и \(g_{m}^{*} \) — равновесные значения температуры и плотности массового потока пара.

ГЛАВА XIII
ТЕПЛООБМЕН ИЗЛУЧЕНИЕМ

Все тела при любых температурах излучают и поглощают энергию излучения, но количество теплоты, переносимое путем излучения, становится существенным только при высоких температурах или в условиях, когда перенос теплоты другими способами затруднен (при свободной конвекции, особенно в вакууме).

Благодаря высоким температурам в камерах сгорания ракетных двигателей и в плазменных установках потоки теплоты излучением становятся сопоставимыми с конвективными тепловыми потоками и даже могут превосходить их. При полете в сильно разреженном

427
воздухе теплообмен излучением становится решающим способом передачи теплоты из-за низкой интенсивности теплоотдачи в условиях разрежения.

В этой главе теплообмен излучением рассматривается без учета возможности переноса теплоты другими способами. И только в последнем параграфе главы рассмотрен радиационно-конвективный теплообмен.

§ 1. Радиационные характеристики тел

К важнейшим радиационным характеристикам тел относятся степень черноты (или коэффициент излучения), характеризующая способность тела испускать энергию излучения, а также поглощательная, отражательная и пропускательная способности, от которых зависит распределение падающей на тело энергии излучения между поглощенным, отраженным и прошедшим сквозь тело радиационными потоками.

Величина степени черноты зависит от природы тела, температуры, степени шероховатости поверхности, а для металлов — еще от степени окисления поверхности. Степень черноты диэлектриков при комнатной температуре в большинстве случаев больше 0,8 и уменьшается с повышением температуры. У металлов степень черноты значительно ниже, чем у диэлектриков, и увеличивается с ростом температуры. Так, при комнатной температуре чистые стальные и чугунные поверхности имеют степень черноты $\varepsilon = 0,05 - 0,45$, а при высоких температурах $\varepsilon = 0,7 - 0,8$. Для полированной алюминиевой поверхности повышение температуры с 500 до 850° К приводит к увеличению ε от 0,047 до 0,069.

Пленка окислов на металлической поверхности оказывает существенное влияние на степень черноты последней. Так, появление окислов на полированной поверхности алюминия приводит к увеличению ее степени черноты с 0,05 до 0,8.

Влияние состояния поверхности на степень черноты можно иллюстрировать также таким примером. Полированная поверхность бронзы имеет $\varepsilon = 0,04$, а пористая поверхность — примерно в 14 раз больше.

На степень черноты металлической поверхности существенное влияние оказывает также вид механической и термической обработки.

Способность металлических поверхностей излучать энергию может быть уменьшена с помощью покрытия их слоем золота, серебра или никеля.

Для большинства твердых тел пропускательной способностью можно пренебречь, тогда поглощательная и отражательная способности оказываются связанными между собой уравнением (1.7).

Поглощательная, а следовательно, и отражательная способности твердых тел зависят не только от природы тела, состояния поверхности и ее температуры, но и от распределения падающего
излучения по дли нам волн, т. е. от природы и температуры излучающего тела. Поэтому поглощательную и отражательную способности поверхности оценить труднее, чем степень ее черноты.

При температурах, близких к нормальной, поглощательная способность большинства неметаллических материалов больше 0,8, но она может значительно уменьшаться с увеличением температуры. Чистые металлические поверхности поглощают значительно меньше энергии излучения, но с увеличением температуры их поглощательная способность увеличивается примерно пропорционально $\sqrt{T_1/T_2}$ (T_1 и T_2 — температуры излучающей и поглощающей поверхностей).

Окисление металлической поверхности увеличивает ее поглощательную способность A, при этом изменяется зависимость A от температуры: поглощательная способность окисленных поверхностей уменьшается с ростом температуры.

Полированные металлические поверхности обладают большой отражательной способностью.

Следует заметить, что при умеренной температуре источника излучения цвет поверхности не определяет ее поглощательную способность. В этих условиях белые тела так же хорошо поглощают энергию излучения, как и темные. Так, например, у снега поглощательная способность $A = 0,985$.

§ 2. Теплообмен излучением между твердыми телами

Интенсивность теплообмена излучением между твердыми телами в общем случае зависит от физических свойств этих тел, их температур, расстояния между ними и их взаимного расположения.

Рассмотрим теплообмен излучением при стационарном режиме между двумя параллельными стенками, имеющими большую поверхность и отстоящими друг от друга на небольшом расстоянии так, что излучение каждой стенки полностью попадает на противоположную (рис. 13.1). Излучение каждой стенки частично поглощается, частично отражается, причем этот процесс многократно повторяется и имеет затухающий характер.

Обозначим через q_1 плотность потока эффективного излучения от первой стенки ко второй, включающую как собственное излучение первой стенки, так и все ее отражения. Аналогично плотность потока эффективного излучения от второй стенки к первой — q_2.

Из потока излучения q_2, падающего на первую стенку, будет поглощено $A_1 q_2$ и отражено $(1 - A_1) q_2$ (стенки считаются непроницаемыми).

Следовательно,

$$q_1 = E_1 + (1 - A_1) q_2.$$

(13.1)

429
Аналогично поток излучения от второй стенки

\[q_2 = E_2 + (1 - A_2) q_1. \quad (13.2) \]

Выразим из этих уравнений \(q_1 \) и \(q_2 \) в явном виде. Подставив \(q_1 \) из уравнения (13.1) в уравнение (13.2), после несложных преобразований получим

\[q_1 = \frac{E_1 + E_2 - A_1 \varepsilon_1}{A_1 + A_2 - A_1 A_2}. \quad (13.3) \]

Аналогично для \(q_2 \) найдем

\[q_2 = \frac{E_1 + E_2 - A_2 \varepsilon_2}{A_1 + A_2 - A_1 A_2}. \quad (13.4) \]

Результирующий поток \(q \) равен разности \(q_1 \) и \(q_2 \)

\[q = q_1 - q_2 = \frac{A_2 E_1 - A_1 E_2}{A_1 + A_2 - A_1 A_2}. \quad (13.5) \]

Так как

\[E_1 = \varepsilon_1 C_0 \left(\frac{T_1}{100} \right)^4 = A_1 C_0 \left(\frac{T_1}{100} \right)^4 \]

и

\[E_2 = \varepsilon_2 C_0 \left(\frac{T_2}{100} \right)^4 = A_2 C_0 \left(\frac{T_2}{100} \right)^4, \]

то, подставив эти выражения в выражение (13.5), получим

\[q = A_{\text{пр}} C_0 \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right], \quad (13.6) \]

gде \(C_0 \) — коэффициент излучения абсолютно черного тела; \(A_{\text{пр}} \) — приведенная поглощательная способность системы, которая определяется формулой

\[A_{\text{пр}} = \frac{1}{A_1 + \frac{1}{A_2} - 1}. \]

Так как \(\varepsilon = A \) и \(C = \varepsilon C_0 \), то формуле (13.6) можно придать вид

\[q = \varepsilon_{\text{пр}} C_0 \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right], \quad (13.7) \]

или

\[q = C_{\text{пр}} \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right], \quad (13.8) \]

gде \(\varepsilon_{\text{пр}} \) и \(C_{\text{пр}} \) — приведенная степень черноты и приведенный коэффициент излучения системы. Эти параметры определяются формулами:

\[\varepsilon_{\text{пр}} = \frac{1}{\varepsilon_1 + \frac{1}{\varepsilon_2} - 1}; \quad C_{\text{пр}} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} - C_0}. \]
Если одно тело окружено поверхностью другого (рис. 13.2, a), то вся излучаемая центральным телом энергия падает на внешнее тело, но излучение внешней поверхности только частично падает на центральное тело, а остальная часть излучения снова попадает на ту же поверхность. Расчетная формула для такой системы тел отражает эту особенность теплообмена излучением

\[Q = e_{np} C_0 F_1 \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right] \] \hspace{1cm} (13.9)

где

\[e_{np} = \frac{1}{\varepsilon_1 + \frac{F_1}{F_2} \left(\frac{1}{\varepsilon_2} - 1 \right)} . \]

Когда центральное тело имеет маленькую поверхность (\(F_1 \to 0 \)), то \(e_{np} \to \varepsilon_1 \), т. е. в этом случае передача энергии осуществляется только за счет излучения центрального тела, так как излучение поверхности \(F_2 \) практически не попадает на поверхность \(F_1 \).

Формула (13.9) может применяться для любой формы тел, но меньшая поверхность должна быть обязательно выпуклой. По этой же формуле рассчитывается теплообмен между поверхностями, изображенными на рис. 13.2, b.

Расчетная формула для оценки теплообмена излучением между поверхностями, произвольно расположенными в пространстве (рис. 13.3), выводится на основе закона Ламберта. В окончательном виде формула* записывается так:

\[Q = e_{np} C_0 F_p \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right] , \] \hspace{1cm} (13.10)

где \(e_{np} = \varepsilon_1 \varepsilon_2 \overline{\Phi} \) — приведенная степень черноты системы; \(F_p \) — расчетная поверхность теплообмена (\(F_1 \) или \(F_2 \)); \(\overline{\Phi} \) — средний уг-

* Эта формула имеет приближенный характер, так как при ее выводе учтено только первое поглощение, а последующие отражения не приняты во внимание.
ложной коэффициент, или коэффициент облученности, который выражается формулой

$$
\Phi = \frac{1}{F_p} \int_{F_1} \int_{F_2} \frac{\cos \varphi_1 \cos \varphi_2}{\pi r^2} dF_1 dF_2.
$$

(13.11)

Коэффициент облученности учитывает форму и взаимное расположение участвующих в теплообмене поверхностей, их размеры и расстояние между ними. Числовое значение углового коэффициента определяется графическим, аналитическим или экспериментальным способами. Для наиболее важных случаев теплообмена излучением значения этих коэффициентов приводятся в справочной литературе.

При теплообмене излучением между произвольно расположенными телами расстояние между поверхностями влияет на количество передаваемой теплоты, тогда как в предыдущих задачах такого влияния не отмечалось. Это обусловлено тем, что для точечного источника излучения плотность потока излучения уменьшается обратно пропорционально квадрату расстояния от источника.

При увеличении размера источника влияние расстояния на теплообмен уменьшается и при бесконечно больших поверхностях расстояние между телами на теплообмен не влияет. Для замкнутых систем (рис. 13.2) это условие удовлетворяется при конечных размерах поверхностей.

Рассмотрим теперь теплообмен излучением при наличии экранов, которые уменьшают интенсивность теплообмена между телями. Экраны обычно изготовляют из тонких металлических листов.

Сопоставим теплообмен излучением при стационарном режиме между параллельными стенками без экрана и с экраном (рис. 13.4), воспользовавшись формулой (13.8). Примем $C_1 = C_2 = C_3 = C$.

Если экрана нет, то

$$
q = C_{12} \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right].
$$

(13.12)

При наличии экрана тепловой поток между первой стенкой и экраном выразится формулой

$$
q_{13} = C_{13} \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_3}{100} \right)^4 \right].
$$

(13.13)

От экрана ко второй стенке передается теплота

$$
q_{23} = C_{23} \left[\left(\frac{T_2}{100} \right)^4 - \left(\frac{T_3}{100} \right)^4 \right].
$$

(13.14)
При одинаковых коэффициентах излучения стенок и экрана приведенные коэффициенты излучения всех систем также будут одинаковы

\[C_{12} = C_{13} = C_{23} = C_{\text{пр}} = \frac{1}{2} \left(\frac{1}{C} - \frac{1}{C_0} \right). \]

Из условия стационарности \(q_{13} = q_{23} = q \), приравнивая правые части равенств (13.13) и (13.14), найдем

\[\left(\frac{T_3}{100} \right)^4 = \frac{1}{2} \left[\left(\frac{T_1}{100} \right)^4 + \left(\frac{T_2}{100} \right)^4 \right]. \]

Подставив значение \(\left(\frac{T_3}{100} \right)^4 \) в уравнение (13.13) или (13.14), получим

\[q_3 = \frac{1}{2} C_{\text{пр}} \left[\left(\frac{T_1}{100} \right)^3 - \left(\frac{T_2}{100} \right)^3 \right]. \quad (13.15) \]

Сопоставление этой формулы с формулой (13.12), в которой \(C_{12} = C_{\text{пр}} \), показывает, что постановка экрана с таким же коэффициентом излучения, как у стенок, приводит к уменьшению теплового потока в два раза. Аналогичным анализом можно показать, что при двух параллельных экранах тепловой поток уменьшится в 3 раза, а при \(n \) экранах — в \((n + 1) \) раз. Таким образом, при одинаковых коэффициентах излучения

\[q_3 = \frac{1}{n + 1} q. \quad (13.16) \]

Если коэффициенты излучения экрана и стенок неодинаковы \((C_1 \neq C_2 \neq C_3) \), то при одном экране

\[q_3 = \frac{C_{1,2}}{C_{12}} \frac{1}{C_{13} + C_{23}} q. \quad (13.17) \]

Здесь \(C_{13} \neq C_{23} \neq C_{12} \). Эти коэффициенты определяются по формуле приведенного коэффициента излучения.

С помощью формулы (13.17) легко показать, что уменьшение \(C \) повышает эффективность экрана. Так, при \(C_3 = 0,3 \) и \(C_2 = 5,25 \) один экран уменьшает поток теплоты в 32 раза.

Повышение эффективности экрана при уменьшении коэффициента излучения обусловлено повышением его отражательной способности \(R \) (так как \(C = AC_0 \), а \(A + R = 1 \)). Но уменьшение потока теплоты обусловлено не только отражением экрана, но и тем, что благодаря экрану уменьшается перепад температур, определяющий тепловой поток. В самом деле,

\[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_3}{100} \right)^4 \leq \left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4. \quad (13.18) \]

Поскольку даже в случае, если \(C_1 = C_2 = C_3 = C_0 \), т. е. когда экран ничего не отражает, благодаря условию (13.18) всегда \(q_3 < q \). 433
§ 3. Излучение и поглощение газов

Одноатомные и двухатомные газы, состоящие из однородных атомов (водород, кислород, азот), обладают небольшой поглощающей способностью и в большинстве случаев могут быть отнесены к диатермическим телам. Другие газы способны излучать и поглощать заметные количества энергии. К ним относятся углекислый газ, водяной пар, сернистый ангидрид, аммиак, окись углерода и др.

Газы обладают линейчатым спектром излучения и поглощения. Поглощение и излучение газов имеет объемный характер. Количество поглощаемой (а следовательно, и излучаемой) газом энергии зависит от толщины газового слоя и концентрации поглощающих (или излучающих) молекул. Концентрацию молекул удобно оценивать парциальным давлением газа p. Так как толщина газового слоя и парциальное давление газа в одинаковой мере влияют на число участующих в теплообмене молекул, то степень черноты газа и его поглощающую способность можно выбирать в зависимости от параметра pl, где l — средняя длина луча в пределах газового слоя*. Величина l подсчитана для различных форм газового объема и приводится в справочниках. Например, для куба с ребром a величина $l = 0,6 a$.

Излучаемая газом энергия пропорциональна абсолютной температуре в степени меньше четырех, поэтому при использовании для оценки излученной энергии формулы

$$ q = e_f C_0 \left(\frac{T}{100} \right)^{3.5} \quad (13.19) $$

величину e_f необходимо выбирать в зависимости от температуры. Таким образом

$$ e_f = f \left(T, pl \right). $$

Наиболее хорошо изучен теплообмен излучением для H_2O и CO_2, которые содержатся в продуктах сгорания углеводородных топлив. Для смеси, содержащей эти газы, степень черноты определяется формулой

$$ e_f = e_{CO_2} + e_{H_2O} - e_{CO_2} e_{H_2O}. \quad (13.20) $$

Последний член в этой формуле представляет собой эффект взаимопоглощения, полосы излучения и поглощения в спектрах CO_2 и H_2O частично совпадают, поэтому взаимопоглощение уменьшает излучение газовой смеси.

Численные значения степени черноты углекислого газа и водяного пара получены экспериментально Хоттелем и Эгбертом при давлении $p = 1$ бар и температуре до 2000 °C. Здесь приводятся графики для величин степени черноты, экстраполированные в область повышенных температур, а для водяного пара — еще и в область повышенных давлений [5].

* Это правило справедливо не для всех газов, в частности оно нарушается для водяного пара.
График для определения e_{CO} показан на рис. 13.5.
У водяных паров парциальное давление влияет на степень черноты несколько сильнее, чем средняя длина луча. Поэтому

$$e_{H_2O} = 1 - (1 - e_{H_2O}') n,$$

где $n = 1 + m p_{H_2O}$.

Здесь m — коэффициент, учитывающий вклад газокапельного давления водяных паров на e_{H_2O}.
Графики для определения e_{H_2O}' и n показаны на рис. 13.6 и 13.7.
При $t = 0 - 2000^\circ C$ степень черноты бесконечно толстого слоя газов составляет: $e_{H_2O} = 0.75 - 0.4$ и $e_{CO} = 0.32 - 0.2$.

Рис 13.5

Количество энергии излучения, испускаемое газом, определяется формулой (13.19). Но на практике больший интерес представляет теплообмен излучением между газом и оболочкой.
Теплоту, которая передается газом, содержащим CO₂ и H₂O, на каждый квадратный метр поверхности в единицу времени, можно определить по эмпирической формуле

$$q = e_{o} C_{0} \left[e_{r} \left(\frac{T_{r}}{100} \right)^{4} - A_{r} \left(\frac{T_{r}}{100} \right)^{4} \right],\quad (13.21)$$

где e_{o} — эффективная степень черноты стенки; A_{r} — поглощательная способность газа при температуре стенки.
Эффективная степень черноты стенки больше действительного ее значения, так как стенка не только излучает, но и отражает часть излучения противоположного участка оболочки. Эффективную степень черноты стенки можно подсчитать по формуле

$$e_{o}' = e_{o} \left[1 + (1 - e_{o}) (1 - e_{r}) \right].$$
Поглощательную способность газа A_p можно принять равной степени черноты газа ε_r, которая подсчитывается по формуле (13.20) при температуре стенки.

Для некоторых расчетов формулу (13.21) удобно использовать в виде

$$ q = \varepsilon_{np} C_0 \left[\left(\frac{T_f}{100} \right)^4 - \left(\frac{T_w}{100} \right)^4 \right], $$

(13.22)

где $\varepsilon_{np} = \varepsilon_w' \varepsilon_r'$ — приведенная степень черноты системы; ε_r' — эффективная степень черноты газа. Приравнивая правые части равенств (13.21) и (13.22), получим

$$ \varepsilon_r' = A_p \left(\frac{T_w}{T_f} \right)^4 \frac{\varepsilon_r - A_p \left(\frac{T_w}{T_f} \right)^4}{1 - \left(\frac{T_w}{T_f} \right)^4}. $$

(13.23)
Кроме CO₂ и H₂O, имеются опытные зависимости \(e = f(T, \rho t) \) для SO₂, CO и NH₃ [16].

В ракетных двигателях наибольшая величина теплового потока, передаваемого излучением, достигается в камере сгорания и уменьшается по тракту двигателя в соответствии с уменьшением термодинамической температуры газа. Для приближенной оценки распределения потоков теплоты, передаваемых излучением по длине сопла, можно считать, что до сечения сопла, в котором \(d = 1,2 d_{кр} \),

плотность теплового потока одинакова с плотностью в камере сгорания \(q_{изм} \), в критическом сечении составляет 0,5 \(q_{изм} \), а в закритической части при \(d = 1,5 d_{кр} \) достигает 0,1 \(q_{изм} \).

При входе ракетного аппарата в плотные слои атмосферы с большой скоростью воздух за ударной волной может иметь высокую температуру. В этих условиях даже при очень небольших значениях степени черноты диссоциированного и ионизированного воздуха в окрестности передней критической точки возникают значительные потоки энергии излучения от раскаленного воздуха к поверхности ракеты, возрастающие с увеличением скорости и уменьшением высоты полета. Расчеты, основанные на экспериментальных данных для отдельных газов, показывают, что при \(T = 12000^\circ \text{К} \) и нормальной плотности воздуха степень черноты газового слоя, толщина которого равна расстоянию от поверхности ракеты до ударной волны, составляет \(\approx 0,1 \). При \(T = 8000^\circ \text{К} \) и
нормальной плотности воздуха $e_i = 0,05$. При уменьшении плотности воздуха величина e_i соответственно уменьшается. Химические реакции в потоке влияют на лучистый теплообмен только через состав газа.

§ 4. Излучение светящегося пламени

При горении углеводородных топлив в продуктах сгорания могут содержаться конденсированные (жидкие или твердые) частицы, благодаря которым пламя приобретает обычно желтоватую окраску и становится непрозрачным. Такое пламя называют факелом. Конденсированные частицы могут состоять из углерода, тяжелых углеводородов, окислов. Размеры этих частиц изменяются от 0,05 мкм до 0,25 мм, но благодаря большому количеству их и экранирующему влиянию на излучение газа они в основном определяют излучение факела.

Размеры и концентрация частиц в факеле зависят от вида и состава сжигаемого топлива, конструкции топки и ее размеров, способа подвода окислителя и т. п. Поэтому оценить излучательную способность факела очень трудно.

Для оценки теплообмена излучением между факелом и радиационной поверхностью можно воспользоваться формулой

$$Q = C_0 F_p \left[\left(\frac{T_I}{100} \right)^4 - \left(\frac{T_W}{100} \right)^4 \right],$$

где F_p — радиационная поверхность топки, т. е. поверхность, через которую отводится теплота; $e_{np} = e_f e_w$ — приведенная степень черноты системы; e_f — степень черноты факела, которая выбирается в зависимости от вида и способа сжигания топлива.

Для бесконечно толстого слоя продуктов сгорания в топках паровых котлов $e_f = 0,4 — 0,85$.

Температура факела T_f определяется как средняя геометрическая из теоретической температуры горения T_1, и температуры газа на выходе из топки T_2, т. е. $T_f = \sqrt{T_1 T_2}$.

§ 5. Теплообмен излучением с Солнцем и Землей

При полете в верхних слоях атмосферы или за ее пределами температурное состояние поверхностей летательного аппарата зависит от радиационного теплообмена с Солнцем и Землей.

Благодаря высокой температуре поверхности Солнца примерно половина излучаемой им энергии приходится на световые лучи, остальная часть излучения — на инфракрасные лучи. Поэтому излучение Солнца называют коротковолновым.

Количество солнечной энергии, падающей на единицу нормальной к лучам поверхности, находящейся за пределами атмосферы,
в единицу времени называется солнечной постоянной, значение которой зависит от расстояния между Землей и Солнцем и составляет 1280—1368 (в среднем 1325) \(\text{см}^2 \). До поверхности Земли доходит значительно меньше энергии, так как часть ее поглощается атмосферой (главным образом озоном и водяными парами), часть — не попадает на Землю благодаря преломлению в воздухе и отражению облаков.

Поглощательная способность поверхности зависит от спектра падающего на нее излучения. Поэтому способность тел поглощать солнечное излучение может существенно отличаться от поглощательной способности обычного длинноволнового излучения. Например, для полированной меди поглощательная способность солнечного излучения \(A_s = 0,26 \), тогда как для обычного излучения \(A = 0,023 \). Белые поверхности поглощают солнечное излучение хуже, чем длинноволновое. Например, белая краска имеет \(A_s = 0,12 \) — 0,26, тогда как для длинноволнового излучения \(A > 0,9 \). Поэтому при лучистом теплообмене с Солнцем степень черноты поверхности далеко не одинакова с ее поглощательной способностью.

Чтобы защитить тело от солнечного излучения, необходимо так обработать его поверхность, чтобы получить малую величину \(A_s \) (например, поверхность можно покрыть белой краской). Для получения максимального поглощения солнечного излучения поверхность должна иметь большое значение \(A_s \), но при этом степень черноты тела должна быть минимальной, чтобы уменьшить потери теплоты из-за излучения поверхности.

Количество теплоты, получаемой или теряемой телом, на которое падают солнечные лучи, можно определить по формуле

\[
Q = \varepsilon C_0 F \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right] - A_s F_s e_s,
\]

где \(\varepsilon \) — степень черноты поверхности; \(F \) и \(F_s \) — площадь излучающей и облученной Солнцем поверхности; \(T_1 \) и \(T_2 \) — температура тела и окружающего пространства; \(e_s \) — плотность потока падающего излучения от Солнца.

Поток энергии излучения от Земли к поверхности летательного аппарата, находящегося за пределами земной атмосферы, складывается из излучения Земли (8%) и атмосферы (55%), отражения солнечного излучения земной поверхностью (3%) и облаками (27%), а также энергии солнечного излучения, рассеиваемой атмосферой (7%)*. Таким образом, Земля вместе с атмосферой отражает 37% падающей на ее солнечной энергии.

Общее излучение Земли и атмосферы, отнесенное к единице земной поверхности, составляет 209 \(\text{см}^2 \).

* Проценты определены по среднегодовому балансу Земли.
§ 6. Радиационно-конвективный теплообмен

В большинстве случаев радиационный теплообмен протекает одновременно с конвективным. Поверхность может получать или отдавать теплоту соприкосновением с газовой средой, а также путем теплообмена излучением с окружающими твердыми телами и газом. Теплообмен излучением между рассматриваемой поверхностью и твердыми телами, газом или факелом описывается формулами (13.7), (13.9), (13.10), (13.22) и (13.24). Эти формулы можно выразить одной зависимостью

\[q_i = e_{пр} C_0 \left(\left(\frac{T_b}{100} \right)^4 - \left(\frac{T_{пр}}{100} \right)^4 \right). \]

(13.26)

где \(q_i \) — поток теплоты, приходящийся на единицу рассматриваемой поверхности; \(T_i \) — температура газа, факела или твердого тела, участвующего в теплообмене излучением с рассматриваемой поверхностью.

В этой формуле приведенная степень черноты системы определяется по-разному в зависимости от вида, формы и расположения участвующих в теплообмене тел.

В общем случае рассматриваемая поверхность может участвовать в теплообмене излучением с несколькими твердыми телами, а также с газом или факелом. При одинаковой температуре этих тел и среды \(T_i \), результирующую плотность теплового потока, обусловленную радиационным теплообменом, можно определить по формуле

\[q_{изл} = \sum q_i = C_0 \left[\left(\frac{T_i}{100} \right)^4 - \left(\frac{T_{пр}}{100} \right)^4 \right] \sum e_{пр}. \]

(13.27)

Величину \(q_{изл} \) можно выразить также формулой конвективного теплообмена (1.18). Приравнивая правые и левые части выражений (13.27) и (1.18), получим

\[\alpha_{изл} = C_0 \cdot 10^{-8} \left(T_i^4 + T_a^4 T_e^4 + T_f^4 T_a^4 T_e^4 + T_a^4 \right) \sum e_{пр}. \]

(13.28)

Когда температура тел, определяющих радиационный и конвективный теплообмен, неодинакова, то общий тепловой поток находится как сумма отдельно подсчитанных радиационного и конвективного тепловых потоков.

Если в теплообмене участвует капельная жидкость, то \(\alpha_{изл} = 0. \)

ГЛАВА XIV
КОНСТРУКТУРНЫЕ СПОСОБЫ ИЗМЕНЕНИЯ ИНТЕНСИВНОСТИ ТЕПЛОПЕРЕДАЧИ

При конструировании машин и аппаратов часто возникает необходимость ослабить или усилить передачу теплоты через стенки. Уменьшением интенсивности теплообмена обеспечивается уменьшение тепловых потерь через стенки или тепловая защита частей аппарата, граничащих с горячими поверхностями. Эта задача может быть решена путем теплоизоляции горячих поверхностей.
Уменьшение размеров и веса теплообменных аппаратов связано с необходимостью интенсификации процесса теплопередачи. Это может быть достигнуто увеличением поверхности теплообмена с помощью ребер.

§ 1. Критическая толщина тепловой изоляции

Анализ формулы общего термического сопротивления плоской стенки (3.17) показывает, что дополнительный слой тепловой изоляции любой толщины независимо от величины ее коэффициента теплопроводности приводит к увеличению общего термического сопротивления стенки и уменьшению теплового потока. Это правило не может быть распространено на тела, имеющие выпуклые поверхности. При наложении изоляции на выпуклую поверхность внутреннее термическое сопротивление увеличивается, но благодаря увеличению поверхности соприкосновения стенки с внешним теплоносителем уменьшается внешнее термическое сопротивление. Поэтому при использовании материалов с достаточно большим коэффициентом теплопроводности для покрытия изоляцией выпуклой поверхности можно получить не уменьшение, а увеличение теплового потока.

Рассмотрим условие, при котором материал, используемый для изоляции трубы, отвечает своему назначению, т. е. уменьшает тепловой поток. Для однородной трубы, покрытой слоем изоляции (рис. 14.1), пренебрегая контактным термическим сопротивлением, из формулы (3.38) получим:

$$\frac{1}{\kappa_i} = \frac{1}{\alpha_1 d_1} + \frac{1}{2\lambda} \ln \frac{d_2}{d_1} + \frac{1}{2\lambda_{из}} \ln \frac{d_{из}}{d_2} + \frac{1}{\alpha_2 d_{из}},$$

где κ_i — линейный коэффициент теплопередачи.

При увеличении толщины изоляции предпоследний член этого уравнения будет увеличиваться, отражая рост внутреннего термического сопротивления, а последний уменьшаться, характеризуя уменьшение внешнего термического сопротивления. Выявим экстремум функции $\left(\frac{1}{\kappa_i}\right)' = f\left(d_{из}\right)$ в предположении, что коэффициент α_2 не зависит от $d_{из}$. Приравнив нулю первую производную общего термического сопротивления по $d_{из}$

$$\left(\frac{1}{\kappa_i}\right)' = \frac{1}{2\lambda_{из} d_{из}} - \frac{1}{\alpha_2 d_{из}^2} = 0.$$

Отсюда критический диаметр изоляции, отвечающий экстремуму, определяется формулой

$$d_{кр} = \frac{2\lambda_{из}}{\alpha_2}.$$
Вторая производная \((\frac{1}{\kappa_i})'' \) больше нуля, следовательно, критический диаметр соответствует минимуму общего термического сопротивления и максимуму теплового потока (рис. 14.2).

Пригодность тепловой изоляции удобно определять по параметру

\[
A_{кр} = \frac{d_{кр}}{d_2}
\]

(14.1)

С учетом выражения для \(d_{кр} \) можно записать

\[
A_{кр} = \frac{2\lambda_{кр}}{\alpha_2 d_2}
\]

(14.2)

При \(A_{кр} > 1 \) из формулы (14.1) получается \(d_2 < d_{кр} \). Как видно из рис. (14.2), в этом случае увеличение диаметра \(d_{кр} \) от \(d_2 \) до \(d_{кр} \) приведет к увеличению теплового потока и, следовательно, изоляцию следует признать непригодной. При \(A_{кр} \ll 1, d_2 \gg d_{кр} \), и потому в соответствии с рис. 14.2 слой изоляции любой толщины позволит уменьшить тепловой поток через трубу.

Рассмотренный эффект ограничивает выбор тепловой изоляции для труб небольшого диаметра, особенно при малой интенсивности внешнего теплообмена. Например, при \(d_2 = 50 \text{ мм} \) и \(\alpha_2 = = 6 \text{ Bt/(m}^2 \cdot \text{град}) \) пригодна изоляция с \(\lambda_{кр} \leq 0,15 \text{ Bt/(м} \cdot \text{град)}. \)

§ 2. Теплопередача через ребристую стенку

Наличие ребер на стенке позволяет увеличить поверхность ее соприкосновения с теплоносителем и тем самым уменьшить внешнее термическое сопротивление. При этом уменьшится общее термическое сопротивление и увеличится тепловой поток, а температура поверхности такой стенки приблизится к температуре омывающей ее среды. Поэтому наличие ребер может использоваться как средство интенсификации процесса теплопередачи или как средство снижения температуры стенки.
Рассмотрим теплопередачу через ребристую стенку, изображенную на рис. 14.3.

Температура ребра изменяется по его длине. При \(t_i > t_f \) температура ребра, равная у его основания температуре поверхности между ребрами \(t_w \), будет уменьшаться к его концу. Температуру среды \(t_s \) можно считать неизменной для всей поверхности, и поэтому участки поверхности ребра, удаленные от основания, будут передавать меньше теплоты, чем участки, расположенные вблизи основания ребра. Отношение теплоты, передаваемой поверхностью ребер в окружающую среду \(Q_p \), к теплопоте, которую эта поверхность могла бы передать при постоянной температуре стенки, равной температуре у основания ребра \(Q_p^* \), называется коэффициентом эффективности ребер*:

\[
\eta_p = \frac{Q_p}{Q_p^*}. \tag{14.3}
\]

Все поверхности ребра могут иметь одинаковую температуру только при бесконечной теплопроводности материала, поэтому в реальных условиях \(\eta_p < 1 \). Чем реже меняется температура вдоль ребра, тем меньше коэффициент его эффективности. Для коротких ребер, выполненных из материала с большим коэффициентом теплопроводности, коэффициент эффективности близок к единице.

Определем тепловой поток через стенку, гладкая поверхность которой имеет площадь \(F_1 \), а ребристая поверхность — \(F_2 \). Площадь \(F_2 \) складывается из площади боковой поверхности ребер \(F_p \) и площади межреберных участков \(F_m \). При стационарном режиме передача теплоты от горячей среды к стенке, через стенку и от стенки к холодной среде при одинаковом коэффициенте теплообмена для всей поверхности \(F_2 \) выразится формулами:

\[
Q = \alpha_1 (t_i - t_w) F_1, \tag{14.4}
\]

\[
Q = \frac{\lambda}{\delta} (t_w - t_w) F_1, \tag{14.5}
\]

\[
Q = Q_p + Q_m. \tag{14.6}
\]

Так как

\[
Q_p = \eta_p Q_p^* = \eta_p \alpha_2 (t_{w_2} - t_f) F_p
\]

и

\[
Q_m = \alpha_2 (t_{w_2} - t_f) F_m,
\]

* Методика расчетной оценки этого коэффициента рассмотрена в § 3, 4 и 5 настоящей главы.
то уравнению (14.6) можно придать вид

$$Q = \alpha_2 (t_{sw} - t_{i_s}) (F_m + \eta_p F_p).$$

(14.7)

Исключив из уравнений (14.4), (14.5) и (14.7) температуры t_{sw} и t_{i_s}, найдем

$$Q = \frac{\frac{t_{i_1} - t_i}{\alpha_1 F_1} + \frac{1}{\delta} + \frac{1}{\alpha_2 (F_m + \eta_p F_p)}}{\lambda}.$$

(14.8)

Этому уравнению удобно придать вид

$$Q = \kappa_p (t_{i_1} - t_{i_s}) F_1.$$

(14.9)

где κ_p — коэффициент теплообмена ребристой стенки, который определяется формулой

$$\kappa_p = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2} \frac{F_1}{F_m + \eta_p F_p}}.$$

(14.10)

Для удобства анализа влияния ребер на интенсивность теплообмена упростим формулу (14.8) в предположении, что внутренним термическим сопротивлением стенки можно пренебречь, т. е. принять $\eta_p = 1$ и $\delta/\lambda = 0$. В этих условиях

$$Q = \frac{\Delta t}{\frac{1}{\alpha_1 F_1} + \frac{1}{\alpha_2 F_2}}.$$

(14.11)

Сравним теплообмен через стенку (рис. 14.4), условия теплообмена которой с теплоносителями заданы коэффициентами $\alpha_1 = 100 \text{ вт}/(\text{м}^2 \cdot \text{град})$ и $\alpha_2 = 10 \text{ вт}/(\text{м}^2 \cdot \text{град})$, с ребрами и без ребер.

Для стенки без ребер $F_1 = F_2 = 1 \text{ м}^2$ в соответствии с формулой (14.11) $Q' = 9.9 \Delta t$. Пусть теперь со стороны, где $\alpha_1 = 100 \text{ вт}/(\text{м}^2 \cdot \text{град})$, площадь поверхности из-за ребер увеличена в 10 раз, т. е. $F_1 = 10 \text{ м}^2$, а вторая поверхность стенки осталась без изменения ($F_2 = 1 \text{ м}^2$). Тогда по формуле (14.11) получается $Q = 9.9 \Delta t$, или $Q/Q' = 1.1$.

Если сохранить площадь первой поверхности, а вторую поверхность увеличить в 10 раз за счет ребер (т. е. $F_1 = 1 \text{ м}^2$, а $F_2 = 10 \text{ м}^2$), то по формуле (14.11) найдем, что $Q = 50 \Delta t$, т. е. $Q/Q' = 5.5$.

Неодинаковый эффект от постановки ребер на первой и второй поверхностях получился из-за различных величин коэффициентов теплообмена. Если коэффициенты теплообмена с двух сторон стенки неодинаковы, то для интенсификации теплообмена надо стенку сделать ребристой с той стороны, где коэффициент теплообмена имеет наименьшее значение.
Если ребра используются как средство снижения температуры стенки, то независимо от величины α_1 и α_2 их необходимо разместить со стороны холодного теплоносителя. Температуру основания ребра можно определить из формулы (14.7)

$$t_{w_s} = t_s + \frac{Q}{\alpha_2 (F_m + \eta_d F_p)}. \tag{14.12}$$

Увеличение поверхности ребристой стенки по сравнению со стенкой без ребер приводит к уменьшению внешнего термического сопротивления, но при этом возникает дополнительное внутреннее термическое сопротивление самого ребра. Поэтому при небольшом коэффициенте теплопроводности материала постановка ребер на поверхности малоэффективна или даже вызовет уменьшение интенсивности теплообмена.

Анализ уравнения распространения теплоты в прямом ребре постоянной толщины показывает, что ребра уменьшают общее термическое сопротивление при условии

$$\frac{2\lambda}{\alpha \delta} > 5, \tag{14.13}$$

где δ — толщина ребра и коэффициент его теплопроводности; α — коэффициент теплообмена ребра с окружающей средой.

§ 3. Температурное поле и коэффициент эффективности прямых ребер постоянной толщины

Рассмотрим передачу теплоты через тонкое прямое (т. е. выполненное на плоской стенке) ребро, для которого изменением температуры по поперечному сечению можно пренебречь и считать, что температура зависит только от координаты x (рис. 14.5). Коэффициент теплообмена α и температура окружающей среды t_s считаются одинаковыми для всей поверхности ребра. Поперечное сечение ребра имеет площадь f и периметр u. Материал ребра характеризуется коэффициентом теплопроводности λ.

При стационарном тепловом режиме теплота Q_x, которая путем теплопроводности входит в элемент ребра с длиной dx, частично передается теплопроводностью вдоль ребра Q_{x+dx}, частично рассеивается в окружающую среду dQ. Следовательно,

$$Q_x = Q_{x+dx} + dQ.$$

По закону Фурье

$$Q_x = -\lambda \left(\frac{dt}{dx} \right)_x f = -\lambda \left(\frac{d\theta}{dx} \right)_x f.$$

* Полученные в этом параграфе результаты могут быть распространены на тонкий стержень любого поперечного сечения.
\[Q_{x+dx} = - \lambda \left(\frac{d\theta}{dx} \right)_{x+dx} f, \]

где \(\theta = t - t_i \) — избыточная температура в рассматриваемом сечении ребра.

Теплообмен с окружающей средой определяется по формуле

\[dQ = \alpha \theta u dx. \]

Таким образом, баланс теплоты можно переписать в виде

\[-\lambda \left(\frac{d\theta}{dx} \right)_x f = -\lambda \left(\frac{d\theta}{dx} \right)_{x+dx} f + \alpha \theta u dx. \]

Этому выражению можно придать вид

\[\left(\frac{d\theta}{dx} \right)_{x+dx} - \left(\frac{d\theta}{dx} \right)_x = \frac{\alpha u}{\lambda_l} \theta, \]

или

\[\frac{d^2 \theta}{dx^2} = \frac{\alpha u}{\lambda_l} \theta. \quad (14.14) \]

Интеграл этого линейного дифференциального уравнения второго порядка известен

\[\theta = C_1 e^{mx} + C_2 e^{-mx}, \quad (14.15) \]

где

\[m = \sqrt{\frac{\alpha u}{\lambda_l}}. \quad (14.16) \]

Константы интегрирования \(C_1 \) и \(C_2 \) можно определить из граничных условий:

при \(x = 0 \) \quad \(\theta = \theta_0 \)

при \(x = l \) \quad \(-\lambda \left(\frac{d\theta}{dx} \right)_{x=l} = \alpha_1 \theta_i. \]

Здесь \(\alpha_1 \) и \(\theta_i \) — коэффициент теплообмена и избыточная температура для торца ребра.

Пренебрегая теплообменом торца ребра с окружающей средой, в этом случае второе граничное условие можно записать в виде:

при \(x = l \) \quad \(\left(\frac{d\theta}{dx} \right)_{x=l} = 0. \)
Определим константы интегрирования предполагая, что теплообменом торцевых поверхностей можно пренебречь. Подстановка граничных условий в уравнение (14.15) дает

$$\theta_0 = C_1 + C_2,$$

$$\left(\frac{d\theta}{dx} \right)_{x=t} = mC_1 e^{ml} - mC_2 e^{-ml} = 0.$$

Из совместного решения этих уравнений определяются константы интегрирования:

$$C_1 = \frac{\theta_0 e^{-ml}}{2 \cosh ml}; \quad C_2 = \frac{\theta_0 e^{ml}}{2 \cosh ml}.$$

Гиперболический косинус выражается формулой

$$\cosh ml = \frac{e^{ml} + e^{-ml}}{2}.$$

(14.17)

Подстановка констант интегрирования в формулу (14.15) приводит к следующему уравнению температурного поля в ребре:

$$\theta = \theta_0 \frac{\sinh m(l-x)}{\sinh ml}.$$

(14.18)

Избыточная температура на конце ребра определяется из этой формулы при $x = l$

$$\theta_l = \frac{\theta_0}{\cosh ml}.$$

(14.19)

Вся рассеиваемая ребром теплота передается теплопроводностью через сечение основания. Поэтому

$$Q_p = -\lambda \left(\frac{d\theta}{dx} \right)_{x=0} f.$$

(14.20)

Из уравнения (14.18) получается

$$\left(\frac{d\theta}{dx} \right)_{x=0} = -m\theta_0 \tanh ml,$$

(14.21)

где гиперболический тангенс

$$\tanh ml = \frac{e^{ml} - e^{-ml}}{e^{ml} + e^{-ml}}.$$

(14.22)

Подстановка выражения (14.21) в уравнение (14.20) приводит к следующей формуле для теплового потока:

$$Q_p = \theta_0 V \frac{au}{3\lambda} \tanh ml.$$

(14.23)

Эта формула не учитывает теплообмена торца ребра с окружающей средой. Если принять, что коэффициенты теплообмена торца и боковой поверхности ребра одинаковы, то теплообмен торца можно учесть уменьшением боковой поверхности ребра на половину его тол-
щины и при расчете теплового потока вместо длины ребра использовать эффективную длину

\[l_{\text{эфф}} = l + \frac{\delta}{2}, \]

где \(\delta \) — толщина ребра (рис. 14.5).

Тогда расчетная формула для теплового потока примет вид

\[Q_p = \theta_0 \sqrt{\frac{\alpha u \lambda_f}{\text{тм} l_{\text{эфф}}}}. \quad (14.24) \]

Полученное выражение позволяет определить коэффициент эффективности прямого ребра постоянной толщины:

\[\eta_p = \frac{Q_p}{Q_p'} = \frac{\theta_0 \sqrt{\frac{\alpha u \lambda_f}{\text{тм} l_{\text{эфф}}}}}{\alpha \theta_0 u l_{\text{эфф}}} = \frac{\text{тм} l_{\text{эфф}}}{\text{мтм} l_{\text{эфф}}}. \quad (14.25) \]

Величина \(m \) подсчитывается по формуле (14.16).

§ 4. Коэффициент эффективности ребер с изменяющимся поперечным сечением

В прямых и кольцевых (цилиндрических) суживающихся ребрах так же, как и в кольцевых ребрах постоянной толщины, площадь сечения ребра, через которую проходит тепловой поток, и периметр этого сечения изменяются по длине ребра. Поэтому рассмотрение теплового баланса элемента ребра приводит в этих случаях к дифференциальным уравнениям, которые интегрируются в цилиндрических функциях (функции Бесселя), а расчетные формулы для оценки температурного поля и теплового потока даже для длинных ребер имеют довольно сложный вид.

Рассмотрим упрощенный способ расчета ребер с изменяющимся по длине ребра сечением, основанный на замене такого ребра прямым ребром постоянной толщины с учетом несоответствия расчетной схемы действительным условиям передачи теплоты с помощью поправки. Упрощенный способ дает такую же точность, как и расчет по формулам, полученным непосредственным интегрированием дифференциальных уравнений.

На рис. 14.6 изображено прямое суживающеесяся ребро и его расчетная схема. Прямое ребро постоянной толщины, принятое в качестве расчетной схемы, имеет такую же ширину, как рассчитываемое ребро, а длина и толщина его определяются равенствами:

\[l_{\text{эфф}} = l + \frac{\delta_l}{2}; \quad \delta_{\text{ср}} = \frac{\delta_0 + \delta_l}{2}. \]

Плотность теплового потока с поверхности ребра постоянного сечения определяется выражением

\[q^* = \frac{Q_p^*}{F_p^*}, \quad (14.26) \]

448
где Q_p^* — тепловой поток от прямого ребра, величина которого определяется уравнением (14.24); F_p^* — площадь боковой поверхности этого ребра.

Теплота, передаваемая суживающимся ребром, определяется формулой

$$Q_p = e_c F_p q^*,$$ \hspace{1cm} (14.27)

где F_p — площадь боковой поверхности теплообмена суживающегося ребра; e_o — поправка.

Величина поправки зависит от степени сужения ребра δ_r/δ_n и от соотношения избыточных температур θ_r^*/θ_n ребра постоянной толщины, которое определяется формулой (14.19). График поправок дан на рис. 14.7, а.

Подсчитаем коэффициент эффективности суживающегося ребра с учетом формул (14.26), (14.27) и (14.24)

$$\eta_p = \frac{Q_p}{Q_p^*} = e_c F_p q^* = e_c \frac{Q_p^*}{\alpha \theta_n F_p} = \frac{e_c \theta_n \sqrt{\alpha \mu l_f}}{\alpha \theta_n \mu l_{\text{эфф}}} \text{th} m l_{\text{эфф}}.$$ \hspace{1cm} (14.28)

Окончательно получается

$$\eta_p = e_c \frac{\text{th} m l_{\text{эфф}}}{m l_{\text{эфф}}} = e_c \eta_p^*.$$ \hspace{1cm} (14.28)

Боковой профиль суживающегося ребра имеет вид трапеции или треугольника, в последнем случае $\delta_r = 0$.

Следует заметить, что используемая в расчете избыточная температура θ_r^* несколько отличается от действительной избыточной температуры на конце суживающегося ребра θ_r. Для точной оцен-
ки температурного поля и величины \(\theta_i \) надо пользоваться формулами, которые получены путем интегрирования дифференциального уравнения для суживающегося ребра.

Аналогично рассчитывается теплообмен для кольцевого ребра постоянной толщины. Расчетная схема такого ребра (рис. 14.8) — прямое ребро шириной 1 \(m \), с толщиной, равной толщине кольцевого ребра, и длиной

\[
l_{\text{аф}} = R - r + \frac{\delta}{2}, \tag{14.29}
\]

где \(R \) и \(r \) — внешний и внутренний радиусы ребра.

Тепловой поток через кольцевое ребро и коэффициент его эффективности определяются формулами:

\[
Q_p = \varepsilon_k F_p q^*, \tag{14.30}
\]

\[
\eta_p = \varepsilon_k \frac{\text{th} ml_{\text{аф}}}{ml_{\text{аф}}} = \varepsilon_k \eta_p^*. \tag{14.31}
\]

Поправочный коэффициент \(\varepsilon_k \) определяется с помощью рис. 14.7, б по соотношению избыточных температур \(\theta^*/\theta_0 \) и соотношению радиусов \(R/r \).

Для суживающегося кольцевого ребра приближенно можно записать

\[
Q_p = \varepsilon_k \varepsilon_c F_p q^*, \tag{14.32}
\]

\[
\eta_p = \varepsilon_k \varepsilon_c \frac{\text{th} ml_{\text{аф}}}{ml_{\text{аф}}} = \varepsilon_k \varepsilon_c \eta_p^*. \tag{14.33}
\]

Здесь плотность теплового потока \(q^* \) определяется для плоского ребра шириной 1 \(m \), с длиной, подсчитанной по формуле (14.29), и толщиной, равной полусумме толщин кольцевого ребра у основания и на конце. Поправки \(\varepsilon_k \) и \(\varepsilon_c \) определяются по рис. 14.7.

§ 5. Излучающие ребра

Для интенсификации процессов отвода теплоты за пределы летательного аппарата в верхних слоях атмосферы и в космическом пространстве можно использовать ребра, поверхности которых рассеивают теплоту только путем излучения. Тепловой баланс элемента тонкого прямого ребра постоянной толщины, работающего в таких условиях, приводит к дифференциальному уравнению, аналогичному (14.14):

\[
\frac{d^2 T}{dx^2} = \kappa^2 (T^4 - T_1^4), \tag{14.34}
\]
где T — температура сечения ребра, отстоящего от корня на расстоянии x (рис. 14.5); $n^2 = \frac{C_{np} u \cdot 10^{-8}}{\lambda F}$; C_{np} — приведенный коэффициент излучения поверхности ребра и окружающей среды.

Обозначим $\frac{dT}{dx} = p$. При использовании новой переменной уравнение (14.34) приведется к виду

$$p \frac{dp}{dT} = n^2 (T^4 - T^4). \quad (14.35)$$

После интегрирования (14.35) найдем

$$p^2 = 0.4 n^2 (T^6 - 5TT^4 + N), \quad (14.36)$$

где N — константа интегрирования.

Определим константу интегрирования в предположении о большой длине ребра, при которой на конце ребра можно считать $T = T_f$ и $q_l = 0$, а следовательно, $p = 0$. Подстановка этих условий в выражение (14.36) дает

$$N = 4T^4_f. \quad (14.37)$$

Выразив температурный градиент p в корневом сечении ребра через тепловой поток с помощью закона Фурье, из формулы (14.36) с учетом (14.37) найдем

$$q = 0.633 \cdot 10^{-4} \sqrt{\frac{C_{np} \lambda u}{f} \ T^6_0 (1 - 5\bar{T}^4_f + 4\bar{T}^4_f)}, \quad (14.38)$$

где T_0 — температура корневого сечения ребра; $\bar{T}_f = T_f/T_0$. Теплота, рассеиваемая ребром, определяется по формуле

$$Q_p = qf = 0.633 \cdot 10^{-4} \sqrt{C_{np} \lambda u T^6_0 (1 - 5T^4_f + 4T^4_f)} \cdot (14.39)$$

Формула (14.39) позволяет найти коэффициент эффективности ребра постоянной толщины

$$\eta_p = \frac{Q_p}{C_{np} uT^3_0 (T^4_f - T^4_f) 10^{-8}} = 6330 \sqrt{\frac{\lambda F}{C_{np} u^2} \ \frac{1 - 5\bar{T}^4_f + 4\bar{T}^4_f}{T^3_0 (1 - \bar{T}^4_f)^2}}, \quad (14.40)$$

где l — длина ребра.

Более подробно с методикой расчета излучающих ребер можно ознакомиться в [6], [8].
§ 6. Ребристая стенка минимальной массы

При создании ребристой стенки важно выбрать такие конструктивные параметры ребер, которые при заданной степени интенсификации теплообмена имели бы минимальную массу.

Для прямого ребра с постоянной толщиной δ и шириной L масса выразится формулой

$$m_p = AL\rho,$$

где $A = \delta l$ — площадь продольного сечения ребра; ρ — плотность материала.

При постоянной массе ребра величины δ и l могут изменяться при условии, что $\delta l = \text{const}$. Оптимальными будут такие параметры, которые при $m_p = \text{const}$ обеспечивают максимум переданной ребром теплоты.

Для ребра, передающего теплоту в окружающую среду в основном вследствие соприкосновения, при $A = \text{const}$ условие максимального теплового потока имеет вид

$$\frac{l}{\sqrt{\delta}} = \sqrt{\frac{\lambda}{\alpha}}. \quad (14.41)$$

Конструктивные параметры, отвечающие этому условию, характеризуют ребро минимальной массы.

Форма продольного сечения также влияет на массу ребра при заданной величине теплового потока. Э. Шмидт показал, что ребро имеет минимальную массу, если плотность теплового потока (или температурный градиент) по длине ребра не изменяется. Для прямого ребра это условие выполняется в случае, если контуры его образованы дугами окружности (рис. 14.9).

Разница в массе ребра с криволинейными образующими и треугольного ребра (пунктир на рис. 14.9) составляет всего около 4%, поэтому из технологических соображений более целесообразно использовать ребра с треугольным профилем.

Для ребра с треугольным профилем условие минимальной массы ребра имеет вид:

$$\frac{l}{\sqrt{\delta}} = 0,925 \sqrt{\frac{\lambda}{\alpha}}. \quad (14.42)$$

Здесь δ — толщина ребра у основания.

При оптимальном соотношении конструктивных параметров и одинаковым тепловом потоке масса ребра с треугольным профилем в 1,44 раза меньше массы ребра постоянной толщины.

Существенное влияние на массу ребер оказывает материал. При заданной величине теплового потока масса ребра увеличивается пропорционально отношению $\frac{\rho}{\lambda}$. Величина этого соотношения для

452
медного и стального ребер больше, чем для алюминиевого, в 1,96 и 11,8 раз соответственно.

Чтобы увеличить поверхность соприкосновения ребристой стенки с теплоносителем, надо уменьшить толщину каждого ребра и увеличить число ребер (т. е. уменьшить шаг ребер). Если общая масса не изменяется, то при \(L = \text{const} \) и \(l = \text{const} \) общее поперечное сечение ребер не зависит от числа их.

Увеличение числа ребер, а следовательно, уменьшение их толщины, ограничивается условиями теплообмена в межреберном пространстве. Когда расстояние между ребрами становится меньше двух толщин пограничного слоя, тогда благодаря взаимодействию пограничных слоев уменьшается коэффициент теплоотдачи, и эффективность ребер ухудшается. Опыты показывают, что взаимодействие турбулентных пограничных слоев не оказывает существенного влияния на интенсивность теплообмена, поэтому допустимое расстояние между ребрами можно определять по формуле ламинарного пограничного слоя (6.17) при \(Re \leq Re_{kr} \). Экспериментально установлено, что уменьшение расстояния между ребрами от \(2\delta_{\text{p.c}} (\delta_{\text{p.c}} — толщина ламинарного пограничного слоя) \) до 1,12\(\delta_{\text{p.c}} \) слабо отражается на интенсивности теплообмена [25]. Толщина пограничного слоя зависит от скорости вынужденного движения. При теплоотдаче в условиях свободного движения толщина пограничного слоя достигает 10 м\(\text{м} \) и больше.

На практике выбор толщины ребра и расстояния между ребрами ограничены производственными возможностями и зависят от технологий изготовления стенки. Так, для литых алюминиевых кольцевых ребер двигателей внутреннего сгорания средняя толщина принимается равной 2 м\(\text{м} \), высота — 40 м\(\text{м} \) и шаг — не меньше 6 м\(\text{м} \). У чугунных точечных ребер шаг можно уменьшить до 3,5 — 4 м\(\text{м} \) при средней толщине ребра 1 м\(\text{м} \) и высоте 15 — 20 м\(\text{м} \). Для стальных точечных ребер расстояние между ребрами выбирается до 1,5 м\(\text{м} \) при толщине ребра 0,5 и высоте до 25 м\(\text{м} \) [17]. Последние размеры близки к оптимальным.

Оптимальные параметры найдены также для излучающих ребер. Так, для прямого ребра постоянной толщины при \(T_r = 0 \) минимальная масса ребра обеспечивается при выполнении соотношения

\[
\frac{\delta}{l^2} = 2,486 \cdot 10^{-8} \frac{C_{\text{np}}}{\lambda} T_0^3. \tag{14.43}
\]

ГЛАВА XV

ТЕПЛООБМЕННЫЕ АППАРАТЫ

Теплообменными аппаратами (теплообменниками) называются устройства, предназначенные для передачи теплоты от одного теплоносителя к другому.

Необходимость передачи теплоты от одного теплоносителя к другому возникает во многих отраслях техники. Теплообменники применяют в системах охлаждения. Их используют также при создании
теплосиловых установок летательных аппаратов, особенно в ядерных двигателях.

Широкое распространение теплообменных аппаратов обусловило многообразие их конструктивного оформления.

§ 1. Основные виды теплообменных аппаратов

По принципу действия теплообменники подразделяют на три вида: рекуперативные, регенеративные и смешительные.

В рекуперативных теплообменниках теплоносители омывают стенку с двух сторон и обмениваются при этом теплотой. Процесс теплообмена протекает непрерывно и имеет обычно стационарный характер. На рис. 15.1 показан пример рекуперативного теплообменника, в котором один из теплоносителей протекает внутри труб, а второй омывает их наружные поверхности.

Стенка, которая омывается с обеих сторон теплоносителями, называется рабочей поверхностью теплообменника.

Рекуперативные теплообменники подразделяют в зависимости от направления движения теплоносителей (рис. 15.2). Если теплоносители движутся параллельно в одном направлении, теплообменник называют прямоточным (рис. 15.2, а), при противоположном направлении движения — противоточным (рис. 15.2, б). В теплообменнике с перекрестным током теплоносители движутся во взаимно перпендикулярных направлениях, при этом возможен однократный (рис. 15.2, в) и многократный (рис. 15.2, г) перекрестный ток. Встречаются и более сложные схемы движения теплоносителей (рис. 15.2, д и е).

Конструктивно рекуперативные теплообменники могут выполняться с трубчатыми и с пластинчатыми рабочими поверхностями. Пример трубчатого теплообменника показан на рис. 15.1. В пластинчатом теплообменнике рабочая поверхность образована набором параллельных плоских пластин. Каналы между пластинами объединены через один общий коллекторами и образуют, таким образом, полости для каждого из теплоносителей.
Возможны также теплообменники с рабочей поверхностью в виде вращающейся трубы. В таких аппаратах можно получить значительное увеличение коэффициента теплопередачи [26].

Рекуперативные теплообменники, предназначенные для утилизации теплоы в газотурбинных установках, называют регенераторами; теплообменники для рассеивания теплоы горячей воды в окружающее пространство (например, в системе охлаждения автомобильного двигателя) называют радиаторами. Назначением определяются также названия: воздухоподогреватели, маслоохладители, паропереохладители и т. п.

В регенеративном теплообменнике одна и та же поверхность поочередно омывается то горячим, то холодным теплоносителем. При соприкосновении с горячим теплоносителем стенка аккумулирует тепло, а затем отдает ее холодному теплоносителю. Для удовлетворительной работы теплообменника его рабочие стенки должны обладать значительной теплоемкостью.

Характерная особенность регенеративного теплообменника — нестационарный режим теплообмена. Чтобы процесс теплообмена протекал непрерывно при одинаковой продолжительности периода нагрева и охлаждения, такой теплообменник должен иметь две параллельно работающие секции.

Внутренняя полость теплообменника заполняется насадкой, которая делается из кирпича, металла или другого материала.

В смесительных теплообменниках процесс теплообмена сопровождается перемешиванием теплоносителей, т. е. они непосредственно соприкасаются друг с другом. Поэтому смесительные теплообменники называются также контактными. Процесс теплообмена в таком аппарате имеет стационарный характер и сопровождается испарением жидкости.

Смесительный теплообменник целесообразно использовать для таких теплоносителей, которые легко разделить после теплообменного аппарата. Например, такой парой теплоносителей является вода и воздух.

Наиболее важным фактором в рабочем процессе смесительного теплообменного аппарата является величина поверхности соприкосновения теплоносителей, которая зависит от степени дробления жидкости.

Для увеличения поверхности теплообмена на пути движения теплоносителей можно разместить насадку, которая представляет собой слой кускового материала (например, куски керамики, кокса и т. п.), или деревянные решетки. Пленка жидкости на поверхности насадки представляет собой дополнительную поверхность контакта, которая иногда может быть основной поверхностью теплообмена.

Из трех рассмотренных выше видов теплообменников наиболее широкое и разностороннее применение находят рекуперативные теплообменники. Поэтому в остальных параграфах этой главы рассматривается расчет и выбор параметров только для рекуперативных теплообменников.
§ 2. Тепловой расчет рекуперативного теплообменника

Различают конструктивный и проверочный тепловой расчет теплообменного аппарата. Цель конструктивного расчета состоит в определении величины рабочей поверхности теплообменника, которая является исходным параметром при его проектировании. При этом должно быть известно количество передаваемой теплоты или массовые расходы теплоносителей и изменение их температуры.

Проверочный расчет выполняется для теплообменника с известной величиной поверхности. Цель расчета состоит в определении температур теплоносителей на выходе из теплообменника и количества передаваемой теплоты.

На рис. 15.3 изображены температурные поля прямоточного (рис. 15.3, a) и противоточного (рис. 15.3, b) теплообменников. Индексами 1 и 2 отмечаются температуры и другие параметры соответственно горячего и холодного теплоносителя. Одним и двумя штрихами отмечаются параметры теплоносителя на входе и выходе из теплообменного аппарата.

Сравнение температурных полей прямоточного и противоточного теплообменников показывает, что при противоточной схеме имеется большая возможность изменения температуры теплоносителей в пределах аппарата. Если, например, необходимо нагреть холодный теплоноситель до максимально возможной температуры при заданной начальной температуре горячего теплоносителя t_1, то при увеличении поверхности нагрева в прямоточном теплообменнике температура t_2 будет приближаться к температуре t'', а в противоточном — к t_1.

Рабочий процесс рекуперативного теплообменника описывается двумя уравнениями: уравнением теплового баланса и уравнением теплопередачи.

Тепловой баланс теплообменника определяется уравнением

$$Q = G_1 c_p_1 (t'_1 - t''_1) \eta_{пот} = G_2 c_p_2 (t''_2 - t'_2).$$

где G — массовый расход теплоносителя; $\eta_{пот}$ — коэффициент потерь теплоты в окружающую среду, который равен 0,97 — 0,995.
Обозначим \(W = Gc_p. \) \hspace{1cm} (15.2)

С учетом этого обозначения уравнению теплового баланса можно привести вид

\[Q = W_1 (t'_1 - t'_1) \eta_{шот} = W_2 (t'_2 - t'_2). \] \hspace{1cm} (15.3)

Обозначив изменение температуры теплоносителя в пределах теплообменного аппарата через \(\delta t \), уравнение (15.3) при \(\eta_{шот} = 1 \) можно переписать в виде

\[\frac{\delta t_1}{\delta t_2} = \frac{W_2}{W_1}. \] \hspace{1cm} (15.4)

Следовательно, чем больше параметр \(W \), тем меньше изменяется температура теплоносителя в пределах теплообменного аппарата.

Рассмотрим теперь уравнение теплопередачи. Разность температур между теплоносителями изменяется по длине теплообменного аппарата, поэтому уравнение теплопередачи имеет вид

\[Q = \int_{0}^{\Delta t} \kappa_i \Delta t \, dF = \kappa F \Delta t, \]

где \(\kappa \) и \(\Delta t \) — средние значения коэффициента теплопередачи и температурного напора всего теплообменного аппарата.

Уравнения теплового баланса и теплопередачи служат основой конструктивного и проверочного расчетов теплообменников.

При конструктивном расчете рабочая поверхность теплообменника определяется из уравнения теплопередачи

\[F = \frac{Q}{\kappa \Delta t}. \] \hspace{1cm} (15.5)

Если тепловой поток \(Q \) неизвестен, он определяется из уравнения (15.3).

Получим формулу для подсчета среднего температурного напора. Запишем уравнение теплопередачи и уравнение теплового баланса для элемента рабочей поверхности прямооточного теплообменника (рис. 15.4):

\[dQ = \kappa \Delta t \, dF, \]
\[dQ = -W_1 \, dt_1 = W_2 \, dt_2. \] \hspace{1cm} (15.6)

Из последнего уравнения следует, что

\[dt_1 = -\frac{dQ}{W_1} \quad \text{и} \quad dt_2 = \frac{dQ}{W_2}. \]
Вычитая правые и левые части этих равенств, получим

$$d \Delta t = -dQ \left(\frac{1}{\mathcal{W}_1} + \frac{1}{\mathcal{W}_2} \right). \quad (15.7)$$

После замены в этом равенстве \(dQ\) из уравнения (15.6) и разделения переменных найдем

$$\frac{d \Delta t}{\Delta t} = -\left(\frac{1}{\mathcal{W}_1} + \frac{1}{\mathcal{W}_2} \right) \kappa dF.$$

После интегрирования этого уравнения от входного до выходного сечения теплообменника получим

$$\ln \frac{\Delta t''}{\Delta t'} = -\left(\frac{1}{\mathcal{W}_1} + \frac{1}{\mathcal{W}_2} \right) \kappa F. \quad (15.8)$$

С помощью уравнения (15.3) при \(\eta_{пот} = 1\) найдем

$$\frac{1}{\mathcal{W}_1} + \frac{1}{\mathcal{W}_2} = \frac{t_1' - t_1''}{Q} + \frac{t_2' - t_2''}{Q} = \frac{\Delta t' - \Delta t''}{Q}.$$

Подставив это выражение в формулу (15.8) и заменив в нём величину \(\kappa F\) из уравнения (15.5), получим окончательную формулу для \(\Delta t\)

$$\frac{\Delta t}{\Delta t'} = \frac{\Delta t' - \Delta t''}{\ln \frac{\Delta t' - \Delta t''}{\Delta t''}}. \quad (15.9)$$

Это выражение называется формулой среднелогарифмического температурного напора. Она одинаково пригодна для прямоточного и противоточного теплообменников (величины \(\Delta t'\) и \(\Delta t''\) обозначены на рис. 15.3).

Аналитическая оценка среднего температурного напора для теплообменников с перекрестным током и другими более сложными схемами движения приводит к громоздким формулам. Поэтому средний температурный напор для таких схем движения теплоносителей определяют по формуле

$$\bar{\Delta t} = e_{\Delta t} \Delta t_{cпрот}, \quad (15.10)$$

где \(e_{\Delta t}\) — поправка, которая зависит от двух вспомогательных величин:

$$R = \frac{t_1' - t_1''}{t_2' - t_2''} \quad \text{и} \quad P = \frac{t_2'' - t_2'}{t_1' - t_1''}. \quad (15.11)$$

Зависимости \(e_{\Delta t} = f (R, P)\) рассчитаны для различных схем движения теплоносителей и приводятся в справочной литературе.

Полученные формулы позволяют сравнить средние температурные напоры при различных схемах движения теплоносителей. Сравнение показывает, что при одинаковых температурах теплоносителей на входе и выходе из теплообменного аппарата в противоточном
теплообменнике температурный напор получается наибольшим, а в прямоточном — наименьшим. При других схемах движения теплоносителя Δt имеет значения между $\Delta t_{прям}$ и $\Delta t_{прот}$. Например, при $t_1' = 130^\circ C$, $t_1'' = 100^\circ C$, $t_2' = 67,5^\circ C$ и $t_2'' = 92,5^\circ C$ получается $\Delta t_{прям} = 26^\circ$ и $\Delta t_{прот} = 35^\circ$. При однократном перекрестном токе в этих условиях $\Delta t = 33,5^\circ$.

Благодаря большей величине среднего температурного напора рабочей поверхности при противоточной схеме движения жидкостей и прочих равных условиях будет наименьшей. Поэтому, если при изменения конструкторного характера не ограничивают выбор схемы движения теплоносителей, то предпочтение надо отдать противоточному теплообменнику по сравнению с прямоточным.

Но следует заметить, что противоточная схема движения теплоносителей не всегда имеет существенные преимущества перед прямоточной. Расчеты показывают, что при большом значении одного из параметров W ($\frac{W_1}{W_2} < 0,05$ или $\frac{W_1}{W_2} > 10$) и при $\frac{\kappa F}{W_1} \to 0$ обе схемы становятся равноценными. Первое условие равнозначно несущественному изменению температуры одного из теплоносителей (например, при изменении его агрегатного состояния). При $\frac{\kappa F}{W_1} \to 0$ средний температурный напор существенно превышает изменение температуры одной из жидкостей.

При сравнении противоточной и перекрестной схем движения необходимо принять во внимание не только изменение величины среднего температурного напора, но и изменение условий теплообмена. При одинаковом гидравлическом сопротивлении и условии $\frac{\phi}{Pr^{1/4}} < 58$ поперечное оттекание позволяет получать большую величину коэффициента теплоотдачи, чем продольное оттекание труб. Поэтому возможны такие условия, при которых теплообменник с перекрестным током при прочих равных условиях будет иметь меньшую поверхность теплообмена.

Если величины $\Delta t'$ и $\Delta t''$ близки по своим значениям, то вместо выражения (15.9) можно воспользоваться формулой среднейрифметического температурного напора:

$$\sqrt[\gamma]{\Delta t} = \frac{\Delta t' + \Delta t''}{2}.$$ \quad (15.12)

При $\frac{\Delta t'}{\Delta t''} = 0,6 — 1,67$ разница между среднелогарифмическим и среднеприлифметическим температурными напорами не превышает 3%.

Для подсчета рабочей поверхности по выражению (15.5) коэффициент теплоотдачи определяется обычно по формулам плоской стенки, так как трубки теплообменника имеют небольшую толщину.

Если в пределах аппарата условия теплообмена на отдельных участках рабочей поверхности существенно различны, то коэффициенты теплообмена и теплопередачи подсчитываются для каждого
участка в отдельности, и затем определяется среднее для всей поверхности значение коэффициента теплопередачи по формуле

$$\kappa = \sum_{i=1}^{n} \kappa_i \frac{F_i}{F},$$

где κ_i — коэффициент теплопередачи каждого участка; $\frac{F_i}{F}$ — относительная площадь этого участка; n — число участков, на которое подразделена рабочая поверхность.

Средние температуры теплоносителей, необходимые для расчета коэффициентов теплообмена, определяются следующим образом. Для теплоносителя с большей величиной параметра W, у которого температура в пределах теплообменника изменяется меньше, средняя температура определяется как полусумма крайних значений температур. Если $W_1 \gg W_2$, то

$$t_1 = \frac{t_1^* + t_1^''}{2}.$$

Средняя температура второго теплоносителя определяется по формуле

$$t_2 = t_1 + \Delta t,$$

где Δt подсчитывается по формуле (15.9) или (15.10).

Получим расчетные соотношения для выполнения проверочного расчета прямого теплообменника. Если обозначить

$$\frac{1}{W_1} + \frac{1}{W_2} = m,$$

то уравнение (15.8) можно переписать в виде

$$\frac{t_1^* - t_2^*}{t_1^1 - t_2^1} = e^{-m\kappa F}.$$

Вычтем из единицы правую и левую части равенства:

$$1 - \frac{t_1^* - t_2^*}{t_1^1 - t_2^1} = 1 - e^{-m\kappa F}.$$

После приведения к общему знаменателю и перегруппировки членов левой части равенства имеем

$$(t_1^1 - t_2^1) + (t_2^* - t_2^1) = (t_1^1 - t_2^1)(1 - e^{-m\kappa F}).$$

(15.13)

Из уравнения теплового баланса при $\eta_{фот} = 1$

$$t_2^* - t_2'' = (t_1^* - t_1^1) \frac{W_1}{W_2}.$$
Подставив это равенство в выражение (15.13), после несложно
ных преобразований получим

\[t_1'' = t_1' - (t_1' - t_2') \Pi, \]
(15.14)

где

\[\Pi = \frac{1 - e^{\left(1 + \frac{W_1}{W_2}\right) \frac{\kappa F}{W}}}{1 + \frac{W_1}{W_2}}. \]
(15.15)

Для конечной температуры холодного теплоносителя в прямо
точном теплообменнике расчетная формула имеет вид

\[t_2'' = t_2' + (t_1' - t_2') \frac{W_1}{W_2} \Pi. \]
(15.16)

Аналогично для противоточного теплообменника:

\[t_1'' = t_1' - (t_1' - t_2') Z, \]
(15.17)

\[t_2'' = t_2' + (t_1' - t_2') \frac{W_1}{W_2} Z, \]
(15.18)

где

\[Z = \frac{1 - e^{\left(1 - \frac{W_1}{W_2}\right) \frac{\kappa F}{W}}}{1 - \frac{W_1}{W_2} e^{\left(1 - \frac{W_1}{W_2}\right) \frac{\kappa F}{W}}}. \]
(15.19)

Для определения функций \(\Pi \left(\frac{W_1}{W_2}, \frac{\kappa F}{W_1} \right) \) и \(Z \left(\frac{W_1}{W_2}, \frac{\kappa F}{W_1} \right) \) составлены гра
фики [18] и таблицы [13]. В этих же работах рассмотрены прибли
женные формулы для определения конечных температур тепло
носителей в аппаратах с перекрестным током и иными схемами дви
жения.

После определения конечных температур тепловой поток подсчи
тывается по уравнению (15.3).

§ 3. О гидравлическом расчете теплообменника

Цель гидравлического расчета теплообменника состоит в опре
делении затраты механической энергии на перемещение теплоносит
елей в аппарате. Процесс теплообмена, которым сопровождается дви
жение теплоносителей через теплообменник, вносит некоторую осо
бенность в методику расчетной оценки гидравлического сопро
тивления.

При гидравлическом расчете теплообменника надо учитывать сопротивление трения, местные сопротивления и теплое сопротивле
ние.
Сопротивление трения определяется по известной формуле

$$\Delta p_t = \xi \frac{l}{d} \frac{\rho w^2}{2},$$

где l и d — длина и диаметр канала; ξ — коэффициент сопротивления трения.

При неизотермическом течении жидкости величина коэффициента ξ зависит не только от числа Re, но и от чисел Gr и Pr. Так, при турбулентном режиме течения

$$\xi = \frac{0.3164}{Re_f^{0.25}} \left(\frac{Pr_w}{Pr_f} \right)^{1/3}.$$ \hspace{1cm} (15.21)

Местные сопротивления определяются формулой

$$\Delta p_m = \xi \frac{\rho w^2}{2},$$

в которой коэффициент ξ зависит от вида местного сопротивления (внезапное сужение канала, поворот и т. п.).

В газодинамике доказывается, что подвод теплоты к газу, движущемуся по каналу постоянного сечения, сопровождается уменьшением давления газа, а отвод теплоты, наоборот, — повышением давления. Уменьшение давления газа, обусловленное его подогревом, представляет собой тепловое сопротивление. При охлаждении газа тепловое сопротивление отрицательно, т. е. оно уменьшает общее сопротивление теплообменника. Тепловое сопротивление можно подсчитать как удвоенную разность скоростных напоров в конце и в начале канала

$$\Delta p_{тепл} = 2 \left(\frac{\rho_2 w_2^2}{2} - \frac{\rho_1 w_1^2}{2} \right) = 2 \frac{t_2 - t_1}{T_{ср}} \frac{\rho_{ср} w_{ср}^2}{2}.$$ \hspace{1cm} (15.23)

Общее сопротивление каждого теплоносителя определяется как сумма всех видов сопротивлений в элементах теплообменника

$$\Delta p = \sum \Delta p_t + \sum \Delta p_m + \sum \Delta p_{тепл}.$$

Эта формула приближенная, так как она не учитывает влияния условий движения теплоносителя до поступления в элемент аппарата на сопротивление этого элемента. Поэтому в особо важных случаях сопротивление отдельных трактов теплообменника определяют путем гидравлического испытания модели аппарата.

Мощность, необходимая для перемещения каждого теплоносителя в теплообменнике, определяется формулой

$$N = \frac{\Delta p G}{1000 \rho \cdot \eta},$$

где G и ρ — массовый расход и плотность теплоносителя; η — к. п. д. устройства (насоса, вентилятора) для перемещения теплоносителя.
§ 4. Эффективность теплообменника и способы ее повышения

При проектировании теплообменного аппарата конструктор выбирает форму рабочей поверхности, схему движения теплоносителей и их скорости, конструктивные параметры (диаметр трубок, расстояние между ними, расстояние между пластинами). При этом выполняются тепловой и гидравлический расчеты нескольких вариантов аппарата с тем, чтобы выбрать из них наиболее эффективный.

Эффективность теплообменника можно оценить различными способами. Важным критерием для оценки эффективности теплообменника являются затраты (в рублях), связанные с его изготовлением и эксплуатацией. Наиболее эффективным является теплообменник, для которого сумма годовых эксплуатационных расходов и амортизационных отчислений с капитоловложения (в год) будет наименьшей. Такой способ оценки эффективности теплообменника требует выполнения значительных по объему технико-экономических расчетов.

Затраты на сооружение теплообменника зависят, главным образом, от величины его рабочей поверхности, а затраты на эксплуатацию — от мощности для перемещения теплоносителей. Поэтому различные варианты теплообменников могут сравниваться по величинам $\frac{F}{Q}$ и $\frac{N}{Q}$ (Q — секундное количество передаваемой теплоты). При одинаковом значении одного из этих параметров наибольшей эффективностью обладает тот теплообменник, у которого меньше второй параметр.

Для сравнительной оценки различных схем теплообменных аппаратов академик М. В. Кирпичев предложил использовать критерий

$$E = \frac{q}{l},$$

gде q — плотность теплового потока через рабочую поверхность теплообменника; l — работа сопротивления обоих теплоносителей на единицу рабочей поверхности в единицу времени.

Наилучшим будет теплообменник, для которого величина E имеет максимальное значение.

Для транспортных теплообменников и особенно авиационных важное значение имеют весовые и габаритные характеристики аппаратов. В этом случае различные варианты теплообменника можно сравнить по весу аппарата вместе с устройствами для перемещения теплоносителей и их приводами или по весу собственно теплообменника при одинаковой затрате энергии на перемещение теплоносителей.

Кompактность теплообменника можно оценить удельной поверхностью нагрева β, которая представляет собой площадь рабочей поверхности, приходящуюся на единицу объема аппарата. При сравнении теплообменников по их компактности
величины \(\beta \) должны сопоставляться при одинаковой работе, затрачиваемой на перемещение теплоносителей.

При выборе вида поверхности нагрева следует иметь в виду, что трубчатые поверхности позволяют создать жесткую конструкцию и более удобны в эксплуатации (для очистки). Пластинчатые теплообменники более компактны. Промышленные трубчатые теплообменники имеют \(\beta = 40—80 \, \text{м}^2/\text{м}^3 \), в то время как у пластинчатых эта величина доходит до 200—300 \(\text{м}^2/\text{м}^3 \).

Выбор скоростей теплоносителей должен обеспечить наибольшую эффективность работы теплообменника. Для получения высокой интенсивности теплообмена желательно, чтобы при течении жидкости в трубах и каналах реализовался турбулентный режим. Расчетные величины скоростей принимаются после сопоставления эффективности теплообменников с различными скоростями теплоносителей. Для газов и паров скорости движения можно ориентировочно выбирать в диапазоне 15—100 \(\text{м/сек} \), для жидкостей — 1—3 \(\text{м/сек} \).

Увеличение скоростей теплоносителей сопровождается уменьшением рабочей поверхности теплообменника (из-за увеличения коэффициента теплопередачи) и ростом гидравлических потерь. Существует оптимальное соотношение скоростей теплоносителей, которое характеризуется максимальным количеством передаваемой теплоты при затрате заданного количества энергии для перемещения теплоносителей. Для трубчатого теплообменника оптимальное соотношение скоростей найдено в [4].

Если теплоносители имеют резко отличающиеся коэффициенты теплоотдачи, то скорость теплоносителя с большим коэффициентом теплоотдачи слабо влияет на коэффициент теплопередачи и ее значение можно выбрать из условия получения приемлемой площади проходного сечения тракта или мощности устройства на его перемещение.

Диаметр труб и шаг трубного пучка также существенно влияют на компактность и вес теплообменника. При фиксированной величине относительного шага рабочая поверхность пропорциональна диаметру, а объем — квадрату диаметра труб. Поэтому удельная поверхность нагрева обратно пропорциональна диаметру трубы. Например, уменьшение диаметра трубы от 19 до 2,4 \(\text{мм} \) приводит к уменьшению объема теплообменника в десять раз, а массы в восемь раз. Однако использование мелких трубок увеличивает производственные затраты и затрудняет очистку теплообменника в процессе эксплуатации. Поэтому обычно применяются трубы с диаметром больше 12 \(\text{мм} \). Наиболее распространенными являются стальные и латунные трубы с наружным диаметром 14, 16, 19, 24 и 25 \(\text{мм} \).

Уменьшение шага трубного пучка также является средством уменьшения веса и размеров теплообменника. Уменьшение шага пучка ограничено технологическими возможностями. Относительный шаг пучка составляет обычно \(\frac{x}{d_\text{h}} = 1,25 \div 1,6^* \).

* Следует заметить, что из технологических соображений расстояние между стенками труб не должно быть меньше 6 \(\text{мм} \).
Иногда конструктор теплообменника имеет свободу выбора одного из теплоносителей. При выборе вида теплоносителя должны быть учтены температурные условия работы, стоимость теплоносителя, возможность коррозии стенок и т. п. Например, при высоких температурах в качестве теплоносителя удобно использовать расплавленные металлы, которые имеют высокую температуру кипения и, кроме того, высокую теплопроводность.

Для повышения компактности и снижения веса теплообменных аппаратов используются различные средства интенсификации теплообмена.

Эффективным средством повышения компактности теплообменного аппарата является постановка ребер на его поверхностях, которая может использоваться как в пластинчатых, так и в трубчатых теплообменных аппаратах. На рис. 15.5, а изображен пластинчатый теплообменник с плоскими непрерывными ребрами, а на рис. 15.5, б — теплообменник с ребристыми овальнообразными трубами. В трубчатом теплообменнике постановка ребер возможна только с одной стороны, а в пластинчатом — с обеих сторон рабочей поверхности.

Ребра обычно выполняются из медных или алюминиевых тонких листов и надежно припаиваются к основной поверхности. Они могут быть гладкими или рифлеными. Ребра могут выполняться в виде отдельных пластинок, которые располагаются в канале пластинчатого теплообменника в шахматном или коридорном порядке, а также в виде цилиндрических или конических шипов, которые припаяны к поверхности нагрева. Теплообменники с такими ребрами называются исколочатыми.

На рис. 15.6 сопоставлены зависимости коэффициента теплоотдачи от мощности трения, приходящейся на единицу одной стороны рабочей поверхности, для различных видов теплообменников. Обозначения типов поверхностей и величины удельной поверхности нагрева, отнесенные к объему одной полости теплообменника β', даны в табл. 15-1.
Из рис. 15.6 видно, что при одинаковом сопротивлении коэффициент теплоотдачи для ребристой стенки (отнесенный к основной поверхности) в 1,7—5,5 раза больше, чем для внутренней поверхности круглых труб.

ГЛАВА XVI
ТЕПЛОВАЯ ЗАЩИТА

В авиационной и ракетной технике часто возникает необходимость защитить стенки конструкции от воздействия высокотемпературного газового потока. Они могут быть защищены от перегрева жаростойкими, оплавляющимися или сублимирующими покрытиями или посредством конвективного, пористого, пленочного и заградительного охлаждения.

§ 1. Конвективное охлаждение

При конвективном охлаждении стенка, соприкасающаяся с горячим потоком, с другой стороны омывается холодным газом или жидкостью. При заданных температуре горячего газа и условиях
теплообмена его с поверхностью температурное состояние стенки зависит от температуры охладителя и интенсивности его теплообмена со стенкой. Повышение интенсивности теплообмена между охладителем и стенкой позволяет приблизить температуру стенки к температуре охладителя. Например, при кипении охлаждающей жидкости на поверхности стенки получаются большие коэффициенты теплоотдачи и создаются благоприятные условия охлаждения.

При использовании газообразного охладителя отобранная от стенки теплота расходуется на его нагрев, а при использовании жидкости — на нагрев и испарение.

В зависимости от способа рассеивания теплоты, полученной охладителем, в окружающее пространство системы конвективного охлаждения подразделяют на замкнутые и разомкнутые. Объектным элементом замкнутой системы охлаждения является теплообменник, в котором охладитель, получивший теплоту от горячей стенки, рассеивает ее в окружающую среду или передает другому теплоносителю. В этом случае вес системы охлаждения не зависит от времени ее эксплуатации.

Одной из разновидностей разомкнутой системы является испарительное охлаждение, где теплота поглощается вследствие испарения жидкости. При такой схеме охлаждения пар отделяется от жидкости в сепараторе и выбрасывается в окружающую среду. Для уменьшения расхода охладителя желательно, чтобы он имел высокую температуру испарения. Наиболее пригодными для этих целей жидкостями являются вода \(r = 2260 \text{ ккал/кг} \), метиловый спирт \(r = 1120 \text{ ккал/кг} \), этиловый спирт \(r = 853 \text{ ккал/кг} \)*.

При высоких допустимых температурах стенки для охлаждения с испарением могут применяться расплавленные металлы, которые обладают большой теплотой испарения. Например, литий имеет \(r = 20 500 \text{ ккал/кг} \) (при нормальном атмосферном давлении температура его плавления 182\(^\circ\) С, температура кипения 1320\(^\circ\) С).

Оценку температурного состояния охлаждаемой стенки можно сделать по расчетным соотношениям теплопередачи (глава III), а расчет теплообменника — по методике, рассмотренной в предыдущей главе.

Конвективное охлаждение используется в жидкостных ракетных двигателях. Здесь применяется система разомкнутого типа: использованное в качестве охладителя топливо поступает затем в камеру двигателя и там сгорает.

Кроме жидкостных ракетных двигателей, конвективное охлаждение используется также при создании высокотемпературных турбин и высотной радиоаппаратуры. Для охлаждения лопаток газотурбинного двигателя возможно использование разомкнутой воздушной системы или замкнутой жидкостной системы. Для охлаждения радиоаппаратуры можно применять разомкнутую воздушную систему или конвективное испарительное охлаждение.

* Теплота испарения \(r \) дана при нормальном атмосферном давлении и температуре кипения.
§ 2. Тугоплавкие теплоизолирующие покрытия

Слой теплоизоляционного материала, нанесенный на защищающую стенку со стороны горячего газа, в нестационарных условиях нагрева приводит к снижению температуры стенки. В стационарных условиях теплоизоляция приводит к желаемому эффекту только при наличии системы конвективного охлаждения.

Влияние слоя теплоизолятора на температурное состояние стенки при стационарном режиме теплообмена иллюстрируется рис. 16.1. Введение теплоизоляционного слоя при неизменных температурах сред и коэффициентах теплообмена с обеих сторон стенки увеличивает внутреннее термическое сопротивление и уменьшает тепловой поток. Вследствие этого повышается температура на наружной поверхности теплоизоляции по сравнению с температурой поверхности незащищенной стенки, понижается температура на ее внутренней поверхности и уменьшается температурный градиент в защищаемой стенке. Рост температуры наружной поверхности увеличивает ее излучение, что приводит к дополнительному уменьшению коэффициента теплопередачи и теплового потока.

Для стационарных тепловых режимов качество изоляции улучшается с уменьшением коэффициента теплопроводности, а для нестационарных — с уменьшением коэффициента температуропроводности. Важными качествами таких покрытий являются высокая температура плавления, способность противостоять термическим напряжениям, которые возникают при больших температурных градиентах, хорошая сцепляемость (адгезия) с материалом защищаемой стенки.

В качестве материалов для покрытий используются тугоплавкие металлы (мolibден, вольфрам и др.), металллокерамика (окиси, карбиды, нитриды металлов), графит. Температура плавления или разложения этих материалов 2000—3500°С.

Температурное состояние стенки с теплоизолирующим покрытием в стационарных условиях определяется расчетными соотношениями теплопередачи. Однако чаще эту задачу приходится решать для нестационарных условий. В этом случае задача расчета состоит в том, чтобы выбрать такую толщину покрытия, которая при известном времени работы конструкции не допустит перегрева рабочей стенки.

Эту задачу можно решать в одномерной постановке, применяя дифференциальное уравнение (4.10) к стенке и слою теплоизоляции с учетом того, что в месте соприкосновения в любой момент времени...
их температуры одинаковы, а градиенты температур связаны уравнением (индекс п относится к покрытию)

\[
\lambda_p \left(\frac{\partial t}{\partial n} \right)_p = \lambda_{ct} \left(\frac{\partial t}{\partial n} \right)_{ct}.
\] \hspace{1cm} (16.1)

Разработана упрощенная методика определения температуры в месте соприкосновения стенки с покрытием \(t_{ct} \), основанная на предположении о том, что тепловым сопротивлением стенки по сравнению с тепловым сопротивлением покрытия можно пренебречь (т. е. принять \(\lambda_{ct} \rightarrow \infty \)). Полученное на основе этой предпосылки аналитическое решение оказалось сложным и не приемлемым для практических расчетов. С помощью безразмерного комплекса

\[
\mu = \frac{1}{Bi} + \frac{1}{K} + \frac{1}{KBi}
\] \hspace{1cm} (16.2)

это решение удалось заменить приближенным выражением

\[
\bar{\theta} = \frac{t_f - t_{ct}}{t_f - t_{ct_0}} = \sum_{i=1}^{\infty} \frac{2ue^{-Fo^2\Phi_i^g}}{1 + \mu + \mu^2 \Phi_i},
\] \hspace{1cm} (16.3)

где \(\Phi_i \) — положительные корни трансцендентного уравнения

\[
\Phi_i \tan \Phi_i = \frac{1}{\mu}.
\] \hspace{1cm} (16.4)

Здесь числа Fo и Bi подсчитываются по параметрам теплоизоляющего слоя, а

\[
K = \frac{\rho_{ct}c_{ct}\delta_{ct}}{\rho_p c_p \delta_p}.
\]

Результаты вычислений, выполненных по формуле (16.3), удовлетворительно аппроксимируются выражением

\[
\lg \bar{\theta} = 0,0212 - \frac{0,45}{\mu + 0,4} \text{Fo}.
\] \hspace{1cm} (16.5)

При \(\mu = 0,2 - 20 \) разница в величинах \(\bar{\theta} \), вычисленных по выражениям (16.3) и (16.5), не превосходит 2%.

Тугоплавкие покрытия применяются для защиты таких элементов конструкции, которые в процессе работы не должны изменять своей формы и размеров. К таким элементам относится, например, горловина сопла ракетного двигателя.

§ 3. Аблирующие покрытия

Кроме тугоплавких покрытий, широкое применение в технике получили теплозащитные материалы, которые разрушаются в процессе их взаимодействия с горячим газовым потоком. При нагреве поверхность теплозащитного покрытия может оплавляться, субли-
мировать, разлагаться с образованием газообразных продуктов разложения и твердого обугленного слоя. Продукты разрушения теплозащитного покрытия уносятся с поверхности горячим газовым потоком, поэтому поверхность теплообмена в процессе работы перемешается в глубь покрытия со скоростью \(u \). Совокупность процессов, протекающих на поверхности разрушающегося покрытия в процессе его работы, называется аблицией.

Важная особенность работы аблирующих теплозащитных покрытий состоит в том, что основная доля теплоты, которая от газа подводится к поверхности теплообмена, расходуется на фазовые и химические превращения и только часть ее отводится внутрь конструкции. При этом вдувание паров и газообразных продуктов разложения покрытия в пограничный слой горячего газа приводит к уменьшению теплового потока к поверхности теплообмена.

Одной из важных характеристик аблирующего покрытия является теплота аблици \(r_a \), которая представляет собой теплоту, поглощенную единицей массы унесенного вещества. Если за единицу времени к единице поверхности, находящейся при температуре аблици, от горячего газа подводится теплота \(q_a \), а отводится излучением \(q_{изл}* \) и теплопроводностью внутрь покрытия \(q_{пп} \), при этом с поверхности уносится \(g^* \), \(\text{ккал/(см}^2\cdot\text{сек}) \) теплозащитного вещества, то формула для \(r_a \) имеет вид

\[
r_a = \frac{q_a - q_{изл} - q_{пп}}{g^*}.
\]

(16.6)

Величина \(r_a \) отражает свойство аблирующего покрытия поглощать теплоту, но не учитывает защитного эффекта, обусловленного вдуванием продуктов разрушения покрытия в пограничный слой горячего газа. Поэтому для сравнительной оценки покрытий удобнее использовать эффективную теплоту аблици \(r_{аф} \)

\[
r_{аф} = \frac{q_0 - q_{изл} - q_{пп}}{g^*},
\]

(16.7)

где \(q_0 \) — плотность теплового потока от горячего газа к поверхности, находящейся при температуре аблици, но в условиях, когда аблиции нет.

Если в процессе аблици паро-и газообразных продуктов не получается, то \(r_{аф} = r_a \).

Следует заметить, что эффективная теплота аблици влияет на скорость уноса материала, но она не определяет однозначно качество аблирующего покрытия. Не менее важной характеристикой такого покрытия является коэффициент теплопроводности. При большом коэффициенте теплопроводности покрытия большие потоки теплоты передаются в конструкцию, что приведет к быстрому ее разогреву.

* Радиусирующий поток энергии излучения может иметь и обратное направление.
Рассмотрим методику определения скорости уноса покрытия в предположении, что аблияция протекает в стационарных условиях \(u = \text{const} \), а фазовые и химические превращения на поверхности раздела фаз происходят в слое пренебрежимо малой толщины.

Плотность массового потока аблирующего вещества определяют по формуле

\[
G_a^* = \rho_n u.
\] (16.8)

С учетом этого выражения из формулы (16.6) видно, что скорость уноса покрытия, кроме характеристик покрытия \(r_a \) и \(\rho_n \), зависит от плотностей тепловых потоков \(q \), \(q_{\text{нал}} \) и \(q_{\text{вн}} \).

Тепловой поток \(q_{\text{вн}} \) определяется коэффициентом теплопроводности и температурным полем покрытия.

В неподвижной системе координат при \(u = \text{const} \) температура покрытия в фиксированной точке изменяется во времени. Поэтому для отыскания температурного поля в покрытии при одномерной постановке задачи необходимо исходить из уравнения (4.10). Введем подвижную систему координат, которая перемещается в глубь покрытия со скоростью уноса \(u \). В этой системе нормальная к поверхности координата \(\xi \) определяется выражением

\[
\xi = x - ut.
\] (16.9)

Из этого выражения легко найти

\[
\frac{\partial \xi}{\partial x} = 1; \quad \frac{\partial \xi}{\partial \tau} = -u; \quad \frac{\partial^2 t}{\partial x^2} = \frac{\partial^2 t}{\partial \xi^2};
\]

\[
\frac{\partial t}{\partial \tau} = \frac{\partial t}{\partial \xi} \frac{\partial \xi}{\partial \tau} = -u \frac{\partial t}{\partial \xi}.
\]

Подставив эти выражения в (4.10), получим

\[
a_n \frac{\partial^2 t}{\partial \xi^2} = -u \frac{\partial t}{\partial \xi}. \] (16.10)

В принятой системе координат температура не зависит от времени, поэтому уравнение (16.10) можно записать в полных производных

\[
\frac{d^2 t}{d\xi^2} + \frac{u}{a_n} \frac{dt}{d\xi} = 0. \] (16.11)

Решение этого уравнения имеет вид

\[
t = C_1 + C_2 e^{-\frac{u}{a_n} \xi}. \] (16.12)

При \(\xi = \infty \) \(t = t_w \), следовательно, \(C_1 = t_w \); при \(\xi = 0 \) \(t = t_w \) и потому \(C_2 = t_w - t_w \). Здесь \(t_w \) — температура аблирующей поверхности; \(t_w \) — первоначальная температура стенки.
Подстановка констант интегрирования в выражение (16.12) дает

\[t - t_{w_0} = (t_w - t_{w_0}) e^{-\frac{u}{\sigma_n} \xi}. \]

(16.13)

Температурный градиент на аблярующей поверхности

\[\left(\frac{\partial t}{\partial \xi} \right)_{\xi=0} = -\frac{u}{a_n} (t_w - t_{w_0}). \]

(16.14)

Тепловой поток, отводящийся внутрь покрытия, равен

\[q_{\text{вн}} = -\lambda_n \left(\frac{\partial t}{\partial \xi} \right)_{\xi=0} = \rho_n u c_n (t_w - t_{w_0}). \]

(16.15)

Подстановка этого выражения в формулу (16.6) с учетом (16.8) и выражений для \(q \) и \(q_{\text{изл}} \) дает баланс теплоты

\[\frac{\alpha}{c_{p_w}} (I_r - I_w) = e_{\text{обр}} C_0 \left[\left(\frac{T_w}{100} \right)^4 - \left(\frac{T_l}{100} \right)^4 \right] = g^*_a [r_a + c_n (t_w - t_{w_0})]. \]

(16.16)

В этом выражении коэффициент теплоотдачи зависит от потока пара или газа \(g^* \), вдуваемого в пограничный слой, и определяется по методике, рассмотренной в § 4 гл. XII. Плотность массового потока \(g^* \) в общем случае определяется формулой

\[g^* = \varphi g^*_a. \]

(16.17)

где \(\varphi \) — степень газификации, равная отношению расхода пара или газа к общему расходу вещества покрытия.

Для различных механизмов абляции \(\varphi = 0 - 1 \).

Методика определения скорости уноса на основе выражения (16.16) зависит от механизма абляции. Если покрытие в процессе взаимодействия с горячим газом сублимирует, то \(\varphi = 1 \), а равновесная температура поверхности \(t_w \) определяется графическим решением уравнения (16.16) по методике, рассмотренной в § 5 гл. XII. На основе этого решения определяется \(t_w \), концентрация паров у поверхности \(C_w \) и коэффициент массоотдачи \(\beta_v \), а следовательно, расход аблярующего вещества \(g^*_a \) [по формуле (12.31)] и скорость уноса \(u \) [из формулы (16.8)].

В рассматриваемом случае теплота абляции равна теплоте сублимации. Значительной теплотой сублимации обладают некоторые органические вещества (нафталин, камфара), минеральные соли и др. Например, хлористый аммоний имеет теплоту сублимации 4159 кДж/кг.

Аналогичная методика может быть использована для расчета уноса покрытий, взаимодействие которых с горячим потоком газа сопровождается химическими реакциями с образованием газообразных продуктов.
При использовании оплавляющихся покрытий на поверхности покрытия образуется вязкая пленка расплава, которая течет вдоль тела под воздействием омывающего стенку газового потока. При отсутствии испарения $\varphi = 0$.

Теплота передается к месту плавления через оплавленный слой, поэтому температура поверхности пленки выше температуры плавления. Следовательно, подведенная к поверхности тела теплота частично компенсирует теплоту плавления и передается внутрь покрытия, а частично расходуется на увеличение энтальпии пленки, которая сдувается газовым потоком с тела.

Скорость уноса покрытия при оплавлении можно определить из уравнения (16.16)

$$u = \frac{\alpha}{c_{p_w}} \left(T_r - T_\infty \right) - e_{\text{пр}} C_0 \left[\left(\frac{T_w}{100} \right)^4 - \left(\frac{T_f}{100} \right)^4 \right] \left(\frac{t_a + c_{\text{пл}} \left(T_w - T_\infty \right)}{\rho_0} \right),$$

(16.18)

При отсутствии испарения и линейном распределении температуры по толщине пленки

$$r_a = r_{\text{пл}} + c \left(\frac{T_w + T_s}{2} - T_s \right),$$

(16.19)

где $r_{\text{пл}}$ — темплота плавления; c — теплоемкость расплава; T_a — температура плавления; T_w — температура поверхности пленки.

Из формулы (16.18) видно, что с увеличением температуры поверхности пленки скорость уноса уменьшается. Однако эта температура не может быть выбрана произвольно — она определяется условиями движения пленки и ее теплопроводностью [7]. Чем больше вязкость и меньше теплопроводность расплава, тем выше температура T_w, тем больше r_a и меньше u.

Теплота плавления материалов невелика. Поэтому и теплота аблиции оплавляющихся покрытий имеет небольшие значения. Эффективность покрытия значительно возрастает, если взаимодействие пленки с горячим потоком газа сопровождается испарением или разложением расплава, в результате которого уменьшается тепловой поток к поверхности покрытия и увеличивается эффективная теплота аблиции. Даже испарение нескольких процентов расплава может привести к многократному уменьшению скорости уноса.

В качестве оплавляющихся покрытий могут использоваться стекловидные материалы, которые имеют хорошие термоупругие характеристики, небольшую теплопроводность в жидком состоянии, большую вязкость и теплоту испарения (скрытой теплоты плавления эти материалы не имеют), а также пластмассы, армированные стекловолокном или стеклотканью.

Защитный эффект может быть также основан на обугливании поверхностного слоя материала покрытия. Обугленный слой выполняет роль теплоизолатора, через который в пограничный слой горячего газа вдуваются газообразные продукты химических реакций, протекающих на внутренней стороне обугленного слоя. Обу-
глennen слой состоит в основном из углерода, который при низких давлениях может сублимировать. Таким образом, кроме теплоизолирующего эффекта самого слоя, происходит уменьшение теплоподвода к поверхности вследствие вдувания газа в пограничный слой.

Покрытие, которое обугливается в процессе работы, выполняют из смол и других органических веществ.

Тугоплавкие, оплавляющиеся, сублимирующие и газифицирующиеся покрытия находят широкое применение в ракетной технике для защиты наружных поверхностей ракет от разрушения при входе их в плотные слои атмосферы. Эти покрытия применяются также для защиты внутренних поверхностей ракетного двигателя твердого топлива. Чтобы критическая часть сопла не изменяла своих размеров во время работы двигателя, ее выполняют из тугоплавкого материала, а остальные поверхности покрывают оплавляющимися, сублимирующими или газифицирующимися покрытиями.

§ 4. Система пористого охлаждения

Схема пористого охлаждения показана на рис. 16.2. Омываемая горячим газом стенка выполнена из пористого материала; через нее в направлении горячего газа продавливается охладитель — газ или жидкость.

При использовании в качестве охладителя газа охлаждение называют эффизионным*, а при использовании жидкости — конденсатным.

Проходя через поры, охладитель получает теплоту от стенки, а выйдя на поверхность, ухудшает интенсивность теплообмена между горячим газом и стенкой. Таким образом, с одной стороны, затрудняются условия перехода теплоты от горячего газа к поверхности стенки, с другой стороны, получаемая стенкой теплота выносится охладителем обратно в поток. Оба эти фактора ведут к снижению температуры стенки.

Температурное поле в пористой стенке показано на рис. 16.2. Перед поступлением в стенку охладитель получает от нее некоторое количество теплоты путем теплообмена. Проходя через стенку, охладитель соприкасается с неё по большей поверхности и его температура приближается к температуре стенки. Чем больше толщина и коэффициент теплообмена внутри пористой стенки, тем меньше разница температур между стенкой и охладителем в выходном сечении.

В общем случае нельзя отождествлять температуру охладителя на выходе и температuru пристеночного слоя газа. Охладитель, выходящий из пор под углом к основному потоку газа, взаимодействует с пограничным слоем этого потока, получая от него теплоту и частично перемешиваясь с ним. Поэтому пристеночный слой газа имеет

* Эффузия — процесс течения газа через пористую стенку.
температуру более высокую, чем температура охладителя в выходном сечении.

Температурный градиент в пограничном слое определяет конвективный тепловой поток от горячего газа к стенке. Кроме того, горячий газ может передавать теплоту стенке путем излучения.

При использовании в качестве охладителя жидкости возможны различные режимы охлаждения. Когда расход жидкости небольшой, она будет кипеть в порах, при этом только часть охлаждаемой поверхности покрыта пленкой жидкости, и охлаждение неустойчиво. При чрезмерно больших расходах охладителя часть жидкости уносится газовым потоком без испарения на поверхности.

Больше, чем для газа, коэффициенты теплоотдачи между жидкостью и внутренней поверхностью пористой стенки (особенно, когда жидкость доведена до температуры кипения) способствуют сближению температуры стенки и температуры охладителя на выходе из нее.

При конденсатном охлаждении часть подведенной к стенке теплоты поглощается в процессе испарения.

Пористое охлаждение уменьшает сопротивление трения высокотемпературного газового потока о стенку примерно в такой же мере, как уменьшается коэффициент теплоотдачи.

Рассмотрим далее вопрос об определении температуры горячей поверхности пористой стенки при эфузонном охлаждении. Оценим радиационно-конвективный теплообмен между горячим газом и стенкой коэффициентом α^\ast. Если пренебречь теплопроводностью стенки вдоль поверхности, то при стационарном режиме теплообмена подведенная к поверхности теплота расходуется только на увеличение энталпии охладителя в системе.

Для высокоскоростного газового потока баланс теплоты на квадратный метр боковой поверхности стенки выражается формулой

$$\frac{\alpha}{c_{p,\omega}} (l_r - l_w) = g_0^\ast \Delta i_0,$$

где g_0^\ast — плотность массового потока охладителя $kg/(m^2 \cdot sek)$; $\Delta i_0 = i_0 - i_0^\prime$ — изменение энталпии охладителя в системе; l — полная энталпия горячего газа.

Если пренебречь разницей в температурах t_0 и t_w, т. е. положить $\theta = 0$ (см. рис. 16.2), то из этого уравнения получается однозначно

* Расчет конвективной части коэффициента теплообмена α рассмотрен в § 4 главы XII.
ная связь между температурой стенки и плотностью массового потока охладителя g^*_0:

$$g^*_0 = \frac{\alpha}{c_p w} \frac{(I_r - I_w)}{t_0 - t'_0}.$$

(16.21)

Температуру t_w, а также изменение температуры по толщине стенки можно рассчитать и без введения упрощающей предпосылки о равенстве температур t_0 и t_w, но при этом получаются громоздкие расчетные формулы.

При конденсатном охлаждении коэффициенты теплоотдачи внутри стенки имеют большие значения, чем при эффиузивном, поэтому температура охладителя может достичь температуры стенки еще до выхода его на поверхность.

Температурное поле стенки при конденсатном охлаждении показано на рис. 16.3. Температура горячей поверхности стенки при конденсатном охлаждении ограничена температурой кипения жидкости, т. е. $t_w \ll t_s$.

Предполагая, что вся жидкость испаряется с поверхности, тепловой баланс на квадратный метр стенки можно выразить формулой

$$\frac{\alpha}{c_p w} (I_r - I_w) = g_0^* \Delta t_0,$$

(16.22)

где $\Delta t_0 = c (t_w - t_0) + r$ — изменение энтальпии охладителя в системе; r — теплота испарения жидкости.

Отсюда плотность массового потока охладителя, необходимая для обеспечения выбранной температуры стенки, определяется формулой

$$g_0^* = \frac{\alpha}{c_p w} \frac{(I_r - I_w)}{\Delta t_0}.$$

(16.23)

Рассмотрим температурное поле в пористой стенке в предположении, что интенсивность теплоотдачи внутри пор бесконечно велика, и потому температурные поля стенки и протекающего по ней охладителя совпадают, а подходящих к холодной поверхности стенки поток охладителя получает теплоту только путем теплопроводности. Будем предполагать также, что через стенку путем теплопроводности теплота передается только по скелету пористого материала, а передачу теплоты через ячейки охладителя принимать во внимание не будем.

В сечении пористой стенки, отстоящем от начала координат на расстоянии x (рис. 16.4), температура стенки и охладителя t, а плотность теплового потока равна

$$q_x = -\lambda \frac{dt}{dx},$$

(16.24)

где λ — коэффициент теплопроводности пористого материала.

* Расчет конвективной части коэффициента теплообмена рассмотрен в § 5 главы XII.
Значение температуры в сечении \(x+dx\) можно найти разложением \(t\) в ряд Тейлора. Ограничившись двумя членами ряда, получим
\[
t_{x+dx} = t + \frac{dt}{dx} dx. \tag{16.25}
\]
Следовательно,
\[
q_{x+dx} = -\lambda \frac{d}{dx} \left(t + \frac{dt}{dx} dx \right) = -\lambda \left(\frac{dt}{dx} + \frac{d^2t}{dx^2} dx \right). \tag{16.26}
\]

Разность тепловых потоков в сечениях \(x\) и \(x+dx\) расходуется на повышение энталпии охладителя
\[
-\lambda \frac{dt}{dx} + \lambda \left(\frac{dt}{dx} + \frac{d^2t}{dx^2} dx \right) = g_0^* c_{p_0} dt, \tag{16.27}
\]
где \(c_{p_0}\) — теплоемкость охладителя.
Уравнение (16.27) приводится к виду
\[
\frac{d^2t}{dx^2} + \xi \frac{dt}{dx} = 0, \tag{16.28}
\]
где \(\xi = \frac{g_0^* c_{p_0}}{\lambda}\).
Решение уравнения (16.28) имеет вид
\[
t = C_1 + C_2 e^{\xi x}. \tag{16.29}
\]
Условия на границах стенки при \(x = 0\) \(t = t_0^*\); при \(x = \delta\) \(t = t_w\) — позволяют определить константы интегрирования:
\[
C_1 = t_w' - \frac{t_w' - t_w}{1 - e^{\xi \delta}}; \quad C_2 = \frac{t_w' - t_w}{1 - e^{\xi \delta}}.
\]
Подстановка констант интегрирования в уравнение (16.29) дает

$$t = t'_w + \frac{t_w - t'_w}{(e^{\xi \delta} - 1)}(e^{\xi x} - 1).$$

(16.30)

Рассмотрение баланса теплоты для слоя охладителя толщиной dx (рис. 16.4 при $x < 0$) позволяет записать дифференциальное уравнение для температуры охладителя

$$\frac{d^2 t'}{dx^2} - \xi \frac{dt'}{dx} = 0,$$

(16.31)

которое по форме совпадает с уравнением (16.28). Здесь $\xi = \frac{g_c^\kappa c_p}{\lambda_0}$ (λ_0 — коэффициент теплопроводности охладителя). Решение этого уравнения имеет вид

$$t' = C_3 + C_4 e^{\xi x}.$$

(16.32)

Граничные условия формулируются так:

при $x = 0$ $\lambda_0 \frac{dt'}{dx} = \lambda \frac{dt}{dx}$; при $x = -\infty$ $t' = t_0$.

Граничные условия позволяют найти константы интегрирования

$$C_3 = t_0; \quad C_4 = \frac{t_w - t'_w}{e^{\xi \delta} - 1}.$$

Подстановка этих констант в (16.32) приводит к уравнению

$$t' = t_0 + \frac{t_w - t'_w}{e^{\xi \delta} - 1} e^{\xi x}.$$

(16.33)

При $x = 0$ $t' = t'_w$. С помощью этого условия из уравнения (16.33) получается

$$t'_w = t_0 + \frac{t_w - t_0}{e^{\xi \delta}}.$$

(16.34)

Это выражение позволяет исключить t'_w из (16.30) и получить окончательное выражение для температурного поля

$$\frac{t - t_0}{t_w - t_0} = e^{-\xi \delta \left(1 - \frac{x}{\delta}\right)}.$$

(16.35)

По расходу охладителя на каждый квадратный метр защищающей поверхности пористое охлаждение более эффективно, чем конвективное (разомкнутая система), пленочное или заградительное охлаждение*. Но его применение связано с изготовлением пористых стенок. Кроме того, при эксплуатации такой системы необходимо

* Два последних вида охлаждения рассматриваются в последующих параграфах.
принимать меры для очистки охладителя, чтобы избежать засорения пор.

Пористое охлаждение можно использовать для защиты отдельных элементов летательных аппаратов или жидкостных ракетных двигателей.

§ 5. Пленочное охлаждение

При пленочном охлаждении защищаемая стенка покрывается пленкой жидкости, которая подается через одну или несколько щелей, выполненных на некотором расстоянии друг от друга, и растекается по поверхности. Для подачи жидкости охлаждаемая стенка может иметь пористые вставки. Схематично пленочное охлаждение стенки с подачей жидкости через одну щель показано на рис. 16.5.

Рис. 16.5

Растекающаяся пленка жидкости-охладителя испаряется, и толщина ее при этом уменьшается. Отделяющийся от поверхности пленки пар поступает в пограничный слой горячего газа и уменьшает тепловой поток от газа к поверхности испарения. На некотором расстоянии от щели пленка исчезает. Поэтому при большой длине защищаемой стенки необходимо иметь несколько щелей.

Температура стенки ниже или равна температуре испарения. Площадь защищаемой пленкой поверхности увеличивается с ростом расхода охладителя. Однако длина пленки за счет расхода жидкости не может увеличиваться беспрепятственно. Расход ее через щель целесообразно увеличивать только до тех пор, пока пленка движется без отрыва от стенки и пока не начнется унос неиспаренных капель с поверхности пленки.

Опыты показали, что существует критическая выходная скорость $u_{кр}$, после достижения которой струя отстает от охлаждаемой поверхности и может вернуться к ней на некотором расстоянии за щелью или совсем не попадает на нее. Опытная зависимость величины $u_{кр}$ от скорости газового потока w_∞ и ширины щели b показана на рис. 16.6. Опыты проводились при подаче охладителя под прямым углом к газовому потоку. С уменьшением угла наклона к поверхности критическая скорость растет. При угле наклона меньше 15° струя вообще не отделяется от стенки.

В результате взаимодействия газового потока с пленкой жидкости на поверхности пленки возникают волны, которые могут
привести к потере устойчивости пленки, характеризующейся уносом капель неиспаренной жидкости газовым потоком. Опытное изучение условий движения пленки показало, что ее устойчивость зависит от \(\text{Re}_0 = \frac{u_0 b}{v_0} \) и соотношения динамических коэффициентов вязкости для газа и охладителя \(\mu_f/\mu_0 \). Критическое значение \(\text{Re}_0 \) возрастает с увеличением \(\mu_f/\mu_0 \). При опытном изучении пленочного охлаждения с использованием воды было найдено, что при \(\text{Re}_0 = 300 \) пленка еще устойчива. Для гладкой незагрязненной поверхности дополнительные потери жидкости из-за неустойчивости пленки при \(\text{Re}_0 = 400 \) составили 2%, при \(\text{Re}_0 = 600 - 13\% \), при \(\text{Re}_0 = 1000 - 24\% \).

Эффективность пленочного охлаждения зависит от числа щелей на единицу поверхности. При увеличении числа щелей температурное поле стенки становится более равномерным, и поэтому заданная максимально допустимая температура стенки может быть получена при меньших расходах охладителя.

При устойчивом движении пленки без отрыва по поверхности, ширина которой \(h \) и длина \(l \), тепловой баланс определяется формулой

\[
\frac{\alpha}{c_{p_w}} (l_r - l_w) lh = G_0 \Delta t_0, \tag{16.36}
\]

gде \(G_0 \) — массовый расход охладителя через щель; \(\Delta t_0 = c \Delta t + \Delta r \) — изменение энтальпии охладителя в системе.

В соответствии с формулой (16.36) длина пленки определяется равенством

\[
l = \frac{G_0 \Delta t_0}{\frac{\alpha}{c_{p_w}} (l_r - l_w) h}. \tag{16.37}
\]

Пленочное охлаждение используется как дополнительное средство защиты стенок камеры сгорания и сопла жидкостного ракетного двигателя, когда конвективное охлаждение не обеспечивает снижения температуры стенок до необходимой величины. В качестве охладителя обычно используется горючее.

§ 6. Заградительное и комбинированное охлаждение

При заградительном охлаждении стенка защищается от горячего газа слоем холодного воздуха (или какого-либо другого газа), который подводится к поверхности через щель или через пористую вставку в поверхности теплообмена. Газ-охладитель желательно
вдувать по касательной к охлаждаемой поверхности, хотя подвод газа под углом 15—30° практически не ухудшает качества заградительной системы охлаждения.

Рассмотрим сначала характер изменения скорости около охлаждаемой стенки на различном расстоянии от места подачи холодного воздуха через тангенциальную щель (рис. 16.7). В выходном сечении ($x = 0$) охладитель имеет равномерное поле скоростей. Выходящий из щели газ-охладитель взаимодействует со стенкой, на которой образуется гидродинамический пограничный слой, и с потоком горячего газа, имеющего скорость w_{∞}, отличающуюся от скорости охладителя на выходе из щели u_0. На границе раздела охладителя и горячего газа возникает область турбулентного перемешивания.

![Рис. 16.7](image1)

![Рис. 16.8](image2)

В зависимости от формы скоростного поля можно выделить две характерные области течения (рис. 16.7, a): начальный участок, на котором в потоке охладителя сохраняется ядро с постоянной скоростью (zona OAB), и основной участок, где зона турбулентного смещения непосредственно соприкасается с динамическим пограничным слоем.

Длина начального участка x_0 зависит от высоты щели b и соотношения скоростей u_0/w_{∞}. Приближенно x_0 можно определить из теории свободной затопленной струи. При $u_0 < w_{\infty}$

$$
\frac{x_0}{b} = \left(0,107 + 0,037 \frac{u_0}{w_{\infty}}\right)^{-1} \frac{w_{\infty} + u_0}{w_{\infty} - u_0}.
$$

(16.38)

Гидродинамические условия течения охладителя около защитной стенки определяют характер температурного поля в различных сечениях потока (рис. 16.7, b). Для теплоизолированной стенки на начальном участке сохраняется ядро охладителя с постоянной температурой. Так как стенка теплоизолирована, то температура по толщине пограничного слоя не изменяется. Если пренебречь распространением теплоты теплопроводностью вдоль защитаемой
стенки, то на начальном участке температуру пограничного слоя можно считать постоянной и равной начальной температуре охладителя. В действительности температура пограничного слоя при удалении от щели несколько возрастает. На основном участке температура пограничного слоя увеличивается по мере удаления от места подачи охладителя, причем ее величина определяется температурой внутренней зоны смещения.

Температура теплоизолированной стенки одинакова с температурой пограничного слоя и непрерывно возрастает при удалении от места подачи холодного воздуха.

Заградительное охлаждение может использоваться одновременно с конвективным. При этом стенка омывается охлаждающим газом с обеих сторон (рис. 16.8). Такое охлаждение называют комбинированным. В этом случае на основном участке смещения температура в пограничном слое со стороны горячего газа выше температуры холодного воздуха. Поэтому через охлаждаемую стенку передается теплота и температура стенки ниже, чем в случае использования только заградительного охлаждения.

Как отмечалось выше, при заградительном охлаждении температура теплоизолированной стенки с небольшим коэффициентом тепло- проводности практически совпадает с температурой пристеночного слоя газа. В этом случае объективной характеристикой качества системы заградительного охлаждения является ее эффективность, которая определяется выражением

$$\theta = \frac{T_i - T_w}{T_i - T_0}. \quad (16.39)$$

Здесь T_w — температура стенки на расстоянии x от выхода охлаждающего газа; T_i — температура торможения, которая при малых скоростях движения основного потока заменяется термодинамической температурой T_i.

На рис. 16.9 показано опытно определенное изменение эффективности по длине плоской стенки. В опытах в качестве горячего и охлаждающего газов использовался воздух.

Эффективность заградительного охлаждения уменьшается с увеличением расстояния от места подачи охладителя и существенно за-
висит от соотношения скоростей охладителя и основного потока. Чем меньше разница между этими скоростями, тем меньше основной поток возмущает газовую завесу и тем выше эффективность заградительного охлаждения. На рис. 16.10 показана зависимость эффективности \(\bar{\theta} \) от параметра, характеризующего соотношение скоростей, построенная по опытным данным Себана. Здесь \(\text{Re}_0 = \frac{u_0 b}{v} \), \(x_0 \) — длина начального участка.

Для расчета эффективности заградительного охлаждения с подачей охлаждающего газа через тангенциальную щель при турбулентном пограничном слое предложен ряд формул. С. С. Кутателадзе и А. И. Леонтьев предложили теоретическую формулу, характеризующую эффективность заградительного охлаждения при одинаковых свойствах основного и охлаждающего потоков и \(x > x_0 \)

\[
\bar{\theta} = \left[1 + 0,24 \text{Re}_0^{-0,25} \times \right. \\
\left. \times \frac{\omega_\infty (x - x_0)}{u_0 b} \right]^{-0,8}. \quad (16.40)
\]

При \(\frac{\omega_\infty x}{u_0 b} > 60 \) эта формула удовлетворительно согласуется с опытными данными, а при \(\frac{\omega_\infty x}{u_0 b} < 60 \) дает несколько заниженные результаты.

Результаты опытного исследования эффективности заградительного охлаждения, выполненного Гартнетом, Эккертом и Биркебком с использованием воздуха в качестве горячего и охлаждающего газов и подвода охлаждающего потока под углом 25° к поверхности теплообмена, можно обобщить формулой

\[
\bar{\theta} = cm^{-n}, \quad (16.41)
\]

где \(m = \frac{x \rho_\infty \omega_\infty}{b \rho_0 u_0} \); при \(m = 15 \rightarrow 80 \) \(c = 1,89 \) и \(n = 0,3 \); при \(m = 80 \rightarrow 600 \) \(c = 16,9 \) и \(n = 0,8 \).

Опыты проводились при \(b = 3,1 \text{ мм}, \omega_\infty = 50 \text{ м/сек} \) и \(\frac{\rho_0 u_0}{\rho_\infty \omega_\infty} = 0,28 \).

Если защищаемая стенка не изолирована в тепловом отношении (например, при комбинированной системе охлаждения), то для оценки ее температурного состояния необходимо знать коэффициент теплоотдачи в процессе взаимодействия стенки с газовой завесой.
При одинаковых скоростях горячего и холодного потоков величину коэффициента теплоотдачи можно рассчитывать по обычным формулам для плоской стенки.

При отсутствии вынужденного течения горячего газа теоретическое решение задачи с использованием закономерности изменения скорости потока по длине стенки, известной из теории свободной струи, привело к расчетной формуле

\[Nu = 0,12 \, Re^{0,8} \left(\frac{b}{x} \right)^{0,4} Pr^{0,4}, \]

где \(Nu = \frac{\alpha x}{\lambda}; \) \(Re = \frac{u_0 x}{\nu_0}. \)

Аналогичное решение с использованием опытной закономерности изменения скорости в пристеночном слое по длине стенки при \(\frac{\rho_0 u_0}{\rho_{\infty} \omega_{\infty}} = 3-9 \) позволило получить расчетную формулу

\[Nu = 0,113 Re^{0,8} (b/x)^{0,36} Pr^{0,4}. \]

Заградительное и комбинированное охлаждение широко используется для защиты стенок камен сгорания и реактивных сопел воздушно-реактивных двигателей. Эту систему охлаждения можно также использовать в газотурбинных двигателях для защиты лопаток и в ракетных двигателях твердого топлива для защиты внутренних поверхностей реактивного сопла. В последнем случае необходимый для защиты газ получается при горении специального топлива с низкой температурой сгорания, небольшое количество которого размещается перед входом в сопло.
ЛИТЕРАТУРА

К первой части

2. Вукалович М. П., Новиков И. И. Техническая термодинамика. «Энергия», 1968.
3. Иноzemцев Н. В. Основы термодинамики и кинетики химических реакций. Машгиз, 1950.
4. Кириллин В. А. Курс физической химии. ГТИ, 1951.
6. Кричевский И. Р. Понятия и основы термодинамики. Госхимиздат, 1962.
7. Леонтович М. А. Введение в термодинамику. Гостеортехиздат, 1951.

Ко второй части

1. Блох А. Г. Основы теплообмена излучением. Госэнергоиздат, 1962.
3. Гиршфельдер Д., Кертис Ч., Берд Р. Молекулярная теория газов и жидкостей. ИЛ, 1961.
4. Дедусенко Ю. М. Оптимальная компоновка трубчатых теплообменных аппаратов газовых турбин. Изд. АН УССР, 1956.
5. Доброльский М. В. Жидкостные ракетные двигатели. «Машиностроение», 1968.
7. Душкин Ю. А. Работа теплозащитных материалов в горячих газовых потоках. «Химия», 1968.

485
10. Кирпичев М. В. Теория подобия. Изд. АН СССР, 1953.
17. Мазюрле Ю. Автомобильные двигатели с воздушным охлаждением. Машигиз, 1959.
18. Михеев М. А. Основы теплопередачи. Госэнергоиздат, 1956.
26. Щукин В. К. Теплообмен и гидродинамика внутренних потоков в полях массовых сил. «Машиностроение», 1970.
27. Эккер Э. Р., Дрейк Р. М. Теория тепло- и массообмена. Госэнергоиздат, 1961.
<table>
<thead>
<tr>
<th>Наименование материала</th>
<th>(\theta)</th>
<th>(\lambda) (\text{ат.м} / \text{мК} \times \text{град})</th>
<th>(\rho) (\text{кг} / \text{м}^3)</th>
<th>(c) (\text{Дж} / (\text{кг} \times \text{град}))</th>
<th>(a \times 10^6) (\text{м}^2 / \text{сек})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Металлы и сплавы</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Алюминий</td>
<td>0</td>
<td>209,3</td>
<td>2700</td>
<td>0,896</td>
<td>86,7</td>
</tr>
<tr>
<td>Бронза (95% Cu, 5% Al)</td>
<td>20</td>
<td>83,0</td>
<td>8660</td>
<td>0,410</td>
<td>23,3</td>
</tr>
<tr>
<td>Дюралюминий (94%—96% Al, 3—5% Cu)</td>
<td>20</td>
<td>164,4</td>
<td>2800</td>
<td>0,883</td>
<td>66,7</td>
</tr>
<tr>
<td>Железо</td>
<td>0</td>
<td>74,4</td>
<td>7880</td>
<td>0,440</td>
<td>21,5</td>
</tr>
<tr>
<td>Латунь (70% Cu, 30% Sn)</td>
<td>20</td>
<td>110,7</td>
<td>8520</td>
<td>0,385</td>
<td>33,8</td>
</tr>
<tr>
<td>Медь</td>
<td>0</td>
<td>380,6</td>
<td>8930</td>
<td>0,388</td>
<td>112,5</td>
</tr>
<tr>
<td>Натрий жидк.</td>
<td>100</td>
<td>86,1</td>
<td>928</td>
<td>1,384</td>
<td>66,9</td>
</tr>
<tr>
<td>Никель</td>
<td>0</td>
<td>67,4</td>
<td>8900</td>
<td>0,427</td>
<td>17,8</td>
</tr>
<tr>
<td>Олово</td>
<td>0</td>
<td>66,3</td>
<td>7300</td>
<td>0,222</td>
<td>41,1</td>
</tr>
<tr>
<td>Ртуть</td>
<td>0</td>
<td>8,2</td>
<td>13600</td>
<td>0,139</td>
<td>4,3</td>
</tr>
<tr>
<td>Серебро</td>
<td>0</td>
<td>418,7</td>
<td>10500</td>
<td>0,234</td>
<td>170,0</td>
</tr>
<tr>
<td>Сталь углеродистая (C=0,5%)</td>
<td>20</td>
<td>53,6</td>
<td>7830</td>
<td>0,465</td>
<td>14,7</td>
</tr>
<tr>
<td>Сталь нержавеющая 1X18Н9Т</td>
<td>20</td>
<td>16,0</td>
<td>7900</td>
<td>0,502</td>
<td>4,04</td>
</tr>
<tr>
<td>Титан</td>
<td>0</td>
<td>15,1</td>
<td>4540</td>
<td>0,532</td>
<td>6,2</td>
</tr>
<tr>
<td>Чугун (C=4%)</td>
<td>20</td>
<td>51,9</td>
<td>7270</td>
<td>0,419</td>
<td>17,0</td>
</tr>
<tr>
<td>Неметаллические материалы</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Асбест листовой</td>
<td>30</td>
<td>0,1163</td>
<td>770</td>
<td>0,816</td>
<td>0,186</td>
</tr>
<tr>
<td>Асбест волокно</td>
<td>50</td>
<td>0,1105</td>
<td>470</td>
<td>0,816</td>
<td>0,289</td>
</tr>
<tr>
<td>Бетон сухой</td>
<td>20</td>
<td>0,8374</td>
<td>1600</td>
<td>0,837</td>
<td>0,622</td>
</tr>
<tr>
<td>Дуб (поперек волокна)</td>
<td>0—15</td>
<td>0,1977</td>
<td>825</td>
<td>2,386</td>
<td>—</td>
</tr>
<tr>
<td>Карбид титана TiC</td>
<td>100</td>
<td>16,85</td>
<td>4900</td>
<td>12,250</td>
<td>—</td>
</tr>
<tr>
<td>Карборундовый</td>
<td>20</td>
<td>0,1744</td>
<td>700</td>
<td>1,507</td>
<td>0,168</td>
</tr>
<tr>
<td>Кирпич силикатный</td>
<td>0</td>
<td>0,8141</td>
<td>1900</td>
<td>0,837</td>
<td>0,514</td>
</tr>
<tr>
<td>Окисел SiO₂</td>
<td>100</td>
<td>6,978—</td>
<td>1,3—</td>
<td>0,795</td>
<td>—</td>
</tr>
<tr>
<td>Пробковая пластина</td>
<td>30</td>
<td>0,0419</td>
<td>190</td>
<td>1,884</td>
<td>0,117</td>
</tr>
<tr>
<td>Резина твердая обычновенная</td>
<td>0</td>
<td>0,1628</td>
<td>1200</td>
<td>1,381</td>
<td>0,098</td>
</tr>
<tr>
<td>Слюда (поперек волокон)</td>
<td>20</td>
<td>0,4652</td>
<td>2600—</td>
<td>0,879</td>
<td>—</td>
</tr>
<tr>
<td>Стекло</td>
<td></td>
<td>0,5815—</td>
<td>3200</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Стеклотекстолит ЭФ-32-201</td>
<td>20</td>
<td>0,7443</td>
<td>2500</td>
<td>0,670</td>
<td>0,444</td>
</tr>
<tr>
<td>Стеклянная вата</td>
<td>20</td>
<td>0,3489</td>
<td>200</td>
<td>0,670</td>
<td>0,278</td>
</tr>
<tr>
<td>Текстолит</td>
<td>20</td>
<td>0,2326—</td>
<td>1300</td>
<td>1,465—</td>
<td>—</td>
</tr>
<tr>
<td>Фторопласт-3</td>
<td>—</td>
<td>0,06024</td>
<td>2120</td>
<td>0,921</td>
<td>0,031</td>
</tr>
<tr>
<td>Жидкости</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ацетон</td>
<td>20</td>
<td>0,2605</td>
<td>1512</td>
<td>1,716</td>
<td>0,101</td>
</tr>
<tr>
<td>Ацетонид</td>
<td>0</td>
<td>0,1861</td>
<td>1037</td>
<td>2,018</td>
<td>0,089</td>
</tr>
<tr>
<td>Бензин высшего качества</td>
<td>20</td>
<td>0,1861</td>
<td>740</td>
<td>2,093</td>
<td>0,120</td>
</tr>
<tr>
<td>Вода</td>
<td>0</td>
<td>0,5513</td>
<td>999,9</td>
<td>4,212</td>
<td>0,131</td>
</tr>
<tr>
<td>Глицерин</td>
<td>0</td>
<td>0,2768</td>
<td>1267</td>
<td>2,260</td>
<td>0,097</td>
</tr>
<tr>
<td>Детергенты (73,5% C₁₂H₂₃O₀, 26,5% C₁₂H₁₈)</td>
<td>20</td>
<td>0,1372</td>
<td>1060</td>
<td>1,591</td>
<td>0,082</td>
</tr>
<tr>
<td>Керосин высшего качества</td>
<td>20</td>
<td>0,1161</td>
<td>840</td>
<td>2,219</td>
<td>0,062</td>
</tr>
<tr>
<td>Масло MC-20</td>
<td>0</td>
<td>0,1349</td>
<td>904</td>
<td>1,980</td>
<td>0,076</td>
</tr>
<tr>
<td>Наименование материалов</td>
<td>t°С</td>
<td>λ</td>
<td>ρ</td>
<td>c</td>
<td>а · 10^4</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>вт/(м×крад)</td>
<td>кг/м³</td>
<td>кДж/(кг×крад)</td>
<td>м²/сек</td>
</tr>
<tr>
<td>Спирт метиловый</td>
<td>0</td>
<td>0,2140</td>
<td>809,7</td>
<td>2428</td>
<td>0,109</td>
</tr>
<tr>
<td>Спирт этиловый</td>
<td>0</td>
<td>0,1884</td>
<td>806,2</td>
<td>2,302</td>
<td>0,101</td>
</tr>
<tr>
<td>Толуол</td>
<td>0</td>
<td>0,1419</td>
<td>884,9</td>
<td>1,632</td>
<td>0,099</td>
</tr>
<tr>
<td>Фреон-12</td>
<td>0</td>
<td>0,0919</td>
<td>1394</td>
<td>0,929</td>
<td>0,071</td>
</tr>
<tr>
<td>Газы</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Азот</td>
<td>0</td>
<td>0,0243</td>
<td>1,250</td>
<td>1,030</td>
<td>18,9</td>
</tr>
<tr>
<td>Аммиак</td>
<td>0</td>
<td>0,0210</td>
<td>0,771</td>
<td>2,043</td>
<td>13,4</td>
</tr>
<tr>
<td>Водород</td>
<td>0</td>
<td>0,1721</td>
<td>0,0899</td>
<td>14,192</td>
<td>135,0</td>
</tr>
<tr>
<td>Водяной пар</td>
<td>100</td>
<td>0,0240</td>
<td>0,598</td>
<td>2,135</td>
<td>18,6</td>
</tr>
<tr>
<td>Воздух (сухой)</td>
<td>0</td>
<td>0,0244</td>
<td>1,293</td>
<td>1,095</td>
<td>18,8</td>
</tr>
<tr>
<td>Гелий</td>
<td>0</td>
<td>0,1430</td>
<td>0,178</td>
<td>5,203</td>
<td>154,3</td>
</tr>
<tr>
<td>Кислород</td>
<td>0</td>
<td>0,0247</td>
<td>1,429</td>
<td>0,915</td>
<td>18,9</td>
</tr>
<tr>
<td>Окись углерода</td>
<td>0</td>
<td>0,0233</td>
<td>1,250</td>
<td>1,039</td>
<td>17,9</td>
</tr>
<tr>
<td>Углекислый газ</td>
<td>0</td>
<td>0,0146</td>
<td>1,977</td>
<td>0,815</td>
<td>9,1</td>
</tr>
</tbody>
</table>
ОГЛАВЛЕНИЕ

Предисловие ... 3

Часть первая

Термодинамика

Введение ... 5

Техническая термодинамика

Глава I. Термодинамическая система и ее состояние 10
 § 1. Основные положения и определения 10
 § 2. Термические параметры 13
 § 3. Термическое уравнение состояния идеального газа 17
 § 4. Газовые смеси .. 22

Глава II. Энергетические характеристики термодинамических систем 25
 § 1. Энергия .. 25
 § 2. Работа и теплота .. 28
 § 3. Энталпия .. 30

Глава III. Теплоемкость .. 31
 § 1. Понятие о теплоемкости 31
 § 2. Теплоемкость идеального газа 33
 § 3. Зависимость теплоемкости от температуры 36
 § 4. Теплоемкость газовой смеси 38
 § 5. Отношение теплоемкостей 39

Глава IV. Первый закон термодинамики 40
 § 1. Взаимодействие системы с окружающей средой 40
 § 2. Уравнение первого закона термодинамики 42
 § 3. Анализ уравнения первого закона термодинамики 45

Глава V. Основные термодинамические процессы 47
 § 1. Равновесные термодинамические процессы и их обратимость 47
 § 2. Закономерности термодинамических процессов 50
 § 3. Зависимость между параметрами газа в политропном про-
 цессе .. 51
 § 4. Работа, внутренняя энергия и теплота политропного про-
 цесса .. 53
 § 5. Исследование политропного процесса 54
 § 6. Определение показателя политропы 59
 § 7. Характеристики политропных процессов в зависимости от
 значения показателя n 60

489
Глава VI. Второй закон термодинамики

§ 1. Положения второго закона термодинамики. Циклы прямые и обратные

§ 2. Цикл Карно

§ 3. Теорема Карно

§ 4. Интеграл Клаузияус

§ 5. Термодинамическая шкала температур

§ 6. Энтропия

§ 7. Физический смысл энтропии

Стр. 63

63
66
69
70
72
73
76

Глава VII. Изменение энтропии в процессах. Энтропийные диаграммы

§ 1. Изменение энтропии в процессах

§ 2. T — s-диаграмма

§ 3. Изображение на T — s-диаграмме основных процессов

§ 4. T — s-диаграмма для идеального газа

§ 5. Цикл Карно на T — s-диаграмме. Обобщенный цикл Карно

§ 6. I — S-диаграмма для газов и продуктов сгорания

Стр. 79
82
84
86
87
90

Глава VIII. Дифференциальные уравнения термодинамики

§ 1. Дифференциальные уравнения внутренней энергии, энталпии, энтропии

§ 2. Дифференциальные соотношения для теплоемкостей

§ 3. Термические коэффициенты

Стр. 95
96
99
101

Глава IX. Реальные газы и пары

§ 1. Уравнения состояния реальных газов

§ 2. Водяной пар. Парообразование при постоянном давлении

§ 3. Изменение агрегатного состояния

§ 4. Параметры состояния воды и водяного пара

§ 5. T — s-диаграмма водяного пара

§ 6. i — s-диаграмма водяного пара

§ 7. Парогазовые смеси

§ 8. i — s-диаграмма влажного воздуха

Стр. 103
109
111
112
116
117
119
122

Глава X. Течение газов

§ 1. Основные уравнения газового потока

§ 2. Располагаемая работа газа в потоке

§ 3. Скорость истечения и расход газа

§ 4. Истечение газа из резервуара неограниченной емкости

§ 5. Расширяющиеся сопла

§ 6. Истечение при наличии трения

§ 7. Дросселирование газа

Стр. 124
127
129
131
136
138
139

Глава XI. Машины для сжатия и расширения газа

§ 1. Компрессор. Основные процессы в одноступенчатом компрессоре

§ 2. Работа и мощность на привод компрессора

§ 3. Многоступенчатый компрессор

§ 4. Детандеры

Стр. 142
144
146
149
Глava XII. Циклы поршневых двигателей внутреннего сгорания 151
§ 1. Цикл с подводом теплоты при \(v = \text{const} \) 153
§ 2. Цикл с подводом теплоты при \(p = \text{const} \) 157
§ 3. Цикл со смешанным подводом теплоты 160
Глava XIII. Циклы газотурбинных установок 162
§ 1. Цикл ГТУ с подводом теплоты при \(p = \text{const} \) 162
§ 2. Цикл ГТУ с подводом теплоты при \(v = \text{const} \) 165
§ 3. Регенеративные циклы 167
Глava XIV. Циклы реактивных двигателей 169
§ 1. Бескомпрессорные ВРД 170
§ 2. Компрессорные турбореактивные двигатели 172
§ 3. Цикл жидкостно-реактивного двигателя 172
Глava XV. Циклы паросиловых установок 175
§ 1. Цикл Ренкина 175
§ 2. Цикл парогазовой установки 177
Глava XVI. Цикл холодильных машин. Тепловой насос 178
§ 1. Цикл воздушной холодильной машины 179
§ 2. Цикл парокомпрессорной холодильной машины 182
§ 3. Цикл теплового насоса 183
Глava XVII. Максимальная работа. Эксергетический метод исследования 184
§ 1. Потери работоспособности в циклах 185
§ 2. Потери работоспособности (эксергии) потока 188

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА

Глava XVIII. Основные законы термодинамики в применении к химическим процессам 192
§ 1. Первый закон термодинамики и применение его к химическим процессам 192
§ 2. Теплоты реакций 194
§ 3. Закон Гесса 197
§ 4. Закон Кирхгофа 197
§ 5. Второй закон термодинамики и его применение к химическим процессам 199
§ 6. Максимальная работа реакции 203
§ 7. Уравнение максимальной работы 204
§ 8. Химический потенциал 205
§ 9. Условия равновесия в изолированной однородной системе 206
§ 10. Условия равновесия в гетерогенных системах и химических реакциях 208
Глava XIX. Равновесие термодинамических систем и диссоциация 209
§ 1. Равновесие в химических реакциях 209
§ 2. Закон действующих масс. Константы равновесия 210
Глава XX. Кинетика химических реакций
§ 1. Влияние концентрации на скорость химической реакции
§ 2. Влияние температуры на скорость химической реакции
§ 3. Активация
§ 4. Катализ

Глава XXI. Основы термодинамики плазмы и необратимых процессов
§ 1. Термодинамика плазмы. Состояние плазмы
§ 2. Термодинамика необратимых процессов

Часть вторая
Теория теплообмена
Глава 1. Основные законы теплообмена
§ 1. Виды теплообмена
§ 2. Краткие сведения из истории развития науки о теплообмене
§ 3. Явления теплообмена в авиационной и ракетной технике
§ 4. Основные понятия и определения
§ 5. Законы Фурье и Фика. Формулы для теплового и массового потоков
§ 6. Законы теплообмена излучением

Глава II. Математическая формулировка задачи о теплообмене и подобие физических явлений
§ 1. Дифференциальное уравнение энергии
§ 2. Дифференциальное уравнение теплоотдачи
§ 3. Дифференциальное уравнение массообмена
§ 4. Дифференциальные уравнения движения и сплошности
§ 5. Математическая формулировка задач теплообмена и виды краевых условий
§ 6. Основы теории подобия физических явлений

Глава III. Теплопроводность и теплопередача при стационарном режиме
§ 1. Коэффициент теплопроводности λ
§ 2. Теплопроводность плоской стенки
глава IV. Теплопроводность при нестационарном режиме

§ 1. Условия подобия температурных полей при нестационарной теплопроводности

§ 2. Результаты аналитического решения

§ 3. Метод регулярного режима

§ 4. Численные методы расчета температурных полей

глава V. Теплоотдача и методы ее исследования

§ 1. Физика явления теплоотдачи

§ 2. Способы получения расчетных формул для определения коэффициента теплоотдачи

§ 3. Применение теории подобия к явлению теплоотдачи

§ 4. Влияние тепловой нагрузки и направления теплового потока на коэффициент теплоотдачи

§ 5. Связь между теплоотдачей и трением

§ 6. Понятие о теории пограничного слоя

глава VI. Теплоотдача при внешнем обтекании тел

§ 1. Интегральные уравнения теплового и динамического пограничных слоев при безнапорном обтекании пластины

§ 2. Теплоотдача пластины при ламинарном пограничном слое. Решение на основе теории динамического пограничного слоя

§ 3. Теплоотдача пластины при ламинарном пограничном слое. Решение на основе теории теплового пограничного слоя

§ 4. Теплоотдача пластины при турбулентном пограничном слое

§ 5. Теплоотдача при внешнем обтекании труб

глава VII. Теплоотдача при вынужденном течении жидкости в трубах и каналах

§ 1. Физические основы процесса теплоотдачи в трубах и каналах

§ 2. Аналитический метод расчета теплоотдачи в трубе

§ 3. Результаты экспериментального исследования теплоотдачи в трубах и каналах

§ 4. Теплоотдача расплавленных металлов

глава VIII. Теплоотдача в полях массовых сил

§ 1. Активное и консервативное воздействия массовых сил на поток
§ 2. Дополнительное условие подобия потоков в полях массовых сил .. 344
§ 3. Теплоотдача при свободном движении в гравитационном поле массовых сил 345
§ 4. Теплоотдача при свободном движении в инерционных силовых полях 349
§ 5. Теплоотдача в змеевиках ... 350
§ 6. Теплоотдача в закрученных потоках 352
§ 7. Теплоотдача в кольцевых каналах между вращающимися цилиндрами 354
§ 8. Теплоотдача вращающихся дисков 358

Глава IX. Теплоотдача в химически реагирующих потоках 359
§ 1. Особенности теплоотдачи в химически реагирующем газе .. 360
§ 2. Формула теплового потока .. 362
§ 3. Физические свойства равновесно диссоциирующего газа 364
§ 4. Система дифференциальных уравнений, описывающих теплоотдачу при химических реакциях ... 368
§ 5. Дополнительное условие подобия потоков при наличии равновесных химических реакций 369
§ 6. Связь числа Le с физическими свойствами реагирующего газа при локальном химическом равновесии . 371
§ 7. Коэффициент теплоотдачи в химически равновесных реагирующих средах 372

Глава X. Теплоотдача при большой скорости движения газа 375
§ 1. Дополнительные условия подобия потоков при движении газа с большой скоростью 375
§ 2. Особенности процесса теплоотдачи при движении газа с большой скоростью 377
§ 3. Уравнения пограничного слоя при больших скоростях движения газа 380
§ 4. Методика расчетной оценки теплоотдачи 382
§ 5. Решения, полученные на основе теории пограничного слоя 384
§ 6. Результаты опытного исследования теплоотдачи при больших скоростях движения газа 386
§ 7. Теплоотдача в соплах ... 388

Глава XI. Теплоотдача в разреженных газах 390
§ 1. Особенности течения и теплообмена в разреженных газах 390
§ 2. Дополнительное условие подобия разреженных потоков 394
§ 3. Теплоотдача в свободно-молекулярном потоке газа 397
§ 4. Теплоотдача при температурном скачке на поверхности теплообмена 400
§ 5. Коэффициент восстановления температуры в разреженном газовом потоке 403

Глава XII. Теплоотдача при изменении агрегатного состояния и при подводе ионородного вещества в пограничный слой 405
§ 1. Теплоотдача при кипении в большом объеме 405
§ 2. Теплоотдача при кипении в условиях движения жидкости по трубам... 410
§ 3. Теплоотдача при конденсации... 412
§ 4. Теплоотдача при подводе инородного газа в пограничный слой... 416
§ 5. Особенности процесса теплоотдачи при испарении... 422
Глава XIII. Теплообмен излучением... 427
§ 1. Радиационные характеристики тел.. 428
§ 2. Теплообмен излучением между твердыми телами... 429
§ 3. Излучение и поглощение газов... 434
§ 4. Излучение светящегося пламени... 438
§ 5. Теплообмен излучением с Солнцем и Землей... 438
§ 6. Радиационно-конвективный теплообмен... 440
Глава XIV. Конструктивные способы изменения интенсивности теплопередачи.......................... 440
§ 1. Критическая толщина тепловой изоляции... 441
§ 2. Теплопередача через ребристую стенку.. 442
§ 3. Температурное поле и коэффициент эффективности прямых ребер постоянной толщины ... 445
§ 4. Коэффициент эффективности ребер с изменяющимся поперечным сечением......................... 448
§ 5. Излучающие ребра... 450
§ 6. Ребристая стенка минимальной массы.. 452
Глава XV. Теплообменные аппараты... 453
§ 1. Основные виды теплообменных аппаратов.. 454
§ 2. Тепловой расчет рекуперативного теплообменника.. 456
§ 3. О гидравлическом расчете теплообменника.. 461
§ 4. Эффективность теплообменника и способы ее повышения.. 463
Глава XVI. Тепловая защита... 466
§ 1. Конвективное охлаждение.. 466
§ 2. Тугоплавкие теплоизолирующие покрытия... 468
§ 3. Абляирующие покрытия.. 469
§ 4. Система пористого охлаждения... 474
§ 5. Пленочное охлаждение.. 479
§ 6. Заградительное и комбинированное охлаждение.. 480
Литература... 485
Приложение... 487