ТЕОРЕТИЧЕСКАЯ
ФИЗИКА

ПОД ОБЩЕЙ РЕДАКЦИЕЙ
АКАД. Л. Д. ЛАНДАУ

ТОМ ПЯТЫЙ
Часть первая

ОГИЗ
ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО
ТЕХНИКО-ТЕОРЕТИЧЕСКОЙ ЛИТЕРАТУРЫ
МОСКВА 1948 ЛЕНИНГРАД
Л. Ландау и Е. Лифшиц

Квантовая механика

Часть I

Нерелятивистская теория

ОГИЗ
Государственное издательство технико-теоретической литературы
Москва 1948 Ленинград
АННОТАЦИЯ

Настоящая книга является частью многотомной работы «Курс теоретической физики» тех же авторов.
Книга характеризуется полнотой изложения и охватывает широкий круг проблем квантовой механики, для трактовки которых не требуется привлечения релятивистской теории.
Книга рассчитана на студентов старших курсов физических факультетов университетов, в особенности на специализирующихся в области теоретической физики, на аспирантов и на научных работников.
<table>
<thead>
<tr>
<th>Глава</th>
<th>Титульная страница</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Основные понятия квантовой механики</td>
</tr>
<tr>
<td>§ 1</td>
<td>Введение</td>
</tr>
<tr>
<td>§ 2</td>
<td>Принцип суперпозиции</td>
</tr>
<tr>
<td>§ 3</td>
<td>Операторы</td>
</tr>
<tr>
<td>§ 4</td>
<td>Сложение и умножение операторов</td>
</tr>
<tr>
<td>§ 5</td>
<td>Непрерывный спектр</td>
</tr>
<tr>
<td>§ 6</td>
<td>Предельный переход</td>
</tr>
<tr>
<td>II</td>
<td>Энергия и импульс</td>
</tr>
<tr>
<td>§ 8</td>
<td>Гамильтоновский оператор</td>
</tr>
<tr>
<td>§ 9</td>
<td>Дифференцирование операторов</td>
</tr>
<tr>
<td>§ 10</td>
<td>Стационарные состояния</td>
</tr>
<tr>
<td>§ 11</td>
<td>Матрицы</td>
</tr>
<tr>
<td>§ 12</td>
<td>Матрица плотности</td>
</tr>
<tr>
<td>§ 13</td>
<td>Импульс</td>
</tr>
<tr>
<td>§ 14</td>
<td>Соотношения неопределенности</td>
</tr>
<tr>
<td>III</td>
<td>Уравнение Шрёдингера</td>
</tr>
<tr>
<td>§ 15</td>
<td>Уравнение Шрёдингера</td>
</tr>
<tr>
<td>§ 16</td>
<td>Основные свойства уравнения</td>
</tr>
<tr>
<td>§ 17</td>
<td>Плотность потока</td>
</tr>
<tr>
<td>§ 18</td>
<td>Вариационный принцип</td>
</tr>
<tr>
<td>§ 19</td>
<td>Общие свойства одномерного</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Момент количества движения</td>
</tr>
<tr>
<td>§ 24</td>
<td>Момент количества движения</td>
</tr>
<tr>
<td>§ 25</td>
<td>Собственные значения</td>
</tr>
<tr>
<td>§ 26</td>
<td>Собственные функции</td>
</tr>
<tr>
<td>§ 27</td>
<td>Матричные элементы векторов</td>
</tr>
<tr>
<td>§ 28</td>
<td>Чётность состояния</td>
</tr>
<tr>
<td>§ 29</td>
<td>Матричные элементы</td>
</tr>
<tr>
<td>§ 30</td>
<td>Сложение моментов</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Движение в центрально-симметрическом поле</td>
</tr>
<tr>
<td>§ 32</td>
<td>Движение в центрально-симметрическом</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
§ 35. «Падение» частицы на центр 143. — § 36. Движение в кулоновом поле (сферические координаты) 146. — § 37. Движение в кулоновом поле (параболические координаты) 155.

Г л а в а VI. Теория возмущений 159

Г л а в а VII. Квазиклассический случай 187

Г л а в а VIII. Спин 218

Г л а в а IX. Тождественность частиц 238

Г л а в а X. Атом 261

§ 64. Атомные уровни энергии 261. — § 65. Состояния электронов в атоме 263. — § 66. Водородоподобные уровни энергии 266. — § 67. Тонкая структура уровней 267. — § 68. Самосогласованное поле 271. — § 66. Уравнение Томаса-Ферми 274. — § 70. Периодическая система элементов 230. — § 71. Рентгеновские термы 283. — § 72. Эф-
ГЛАВА XI. ДВУХАТОМНАЯ МОЛЕКУЛА 302

ГЛАВА XII. ТЕОРИЯ СИММЕТРИИ .. 361

ГЛАВА XIII. МНОГОАТОМНЫЕ МОЛЕКУЛЫ 413

ГЛАВА XIV. ТЕОРИЯ УПРУГИХ СТОЛКОНЕНИЙ 451
глава XV. теория неупругих столнковений 490

глава XVI. движение в магнитном поле 531
§ 124. Уравнение Шредингера в магнитном поле 531. — § 125. Движение в однородном магнитном поле 534. — § 126. Эффект Зеемана 536. — § 127. Нейтральная частица в магнитном поле 544. — § 128. Плотность тока в магнитном поле 546.

математические дополнения . 549
§ а. Полиномы Эрмита 549. — § б. Функция Эйри 552. — § с. Полиномы Лежандра 554. — § d. Вырожденная гипергеометрическая функция 557. — § e. Гипергеометрическая функция 561. — § f. Вычисление интегралов с вырожденными гипергеометрическими функциями 564.
ПРЕДИСЛОВИЕ

Предлагаемый том Курса теоретической физики посвящён изложению квантовой механики. Ввиду очень большого объёма относящегося сюда материала представилось целесообразным разделить его на две части. Публикуемая первая часть содержит нерелятивистскую теорию, а релятивистская теория составит содержание второй части.

Под релятивистской теорией мы подразумеваем, в самом широком смысле, теорию всех квантовых явлений, существенно зависящих от скорости света. Соответственно этому в неё будет включена не только релятивистская теория Дирака и связанные с ней вопросы, но и вся квантовая теория излучения.

Наряду с основами квантовой механики в книге изложены также и многочисленные её применения — в значительно большей степени, чем это обычно делается в общих курсах квантовой механики. Мы исключали из рассмотрения только такие вопросы, исследование которых требовало бы существенным образом одновременного подробного анализа экспериментальных данных, что неизбежно вышло бы за рамки книги.

Изложение конкретных вопросов мы стремились вести с наибольшей полнотой. В связи с этим мы считали излишними ссылки на оригинальные работы, ограничиваясь указанием их авторов.

Как и в предыдущих томах, изложение общих вопросов мы старались вести таким образом, чтобы, по возможности, ясно выявить физическую сущность теории и на её основе строить математический аппарат. Это в особенности сказалось на первых параграфах книги, посвящённых выяснению общих свойств квантово-механических операторов. В противоположность обычно принятой схеме изложения, исходящей из математических теорем о линейных операторах, мы, наоборот, выводим математические требования, предъявляемые к операторам и собственным функциям, исходя из физической постановки вопроса.

Нельзя не отметить, что во многих курсах квантовой механики изложение существенно усложнилось по сравнению с оригинальными работами. Хотя такое усложнение обычно аргументируется общностью и строгостью, но при внимательном рассмотрении легко заметить, что и та и другая в действительности часто иллюзорны до такой
степени, что заметная часть «строгих» теорем является ошибочной. Поскольку такое усложнение изложения представляется нам совершенно неоправданным, мы, наоборот, стремились к возможной простоте и во многом вернулись к оригинальным работам.

Некоторые чисто математические сведения вынесены нами в конец книги в виде «Математических дополнений», чтобы, по возможности, не прерывать изложения в тексте отвлечением в чисто вычислительную сторону. Эти дополнения преследуют также и справочные цели.

Наконец, несколько замечаний об общем плане курса. В целях сохранения преемственности с ранее выпущенными томами этого курса, мы сохраняем на этом томе номер 5, соответствующий последовательности: 1. Механика, 2. Статистическая физика, 3. Механика сплошных сред, 4. Теория поля, 5. Квантовая механика, 6. Макроскопическая электродинамика.

Однако за десять лет, прошедших с момента выхода первой книги, взгляды авторов на порядок расположения отдельных частей курса не могли не претерпеть некоторых изменений. В частности, мы пришли к выводу, что изложение классической статистики отдельно от квантовой по многим причинам нецелесообразно. Объединение классической и квантовой статистик требует, однако, перестановки также и других разделов. В результате наш Курс теоретической физики должен состоять из следующих томов: 1. Механика, 2. Теория поля, 3. Квантовая механика; часть 1 — нерелятивистская теория; часть 2 — релятивистская теория, 4. Статистическая физика, 5. Механика сплошных сред; часть 1 — гидродинамика; часть 2 — теория упругости, 6. Макроскопическая электродинамика. 7. Физическая кинетика.

Из этой программы тома 1, 2, 5 уже вышли ранее в свет. Изданную ранее «Статистическую физику» мы предполагаем в дальнейшем включить как часть в том 4.

В заключение выражаем благодарность проф. В. Л. Гinzбургу и проф. Д. И. Блохинцеву, просматрившим книгу в рукописи.

Л. Д. Ландсат
Е. М. Лифшиц

Институт
физических проблем АН СССР
Москва, май 1947 г.
ГЛАВА I
ОСНОВНЫЕ ПОНЯТИЯ КВАНТОВОЙ МЕХАНИКИ

§ 1. Введение

Классические механика и электродинамика при попытке применить их к объяснению атомных явлений приводят к результатам, находящимся в резком противоречии с опытом. Наиболее ясно это видно уже из противоречия, получающегося при применении обычной электродинамики к модели атома, в которой электроны движутся вокруг ядра по классическим орбитам. При таком движении, как и при всяком ускоренном движении зарядов, электроны должны были бы непрерывно излучать электромагнитные волны. Излучая, электроны теряли бы свою энергию, что должно было бы привести в конце концов к их падению на ядро. Таким образом, согласно классической электродинамике, атом был бы неустойчивым, что ни в какой степени не соответствует действительности.

Такое глубокое противоречие теории с экспериментом свидетельствует о том, что построение теории, применимой к атомным явлениям, — явлениям, происходящим с частицами очень малой массы в очень малых участках пространства, — требует фундаментального изменения в основных классических представлениях и законах.

В качестве отправной точки для выяснения этих изменений удобно исходить из наблюдаемого на опыте явления так называемой дифракции электронов 1). Оказывается, что при пропускании однонодного пучка электронов через кристалл в прошедшем пучке обнаруживается картина чередующихся максимумов и минимумов интенсивности, вполне аналогичная диффракционной картине, наблюдающейся при диффракции электромагнитных волн. Таким образом

1) Явление дифракции электронов было в действительности открыто после создания квантовой механики. В нашем изложении, однако, мы не придерживаемся исторической последовательности развития теории, а пытаемся построить ее таким образом, чтобы наиболее ясно показать, каким образом основные принципы квантовой механики связаны с наблюдаемыми на опыте явлениями.
в некоторых условиях поведение материальных частиц — электронов — обнаруживает черты, свойственные волновым процессам.

Насколько глубоко противоречит это явление обычным представлениям о движении, лучше всего видно из следующего мысленного эксперимента, представляющего собой идеализацию опыта с электронной диффракцией от кристалла. Представим себе непроницаемый для электронов экран, в котором прорезаны две щели. Наблюдая прохождение пучка электронов 1) через одну из щелей, в то время как другая щель закрыта, мы получим на поставленном за щелью сплошном экране некоторую картину распределения интенсивности; таким же образом получим другую картину, открывая вторую щель и закрывая первую. Наблюдая же прохождение пучка одновременно через обе щели, мы должны были бы, на основании обычных представлений, ожидать картину, являющуюся простым наложением обеих предыдущих, — каждый электрон, двигаясь по своей траектории, проходит через одну из щелей, не оказывая никакого влияния на электроны, проходящие через другую щель. Явление электронной диффракции показывает, однако, что в действительности мы получим диффракционную картину, которую благодаря интерференции отнюдь не сводится к сумме картин, даваемых каждой из щелей в отдельности. Ясно, что этот результат никаким образом не может быть совмещён с представлением о движении электронов по траектории.

Таким образом механика, которой подчиняются атомные явления, — так называемая квантовая или волновая механика, — должна быть основана на представлениях о движении, принципиально отличных от представлений классической механики. В квантовой механике не существует понятия траектории частицы.

Отвергая обычные представления классической механики, это обстоятельство обладает, можно сказать, ограничительным содержанием. Естественно, что само по себе оно совершенно недостаточно для построения на его основе новой механики частиц. В основе такой теории должны лежать, конечно, какие-то положительные утверждения, которые будут рассмотрены ниже (§ 2). Однако, для того, чтобы сформулировать эти утверждения, необходимо предварительно выяснить характер постановки задач, стоящих перед квантовой механикой. Для этого прежде всего останавливаемся на особом характере взаимоотношений, в котором находятся квантовая и классическая механики. Обычно более общая теория может быть сформулирована логически зашитым образом независимо от менее общей теории, являющейся её предельным случаем. Так, релятивистская механика может быть построена на основании своих основных принципов без всяких ссылок на ньютонаскую механику. Обоснование же квантовой механики принципиально невозможно без привлечения

1) Пучок предполагается настолько разрежённым, что взаимодействие частиц в нём не играет никакой роли.
механики классической. Если электрон 1) приходит во взаимодействие с «классическим объектом», то состояние последнего, вообще говоря, меняется. Характер и величина этого изменения зависят от состояния электрона и поэтому могут служить его количественной характеристикой.

В этой связи «классический объект» обычно называют «прибором», а о его процессе взаимодействия с электроном говорят, как об «измерении». Необходимо, однако, самым решительным образом подчеркнуть, что при этом отнюдь не имеется в виду процесс «измерения», в котором участвует физик-наблюдатель. Под измерением в квантовой механике подразумевается всякий процесс взаимодействия между классическим и квантовым объектами, происходящий помимо и независимо от какого-либо наблюдателя.

Мы определили прибор как физический объект, с достаточной точностью подчиняющийся классической механике. Таковым является, например, тело достаточно большой массы. Однако не следует думать, что макроскопичность является обязательным свойством прибора. В известных условиях роль прибора может играть также и заведомо микроскопический объект, поскольку понятие «с достаточной точностью» зависит от конкретно поставленной задачи. Так, движение электрона в камере Вильсона наблюдается по оставляемому им туманному следу, толщина которого велика по сравнению с атомными размерами; при такой степени точности определения траектории электрон является вполне классическим объектом.

Таким образом квантовая механика занимает очень своеобразное положение в ряду физических теорий — она содержит классическую механику как свой предельный случай и в то же время нуждается в этом предельном случае для самого своего обоснования.

Мы можем теперь сформулировать постановку задачи квантовой механики. Типичная постановка задачи заключается в предсказании результата повторного измерения по известному результату предыдущих измерений. Кроме того, мы увидим в дальнейшем, что квантовая механика, вообще говоря, ограничивает, по сравнению с классической механикой, набор значений, которые могут принимать различные физические величины (например энергия), т. е. значений, которые могут быть обнаружены в результате измерения данной величины. Аппарат квантовой механики должен дать возможность определения этих дозволенных значений.

Процесс измерения обладает в квантовой механике очень существенной особенностью — он всегда оказывает воздействие на подвергаемый ему электрон, и это воздействие принципиально не может быть сделано, при данной точности измерения, сколь угодно слабым. Чем точнее измерение, тем сильнее оказываемое им воздействие, и лишь при

1) В этом и следующем параграфах мы говорим для краткости об электроне, имея в виду всякий вообще квантовый объект, т. е. частицу или систему частиц, подчиняющихся квантовой и не подчиняющихся классической механике.
измерениях очень малой точности воздействие на объект измерения может быть слабым.

Среди различного рода измерений основную роль играет измерение координат электрона. Над электроном, в пределах действительности квантовой механики, всегда может быть произведено 1) измерение его координат с любой точностью.

Предположим, что через определённые интервалы времени \(\Delta t \) производятся последовательные измерения координат электрона. Их результаты, вообще говоря, не лягут на какую-либо плавную кривую. Напротив, чем точнее производятся измерения, тем более скачкообразный, беспорядочный ход обнаружат их результаты, в соответствии с отсутствием для электрона понятия траектории. Более или менее плавная траектория получится лишь, если измерять координаты электрона с небольшой степенью точности, как, например, по конденсации капелек пара в камере Вильсона.

Если же, оставляя точность измерений неизменной, уменьшать интервалы \(\Delta t \) между измерениями, то соседние измерения дают конечно, близкие значения координат. Однако результаты ряда последовательных измерений хотя и будут лежать в малом участке пространства, но в этом участке будут расположены совершенно беспорядочным образом, отнюдь не укладываясь на какую-либо плазную кривую. В частности при стремлении \(\Delta t \) к нулю результаты близких измерений вовсе не стремятся лечь на одну прямую.

Последнее обстоятельство показывает, что в квантовой механике не существует понятия скорости частицы в классическом смысле этого слова, т. е. как предела, к которому стремится разность координат в два момента времени, делённая на интервал \(\Delta t \) между этими моментами. Однако в дальнейшем мы увидим, что в квантовой механике, тем не менее, может быть дано разумное определение скорости частицы в данный момент времени, которая при переходе к классической механике переходит в классическую скорость.

Как следует из изложенного, характер описания состояния электрона в квантовой механике таков, что типичная постановка задачи в квантовой механике состоит в определении вероятности получения того или иного результата при измерении. Разумеется, в некоторых случаях вероятность некоторого определённого результата измерения может оказаться равной единице, т. е. перейти в достоверность, так что результат данного измерения будет однозначным.

Все процессы измерения в квантовой механике можно разбить на две категории. В одну из них, обнимающую большинство измерений, входят измерения, которые ни при каком состоянии системы

1) Ещё раз подчеркнём, что, говоря о «произведённом измерении», мы имеем в виду взаимодействие электрона с классическим «прибором», отнюдь не предполагающее наличия постороннего наблюдателя.
не приводят с достоверностью к однозначному результату. В другую же входят измерения, для каждого результата которых существует состояние, в котором измерение приводит с достоверностью к данному результату. Именно эти последние измерения, которые можно назвать «прецедентными», играют в квантовой механике основную роль. Определяемые такими измерениями количественные характеристики состояния суть то, что в квантовой механике называют физическими величинами. Если в некотором состоянии измерение даёт с достоверностью однозначный результат, то мы будем говорить, что в этом состоянии соответствующая физическая величина имеет определённое значение. В дальнейшем мы будем везде понимать выражение «физическая величина» именно в указанном здесь смысле.

В дальнейшем мы неоднократно убедимся, что далеко не всякая совокупность физических величин в квантовой механике может быть измерена одновременно, т. е. может иметь одновременно определённые значения. Большую роль в квантовой механике играют наборы физических величин, обладающие следующим свойством: эти величины измеримы одновременно, причём если они имеют одновременно определённые значения, то уже никакая другая физическая величина (не являющаяся их функцией) не может иметь в этом состоянии определённого значения. О таких наборах физических величин мы будем говорить как о полных наборах; в частных случаях полный набор может сводиться всего к одной величине.

Всякое описание состояния электрона возникает в результате некоторого измерения. Мы сформулируем теперь, что означает полное описание состояния в квантовой механике. Полным образом описанные состояния возникают в результате одновременного измерения полного набора физических величин. По результатам такого измерения можно, в частности, определить вероятность результатов всякого последующего измерения независимо от всего, что происходило с электроном до первого измерения.

В квантовой механике практически приходится иметь дело только с состояниями, описанными полным образом, и в дальнейшем везде (за исключением только § 12) под состояниями квантовой системы мы будем понимать именно такие состояния.

§ 2. Принцип суперпозиции

Переходя к изложению основ математического аппарата квантовой механики, условимся обозначать посредством q совокупность координат квантовой системы, а посредством dq — произведение дифференциалов этих координат. dq называют часто элементом объёма конфигурационного пространства системы; для одной частицы dq совпадает с элементом объёма dV обычного пространства.

Основу математического аппарата квантовой механики составляет тот факт, что каждое состояние системы может быть описано
в данный момент времени определенной (вообще говоря, комплексной) функцией координат $\Psi(q)$, причем квадрат модуля этой функции определяет распределение вероятностей значений координат: $|\Psi|^2dq$ есть вероятность того, что произведённое над системой измерение обнаружит значения координат в элементе dq конфигурационного пространства. Функция Ψ называется волновой функцией системы (иногда её называют также амплитудой вероятности).

Знание волновой функции позволяет, принципиально, вычислить вероятности различных результатов также и всякого другого измерения (не измерения координат). При этом все эти вероятности определяются выражениями, билинейными по Ψ и Ψ^*. Наиболее общий вид такого выражения есть

$$\int \int \Psi(q)\Psi^*(q')\varphi(q, q')dq dq',$$ \hspace{1cm} (2,1)

где функция $\varphi(q, q')$ зависит от рода и результата измерения, а интегрирования производятся по всему конфигурационному пространству. Самая вероятность $\Psi\Psi^*$ различных значений координат тоже является выражением такого типа.

С течением времени состояние системы, а с ним и волновая функция, вообще говоря, меняются. В этом смысле волновую функцию можно рассматривать как функцию также и от времени. Если волновая функция известна в некоторый начальный момент времени, то по самому смыслу понятия полного описания состояния она тем самым принципиально определена и во все будущие моменты времени. Фактическая зависимость волновой функции от времени определяется уравнениями, которые будут выведены в дальнейшем.

Сумма вероятностей всех возможных значений координат системы должна, по определению, быть равной единице. Поэтому нужно, чтобы результат интегрирования $|\Psi|^2$ по всему конфигурационному пространству был бы равен единице:

$$\int |\Psi|^2dq = 1.$$ \hspace{1cm} (2,2)

Это равенство представляет собой так называемое условие нормировки волновых функций. Если интеграл от $|\Psi|^2$ сходится, то выбором соответствующего постоянного коэффициента функция Ψ всегда может быть, как говорят, нормирована. Иногда, однако, пользуются и ненормированными волновыми функциями; кроме того, мы увидим в дальнейшем, что интеграл от $|\Psi|^2$ может расходиться.

1) Она была впервые введена в квантовую механику Шредингером в 1926 г.
2) Оно получается из (2,1) при $\varphi(q, q') = \delta(q - q_0)\delta(q' - q_0)$, где δ обозначает так называемую δ-функцию, определяемую ниже, в § 5; посредством q_0 обозначено значение координаты, вероятность которого мы ищем.
и тогда Ψ вообще не может быть нормировано условием $(2,2)$. В таких случаях $|\Psi|^2$ не определяет, конечно, абсолютные значения вероятности координат, но отношение значений $|\Psi|^2$ в двух различных точках конфигурационного пространства определяет относительную вероятность соответствующих значений координат.

Поскольку все вычисления с помощью волновой функции величины с непосредственным физическим смыслом имеют вид $(2,1)$, в котором Ψ входит умноженным на Ψ^*, то ясно, что нормированная волновая функция определена лишь с точностью до постоянного «фазового» множителя вида $e^{i\alpha}$ (α — любое действительное число) с модулем, равным единице. Эта неоднозначность — принципиальная и не может быть устранена; однако она несущественна, так как не отражается ни на каких физических результатах.

В основе положительного содержания квантовой механики лежит ряд утверждений относительно свойств волновой функции, заключающихся в следующем.

Пусть в состоянии с волновой функцией $\Psi_1(q)$ некоторое измерение приводит с достоверностью к определённому результату (результату 1), а в состоянии $\Psi_2(q)$ — к результату 2. Тогда принимается, что всякая линейная комбинация Ψ_1 и Ψ_2, т. е. всякая функция вида $c_1\Psi_1 + c_2\Psi_2$ (c_1, c_2 — постоянные), даёт состояние, в котором то же измерение даёт либо результат 1, либо результат 2. Кроме того, можно утверждать, что если нам известна зависимость состояний от времени, которая для одного случая даётся функцией $\Psi_1(q, t)$, а для другого — $\Psi_2(q, t)$, то любая их линейная комбинация тоже даёт возможную зависимость состояния от времени. Эти утверждения непосредственно обобщаются на любое число различных состояний.

Совокупность высказанных утверждений относительно волновых функций составляет содержание так называемого принципа суперпозиции состояний — основного положительного принципа квантовой механики. Из него, в частности, непосредственно следует, что все уравнения, которым удовлетворяют волновые функции, должны быть линейными по Ψ.

Рассмотрим систему, состоящую из двух частей, и предположим, что состояние этой системы задано так, что каждая из частей описана полным образом $^1)$. Тогда можно утверждать, что вероятности координат q_1 первой части независимы от вероятностей координат q_2 второй части, и потому распределение вероятностей для системы в целом должно быть равно произведению вероятностей для её частей. Это значит, что волновая функция $\Psi_{12}(q_1, q_2)$ системы

1) Тем самым, конечно, дано и полное описание состояния системы в целом. Подчеркнём, однако, что обратное утверждение отнюдь не справедливо: полное описание состояния системы как целого ещё не определяет, вообще говоря, полным образом состояний её отдельных частей (см. также § 12).
может быть представлена в виде произведения волновых функций \(\Psi_1(q_1) \) и \(\Psi_2(q_2) \) её частей:

\[
\Psi_{12}(q_1, q_2) = \Psi_1(q_1) \Psi_2(q_2).
\] (2,3)

Если обе части не взаимодействуют друг с другом, то такое соотношение между волновыми функциями системы и её частей сохраняется и в будущие моменты времени, т. е. можно написать:

\[
\Psi_{12}(q_1, q_2, t) = \Psi_1(q_1, t) \Psi_2(q_2, t).
\] (2,4)

§ 3. Операторы

Рассмотрим некоторую физическую величину \(f \), характеризующую состояние квантовой системы. Строго говоря, в нижеследующих рассуждениях следовало бы говорить не об одной величине, а сразу о целом полном их наборе. Однако все рассуждения от этого по существу не меняются, и в целях краткости и простоты мы говорим ниже всего лишь об одной физической величине.

Значения, которые может принимать данная физическая величина, называют в квантовой механике её собственными значениями, а об их совокупности говорят как о спектре собственных значений данной величины. В классической механике величины пробегают, вообще говоря, непрерывный ряд значений. В квантовой механике тоже существуют физические величины (например, координаты), собственные значения которых заполняют непрерывный ряд; в таких случаях говорят о непрерывном спектре собственных значений. Наряду с такими величинами в квантовой механике существуют, однако, и другие, собственные значения которых образуют некоторый дискретный набор; в таких случаях говорят о дискретном спектре.

Будем считать для простоты, что рассматриваемая здесь величина \(f \) обладает дискретным спектром; случай непрерывного спектра рассматривается в следующем параграфе. Собственные значения величины \(f \) обозначим как \(f_n \), где индекс \(n \) пробегает значения 1, 2, 3,\ldots Обозначим далее волновую функцию системы в состоянии, в котором величина \(f \) имеет значение \(f_n \), посредством \(\Psi_n \). Волновые функции \(\Psi_n \) называют собственными функциями данной физической величины \(f \). Каждая из этих функций предполагается нормированной, так что

\[
\int |\Psi_n|^2 \, dq = 1.
\] (3,1)

Если система находится в некотором произвольном состоянии с волновой функцией \(\Psi \), то произведённое над нею измерение величины \(f \) даст в результате одно из собственных значений \(f_n \). В соответствии с принципом суперпозиции мы можем утверждать, что волновая функция \(\Psi \) должна представлять собой линейную комбинацию тех из собственных функций \(\Psi_n \), которые соответствуют значениям \(f_n \), могущим быть обнаруженными с отличной от нуля вероят-
нностью при измерении, произведённом над системой, находящейся в рассматриваемом состоянии. Поэтому в общем случае произвольного состояния функция Ψ может быть представлена в виде ряда

$$\Psi = \sum_{n} a_{n} \Psi_{n}, \tag{3,2}$$

gде суммирование производится по всем n, а a_{n} — некоторые постоянные коэффициенты.

Таким образом мы приходим к выводу, что всякая волновая функция может быть, как говорят, разложена по собственным функциям любой физической величины. О системе функций, по которым можно произвести такое разложение, говорят как о полной (или замкнутой) системе функций.

Разложение (3,2) даёт возможность определить вероятности обнаружения (т. е. вероятность соответствующего результата при измерении) у системы в состоянии с волновой функцией Ψ того или иного значения f_{n} величины f. Действительно, согласно сказанному в предыдущем параграфе, эти вероятности должны определяться некоторыми билинейными по Ψ и Ψ^{*} выражениями и потому должны быть билинейными по a_{n} и a_{n}^{*}. Далее, эти выражения, разумеется, должны быть существенно положительными. Наконец, вероятность значения f_{n} должна обращаться в единицу, если система находится в состоянии с волновой функцией $\Psi = \Psi_{n}$, и должна обращаться в нуль, если в разложении (3,2) волновой функции Ψ отсутствует член с данной Ψ_{n}. Последнее означает, что искомая вероятность должна быть единицей, если равны нулю все коэффициенты a_{n}, кроме только одного (с данным n), равного единице, и должна быть нулям, если данное $a_{n} = 0$. Единственной существенно положительной величиной, удовлетворяющей этому условию, является квадрат модуля коэффициента a_{n}. Таким образом мы приходим к результату, что квадрат модуля $|a_{n}|^{2}$ каждого из коэффициентов разложения (3,2) определяет вероятность соответствующего значения f_{n} величины f в состоянии с волновой функцией Ψ. Сумма вероятностей всех возможных значений f_{n} должна быть равна единице; другими словами, должно иметь место соотношение

$$\sum_{n} |a_{n}|^{2} = 1. \tag{3,3}$$

Если бы функция Ψ не была нормирована, то не имело бы места также и соотношение (3,3). Сумма $\sum_{n} |a_{n}|^{2}$ должна была бы при этом определяться некоторым выражением, билинейным по Ψ и Ψ^{*} и обращающимся в единицу при нормированном Ψ. Таковым является только интеграл $\int \Psi \Psi^{*} dq$. Таким образом должно иметь место равенство

$$\sum_{n} a_{n} a_{n}^{*} = \int \Psi \Psi^{*} dq. \tag{3,4}$$
С другой стороны, умножив на Ψ разложение $\Psi^* = \sum a_n^* \Psi_n^*$, комплексно сопряжённой с Ψ функции Ψ^*, и проинтегрировав, получим:

$$\int \Psi \Psi^* dq = \sum a_n^* \int \Psi_n^* \Psi dq.$$

Сравнивая это с (3,4), имеем

$$\sum a_n a_n^* = \sum a_n^* \int \Psi_n^* \Psi dq,$$

откуда находим следующую формулу, определяющую коэффициенты a_n разложения функции Ψ по собственным функциям Ψ_n:

$$a_n = \int \Psi \Psi_n^* dq.$$ \hspace{1cm} (3,5)

Если подставить сюда (3,2), то получим

$$a_n = \sum m a_m \int \Psi_m \Psi_n^* dq,$$

откуда видно, что собственные функции должны удовлетворять условиям:

$$\int \Psi_m \Psi_n^* dq = \delta_{nm},$$ \hspace{1cm} (3,6)

где $\delta_{nm} = 1$ при $n=m$ и $\delta_{nm} = 0$ при $n \neq m$. О факте обращения в нуль интегралов от произведений $\Psi_m \Psi_n^*$ с $m \neq n$ говорят как о взаимной ортогональности функций Ψ_n. Таким образом совокупность собственных функций Ψ_n образует полную систему нормированных и взаимно ортогональных функций.

Введём понятие о среднем значении \bar{f} величины f в данном состоянии. Соответственно обычному определению средних значений, определим \bar{f} как сумму всех собственных значений f_n данной величины, умноженных каждое на соответствующую вероятность $|a_n|^2$. Таким образом

$$\bar{f} = \sum f_n |a_n|^2.$$ \hspace{1cm} (3,7)

Напишем \bar{f} в виде выражения, которое бы содержало не коэффициенты a_n разложения функции Ψ, а самую эту функцию. Поскольку в (3,7) входят произведения $a_n a_n^*$, то ясно, что искомое выражение должно быть билинейным по Ψ и Ψ^*. Введём некоторый математический оператор, который мы обозначим как \hat{f}, и определим следующим образом. Пусть $\hat{f} \Psi$ обозначает результат воздействия оператора \hat{f} на функцию Ψ. Мы определим \hat{f} так, чтобы интеграл

1) Мы условимся обозначать везде операторы буквами со шляпкой.
от произведения \(\hat{f} \Psi \) на комплексно сопряжённую функцию \(\Psi^* \) был бы равен среднему значению \(\bar{f} \):

\[
\bar{f} = \int \Psi^* \left(\hat{f} \Psi \right) dq.
\] (3.8)

Легко видеть, что в общем случае оператор \(\hat{f} \) представляет собой некоторый линейный 1) интегральный оператор. Действительно, воспользовавшись выражением (3.5) для \(a_n \), мы можем переписать определение (3.7) среднего значения в виде:

\[
\bar{f} = \sum_n f_n a_n a_n^* = \int \Psi^* \left(\sum_n a_n f_n \Psi_n \right) dq.
\]

Сравнивая с (3.8), мы видим, что результат воздействия оператора \(\hat{f} \) на функцию \(\Psi \) имеет вид:

\[
\left(\hat{f} \Psi \right) = \sum_n a_n f_n \Psi_n.
\] (3.9)

Если подставить сюда выражение (3.5) для \(a_n \), то мы найдём, что \(\hat{f} \) есть интегральный оператор вида

\[
\left(\hat{f} \Psi \right) = \int K(q, q') \Psi (q') dq',
\] (3.10)

где функция \(K(q, q') \) (так называемое ядро оператора) есть

\[
K(q, q') = \sum_n f_n \Psi_n^* (q') \Psi_n (q).
\] (3.11)

Таким образом каждой физической величине в квантовой механике приводится в соответствие определённый линейный оператор.

Из (3.9) видно, что если функцией \(\Psi \) является одна из собственных функций \(\Psi_n \) (так что все \(a_n \), кроме одного, равны нулю), то в результате воздействия на неё оператора \(\hat{f} \) эта функция просто умножается на соответствующее собственное значение \(f_n \):

\[
\hat{f} \Psi_n = f_n \Psi_n
\] (3.12)

(ниже мы будем везде, где это не может привести к недоразумению, опускать скобки в выражении \(\hat{f} \Psi \), причём оператор предполагается действующим на написанное выражение). Таким образом мы можем сказать, что собственные функции данной физической величины \(f \) являются решениями уравнения

\[
\hat{f} \Psi = f \Psi,
\]

1) Линейным называется оператор, обладающий свойствами: \(\hat{f} (\Psi_1 + \Psi_2) = f \Psi_1 + f \Psi_2, \hat{f} (a \Psi) = a f \Psi \), где \(\Psi_1, \Psi_2 \) — произвольные функции, а \(a \) — произвольная постоянная.
где \(f \)— постоянная, а собственные значения суть те значения этой постоянной, при которых написанное уравнение имеет решения, удовлетворяющие требуемым условиям. Разумеется, до тех пор пока оператор \(\hat{f} \) определяется только выражениями (3,10)—(3,11), которые сами содержат собственные функции \(\Psi_n \), из полученного результата не может быть извлечено никаких дальнейших следствий. Однако, как мы увидим ниже, вид операторов для различных физических величин может быть определён из непосредственных физических соображений, и тогда указанное свойство операторов даёт возможность находить собственные функции и собственные значения посредством решения уравнений \(\hat{f}\Psi = f\Psi \).

Значения, которые могут принимать действительные физические величины, являются, очевидно, величинами действительными. Поэтому и среднее значение физической величины во всяком состоянии должно быть действительным. Обратно, если среднее значение физической величины действительно во всяком состоянии, то действительны и все её собственные значения; достаточно заметить, что средние значения совпадают с собственными в состояниях, описываемых функциями \(\Psi_n \).

Из факта действительности средних значений можно сделать некоторые заключения о свойствах операторов. Приравнив выражение (3,8) комплексно ему сопряжённому, получим соотношение

\[
\int \Psi^* \hat{f} \Psi dq = \int \Psi^* \hat{f}^* \Psi^* dq, \tag{3,13}
\]

где \(\hat{f}^* \) обозначает оператор, комплексно сопряжённый с \(\hat{f} \). Для произвольного линейного оператора такое соотношение, вообще говоря, не имеет места, так что оно представляет собой некоторое ограничение, накладываемое на возможный вид операторов \(\hat{f} \). Для произвольного оператора \(\hat{f} \) можно указать, как говорят, транспонированный с ним оператор \(\hat{\tilde{f}} \), определяемый так, чтобы было

\[
\int \overline{\Psi} \hat{\tilde{f}} \Phi dq = \int \Phi \hat{\tilde{f}} \Psi dq, \tag{3,14}
\]

где \(\Psi, \Phi \)— две различные функции. Если выбрать в качестве функции \(\Phi \) сопряжённую с \(\Psi \) функцию \(\Psi^* \), то сравнение с (3,13) показывает, что должно быть

\[
\hat{f} = \hat{f}^*. \tag{3,15}
\]

1) По определению, если для оператора \(\hat{f} \) имеем \(\hat{f}\Psi = \varphi \), то комплексно сопряжённым оператором \(\hat{f}^* \) будет оператор, для которого имеет место \(\hat{f}^*\psi^* = \varphi^* \).
Операторы, удовлетворяющие этому условию, называют эрмитовыми 1). Таким образом операторы, соответствующие в математическом аппарате квантовой механики действительным физическим величинам, должны быть эрмитовыми.

Формально можно рассматривать также и комплексные физические величины, т. е. величины, собственные значения которых комплексны. Пусть \(f \) есть такая величина. Тогда можно ввести комплексно сопряжённую с ней величину \(f^\dagger \), собственные значения которой комплексно сопряжены с собственными значениями \(f \). Оператор, соответствующий величине \(\hat{f} \), обозначим посредством \(\hat{f}^+ \). Его называют сопряжённым оператору \(\hat{f} \) и его необходимо, вообще говоря, отличать от комплексно сопряжённого оператора \(\hat{f^*} \). Из условия \(\overline{f^*} = (\overline{f})^* \) непосредственно получим, что

\[
\hat{f}^+ = \hat{f^*},
\]

откуда ясно видно, что \(\hat{f}^+ \), вообще говоря, не совпадает с \(\hat{f^*} \). Для действительной физической величины \(\hat{f} = \hat{f}^+ \), т. е. оператор совпадает со своим сопряжённым (эрмитовы операторы называют также само-сопряжёнными).

Покажем, каким образом можно непосредственно доказать взаимную ортогональность собственных функций эрмитового оператора, соответствующих различным собственным значениям. Пусть \(f_n, f_m \) — два различных собственных значения величины \(\hat{f} \), а \(\Psi_n, \Psi_m \) — соответствующие им собственные функции:

\[
\hat{f} \Psi_n = f_n \Psi_n, \quad \hat{f} \Psi_m = f_m \Psi_m.
\]

Умножая обе стороны первого из этих равенств на \(\Psi_m^* \), а равенство, комплексно сопряжённое второму, — на \(\Psi_n^* \) и вычитая эти произведения почленно друг из друга, получим:

\[
\Psi_m^* \hat{f} \Psi_n - \Psi_n^* \hat{f} \Psi_m = (f_n - f_m) \Psi_n \Psi_m^*.
\]

Проинтегрируем обе части этого равенства по \(dq \). Поскольку \(\hat{f}^* = \hat{f} \), то в силу (3.14) интеграл от левой части равенства обращается в нуль, так что получим

\[
(f_n - f_m) \int \Psi_n \Psi_m^* dq = 0,
\]

откуда, ввиду \(f_n \neq f_m \), следует искомое свойство ортогональности функций \(\Psi_n \) и \(\Psi_m \).

Мы всё время говорим здесь только об одной физической величине \(f \), между тем как следовало бы говорить, как было отмечено в начале параграфа, о полной системе физических величин. Тогда

1) Для линейного интегрального оператора вида (3.10) условие эрмитовости означает, что ядро оператора должно быть таким, что \(K(q, q') = K^*(q', q) \).
мы нашли бы, что каждой из этих величин \(f, g \ldots \) соответствует свой оператор \(\hat{f}, \hat{g}, \ldots \). Собственные функции \(\Psi_n \) соответствуют тогда состояниям, в которых все рассматриваемые величины имеют определённые значения, т. е. соответствуют определённым наборам собственных значений \(f_n, g_n, \ldots \), и являются совместными решениями системы уравнений

\[
\hat{f} \Psi = f \Psi, \quad \hat{g} \Psi = g \Psi, \quad \ldots
\]

§ 4. Сложение и умножение операторов

Пусть \(f \) и \(g \) — две физические величины, могущие одновременно иметь определённые значения, а \(\hat{f} \) и \(\hat{g} \) — их операторы. Собственные значения суммы \(f + g \) этих величин равны суммам собственных значений величин \(f \) и \(g \). Этой новой величине будет, очевидно, соответствовать оператор, равный сумме операторов \(\hat{f} \) и \(\hat{g} \). Действительно, если \(\Psi_n \) — общие собственные функции операторов \(\hat{f} \) и \(\hat{g} \), то из

\[
\hat{f} \Psi_n = f \Psi_n, \quad \hat{g} \Psi_n = g \Psi_n
\]

следует, что

\[
\left(\hat{f} + \hat{g} \right) \Psi_n =

(f_n + g_n) \Psi_n,
\]

t. e. собственные значения оператора \(\hat{f} + \hat{g} \) равны суммам \(f_n + g_n \).

Если же величины \(\hat{f} \) и \(\hat{g} \) не могут иметь одновременно определённых значений, то говорить об их сумме в указанном только что непосредственном смысле, очевидно, не имеет смысла. В квантовой механике принято в таких случаях определять сумму величин \(f \) и \(g \) как такую величину, среднее значение которой в произвольном состоянии равно сумме средних значений \(\bar{f} \) и \(\bar{g} \):

\[
(f + g) = \bar{f} + \bar{g}.
\]

Ясно, что определённой таким образом величине \(f + g \) тоже будет соответствовать оператор \(\hat{f} + \hat{g} \). Действительно, согласно формуле (3,8), имеем:

\[
\bar{f} + \bar{g} = \int \Psi^* \left(\hat{f} + \hat{g} \right) \Psi \ dq = \\
= \int \Psi^* \hat{f} \Psi \ dq + \int \Psi^* \hat{g} \Psi \ dq = \bar{f} + \bar{g}.
\]

Что же касается собственных значений и функций оператора \(\hat{f} + \hat{g} \), то здесь они не будут иметь, вообще говоря, никакого отношения к собственным значениям и функциям величин \(f \) и \(g \). Очевидно, что если операторы \(\hat{f} \) и \(\hat{g} \) — самосопряжённые, то самосопряжённым будет и оператор \(\hat{f} + \hat{g} \), так что его собственные значения — действительно
и представляют собой собственные значения определённой таким образом новой величины $f + g$.

Отметим следующую теорему. Пусть f_0, g_0 суть наименьшие собственные значения величин f, g, а $(f + g)_0$ — то же для величины $f + g$. Тогда можно утверждать, что

$$(f + g)_0 \geq f_0 + g_0.$$ \(4,2\)

Знак равенства имеет место, если величины f и g одновременно измеримы. Доказательство следует из очевидного факта, что среднее значение величины во всяком случае больше или равно её наименьшему собственному значению. В состоянии, в котором величина $(f + g)$ имеет значение $(f + g)_0$, имеем $(f + g) = (f + g)_0$ и, поскольку, с другой стороны, $(f + g) = \hat{f} + \hat{g} \geq f_0 + g_0$, мы приходим к неравенству (4,2).

Пусть теперь снова f и g — одновременно измеримые величины. Наряду с их суммой, можно ввести понятие и об их произведении, как о величине, собственные значения которой равны произведениям собственных значений величин f и g. Легко видеть, что такой величине соответствует оператор, действие которого состоит в последовательном действии на функцию сначала одного, а затем другого оператора. Такой оператор изображается математически как произведение операторов \hat{f} и \hat{g}. Действительно, если Ψ_n — общие собственные функции операторов \hat{f} и \hat{g}, то имеем:

$$\hat{f} \hat{g} \Psi_n = \hat{f} (\hat{g} \Psi_n) = \hat{f} \hat{g} \Psi_n = g_n \hat{f} \Psi_n = g_n f_n \Psi_n$$

(символ $\hat{f} \hat{g}$ обозначает оператор, действие которого на функцию Ψ заключается в последовательном действии сначала оператора \hat{g} на функцию Ψ, а затем оператора \hat{f} на функцию $\hat{g} \Psi$). С тем же успехом мы могли бы взять вместо оператора $\hat{f} \hat{g}$ оператор $\hat{g} \hat{f}$, отличающийся от первого порядком множителей. Очевидно, что результат воздействия обоих этих операторов на функцию Ψ_n будет одинаковым. Но поскольку всякая волновая функция Ψ может быть представлена в виде линейной комбинации функций Ψ_n, то отсюда следует, что одинаковым будет результат воздействия операторов $\hat{f} \hat{g}$ и $\hat{g} \hat{f}$ и на произвольную функцию. Этот факт может быть записан в виде символического равенства $\hat{f} \hat{g} \equiv \hat{g} \hat{f}$ или

$$\hat{f} \hat{g} - \hat{g} \hat{f} = 0.$$ \(4,3\)

О таких двух операторах \hat{f} и \hat{g} говорят, как о «коммутирующих» друг с другом. Таким образом мы приходим к важному результату: если две величины f и g могут иметь одновременно определённые значения, то их операторы коммутируют друг с другом.
Может быть доказана и обратная теорема (см. § 11): если операторы \(\hat{f} \) и \(\hat{g} \) коммутативны, то у них все собственные функции общие, что физически означает одновременную измеримость соответствующих физических величин. Таким образом коммутативность операторов является необходимым и достаточным условием одновременной измеримости физических величин.

Частным случаем произведения операторов является оператор, возведённый в некоторую степень. На основании сказанного мы можем заключить, что собственные значения оператора \(\hat{f}^p \) (\(p \) — целое число) равны собственным значениям оператора \(\hat{f} \), возведённым в ту же \(p \)-ю степень.

Если величины \(f \) и \(g \) не могут иметь одновременно определённых значений, то понятие об их произведении не может быть определено указанным образом. Это проявляется в том, что оператор \(\hat{f} \hat{g} \) в этом случае не будет самосопряжённым, а потому не может соответствовать какой-либо физической величине. Действительно, по определению транспонированного оператора пишем:

\[
\int \Psi \hat{f} \hat{g} \Phi \, dq = \int \Psi \hat{f} (\hat{g} \Phi) \, dq = \int (\hat{g} \Phi)(\hat{f} \Psi) \, dq.
\]

Здесь оператор \(\hat{f} \) действует только на функцию \(\Psi \), а оператор \(\hat{g} \) — на \(\Phi \), так что под интегралом стоит просто произведение двух функций: \(\hat{g} \Phi \) и \(\hat{f} \Psi \). Применив ещё раз определение транспонированного оператора, пишем:

\[
\int \Psi \hat{f} \hat{g} \Phi \, dq = \int (\hat{f} \Psi)(\hat{g} \Phi) \, dq = \int \Phi \hat{g} \hat{f} \Psi \, dq.
\]

Таким образом мы получили интеграл, в котором по сравнению с первоначальным функции \(\Psi \) и \(\Phi \) поменялись местами. Другими словами, оператор \(\hat{g} \hat{f} \) есть оператор, транспонированный с \(\hat{f} \hat{g} \), и мы можем написать:

\[
\hat{f} \hat{g} = \hat{g} \hat{f}, \tag{4.4}
\]

— оператор, транспонированный с произведением \(\hat{f} \hat{g} \), есть произведение транспонированных множителей, написанных в обратном порядке.

Если каждый из операторов \(\hat{f} \) и \(\hat{g} \) — эрмитов, то \((\hat{f} \hat{g})* = \hat{g}* \hat{f} = \hat{g} \hat{f} \). Отсюда следует, что оператор \(\hat{f} \hat{g} \) будет эрмитовым, только если множители \(\hat{f} \) и \(\hat{g} \) — коммутативны.

Отметим, что из произведений \(\hat{f} \hat{g} \) и \(\hat{g} \hat{f} \) двух некоммутативных эрмитовых операторов можно составить эрмитов же оператор, взяв
симветричную комбинацию
\[\frac{1}{2} (\hat{f} \hat{g} + \hat{g} \hat{f}). \]

Такими выражениями иногда приходится пользоваться; о них говорят, как о симметризованных произведениях.

Легко также убедиться в том, что разность \(\hat{f} \hat{g} - \hat{g} \hat{f} \) есть «антиэрмитов» оператор (т. е. такой, для которого транспонированный оператор равен взятому с обратным знаком комплексно сопряжённому). Он может быть сделан эрмитовым умножением на \(i \); таким образом
\[i(\hat{f} \hat{g} - \hat{g} \hat{f}) \]
есть тоже эрмитов оператор.

В дальнейшем мы будем иногда пользоваться для краткости обозначением
\[\{\hat{f}, \hat{g}\} = \hat{f} \hat{g} - \hat{g} \hat{f}. \quad (4,5) \]
Легко убедиться в том, что имеет место соотношение
\[\{\hat{f} \hat{g}, \hat{h}\} = \{\hat{f}, \hat{h}\} \hat{g} + \hat{f} \{\hat{g}, \hat{h}\}. \quad (4,6) \]
Заметим, что если \(\{\hat{f}, \hat{h}\} = 0 \) и \(\{\hat{g}, \hat{h}\} = 0 \), то отсюда, вообще говоря, отнюдь не следует, что и \(\hat{f} \) и \(\hat{g} \) коммутативны.

§ 5. Непрерывный спектр

Все выведенные в §§ 3—4 соотношения, описывающие свойства собственных функций дискретного спектра, без труда могут быть обобщены на случай непрерывного спектра собственных значений.

Пусть \(f \) есть физическая величина, обладающая непрерывным спектром. Её собственные значения мы будем обозначать просто той же буквой \(f \) без индекса, соответственно тому, что \(f \) пробегает непрерывный ряд значений. Собственную функцию, соответствующую собственному значению \(f \), будем обозначать посредством \(\Psi_f \). Подобно тому как произвольная волновая функция \(\Psi \) может быть разложена в ряд (3,2) по собственным функциям величины с дискретным спектром, она может быть также разложена — на этот раз в интеграл — и по полной системе собственных функций величины с непрерывным спектром. Такое разложение имеет вид:
\[\Psi(q) = \int a_f \Psi_f(q) df, \quad (5,1) \]
где интегрирование производится по всей области значений, которые может принимать величина \(f \).

Более сложным, чем в случае дискретного спектра, является вопрос о нормировке собственных функций непрерывного спектра.
Требование равенства единице интеграла от квадрата модуля функции здесь, как мы увидим далее, невыполнимо. Вместо этого по-таким себе целью пронормировать функцию Ψ_f таким образом, чтобы $|a|^2 df$ представляло собой вероятность рассматриваемой физической величине иметь в состоянии, описывающемся волновой функцией Ψ_f, значение в заданном интервале между f и $f + df$. Это есть непосредственное обобщение случая дискретного спектра, где квадрат $|a_n|^2$ определяет вероятность собственного значения f_n. Поскольку сумма вероятностей всех возможных значений f должна быть равна единице, то имеем:

$$\int |a|^2 df = 1$$ \hspace{1cm} \text{(5,2)}

(аналогично соотношению (3,3) для дискретного спектра).

Поступая в точности аналогично тому, как мы делали при выводе формулы (3,5), и используя те же соображения, пишем, с одной стороны,

$$\int \Psi \Psi^* dq = \int |a|^2 df,$$

и, с другой стороны:

$$\int \Psi \Psi^* dq = \int \int a^*_f \Psi_f^* \Psi_f df dq.$$

Из сравнения обоих выражений находим формулу, определяющую коэффициенты разложения

$$a_f = \int \Psi(q) \Psi_f^*(q) dq,$$ \hspace{1cm} \text{(5,3)}

в точности аналогичную (3,5).

Для вывода условия нормировки подставляем теперь (5,1) в (5,3) и получаем:

$$a_f = \int a_{f'} \left(\int \Psi_{f'} \Psi_f^* dq \right) df'.$$

Это соотношение должно иметь место при произвольных a_f и потому должно выполняться тождественно. Для этого необходимо прежде всего, чтобы коэффициент при $a_{f'}$ под знаком интеграла (т. е. интеграл $\int \Psi_{f'} \Psi_f^* dq$) обращался в нуль при всех $f' \neq f$. При $f' = f$ этот коэффициент должен обратиться в бесконечность (в противном случае интеграл по df' будет равен просто нулю). Таким образом, интеграл $\int \Psi_{f'} \Psi_f^* dq$ есть функция разности $f - f'$, обращающаяся в нуль при отличных от нуля значениях аргумента и в бесконечность при равном нулю аргументе. Обозначим эту функ-
цию посредством \(\delta (f' - f) \):
\[
\int \Psi_f^* \Psi_f^* \, dq = \delta (f' - f).
\]
(5.4)

Способ обращения функции \(\delta (f' - f) \) в бесконечность при \(f' - f = 0 \) определяется тем, что должно быть
\[
\int \delta (f' - f) \, a_{f'} \, df' = a_f.
\]
Ясно, что для этого должно быть
\[
\int \delta (f' - f) \, df' = 1.
\]

Определенная таким образом функция называется \(\delta \)-функцией; в квантовой механике ею часто приходится пользоваться. Выпишем еще раз определяющие её формулы. Имеем
\[
\delta (x) = 0 \text{ при } x \neq 0, \quad \delta (0) = \infty,
\]
(5.5)
причём так, что
\[
\int_{-\infty}^{+\infty} \delta (x) \, dx = 1.
\]
(5.6)

В качестве пределов интегрирования можно написать любые другие, между которыми находится точка \(x = 0 \). Если \(f(x) \) есть некоторая функция, непрерывная при \(x = 0 \), то
\[
\int_{-\infty}^{+\infty} \delta (x) f(x) \, dx = f(0).
\]
(5.7)

В более общем виде эта формула может быть написана как
\[
\int \delta (x - a) f(x) \, dx = f(a),
\]
(5.8)
где область интегрирования включает точку \(x = a \), а \(f(x) \) — непрерывная при \(x = a \). Очевидно также, что \(\delta (-x) = \delta (x) \).

Формула (5.4) выражает собой правило нормировки собственных функций непрерывного спектра; она заменяет собой условие (3.6) дискретного спектра. Мы видим, что функции \(\Psi_f \) и \(\Psi_{f'} \), с \(f \neq f' \) попрежнему ортогональны друг к другу. Интегралы же от квадратов \(\vert \Psi_f \vert^2 \) функций непрерывного спектра расходятся.

Функции \(\Psi_f(q) \) удовлетворяют ещё одному соотношению, сходному с (5.4). Для его вывода подставляем (5.3) в (5.1), что даёт
\[
\Psi (q) = \int \Psi (q') \left(\int \Psi_f^*(q') \Psi_f (q) \, df \right) \, dq',
\]
откуда сразу заключаем, что должно быть 1)

\[\int \Psi^*_f(q') \Psi_f(q) df = \delta(q - q'). \]

(5,9)

Сравнивая пару формул (5,1), (5,4) с парой (5,3), (5,9), мы видим, что, с одной стороны, функции \(\Psi_f(q) \) осуществляют разложение функции \(\Psi(q) \) с коэффициентами разложения \(a_f \), а, с другой стороны, формулу (5,3) можно рассматривать как совершенно аналогичное разложение функции \(a_f = a(f) \) по функциям \(\Psi^*_f(q) \), причём роль коэффициентов разложения играет \(\Psi(q) \). Функция \(a(f) \), как и \(\Psi(q) \), вполне определяет состояние системы; о ней говорят иногда, как о волновой функции в «f-представлении» (а о функции \(\Psi(q) \)— как о волновой функции в q-представлении). Подобно тому как \(|\Psi(q)|^2 \) определяет вероятность для системы иметь координаты в заданном интервале \(dq \), так \(|a(f)|^2 \) определяет вероятность значений величины \(f \) в заданном интервале \(df \). Функции же \(\Psi_f(q) \) являются, с одной стороны, собственными функциями величины \(f \) в q-представлении и, с другой стороны, их комплексно сопряжённые суть собственные функции координаты \(q \) в f-представлении.

Пусть \(\varphi(f) \) — некоторая функция величины \(f \), причём такая, что \(\varphi \) и \(f \) связаны друг с другом взаимно однозначным образом. Каждую из функций \(\Psi_f(q) \) можно тогда рассматривать как собственную функцию величины \(\varphi \), соответствующую определяемой зависимостью \(\varphi = \varphi(f) \) значению последней. При этом, однако, необходимо изменить нормировку этих функций. Действительно, собственные функции \(\Psi_\varphi(q) \) величины \(\varphi \) должны быть нормированы условием

\[\int \Psi_\varphi(q') \Psi^*_\varphi(q) dq = \delta[\varphi(f') - \varphi(f)], \]

межу тем как функции \(\Psi_f \) нормированы условием (5,4).

Для того чтобы найти связь между \(\Psi_\varphi \) и \(\Psi_f \), замечаем следующее свойство \(\delta \)-функции. По еë определению, должно быть

\[\int \delta[\varphi(f') - \varphi(f)] d\varphi(f') = 1; \]

написав

\[d\varphi(f') = \frac{d\varphi(f')}{df'} df', \]

получим

\[\int \delta[\varphi(f') - \varphi(f)] \frac{d\varphi(f')}{df'} df' = \frac{d\varphi(f)}{df} \int \delta[\varphi(f') - \varphi(f)] df' = 1, \]

или

\[\int \delta[\varphi(f') - \varphi(f)] df' = \left(\frac{d\varphi(f)}{df}\right)^{-1}. \]

1) Аналогичное соотношение для дискретного спектра имеет вид:

\[\sum_n \Psi^*_n(q') \Psi_n(q) = \delta(q' - q). \]
Отсюда видно, что можно написать 1):

\[\delta [\varphi (f') - \varphi (f)] = \frac{1}{d\varphi (f)} \delta (f' - f). \] (5.10)

Таким образом условие нормировки для функций \(\Psi_\varphi \) можно написать в виде

\[\int \Psi_\varphi (f') \Psi^*_{\varphi (f)} df = \frac{1}{d\varphi (f)} \delta (f' - f). \]

Сравнивая это с (5.4), мы видим, что функции \(\Psi_\varphi \) и \(\Psi_f \) связаны друг с другом соотношением

\[\Psi_\varphi (f) = \frac{1}{\sqrt{d\varphi (f)}} \Psi_f. \] (5.11)

Существуют такие физические величины, которые обладают в некоторой области своих значений дискретным спектром, а в другой — непрерывным. Для собственных функций такой величины имеется, разумеется, место все те же соотношения, которые были выведены в этом и предыдущих параграфах. Надо только отметить, что полную систему функций образует совокупность собственных функций обоих спектров вместе. Поэтому разложение произвольной волновой функции по собственным функциям такой величины имеет вид

\[\Psi (q) = \sum_{n} a_n \Psi_n (q) + \int a_f \Psi_f (q) df, \] (5.12)

где сумма берется по дискретному, а интеграл — по всему непрерывному спектру.

Примером величины, обладающей непрерывным спектром, является сама координата \(q \). Легко видеть, что соответствующим ей оператором является простое умножение на \(q \). Действительно, поскольку вероятность различных значений координаты определяется квадратом \(|\Psi (q)|^2 \), то среднее значение координаты равно \(\bar{q} = \int q |\Psi|^2 dq \).

1) Вообще, если \(\varphi (x) \) есть некоторая однозначная функция (но обратная ей функция может быть неоднозначной), то имеет место формула

\[\delta [\varphi (x)] = \sum_{i} \frac{1}{\varphi' (\alpha_i)} \delta (x - \alpha_i), \]

где \(\alpha_i \) — корни уравнения \(\varphi (x) = 0 \). Наиболее простым частным случаем полученных формул является непосредственно вытекающее из них соотношение

\[\delta (ax) = \frac{1}{a} \delta (x). \]
С другой стороны, среднее значение координаты должно определяться её оператором посредством \(\bar{q} = \int \Psi^* \hat{q} \Psi dq \). Сравнение обоих выражений показывает, что оператор \(\hat{q} \) представляет собой простое умножение на \(q \); это можно символически написать в виде

\[
\hat{q} = q.
\]

(5,13)

Собственные функции этого оператора должны определяться, согласно общему правилу, уравнением \(q \Psi_{q_0} = q_0 \Psi_{q_0} \), где посредством \(q_0 \) временно обозначены конкретные значения координаты в отличие от переменной \(q \). Поскольку это равенство может удовлетворяться либо при \(\Psi_{q_0} = 0 \), либо при \(q = q_0 \), то ясно, что удовлетворяющие условию нормировки собственные функции есть

\[
\Psi_{q_0} = \delta(q - q_0).
\]

§ 6. Предельный переход

Квантовая механика содержит в себе классическую в качестве некоторого предельного случая. Возникает вопрос о том, каким образом осуществляется этот предельный переход.

В квантовой механике электрон описывается волновой функцией, определяющей различные значения его координаты; об этой функции нам известно пока только то, что она является решением некоторого линейного дифференциального уравнения в частных производных. В классической же механике электрон рассматривается как материальная частица, движущаяся по траектории, вполне определяющейся уравнениями движения. Взаимоотношение, в некотором смысле аналогичное взаимоотношению между квантовой и классической механикой, имеет место в электродинамике между волновой и геометрической оптикой. Волновой оптике электромагнитные волны описываются векторами электрического и магнитного полей, удовлетворяющими определённой системе линейных дифференциальных уравнений (уравнений Максвелла). В геометрической же оптике рассматривается распространение света по определённым траекториям — лучам. Подобная аналогия позволяет заключить, что предельный переход

1) В дальнейшем мы условимся для простоты обозначений писать везде операторы, сводящиеся к умножению на некоторую величину, просто в виде самой этой величины.

2) Коэффициенты разложения произвольной функции \(\Psi \) по этим собственным функциям равны

\[
a_{q_0} = \int \Psi(q) \delta(q - q_0) dq = \Psi(q_0).
\]

Вероятность значений координаты в данном интервале \(dq_0 \) равна \(|a_{q_0}|^2 dq_0 = |\Psi(q_0)|^2 dq_0 \), как и должно было быть.
от квантовой механики к классической происходит аналогично переходу от волновой к геометрической оптике.

Напомним, каким образом математически осуществляется этот последний переход. Пусть \(u \) есть какая-нибудь из компонент поля в электромагнитной волне. Её можно записать в виде \(u = ae^{i\varphi} \) (с действительными \(a \) и \(\varphi \)), где \(a \) называется амплитудой, а \(\varphi \) — фазой волны. Предельный случай геометрической оптики соответствует малым длиным волн, что математически выражается в том, что фаза \(\varphi \) (в геометрической оптике её называют эйконалом) изменяется на большую величину на протяжении малых расстояний; это означает, в частности, что её можно считать большой по своей абсолютной величине.

Соответственно этому, исходя из предположения, что предельному случаю классической механики соответствуют в квантовой механике волновые функции вида \(\Psi = ae^{i\varphi} \), где \(a \) — медленно меняющаяся функция, а \(\varphi \) принимает большие значения. Как известно, в механике траектория частицы может быть определена из вариационного принципа, согласно которому так называемое действие \(S \) механической системы должно быть минимальным (принцип наименьшего действия или принцип Гамильтона). В геометрической же оптике ход лучей определяется так называемым принципом Ферма, согласно которому должна быть минимальной «оптическая длина пути» луча, т. е. разность его фаз в конце и в начале пути.

Исходя из этой аналогии, мы можем утверждать, что фаза \(\varphi \) волновой функции в классическом предельном случае должна быть пропорциональна механическому действию \(S \) рассматриваемой физической системы, т. е. должно быть \(S = \text{const.} \varphi \). Коэффициент пропорциональности называется постоянной Планка1) и обозначается буквой \(h \). Она имеет размерность действия (поскольку \(\varphi \) безразмерно) и, согласно последним измерениям, равна2)

\[
h = 1,054 \cdot 10^{-27} \text{ эрг} \cdot \text{сек.}
\]

Таким образом волновая функция «почти классической» (или, как говорят, квазиклассической) физической системы имеет вид

\[
\Psi = ae^{iS/h}.
\]

Постоянная Планка \(h \) играет фундаментальную роль во всех квантовых явлениях. Её относительная величина (по сравнению с другими величинами той же размерности) определяет «степень квантовости»

1) Она была введена в физику М. Планком в 1900 г.
2) Постоянная \(h \), которой мы пользуемся везде в этой книге, есть, собственно говоря, постоянная Планка, делённая на \(2\pi \). Такая постоянная часто обозначается 'посредством \(h \). Мы, однако, будем везде пользоваться только этой последней и обозначать её просто как \(h \).

3 Зак. 3337. Ландуа и Лифшиц, т. V, ч. I.
той или иной физической системы. Переход от квантовой к классической механике, соответствующий большой фазе, может быть формально описан как переход к пределу $h \to 0$ (подобно тому как переход от волновой к геометрической оптике соответствует переходу к пределу равной нулю длины волны, $\lambda \to 0$).

Мы выяснили предельный вид волновой функции, но ещё остаётся вопрос о том, каким образом она связана с классическим движением по траектории. В общем случае движение, описываемое волновой функцией, отнюдь не переходит в движение по определённой траектории. Её связь с классическим движением заключается в том, что если в некоторый начальный момент волновая функция, а с ней и распределение вероятностей координат заданы, то в дальнейшем это распределение будет «перемещаться» так, как это полагается по законам классической механики (подробнее об этом см. конец § 15).

Для того чтобы получить движение по определённой траектории, надо исходить из волновой функции особого вида, заметно отличной от нуля лишь в очень малом участке пространства (так называемый «волновой пакет»); размеры этого участка можно стремить к нулю вместе с h. Тогда можно утверждать, что в квазиклассическом случае волновой пакет будет перемещаться в пространстве по классической траектории частицы.

Наконец, что касается квантовомеханических операторов, то в пределе они должны сводиться просто к умножению на соответствующую физическую величину.

§ 7. Волновая функция и измерения

Вернёмся снова к процессу измерения, свойства которого были качественно рассмотрены в § 1, и покажем, каким образом эти свойства связаны с математическим аппаратом квантовой механики.

Рассмотрим систему, состоящую из двух частей — классического прибора и электрона (рассматриваемого как квантовый объект). Процесс измерения заключается в том, что эти две части приходят во взаимодействие друг с другом, в результате чего прибор переходит из начального в некоторое другое состояние, и по этому изменению состояния мы судим о состоянии электрона. Состояния прибора различаются значениями некоторой характеризующей его физической величины (или величин) — «показаниями прибора». Обозначим условно эту величину посредством g, а её собственные значения — как g_n; последние пробегают, соответственно классичности прибора, вообще говоря, непрерывный ряд значений, но мы будем — исключительно в целях упрощения написания нижеследующих формул — считать спектр дискретным. Описание состояний прибора осуществляется квазиклассическими волновыми функциями, которые мы будем обозначать посредством $\Phi_n(\xi)$, где индекс n отвечает «показанию» g_n прибора, а ξ обозначает условно совокупность его координат. Клас-
§ 7] ВОЛНОВАЯ ФУНКЦИЯ И ИЗМЕРЕНИЯ 35

сичность прибора проявляется в том, что в каждый данный момент времени можно с достоверностью утверждать, что он находится в одном из известных состояний \(\Phi_n \) с каким-либо определённым значением величины \(g \); для квантовой системы такое утверждение было бы, разумеется, несправедливым.

Пусть \(\Phi_0 (\xi) \) есть волновая функция начального (до измерения) состояния прибора, а \(\Psi (q) \) — некоторая произвольная нормированная начальная волновая функция электрона \((q \) обозначает его координаты). Эти функции описывают состояние прибора и электрона независимым образом, и потому начальная волновая функция всей системы есть произведение

\[
\Psi (q) \Phi_0 (\xi).
\]

(7, 1)

Далее, прибор и электрон приходят во взаимодействие друг с другом. Применяя уравнения квантовой механики, можно, принципиально, проследить за изменением волновой функции системы со временем. После процесса измерения она, разумеется, уже не будет произведением функций от \(\xi \) и \(q \). Разлагая её по собственным функциям \(\Phi_n \) прибора (образующим полную систему функций), мы получим сумму вида:

\[
\sum_n A_n (q) \Phi_n (\xi),
\]

(7,2)

где \(A_n (q) \) — некоторые функции от \(q \).

Теперь выступает на сцену «классичность» прибора и двойственная роль классической механики как предельного случая и в то же время основания квантовой механики. Как уже указывалось, благодаря классичности прибора в каждый момент времени величина \(g \) («показание прибора») имеет некоторое определённое значение. Это позволяет утверждать, что состояние системы прибор — электрон после измерения будет в действительности описываться не всей суммой (7,2), а лишь одним членом, соответствующим «показанию» \(g_n \) прибора:

\[
A_n (q) \Phi_n (\xi).
\]

(7,3)

Отсюда следует, что \(A_n (q) \) есть волновая функция электрона после измерения.

Мы предполагаем, что рассматриваемое измерение таково, что в результате него возникает полное описание состояния электрона. Другими словами (см. § 1), в возникшем состоянии вероятности для всех величин должны быть независимы от предыдущего (до измерения) состояния электрона. Математически это означает, что вид функций \(A_n (q) \) должен определяться самим процессом измерения и не должен зависеть от начальной волновой функции \(\Psi (q) \) электрона. Таким образом \(A_n \) должны иметь вид

\[
A_n (q) = a_n \varphi_n (q),
\]
где φ_n — определённые функции, которые мы предполагаем нормированными, а от $\Psi(q)$ зависят только постоянные a_n. В силу линейности уравнений квантовой механики зависимость постоянных a_n от $\Psi(q)$ определяется некоторым линейным оператором и в наиболее общем виде может быть написана, как

$$a_n = \int \Psi(q) \Psi^*(q) dq,$$ \hspace{1cm} (7,4)

где $\Psi_n(q)$ — некоторые определённые функции, зависящие от процесса измерения.

Функции $\varphi_n(q)$ есть нормированные волновые функции электрона после измерения. Таким образом мы видим, как математический формализм теории отражает возможность получить путём измерения состояние электрона, описанное определённой волновой функцией.

Если измерение производится над электроном с заданной волновой функцией $\Psi(q)$, то постоянные a_n имеют простой физический смысл — в соответствии с общими правилами $|a_n|^2$ есть вероятность того, что измерение даст n-й результат. Сумма вероятностей всех результатов есть единица:

$$\sum_n |a_n|^2 = 1.$$

Подставляя сюда для a_n^* выражение (7,4), имеем:

$$\sum_n a_n a_n^* = \int \Psi^*(q) \sum_n a_n \Psi_n(q) dq = 1.$$

Для того чтобы это равенство имело место при произвольной нормированной функции $\Psi(q)$, должно быть

$$\Psi(q) = \sum_n a_n \Psi_n(q),$$

т. е. по функциям $\Psi_n(q)$ может быть разложена произвольная функция $\Psi(q)$. Это значит, что функции $\Psi_n(q)$ образуют полный набор нормированных и взаимно ортогональных (ср. вывод (3,6)) функций.

Если начальная волновая функция электрона совпадает с одной из функций $\Psi_n(q)$, то, очевидно, соответствующая постоянная a_n равна единице, а все остальные — нулю. Другими словами, произведённое над электроном в состоянии $\Psi_n(q)$ измерение даст с достоверностью определённый (н-й) результат.

Все эти свойства функций $\Psi_n(q)$ показывают, что они являются собственными функциями некоторой характеризующей электрон физической величины (обозначим её как f), а о рассматриваемом измерении можно говорить, как об измерении этой величины.

Очень существенно, что функции $\Psi_n(q)$, вообще говоря, не совпадают с функциями $\varphi_n(q)$ (последние, вообще говоря, даже не
взаимно ортогональны и не являются системой собственных функций какого-либо оператора). Это обстоятельство прежде всего выражает неповторимость измерений в квантовой механике. Если электрон находился в состоянии $\Psi_n(q)$, то произведённое над ним измерение величины f обнаружит с достоверностью значение f_n. Но после измерения электрон окажется в состоянии $\varphi_n(q)$, отличном от исходного, в котором величина f уже вообще не имеет какого-либо определённого значения. Поэтому, производя над электроном непосредственно вслед за первым повторное измерение, мы получили бы для f значение, не совпадающее с обнаруженным в результате первого измерения. Для предсказания (в смысле вычисления вероятности) результата повторного измерения при известном результате первого измерения надо от первого измерения взять волновую функцию $\varphi_n(q)$ созданного им состояния, а от второго — волновую функцию $\Psi_n(q)$ того состояния, вероятность которого нас интересует. Это означает следующее. Из уравнений квантовой механики определяем волновую функцию $\varphi_n(q, t)$, которая в момент времени первого измерения равна $\varphi_n(q)$. Вероятность m-го результата второго измерения, произведённого в момент времени t, даётся квадратом модуля интеграла $\int \varphi_n(q, t) \Psi_m^*(q) \, dq$.

Мы видим, что процесс измерения в квантовой механике имеет «двухликий» характер — его роли по отношению к прошлому и будущему электрона не совпадают (см. также § 44).

Необходимо оговориться, что из неповторимости измерений существует важное исключение — единственной величиной, измерение которой повторимо, является координата. Два измерения координат электрона, произведённые через достаточно малый промежуток времени, должны дать близкие значения; противное означало бы, что электрон имеет бесконечную скорость 1).

1) Математически это связано с тем, что координата коммутирует с оператором энергии взаимодействия электрона с прибором, являющейся (в нерелятивистской теории) функцией только от координат.
ГЛАВА II
ЭНЕРГИЯ И ИМПУЛЬС

§ 8. Гамильтоновский оператор

Волновая функция Ψ полностью определяет состояние физической системы в квантовой механике. Это означает, что задание этой функции в некоторый момент времени не только описывает все свойства системы в этот момент, но определяет её поведение также и во все будущие моменты времени — конечно, лишь с той степенью полноты, которая вообще допускается квантовой механикой. Математически это обстоятельство выражается тем, что значение производной $\partial \Psi / \partial t$ от волновой функции по времени в каждый данный момент времени должно определяться значением самой функции Ψ в тот же момент, причём зависимость эта должна быть, согласно принципу суперпозиции, линейной. В наиболее общем виде можно написать

$$i \frac{\partial \Psi}{\partial t} = \hat{L} \Psi,$$

где \hat{L} есть некоторый линейный оператор; множитель i введён здесь для удобства.

Выясним некоторые свойства оператора \hat{L}. Поскольку интеграл $\int \Psi \Psi^* \, dq$ есть постоянная, не зависящая от времени величина, то имеем:

$$\frac{\partial}{\partial t} \int |\Psi|^2 \, dq = \int \Psi \frac{\partial \Psi^*}{\partial t} \, dq + \int \Psi^* \frac{\partial \Psi}{\partial t} \, dq = 0.$$

Подставляя сюда $\partial \Psi / \partial t = -i \hat{L} \Psi$, $\partial \Psi^* / \partial t = i \hat{L} \Psi^*$ и применяя в первом интеграле определение транспонированного оператора, пишем:

$$\int \Psi \hat{L} \Psi^* \, dq - \int \Psi^* \hat{L} \Psi \, dq = \int \Psi^* \tilde{\hat{L}} \Psi \, dq - \int \Psi^* \hat{L} \Psi \, dq =$$

$$= \int \Psi^* (\tilde{\hat{L}} - \hat{L}) \Psi \, dq = 0.$$

Поскольку это равенство должно выполняться для произвольной функции Ψ, то отсюда следует, что должно быть тождественно
\[\hat{L}^* - \hat{L} = 0, \]
или
\[\tilde{\hat{L}} = \hat{L}^*. \]

Оператор \(\hat{L} \) является, таким образом, эрмитовым. Выясним, какой классической величине соответствует оператор \(\hat{L} \). Для этого воспользуемся предельным выражением (6,1) волновой функции и напишем:
\[\frac{\partial \Psi}{\partial t} = \frac{i}{\hbar} \frac{\partial S}{\partial t} \Psi; \]

медленно меняющуюся амплитуду \(a \) можно не дифференцировать. Сравнивая это равенство с определением \(\partial \Psi/\partial t = -i\hat{L}\Psi \), мы видим, что в предельном случае оператор \(\hat{L} \) сводится к простому умножению на величину \(-1/\hbar \partial S/\partial t\). Это значит, что \(-1/\hbar \partial S/\partial t\) есть та физическая величина, в которую переходит эрмитов оператор \(\hat{L} \).

Как известно из механики, производная \(\partial S/\partial t \) есть не что иное, как функция Гамильтона \(H \) механической системы. Таким образом оператор \(\hbar \hat{L} \) есть оператор, соответствующий в квантовой механике функции Гамильтона; этот оператор, который мы будем обозначать как \(\hat{H} \), называется гамильтоновским оператором или, короче, гамильтонианом системы. Соотношение между \(\partial \Psi/\partial t \) и \(\Psi \) приобретает вид:
\[i\hbar \frac{\partial \Psi}{\partial t} = \hat{H}\Psi. \]

(8,1)

Если вид гамильтониана известен, то уравнение (8,1) определяет волновые функции данной физической системы. Это основное уравнение квантовой механики называется волновым уравнением.

Рассмотрим физическую систему, состоящую из двух независимодействующих частей, и пусть \(q_1 \) и \(q_2 \) обозначают координаты этих частей. Волновая функция \(\Psi_{12}(q_1, q_2, t) \) системы может быть, в частном случае, записана в виде произведения волновых функций её частей (см. § 2):
\[\Psi_{12}(q_1, q_2, t) = \Psi_1(q_1, t) \Psi_2(q_2, t). \]

Дифференцируя \(\Psi_{12} \) по времени, имеем
\[\frac{\partial \Psi_{12}}{\partial t} = \Psi_2 \frac{\partial \Psi_1}{\partial t} + \Psi_1 \frac{\partial \Psi_2}{\partial t} = -\frac{i}{\hbar} (\Psi_2 \hat{H}_1 \Psi_1 + \Psi_1 \hat{H}_2 \Psi_2), \]

где \(\hat{H}_1, \hat{H}_2 \) — гамильтонианы частей системы. Поскольку оператор \(\hat{H}_1 \) действует только на функции от \(q_1 \), то функция \(\Psi_2 \) может рассматриваться для него как постоянная и потому может быть внесена под знак оператора; аналогично \(\Psi_1 \) можно внести под знак \(\hat{H}_2 \).
Таким образом получим 1):

\[\frac{\partial \Psi_{12}}{\partial t} = (\hat{H}_1 + \hat{H}_2) \Psi_{12}. \]

Мы приходим, следовательно, к результату, что гамильтоныан системы, состоящий из двух (или нескольких) независимо действующих частей, равен сумме гамильтононов каждой из этих частей.

§ 9. Дифференцирование операторов по времени

Понятие о производной физической величины по времени не может быть определено в квантовой механике в том смысле, какой оно имеет в классической механике. Действительно, определение производной в классической механике связано с рассмотрением значений величины в два близкие, но различные моменты времени. Но в квантовой механике величина, имеющая в некоторый момент времени определённое значение, не имеет в следующие моменты вообще никакого определённого значения; подробнее об этом шла речь в § 1.

Поэтому понятие производной по времени должно быть определено в квантовой механике иным образом. Естественно определить производную \(\dot{f} \) от величины \(f \) как величину, среднее значение которой равно производной по времени от среднего значения \(\overline{f} \). Таким образом имеем по определению:

\[\overline{f} = \dot{f}. \] (9,1)

Исходя из этого определения, нетрудно получить выражение для квантовомеханического оператора \(\hat{f} \), соответствующего величине \(f \). Поскольку \(\overline{f} = \int \Psi^* \dot{f} \Psi d\sigma \), то

\[\overline{f} = \frac{\partial \overline{f}}{\partial t} \int \Psi^* \dot{f} \Psi d\sigma = \int \Psi^* \frac{\partial \hat{f}}{\partial t} \Psi d\sigma + \int \frac{\partial \Psi^*}{\partial t} \hat{f} \Psi d\sigma + \int \Psi^* \frac{\partial \Psi}{\partial t} d\sigma. \]

Здесь \(\partial \hat{f}/\partial t \) есть оператор, получающийся дифференцированием оператора \(\hat{f} \) по времени, от которого последний может зависеть, как от параметра. Подставляя для производных \(\partial \Psi/\partial t \), \(\partial \Psi^*/\partial t \) их выражения согласно (8,1), получим:

\[\overline{f} = \int \Psi^* \frac{\partial \hat{f}}{\partial t} \Psi d\sigma + \frac{i}{\hbar} \int (\hat{H} \Psi^*) \hat{f} \Psi d\sigma + \frac{i}{\hbar} \int \Psi^* \hat{f} (\hat{H} \Psi) d\sigma. \]

Поскольку оператор \(\hat{H} \) — эрмитов, то

\[\int (\hat{H} \Psi^*) (\hat{f} \Psi) d\sigma = \int (\hat{f} \Psi^*) (\hat{H} \Psi) d\sigma = \int \Psi^* \hat{H} \hat{f} \Psi d\sigma; \]

1) Полученное таким способом волновое уравнение справедливо, очевидно, и в общем случае, когда \(\Psi_{12} \) не может быть написано в виде произведения \(\Psi_1 \Psi_2 \).
таким образом имеем:

\[\overline{f} = \int \Psi^* \left(\frac{\partial \hat{f}}{\partial t} + i \frac{1}{\hbar} \hat{H} \hat{f} \right) \Psi \, dq. \]

Поскольку, с другой стороны, должно быть, по определению

средних значений, \(\overline{f} = \int \Psi^* \phi \Psi \, dq \), то отсюда видно, что выражение, стоящее в скобках под интегралом, представляет собой искомый

оператор \(\hat{f} \):

\[\hat{f} = \frac{\partial \hat{f}}{\partial t} + i \frac{1}{\hbar} \left(\hat{H} \hat{f} - \hat{f} \hat{H} \right). \] \hspace{1cm} (9,2)

Он является, что если оператор \(\hat{f} \) не зависит от времени явно, то \(\hat{f} \)

сводится, с точностью до множителя, к результату коммутации опе-

ратора \(\hat{f} \) с гамильтонианом.

Очень важной категорией физических величин являются те, опе-

раторы которых не зависят явно от времени и, кроме того, комму-

тируют с гамильтонианом, так что \(\hat{f} = 0 \). Такие величины называют

сохраняющимися.

1) В классической механике имеем для полной производной по времени
от величины \(f \), являющейся функцией обобщённых координат \(q_i \) и импуль-

сов \(p_i \) системы:

\[\frac{df}{dt} = \frac{\partial f}{\partial t} + \sum_i \left(\frac{\partial f}{\partial q_i} \dot{q_i} + \frac{\partial f}{\partial p_i} \dot{p_i} \right). \]

Подставляя, согласно уравнениям Гамильтона, \(\dot{q_i} = \frac{\partial H}{\partial p_i}, \dot{p_i} = - \frac{\partial H}{\partial q_i} \), получим:

\[\frac{df}{dt} = \frac{\partial f}{\partial t} + [H, f], \]

где

\[[H, f] = \sum_i \left(\frac{\partial f}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial H}{\partial q_i} \right) \]

есть так называемая скобка Пуассона для величин \(f \) и \(H \). Сравнивая с выра-

жением (9,2), мы видим, что при переходе к классическому пределу опера-

тор \(i (\hat{H} \hat{f} - \hat{f} \hat{H}) \) в первом приближении обращается, как и следовало, в нуль,

а в следующем (по \(\hbar \)) приближении — в величину \(\hbar [H, f] \). Этот результат

справедлив и для любых двух величин \(f \) и \(g \); оператор \(i (\hat{g} \hat{f} - \hat{f} \hat{g}) \) в пределе

переходит в величину \(\hbar [f, g] \), где \([f, g] \) есть скобка Пуассона

\[[f, g] = \sum_i \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right). \]

Это следует непосредственно из того, что мы всегда можем формально

представить себе систему, гамильтониан которой совпадает с \(\hat{g} \).
Если оператор \hat{f} тождественно обращается в нуль, то $\bar{f} = \hat{f} = 0$, т. е. $\hat{f} = \text{const}$. Другими словами, среднее значение величины остается постоянным во времени. Можно также утверждать, что если в даннм состоянии величина f имеет определённое значение (т. е. волновая функция является собственной функцией оператора \hat{f}), то и в дальнейшие моменты времени она будет иметь определённое — то же самое — значение.

§ 10. Стационарные состояния

Если система не находится в переменном внешнем поле, то её гамильтониан не может содержать времени явно. Это следует непосредственно из того, что в отсутствие внешнего поля (или в постоянном внешнем поле) все моменты времени, по отношению к данной физической системе, эквивалентны. Поскольку, с другой стороны, всякий оператор, конечно, коммутирует сам с собой, то мы приходим к выводу, что у систем, не находящихся в переменном внешнем поле, функция Гамильтона сохраняется. Как известно, сохраняющаяся функция Гамильтона называется энергией. Таким образом мы получили закон сохранения энергии в квантовой механике. Его смысл заключается здесь в том, что если в данном состоянии энергия имеет определённое значение, то это значение остаётся постоянным во времени.

Состояния, в которых энергия имеет определённые значения, называются стационарными состояниями системы. Они описываются волновыми функциями Ψ_n, являющимися собственными функциями оператора Гамильтона, т. е. удовлетворяющими уравнению $\hat{H}\Psi_n = E_n\Psi_n$, где E_n — собственные значения энергии. Соответственно этому, волновое уравнение (8,1) для функции Ψ_n

$$i\hbar \frac{\partial \Psi_n}{\partial t} = \hat{H}\Psi_n = E_n\Psi_n$$

может быть непосредственно проинтегрировано по времени и даёт

$$\Psi_n = e^{-\frac{i}{\hbar}E_nt} \psi_n(q),$$

где $\psi_n(q)$ — функция только от координат. Этим определяется зависимость волновых функций стационарных состояний от времени.

Посредством малой буквы ψ мы будем обозначать волновые функции стационарных состояний без временного множителя. Эти функции, а также самые собственные значения энергии определяются уравнением

$$\hat{H}\psi = E\psi.$$

Заметим, что стационарное состояние с наименьшим из всех возможных значением энергии называется нормальным или основным состоянием системы.
Разложение произвольной волновой функции Ψ по волновым функциям стационарных состояний имеет вид

$$\Psi = \sum_n a_n e^{-\frac{i}{\hbar} E_n t} \psi_n(q). \quad (10.3)$$

Квадраты $|a_n|^2$ коэффициентов разложения, как обычно, определяют вероятности различных значений энергии системы.

Распределение вероятностей для координат в стационарном состоянии определяется квадратом $|\Psi_n|^2 = |\psi_n|^2$; мы видим, что оно не зависит от времени. То же самое относится и к средним значениям

$$\bar{f} = \int \psi_n^* f \psi_n dq = \int \psi_n^* \hat{f} \psi_n dq$$

всякой физической величины f (оператор которой не зависит от времени явно), а потому и к вероятностям её различных значений.

Как указывалось, оператор всякой сохраняющейся величины коммутирует с гамильтонианом. Это значит, что всякая сохраняющаяся физическая величина может быть измерена одновременно с энергией.

Среди различных стационарных состояний могут быть и такие, которые соответствуют одному и тому же значению энергии, отличаясь значениями каких-либо других физических величин. О таких собственных значениях энергии (или, как говорят, энергетических уровнях системы), которым соответствует по нескольку различных стационарных состояний, говорят как о «вырожденных». Физически возможность существования вырожденных уровней связана с тем, что энергия, вообще говоря, не составляет сама по себе полной системы физических величин.

В частности, легко видеть, что если имеется две сохраняющиеся физические величины f и g, операторы которых не коммутативны, то уровни энергии системы, вообще говоря, вырождены. Действительно, пусть \hat{f} есть волновая функция стационарного состояния, в котором, наряду с энергией, имеет определённое значение величина f. Тогда можно утверждать, что функция $\hat{g}\psi$ не совпадает (с точностью до постоянного множителя) с ψ; противное означало бы, что имеет определённое значение также и величина g, что невозможно, так как f и g не могут быть измерены одновременно. С другой стороны, функция $\hat{g}\psi$ есть собственная функция гамильтониана, соответствующая тому же значению E энергии, что и ψ:

$$\hat{H}(\hat{g}\psi) = \hat{g}\hat{H}\psi = E(\hat{g}\psi).$$

Таким образом, мы видим, что энергии E соответствует больше одной собственной функции, т. е. уровень энергии вырожден.

Ясно, что любая линейная комбинация волновых функций, соответствующих одному и тому же вырожденному уровню энергии, есть тоже собственная функция того же значения энергии. Другими
словами, выбор собственных функций выраженного значения энергии неоднозначен. Произвольно выбранные собственные функции выраженного уровня энергии, вообще говоря, не взаимно ортогональны. Надлежащим подбором их линейных комбинаций можно, однако, всегда получить набор взаимно ортогональных (и нормированных) собственных функций (причём это может быть сделано бесчисленным множеством способов; действительно, число независимых коэффициентов в линейном преобразовании \(n \) функций равно \(n^2 \), а число условий нормировки и ортогональности \(n \) функций равно \(\frac{n(n+1)}{2} \), т. е. меньше чем \(n^2 \)).

Эти утверждения относительно собственных функций выраженного уровня энергии относятся, разумеется, не только к собственным функциям энергии, но и к собственным функциям всякого оператора. Так, автоматически ортогональными являются лишь функции, соответствующие различным собственным значениям данного оператора; функции же, соответствующие одному и тому же выраженному собственному значению, вообще говоря, не ортогональны.

Если гамильтониан системы представляет собой сумму двух (или нескольких) частей \(\hat{H} = \hat{H}_1 + \hat{H}_2 \), одна из которых содержит только координаты \(q_1 \), а другая — координаты \(q_2 \), то собственные функции оператора \(\hat{H} \) могут быть написаны в виде произведений собственных функций операторов \(\hat{H}_1 \) и \(\hat{H}_2 \), а собственные значения энергии равны суммам собственных значений этих операторов.

Спектр собственных значений энергии может быть как дискретным, так и непрерывным. Стационарное состояние дискретного спектра всегда соответствует финальному движению системы, т. е. движению, при котором система или какая-либо её часть не уходит на бесконечность. Действительно, для собственных функций дискретного спектра интеграл \(\int |\Psi|^2 dq \), взятый по всему пространству, конечен. Это, во всяком случае, означает, что квадрат \(|\Psi|^2 \) достаточно быстро убывает, обращаясь на бесконечности в нуль. Другими словами, вероятность бесконечных значений координат равна нулю, т. е. система совершает финальное движение.

Для волновых функций непрерывного спектра интеграл \(\int |\Psi|^2 dq \) расходится. Квадрат волновой функции \(|\Psi|^2 \) не определяет здесь непосредственно вероятности различных значений координат и должен рассматриваться лишь как величина, пропорциональная этой вероятности. Расходимость интеграла \(\int |\Psi|^2 dq \) всегда бывает связана с тем, что \(|\Psi|^2 \) не обращается на бесконечности в нуль (или обращается в нуль недостаточно быстро). Поэтому можно утверждать, что интеграл \(\int |\Psi|^2 dq \), взятый по области пространства, внешней
по отношению к любой сколь угодно большой, но конечной замкнутой поверхности, будет всё же расходиться. Это значит, что в рассматриваемом состоянии система (или какая-либо её часть) находится на бесконечности. Для волновой функции, представляющей собой наложение волновых функций различных стационарных состояний непрерывного спектра, интеграл \(\int |\Psi|^2 dq \) может оказаться сходящимся, так что система находится в конечной области пространства. Можно, однако, показать, что с течением времени эта область будет неограниченно смещаться, и в конце концов система уходит на бесконечность 1). Таким образом стационарные состояния непрерывного спектра соответствует инфинитному движению системы.

\section*{§ 11. Матрицы}

Предположим для удобства, что рассматриваемая система обладает дискретным энергетическим спектром (все получаемые ниже соотношения непосредственным образом обобщаются и на случай непрерывного спектра). Пусть \(\Psi = \sum a_n \Psi_n \) есть разложение произвольной волновой функции по волновым функциям \(\Psi_n \) стационарных состояний.

1) В этом можно убедиться следующим образом. Наложение волновых функций непрерывного спектра имеет вид

\[\Psi = \int a_E e^{-i \frac{E t}{\hbar}} \psi_E(q) \, dE. \]

Квадрат модуля \(\Psi \) может быть написан в виде двойного интеграла

\[|\Psi|^2 = \int \int a_E a_E^* e^{i \frac{1}{\hbar} (E' - E) t} \psi_E(q) \psi_E^*(q) \, dEdE'. \]

Если усреднить это выражение по некоторому промежутку времени \(T \) и затем стремиться \(T \) к бесконечности, то средние значения осцилирующих множителей \(e^{i \frac{1}{\hbar} (E' - E) t} \), а с ними и весь интеграл обращаются в пределе в нуль. Таким образом среднее по времени значение вероятности нахождения системы в любом заданном месте конфигурационного пространства обращается в нуль; но это возможно только, если движение происходит во всём бесконечном пространстве.

Заметим, что для функции \(\Psi \), представляющей собой наложение функций дискретного спектра, было бы

\[|\Psi|^2 = \sum_n \sum_m a_n a_m^* \frac{1}{\hbar} \frac{E_m - E_n}{t} \psi_m^* \psi_n = \sum_n |a_n \psi_n(q)|^2, \]

t. е. искомая вероятность остаётся при усреднении по всему времени конечной.
стояний. Если подставить это разложение в определение \(\bar{f} = \int \Psi^* \hat{f} \Psi dq \)
среднего значения некоторой величины \(f \), то получим

\[
\bar{f} = \sum_n \sum_m a_n^* a_m f_{nm}(t),
\]

(11,1)

где \(f_{nm}(t) \) обозначают интегралы

\[
f_{nm}(t) = \int \Psi_n^* \hat{f} \Psi_m dq.
\]

(11,2)

Совокупность величин \(f_{nm}(t) \) со всеми возможными \(n, m \) называют матрицей величины \(f \), а о каждом из \(f_{nm}(t) \) говорят, как о матричном элементе, соответствующем переходу из состояния \(n \) в состояние \(m \). \(^1\)

Зависимость матричных элементов \(f_{nm}(t) \) от времени определяется (если оператор \(\hat{f} \) не содержит \(t \) явно) зависимостью от времени функций \(\Psi_n \). Подставляя для них выражения (10,1), найдём, что

\[
f_{nm}(t) = f_{nm} e^{i\omega_{nm} t},
\]

(11,3)

где

\[
\omega_{nm} = \frac{E_n - E_m}{\hbar}
\]

(11,4)

есть, как говорят, «частота перехода» между состояниями \(n \) и \(m \), а величины

\[
f_{nm} = \int \Psi_n^* \hat{f} \Psi_m dq
\]

(11,5)

составляют не зависящую от времени матрицу величины \(f \), которой обычно и приходится пользоваться \(^2\). Заметим, что «частоты» \(\omega_{nm} \) удовлетворяют очевидным соотношениям

\[
\omega_{nm} + \omega_{ml} = \omega_{nl}.
\]

(11,6)

Матричные элементы производной \(\hat{f} \) получаются дифференцированием по времени матричных элементов величины \(f \); это следует непосредственно из того, что среднее значение \(\bar{f} \) равно \(\bar{f}^* \), т. е.

\[
\bar{f} = \sum_n \sum_m a_n^* a_m f_{mn}(t).
\]

\(^1\) Матричное представление физических величин было введено Гайденбергом в 1925 г., ещё до открытия Шредингером волнового уравнения.

\(^2\) Надо иметь в виду, что в связи с неопределенностью фазового множителя в нормированных волновых функциях (см. § 2) матричные элементы \(f_{nm} \) (и \(f_{nm}(t) \)) тоже определены лишь с точностью до множителей вида \(e^{i(a_m - a_n)} \). И здесь эта неопределенность не отражается ни на одном из физических результатов.

В некоторых случаях, когда каждый из индексов \(n, m \) надо писать в виде совокупности нескольких букв, мы будем пользоваться обозначением \(f_{mn} \) вместо \(f_{nm} \).
Ввиду (11,3) имеем, таким образом, для матричных элементов \hat{f}

$$\hat{f}_{nm}(t) = i\omega_{nm} f_{nm}(t) \quad (11,7)$$

или (скращая с обеих сторон временной множитель $e^{i\omega_{nm}t}$) для не зависящих от времени матричных элементов:

$$(\hat{f})_{nm} = i\omega_{nm} f_{nm} = \frac{i}{\hbar} (E_n - E_m) f_{nm}. \quad (11,8)$$

В целях упрощения обозначений в формулах мы выводим ниже все соотношения для не зависящих от времени матричных элементов; в точности такие же соотношения имеют место и для зависящих от времени матриц.

Для матричных элементов комплексно сопряжённой с f величины f^* с учётом определения сопряжённого оператора получим

$$(f^*)_{nm} = \int \psi_n^* \hat{f}^* \psi_m dq = \int \psi_n^* \tilde{\psi}_m^* \psi_m dq = \int \psi_m \tilde{\psi}_n^* \psi_n dq$$

или

$$(f^*)_{nm} = (f_{mn})^*. \quad (11,9)$$

Для действительных физических величин, которые мы обычно только и рассматриваем, имеем, следовательно,

$$f_{nm} = f_{mn}^* \quad (11,10)$$

(f_{mn}^* стоит вместо $(f_{mn})^*$). Такие матрицы, как и соответствующие им операторы, называют эрмитовыми.

Нетрудно получить «правило умножения» матрицы. Для этого замечим предварительно, что имеет место формула

$$\hat{f} \psi_n = \sum_m f_{mn} \hat{\psi}_m. \quad (11,11)$$

Это есть не что иное, как разложение функции $\hat{f} \psi_n$ по функциям $\hat{\psi}_m$ с коэффициентами, определяемыми согласно общему правилу (3,5). Имея в виду эту формулу, пишем для результата воздействия на функцию ψ_n произведения двух операторов:

$$\hat{f} \hat{g} \psi_n = \hat{f} (g \psi_n) = \hat{f} \sum_k g_{kn} \psi_k = \sum_k g_{kn} \hat{f} \psi_k = \sum_k g_{kn} f_{mk} \hat{\psi}_m.$$

Поскольку, с другой стороны, должны быть

$$\hat{f} \hat{g} \psi_n = \sum_m (fg)_{mn} \psi_m,$$

то мы приходим к результату, что матричные элементы произведения fg определяются формулой

$$(fg)_{mn} = \sum_k f_{mk} g_{kn}. \quad (11,12)$$
Это правило совпадает с принятым в математике правилом перемножения матриц.

Задание матрицы эквивалентно заданию самого оператора. В частности, задание матрицы даёт, принципиально, возможность определить собственные значения данной физической величины и соответствующие им собственные функции.

Будем рассматривать значения всех величин в некоторый определённый момент времени и разложим произвольную волновую функцию \(\psi \) (в этот момент времени) по собственным функциям оператора Гамильтона \(\hat{H} \), т. е. по не зависящим от времени волновым функциям \(\psi_m \) стационарных состояний:

\[
\psi = \sum_m c_m \psi_m,
\]

где коэффициенты разложения обозначены как \(c_m \). Подставим это разложение в уравнение \(\hat{f} \psi = f \psi \), определяющее собственные значения и собственные функции величины \(f \). Имеем:

\[
\sum_m c_m (\hat{f} \psi_m) = f \sum_m c_m \psi_m.
\]

Умножим это уравнение с обеих сторон на \(\psi_n^* \) и проинтегрируем по \(dq \). Каждый из интегралов \(\int \psi_n^* \hat{f} \psi_m dq \) в левой стороне равенства есть соответствующий матричный элемент \(f_{nm} \). В правой же стороне все интегралы \(\int \psi_n^* \psi_m dq \) с \(m \neq n \) исчезают в силу ортогональности функций \(\psi_m \), а \(\int \psi_n^* \psi_n dq = 1 \) в силу их нормировки:

\[
\sum_m f_{nm} c_m = f c_n,
\]

или

\[
\sum_m (f_{nm} - f \delta_{nm}) c_m = 0,
\]

где \(\delta_{nm} = 0 \) при \(m \neq n \), \(n = 1 \) при \(m = n \).

Таким образом мы получили систему алгебраических однородных уравнений первой степени (с неизвестными \(c_m \)). Как известно, такая система обладает отличными от нуля решениями лишь при условии обращения в нуль детерминанта, составленного из коэффициентов в уравнениях, т. е. при условии

\[
|f_{nm} - f \delta_{nm}| = 0.
\]

Корни этого уравнения (в котором \(f \) рассматривается как неизвестное) и представляют собой возможные значения величины \(f \). Совокупность величин \(c_m \), удовлетворяющих уравнениям (11,14) с \(f \), равным какому-либо из этих значений, определяет соответствующую собственную функцию.
Если в определении (11,5) матричных элементов величины f взять в качестве ψ_n собственные функции этой же величины, то в силу уравнения $f_n = f_n \psi_n$ будем иметь:

$$f_{nm} = \int \psi_n^* \hat{f} \psi_m dq = f_m \int \psi_n^* \psi_m dq.$$

В силу ортогональности и нормировки функций ψ_m это даёт $f_{nm} = 0$ при $n \neq m$ и $f_{mm} = f_m$. Таким образом оказываются отличными от нуля только матричные элементы с $m = n$, причём каждый из них равен соответствующему собственному значению величины f. Матричные элементы f_{mm} называют диагональными, а о матрице с отличными от нуля только этими элементами говорят, как о приведённой к диагональному виду. В частности, в обычном представлении, с волновыми функциями стационарных состояний в качестве функций ψ_n диагональна матрица энергии (а также матрицы всех других физических величин, которые имеют в стационарных состояниях определённые значения). Вообще, о матрице величины f, определённой с помощью собственных функций некоторого оператора \hat{g}, говорят, как о матрице f в представлении, в котором g диагонально. Везде, где это не оговорено особо, под матрицей физической величины мы будем в дальнейшем понимать матрицу в обычном представлении, в котором диагональна энергия. Всё, что сказано выше о зависимости матриц от времени, относится, разумеется, только к этому обычному представлению.

С помощью матричного представления операторов можно доказать упомянутую в § 3 теорему: если два оператора коммутируют друг с другом, то они обладают общей полной системой собственных функций. Пусть будут \hat{f} и \hat{g} два таких оператора. Из $\hat{f} \hat{g} = \hat{g} \hat{f}$ и правила умножения матриц (11.12) следует, что

$$\sum_k f_{mk} g_{kn} = \sum_k g_{mk} f_{kn}.$$

Взяв в качестве системы функций ψ_n, с помощью которых вычисляются матричные элементы, собственные функции оператора \hat{f}, будем иметь $f_{mk} = 0$ при $m \neq k$, так что написанное равенство сводится к равенству $f_{mm} g_{mn} = g_{mn} f_{mn}$ или

$$g_{mn} (f_m - f_n) = 0.$$

Если все собственные значения f_n величины f различны, то при всех $m \neq n$ имеем $f_m - f_n \neq 0$, так что должно быть $g_{mn} = 0$. Таким образом матрица g_{mn} тоже оказывается диагональной, т. е. функции ψ_n.

1) Имея в виду диагональность матрицы энергии, легко убедиться в том, что равенство (11,8) есть написанное в матричном виде операторное соотношение (9,2).
являются собственными функциями также и физической величины g. Если же среди значений f_n есть одинаковые (т. е. если есть такие собственные значения, которым соответствуют по нескольку различных собственных функций), то соответствующие каждой такой группе функций ϕ_n матричные элементы g_{mn} окажутся, вообще говоря, отличными от нуля. Однако линейные комбинации функций ψ_n, соответствующих одному собственному значению величины f, тоже являются, очевидно, её собственными функциями; можно всегда выбрать эти комбинации таким образом, чтобы обратить в нуль соответствующие негаональные матричные элементы g_{mn}, и, таким образом, мы и в этом случае получим систему функций, являющихся собственными функциями одновременно для операторов \hat{f} и \hat{g}.

Заметим в заключение, что матрицу f_{nm} можно рассматривать как оператор \bar{f} в энергетическом представлении. Действительно, совокупность коэффициентов c_n разложения (11,13) по собственным функциям ψ_n гамильтонианана можно рассматривать (ср. § 5) как волновую функцию в «E-представлении» (предъят переменной является индекс n, указывающий номер стационарного состояния). Формула

$$\bar{f} = \sum_n \sum_m c^*_n f_{nm} c_m$$

для среднего значения величины f соответствует тогда общему выражению квантовомеханического среднего значения величины через её оператор и волновую функцию данного состояния.

§ 12. Матрица плотности

Рассмотрим систему, являющуюся частью некоторой большей системы (будем называть эту часть подсистемой). Предположим, что система в целом находится в некотором состоянии, описывающемся волновой функцией $\Psi(q, x)$, где x обозначает совокупность координат подсистемы, а q — остальные координаты системы. Эта функция, вообще говоря, отнюдь не распадается на произведение функций только от x и только от q, так что подсистема не обладает своей волновой функцией 1).

Пусть f есть некоторая физическая величина, относящаяся к подсистеме. Её оператор действует поэтому только на координаты x, но не на q. Среднее значение этой величины в рассматриваемом

1) Для того чтобы $\Psi(q, x)$ распалось (в данный момент времени) на такое произведение, измерение, в результате которого было создано данное состояние, должно полным образом описывать подсистему и остальные части системы в отдельности. Для того же, чтобы $\Psi(q, x)$ продолжало иметь такой вид в будущие моменты времени, необходимо также, чтобы подсистема не взаимодействовала с остальными частями системы (см. § 2). Ни то, ни другое нами теперь не предполагается.
с состоянии есть:

$$\mathbf{\bar{f}} = \int \int \Psi^*(q, x) f \Psi(q, x) \, dq \, dx. \quad (12,1)$$

Введём функцию $\rho(x', x)$, определяемую посредством

$$\rho(x', x) = \int \Psi^*(q, x') \Psi(q, x) \, dq, \quad (12,2)$$

где интегрирование производится только по координатам q; её называют матрицей плотности подсистемы. Из определения (12,2) очевидно, что она обладает свойством «эрмитовости»

$$\rho^*(x, x') = \rho(x', x). \quad (12,3)$$

«Диагональные элементы» матрицы плотности

$$\rho(x, x) = \int |\Psi(q, x)|^2 \, dq$$

определяют, очевидно, распределение вероятности для координат подсистемы.

С помощью матрицы плотности среднее значение $\mathbf{\bar{f}}$ можно написать в виде:

$$\mathbf{\bar{f}} = \int [\hat{f}_\rho(x', x)]_{x' = x} \, dx. \quad (12,4)$$

Здесь \hat{f} действует в функции $\rho(x', x)$ только на переменные x; после вычисления результата воздействия надо положить $x' = x$. Мы видим, что, зная матрицу плотности, можно вычислить среднее значение любой величины, характеризующей подсистему. Отсюда следует, что с помощью $\rho(x', x)$ можно определить также и вероятности различных значений физических величин подсистемы. Таким образом мы приходим к выводу, что состояние подсистемы, не обладающей волновой функцией, может быть описано посредством матрицы плотности. Матрица плотности не содержит координат q, не относящихся к данной подсистеме, хотя, разумеется, по существу зависит от состояния системы в целом.

Предположим, что подсистема замкнута, т. е. не взаимодействует с остальными частями системы или перестала взаимодействовать, начиная с некоторого момента времени (но своей волновой функцией всё же не обладает). Тогда можно вывести уравнение, определяющее изменение матрицы плотности со временем, аналогичное волновому уравнению для Ψ-функции. Вывод можно упростить, заметив, что искомое линейное дифференциальное уравнение для $\rho(x', x)$ должно удовлетворяться и в том частном случае, когда подсистема совпадает с системой в целом. Тогда, очевидно, матрица плотности равна просто произведению

$$\rho(x', x) = \Psi^*(x', t) \Psi(x, t).$$
Дифференцируя по времени и воспользовавшись волновым уравнением (8,1), имеем

$$ih \frac{\partial \rho}{\partial t} = ih \Psi^* (x', t) \frac{\partial \Psi (x, t)}{\partial t} + ih \Psi (x, t) \frac{\partial \Psi^* (x', t)}{\partial t} =$$

$$= \Psi^* (x', t) \hat{H} \Psi (x, t) - \Psi (x, t) \hat{H}' \Psi^* (x', t),$$

где \hat{H} — гамильтониан подсистемы, действующий на функции от x, а \hat{H}' — тот же оператор, действующий на функции от x'. Функции $\Psi^* (x', t)$ и $\Psi (x, t)$ можно, очевидно, ввести под знаки операторов соответственно \hat{H} и \hat{H}' и, таким образом, получим искомое уравнение

$$ih \frac{\partial \rho (x', x, t)}{\partial t} = (\hat{H} - \hat{H}^*) \rho (x', x, t). \quad (12,5)$$

Для «квазизамкнутой» (т. е. лишь слабо взаимодействующей с остальными частями) подсистемы можно приближённо говорить о её стационарных состояниях. Пусть $\Psi_n (x, t)$ — волновые функции этих состояний, т. е. собственные функции гамильтониана подсистемы. Разложим матрицу плотности по этим функциям; разложение представляет собой двойной ряд по функциям $\Psi_n (x, t)$ и $\Psi_n (x', t)$, который мы напишем в виде:

$$\rho (x', x, t) = \sum_m \sum_n a_{mn} \Psi_{n}^* (x', t) \Psi_m (x, t) =$$

$$= \sum_m \sum_n a_{mn} \Psi_{n}^* (x') \Psi_m (x) e^{\frac{i}{\hbar} (E_n - E_m) t}. \quad (12,6)$$

Это разложение играет для матрицы плотности роль, аналогичную роли разложения (10.3) для волновых функций. Вместо совокупности коэффициентов a_n мы имеем здесь двойную совокупность коэффициентов a_{mn}. Эти величины обладают, очевидно, как и сама матрица плотности, свойством «эрмитовости»

$$a_{nm}^* = a_{mn}. \quad (12,7)$$

Для среднего значения некоторой величины f имеем, подставляя (12,6) в (12,3):

$$\bar{f} = \sum_m \sum_n a_{mn} \int \Psi_{n}^* (x, t) \hat{f} \Psi_m (x, t) \, dx,$$

или

$$\bar{f} = \sum_m \sum_n a_{mn} f_{nm} (t) = \sum_m \sum_n a_{mn} f_{nm} e^{\frac{i}{\hbar} (E_n - E_m) t}, \quad (12,8)$$

где f_{nm} — матричные элементы величины f. Это выражение аналогично формуле (11.1)\(^1\).

\(^1\) Описание подсистемы с помощью величины a_{mn} было введено независимо Л. Ландау и Ф. Блохом в 1927 г.
§ 13. Импульс

Величины a_{nm} должны удовлетворять определённым неравенствам. «Диагональные элементы» $\rho(x, x)$ матрицы плотности, определяющие распределение вероятности для координат, должны, очевидно, быть величинами положительными. Из выражения (12,6) (с $x' = x$) поэтому следует, что построенная на коэффициентах a_{nm} квадратичная форма вида

$$\sum_n \sum_m a_{nm} \xi_n^* \xi_m$$

(где ξ_n — произвольные комплексные величины) должна быть существенно положительной. Это накладывает на величины a_{nm} известные из теории квадратичных форм условия. В частности, должны, очевидно, быть положительными все «диагональные» величины

$$a_{nn} \geq 0,$$

а каждые три величины a_{nn}, a_{mm}, a_{mn} должны удовлетворять неравенству

$$a_{nn} a_{mm} \geq |a_{nm}|^2.$$ \hspace{1cm} (12,10)

§ 13. Импульс

Рассмотрим систему частиц, не находящуюся во внешнем поле. Поскольку все положения такой системы как целого в пространстве эквивалентны, то можно, в частности, утверждать, что гамильтониан системы не изменится при параллельном переносе системы на произвольное расстояние. Достаточно потребовать выполнения этого условия для произвольного бесконечно малого смещения; тогда оно будет выполняться и для всякого конечного смещения.

Бесконечно малое параллельное смещение на расстояние δr означает преобразование, при котором радиус-векторы r_a всех частиц (a — номер частицы) получают одинаковое приращение $\delta r: r_a \rightarrow r_a + \delta r$. Произвольная функция $\psi(r_1, r_2, \ldots)$ координат частиц при таком преобразовании переходит в функцию

$$\psi(r_1 + \delta r, r_2 + \delta r, \ldots) = \psi(r_1, r_2, \ldots) + \delta r \sum_a \nabla_a \psi =$$

$$= (1 + \delta r \sum_a \nabla_a) \psi(r_1, r_2, \ldots)$$

(∇_a обозначает «вектор», компоненты которого суть операторы $\partial/\partial x_a$, $\partial/\partial y_a$, $\partial/\partial z_a$). Выражение, стоящее в скобках, т. е.

$$1 + \delta r \sum_a \nabla_a,$$

можно рассматривать как оператор бесконечно малого переноса, переводящий функцию $\psi(r_1, r_2, \ldots)$ в функцию $\psi(r_1 + \delta r, r_2 + \delta r, \ldots)$. Утверждение, что некоторое преобразование не меняет гамильтониана, означает, что если произвести это преобразование над
функцией \(\hat{H}_\psi \), то результат будет таким же, как если произвести только над функцией \(\psi \) и лишь затем применить к ней оператор \(\hat{H} \). Математически это может быть записано следующим образом. Пусть \(\hat{O} \) есть оператор, «производящий» рассматриваемое преобразование. Тогда имеем \(\hat{O} (\hat{H}_\psi) = \hat{H} (\hat{O} \psi) \), откуда

\[
\hat{O} \hat{H} = \hat{H} \hat{O} = 0,
\]

т. е. гамильтониан должен коммутировать с оператором \(\hat{O} \).

В данном случае оператором \(\hat{O} \) является приведённый выше оператор бесконечно малого переноса. Поскольку единичный оператор (оператор умножения на 1) коммутирует, конечно, со всяким вообще оператором, а постоянный множитель \(\delta r \) может быть вынесен из-под знака \(\hat{H} \), то условие \(\hat{O} \hat{H} = \hat{H} \hat{O} = 0 \) сводится здесь к условию

\[
(\sum_a \nabla_a) \hat{H} = \hat{H} (\sum_a \nabla_a) = 0, \quad (13.1)
\]

Как мы знаем, коммутирование некоторого оператора (не содержащего времени явно) с \(\hat{H} \) означает, что соответствующая этому оператору физическая величина сохраняется. Величина, сохранение которой для замкнутой системы следует из свойства однородности пространства, носит название импульса. Таким образом соотношение (13.1) выражает собой закон сохранения импульса в квантовой механике; оператор \(\sum_a \nabla_a \) должен соответствовать, с точностью до постоянного множителя, полному импульсу системы, а каждый из членов суммы \(\nabla_a \) — импульсу отдельной частицы.

Коэффициент пропорциональности между оператором \(\hat{p} \) импульса частицы и оператором \(\nabla \) может быть определён с помощью предельного перехода к классической механике. Написав \(\hat{p} = c\nabla \) и воспользовавшись предельным выражением (6.1) для волновой функции, имеем

\[
\hat{p}\Psi = \frac{i}{\hbar} c a e^{i S/\hbar} \nabla S = c \frac{i}{\hbar} \Psi \nabla S,
\]

t. е. в классическом приближении действие оператора \(\hat{p} \) сводится к умножению на \(\frac{i}{\hbar} c \nabla S \). Градиент \(\nabla S \) есть, как известно из механики, импульс \(p \) частицы; поэтому должно быть: \(\frac{i}{\hbar} c = 1 \), т. е. \(c = -i\hbar \).

Таким образом оператор импульса частицы есть \(\hat{p} = -i\hbar \nabla \), или в компонентах:

\[
\hat{p}_x = -i\hbar \frac{\partial}{\partial x}, \quad \hat{p}_y = -i\hbar \frac{\partial}{\partial y}, \quad \hat{p}_z = -i\hbar \frac{\partial}{\partial z}. \quad (13.2)
\]
Легко убедиться в том, что эти операторы, как и должно было быть, эрмитовы. Действительно, для произвольных функций \(\psi(x) \) и \(\varphi(x) \), обращающихся на бесконечности в нуль, имеем:

\[
\int \varphi \hat{p}_x \psi \, dx = -i \hbar \int \varphi \frac{\partial \psi}{\partial x} \, dx = i \hbar \int \psi \frac{\partial \varphi}{\partial x} \, dx = \int \hat{p}_x \varphi \psi \, dx,
\]
что и является условием эрмитовости оператора.

Поскольку результат дифференцирования функций по двум различным переменным не зависит от порядка дифференцирования, то ясно, что операторы трёх компонент импульса коммутируют друг с другом:

\[
\hat{p}_x \hat{p}_y - \hat{p}_y \hat{p}_x = 0, \quad \hat{p}_x \hat{p}_z - \hat{p}_z \hat{p}_x = 0, \quad \hat{p}_y \hat{p}_z - \hat{p}_z \hat{p}_y = 0. \quad (13,3)
\]

Это значит, что все три компоненты импульса частицы могут одновременно иметь определённые значения.

Найдём собственные функции и собственные значения операторов импульса. Они определяются уравнениями

\[
-i \hbar \frac{\partial \psi}{\partial x} = p_x \psi, \quad -i \hbar \frac{\partial \psi}{\partial y} = p_y \psi, \quad -i \hbar \frac{\partial \psi}{\partial z} = p_z \psi. \quad (13,4)
\]

Решение первого из этих уравнений есть

\[
\psi = f(y, z) e^{\frac{i}{\hbar} p_x x},
\]
где \(f \) не зависит от \(x \). Это решение остаётся конечным при всех значениях \(x \) при любом вещественном значении \(p_x \). Таким образом собственные значения компоненты \(p_x \) импульса образуют непрерывный спектр, просящийся от \(-\infty \) до \(+\infty \); то же самое относится, конечно, и к компонентам \(p_y, p_z \).

Три уравнения (13,4) имеют, в частности, и общие решения, соответствующие состояниям с определёнными значениями всех трёх компонент импульса, образующих вектор \(p \). Эти решения имеют вид

\[
\psi = C e^{\frac{i}{\hbar} p \cdot r} \quad (13,5)
\]
(\(C \)— постоянная). Одновременное задание всех трёх компонент импульса полностью определяет, как мы видим, волновую функцию частицы. Другими словами, величины \(p_x, p_y, p_z \) составляют один из возможных полных наборов физических величин.

Определим нормировочный коэффициент в (13,5). Согласно правилу (5,4) нормировки собственных функций непрерывного спектра, должно быть

\[
\int \psi_p \psi_p^* \, dV = \delta(p' - p) \quad (13,6)
\]
(dV = dx dy dz), где интегрирование производится по всему пространству, а δ(p′ − p) обозначает условное произведение трёх δ-функций δ(p′_x − p_x) δ(p′_y − p_y) δ(p′_z − p_z). Интегрирование производится непосредственно с помощью формулы 1)

\[\frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i\alpha x} dx = \delta(\alpha). \]

(13,7)

Имеем:

\[\int \psi_p^* \psi_p \ dV = C^2 \int e^{\frac{i}{\hbar} (p' - p) r} \ dV = \]

\[= C^2 \int_{-\infty}^{+\infty} e^{\frac{i}{\hbar} (p'_x - p_x) x} \ dx \int_{-\infty}^{+\infty} e^{\frac{i}{\hbar} (p'_y - p_y) y} \ dy \int_{-\infty}^{+\infty} e^{\frac{i}{\hbar} (p'_z - p_z) z} \ dz = \]

\[= C^2 (2\pi\hbar)^3 \delta(p' - p). \]

Отсюда видно, что должно быть C^2 (2\pi\hbar)^3 = 1. Таким образом нормированная функция ψ_p равна:

\[\psi_p = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} e^{\frac{i}{\hbar} p r}. \]

(13,8)

Разложение произвольной волновой функции частицы ψ(r) по собственным функциям ψ_p оператора её импульса представляет собой не что иное, как разложение в интеграл Фурье:

\[\psi(r) = \int a(p) \psi_p(r) \ d\tau_p = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} \int a(p) e^{\frac{i}{\hbar} pr} \ d\tau_p \]

(13,9)

\[(d\tau_p = dp_x dp_y dp_z). \]

1) Условный смысл этой формулы заключается в том, что функция, имеющая в левой стороне равенства, обладает присущим δ-функции свойством, выражаемым равенством

\[\int_{-\infty}^{+\infty} f(x) \delta(x) \ dx = f(0). \]

Это следует из интегральной формулы Фурье

\[f(x') = \frac{1}{2\pi} \int \int f(x) e^{i(x-x')z} \ dx \ dz, \]

если положить в ней x' = 0.

Отделяя действительную часть, можно записать формулу (13,7) также и в виде

\[\frac{1}{2\pi} \int_{-\infty}^{+\infty} \cos ax \ dx = \delta(a). \]

(13,7a)
Коэффициенты разложения $a(p)$ равны, в соответствии с формулой (5,3):

$$a(p) = \int \psi(r) \psi_p^*(r) dV = \frac{1}{(2\pi \hbar)^{3/2}} \int \psi(r) e^{-\frac{i}{\hbar} pr} dV.$$ (13,10)

Функцию $a(p)$ можно рассматривать (см. § 5) как волновую функцию частицы в «р-представлении»; $|a(p)|^2 d\tau_p$ есть вероятность импульсу иметь значения в интервале $d\tau_p$. Формулы (13,9—10) определяют связь между волновыми функциями в обоих представлениях.

Подобно тому как оператор \hat{p} соответствует импульсу, определяя его собственные функции в «r-представлении», можно ввести понятие об операторе \hat{r} радиуса-вектора частицы в «р-представлении». Он должен быть определён так, чтобы среднее значение координат могло быть представлено в виде:

$$\bar{r} = \int a^*(p) \hat{r} a(p) d\tau_p.$$ (13,11)

С другой стороны, это же среднее значение определяется по волновой функции $\psi(r)$ посредством

$$\bar{r} = \int \psi^* r \psi dV.$$ Написав $\psi(r)$ в виде (13,9), имеем (производим интегрирование по частям):

$$\bar{r} = \int \psi^* r \psi dV = \int \psi^* \frac{1}{(2\pi \hbar)^{3/2}} \int r a(p) e^{\frac{i}{\hbar} pr} d\tau_p = \int \psi^* \frac{1}{(2\pi \hbar)^{3/2}} \int \frac{\hbar}{2\pi \hbar} \frac{\partial a(p)}{\partial p} d\tau_p d\psi.$$ (13,11)

С помощью этого выражения и воспользовавшись (13,10), находим:

$$\bar{r} = \int \psi^* r \psi dV = \frac{1}{(2\pi \hbar)^{3/2}} \int \int \psi^* (r) \frac{\partial a(p)}{\partial p} e^{\frac{i}{\hbar} pr} d\tau_p d\psi dV = \int i \hbar a^*(p) \frac{\partial a(p)}{\partial p} d\tau_p.$$ Сравнивая с (13,11), мы видим, что оператор радиуса-вектора в «р-представлении» есть

$$\hat{r} = i \hbar \frac{\partial}{\partial p}.$$ (13,12)

Оператор же импульса в этом представлении сводится просто к умножению на p.

1) Производная по вектору p понимается как вектор, компоненты которого есть производные по p_α, p_y, p_z.

З А Д А Ч А

Выразить оператор \hat{T}_a параллельного переноса на конечное расстояние a через оператор импульса.

Р е ш е н и е. По определению оператора \hat{T}_a должно быть

$$\hat{T}_a \psi(r) = \psi(r + a).$$

Разлагая функцию $\psi(r + a)$ в ряд Тейлора, имеем

$$\psi(r + a) = \psi(r) + a \frac{\partial \psi(r)}{\partial r} + \ldots,$$

или, вводя оператор $\hat{p} = -i\hbar \nabla$:

$$\psi(r + a) = \left[1 + \frac{i}{\hbar} a \hat{p} + \frac{1}{2} \left(\frac{i}{\hbar} a \hat{p}\right)^2 + \ldots\right] \psi(r).$$

Выведение, стоящее в квадратных скобках, представляет собой оператор, который может быть символически записан в виде

$$\hat{T}_a = e^{\frac{i}{\hbar} a \hat{p}}.$$

Это и есть исходный оператор конечного смещения.

§ 14. Соотношения неопределённости

Выведем правила коммутации между операторами импульса и координат. Поскольку результат последовательного дифференцирования по одной из переменных x, y, z и умножения на другую из них не зависит от порядка этих операций, то

$$\hat{p}_x y - y \hat{p}_x = 0, \quad \hat{p}_x z - z \hat{p}_x = 0, \quad (14,1)$$

и аналогично для \hat{p}_y, \hat{p}_z.

Для вывода правила коммутации \hat{p}_x с x пишем:

$$(\hat{p}_x x - x \hat{p}_x) \psi = -i\hbar \frac{\partial}{\partial x} (x\psi) + i\hbar x \frac{\partial \psi}{\partial x} = -i\hbar \psi.$$

Мы видим, что результат воздействия оператора $\hat{p}_x x - x \hat{p}_x$ сводится к умножению функции на $-i\hbar$; то же самое относится, конечно, к коммутации \hat{p}_y с y и \hat{p}_z с z. Таким образом имеем:

$$\hat{p}_x x - x \hat{p}_x = -i\hbar, \quad \hat{p}_y y - y \hat{p}_y = -i\hbar, \quad \hat{p}_z z - z \hat{p}_z = -i\hbar. \quad (14,2)$$

Все соотношения (14,1—2) можно записать в виде:

$$\hat{p}_i x_k - x_k \hat{p}_i = -i\hbar \delta_{ik} \quad (i, k = x, y, z). \quad (14,3)$$

Прежде чем перейти к выяснению физического смысла этих соотношений и следствий из них, выведем две полезные для дальнейшего
§ 14] СООТНОШЕНИЯ НЕОПРЕДЕЛЁННОСТИ

формулы. Пусть $f(r)$ есть некоторая функция координат, тогда

$$\hat{p} f(r) - f(r) \hat{p} = -i\hbar \nabla f. \quad (14,4)$$

Действительно:

$$\left(\hat{p} f - f \hat{p}\right) \psi = -i\hbar \left[\nabla (f \psi) - f \nabla \psi\right] = -i\hbar \psi \nabla f.$$

Аналогичное соотношение имеет место для коммутирования r с «функцией» $f(\hat{p})$ оператора импульса:

$$f(\hat{p}) r - r f(\hat{p}) = -i\hbar \frac{\partial f}{\partial \hat{p}}. \quad (14,5)$$

Его можно вывести так же, как (14,4), если производить вычисления в p-представлении, воспользовавшись для операторов координат выражением (13,12).

Соотношения (14,1—2) показывают, что координата частицы вдоль одной из осей может иметь определённое значение одновременно с компонентами импульса по двум другим осям; координата же и компонента импульса вдоль одной и той же оси не существуют одновременно. В частности, частица не может находиться в определённой точке пространства и в то же время иметь определённый импульс p.

Предположим, что частица находится в некоторой конечной области пространства, размеры которой вдоль трёх осей порядка величины Δx, Δy, Δz. Пусть, далее, среднее значение импульса частицы есть p_0. Математически это означает, что волновая функция имеет вид $\psi = u(r) e^{i\hat{p}_0 r}$, где $u(r)$ есть функция, заметно отличная от нуля только в указанной области пространства. Разложим функцию ψ по собственным функциям оператора импульса (т. е. в интеграл Фурье). Коэффициенты $a(p)$ этого разложения определяются интегралами (13,10) от функций вида $u(r) e^{i\frac{\hat{p}}{\hbar} (p - p_0) r}$. Для того чтобы такой интеграл был заметно отличен от нуля, периоды осциллирующего множителя $e^{i\frac{\hat{p}}{\hbar} (p - p_0) r}$, должны быть не малыми по сравнению с размерами Δx, Δy, Δz области, в которой отлична от нуля функция $u(r)$. Это значит, что $a(p)$ будет заметно отличным от нуля лишь для значений p таких, что $1 \frac{1}{\hbar} (p_{0x} - p_x) \Delta x \lesssim 1, \ldots$ Поскольку $|a(p)|^2$ определяет вероятность различных значений импульса, то интервалы значений p_x, p_y, p_z, в которых $a(p)$ отлично от нуля, суть не что иное, как те интервалы значений, в которых могут оказаться компоненты импульса частицы в рассматриваемом состоянии. Обозначая эти интервалы посредством Δp_x, Δp_y, Δp_z, имеем таким образом:

$$\Delta p_x \Delta x \sim \hbar, \Delta p_y \Delta y \sim \hbar, \Delta p_z \Delta z \sim \hbar. \quad (14,6)$$
Эти соотношения (так называемые соотношения неопределённости) были получены Гайзенбергом.

Мы видим, что чем с большей точностью известна координата частицы (т. е. чем меньше \(\Delta x \)), тем больше неопределённость \(\Delta p_x \) в значении компоненты импульса вдоль той же оси, и наоборот. В частности, если частица находится в некоторой строго определённой точке пространства (\(\Delta x = \Delta y = \Delta z = 0 \)), то \(\Delta p_x = \Delta p_y = \Delta p_z = \infty \). Это значит, что все значения импульса при этом равновероятны. Наоборот, если частица имеет строго определённый импульс \(p \), то равновероятны все её положения в пространстве (это видно и непосредственно из волновой функции (13,8), квадрат модуля которой не зависит вовсе от координат).

В качестве примера рассмотрим частицу в состоянии, описывающемся волновой функцией

\[
\psi = \text{const} \cdot e^{\frac{i}{\hbar} p_x x - \frac{ax^2}{2\hbar}},
\]

(14,7)

(для простоты рассматриваем одномерный случай с волновой функцией, зависящей только от одной координаты). Вероятности различных значений координат равны

\[
|\psi|^2 = \text{const} \cdot e^{-\frac{ax^2}{\hbar}},
\]

t. е. распределены вокруг начала координат (среднее значение \(x = 0 \)) по закону Гаусса со среднеквадратичной флуктуацией \(\sqrt{\langle \Delta x \rangle^2} = \sqrt{\hbar/2a} \) (\(\Delta x \) обозначает разность \(x - \bar{x} \)). Вычисление коэффициентов разложения \(a(p_x) \) этой функции в интеграл Фурье по формуле

\[
a(p_x) = \frac{1}{\sqrt{2\pi \hbar}} \int_{-\infty}^{+\infty} \psi(x) e^{-\frac{i}{\hbar} p_x x} dx
\]

приводит к выражению вида:

\[
a(p_x) = \text{const} \cdot e^{-\frac{(p_0 - p_x)^2}{2\hbar a}}.
\]

Распределение вероятностей значений импульса \(|a|^2 = \text{const} \cdot e^{-\frac{(p_0 - p_x)^2}{\hbar a}} \) имеет, следовательно, тоже гауссовский вид со среднеквадратичной флуктуацией

\[
\sqrt{\langle \Delta p_x \rangle^2} = \sqrt{\frac{a\hbar}{2}}
\]

1) Как известно, распределение Гаусса для вероятности \(w(x) \) значений некоторой величины \(x \) имеет вид

\[
w(x) = \left[2\pi \langle \Delta x \rangle^2\right]^{-1/2} e^{-\frac{(x - \bar{x})^2}{2\langle \Delta x \rangle^2}}.
\]
(где $\Delta p_x = p_x - p_0$). Произведение средних квадратичных флуктуаций координаты и импульса равно, таким образом,

$$V(\Delta p_x)^2(\Delta x)^2 = \frac{\hbar}{2},$$

(14,8)

в согласии с соотношениями (14,6) 1).

Наконец, выведем ещё одно полезное соотношение. Пусть f и g — две физические величины, операторы которых удовлетворяют правилу коммутации

$$\hat{f} \hat{g} - \hat{g} \hat{f} = -i\hbar \hat{c},$$

(14,9)

где \hat{c} — оператор некоторой физической величины c. В правой стороне равенства введён множитель \hbar в соответствии с тем, что в классическом пределе (т. е. при $\hbar \to 0$) все вообще операторы физических величин сводятся к умножению на эти величины и коммутируют друг с другом. Таким образом в «квазиклассическом» случае можно

1) Можно показать, что это значение произведения флуктуаций является наименьшим возможным. Для этого произведён следующий формальный вывод (Г. Вейль). Пусть состояние частицы описывается функцией $\psi(x)$, причём средние значения координаты и импульса в этом состоянии предположим, для простоты вывода, равными нулю. Рассмотрим очевидное неравенство

$$\int_{-\infty}^{+\infty} \left| \alpha x \psi + \frac{d\psi}{dx} \right|^2 \, dx \geq 0,$$

где α — произвольная действительная постоянная (знак равенства достигается как раз для функции ψ вида (14,7).) При вычислении этого интеграла замечаем, что

$$\int x^2 |\psi|^2 \, dx = (\Delta x)^2,$$

$$\int \left(x \frac{d\psi^*}{dx} \psi + x \psi^* \frac{d\psi}{dx} \right) \, dx = \int x \frac{d|\psi|^2}{dx} \, dx = - \int |\psi|^2 \, dx = - 1,$$

$$\int \frac{d\psi^*}{dx} \frac{d\psi}{dx} \, dx = - \int \psi^* \frac{d^2\psi}{dx^2} \, dx = \frac{1}{\hbar^2} \int \psi^* \frac{\Delta p_x}{\hbar} \psi \, dx = \frac{1}{\hbar^2} (\Delta p_x)^2$$

и получаем:

$$\alpha^2 (\Delta x)^2 - \alpha + \frac{1}{\hbar^2} (\Delta p_x)^2 \geq 0.$$

Для того чтобы этот квадратичный (по α) трёхчлен был положительным, должно быть выполнено условие

$$4 (\Delta x)^2 \frac{1}{\hbar^2} (\Delta p_x)^2 \geq 1$$

или

$$V(\Delta x)^2 (\Delta p_x)^2 \geq \frac{\hbar}{2}.$$

(14,8a)
в первом приближении правую сторону равенства (14,9) считать равной нулю. В следующем же приближении можно заменить оператор \(\hat{c} \) оператором простого умножения на величину \(c \). Тогда получается:

\[
\hat{f} \hat{g} - \hat{g} \hat{f} = -ihc.
\]

Это равенство в точности аналогично соотношению \(\hat{p}_x x - x \hat{p}_x = -ih \) с той лишь разницей, что вместо постоянной \(\hbar \) в нём стоит величина \(hc \). В связи с этим мы можем заключить по аналогии с соотношением \(\Delta x \Delta p_x \sim \hbar \), что в квазиклассическом случае для величин \(f, g \) имеет место соотношение неопределенности

\[
\Delta f \Delta g \sim hc. \tag{14,10}
\]

В частности, если одной из величин является энергия \(\hat{f} \equiv \hat{\mathcal{H}} \), а оператор другой \(\hat{g} \) не зависит явно от времени, то согласно (9,2) \(\hat{c} = \hat{g} \), и соотношение неопределенности в квазиклассическом случае есть:

\[
\Delta E \Delta g \sim h g. \tag{14,11}
\]

1) Классическая величина \(c \) есть скобки Пуассона величин \(f \) и \(g \), ср. сноску на стр. 41.
ГЛАВА III
УРАВНЕНИЕ ШРЕДИНГЕРА

§ 15. Уравнение Шредингера

Перейдём теперь к определению вида гамильтониана — вопрос первостепенного значения, поскольку этим определяется вид волнового уравнения.

Начнём с рассмотрения одной свободной частицы, т. е. частицы, не находящейся ни в каком внешнем поле. Ввиду полной однородности пространства для такой частицы её гамильтониан не может содержать в явном виде координат и должен выражаться через один только оператор импульса. Далее, для свободной частицы сохраняются как её энергия, так и импульс, а потому обе эти величины могут существовать одновременно. Поскольку значение вектора импульса полностью определяет состояние частицы, то собственные значения энергии \(E \) должны выражаться в виде функции от значения импульса в том же состоянии. При этом \(E \) есть функция только от абсолютной величины импульса, но не от его направления; это следует из полной изотропии пространства по отношению к свободной частице, т. е. эквивалентности всех направлений в нём. Самый вид функции \(E(p) \) полностью определяется требованиями так называемого принципа относительности Галилея, который должен выполняться в нерелятивистской квантовой механике в такой же мере, как и в классической (нерелятивистской) механике. Как показывается в механике 1), это требование приводит к квадратичной зависимости энергии от импульса: \(E = \frac{p^2}{2\mu} \), где постоянная \(\mu \) называется массой частицы.

Для того чтобы соотношение \(E = \frac{p^2}{2\mu} \) имело место для всех собственных значений энергии и импульса, такое же соотношение должно и быть справедливым и для их операторов:

\[
\hat{H} = \frac{1}{2\mu} (\hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2).
\]

(15,1)

Подставляя сюда (13,2), получим гамильтониан свободно движущейся частицы в виде:

$$\hat{H} = -\frac{\hbar^2}{2\mu} \Delta,$$
(15,2)

где $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ есть оператор Лапласа.

Если мы имеем систему невзаимодействующих частиц, то его гамильтониан равен сумме гамильтонианов каждой из частиц (см. § 8):

$$\hat{H} = -\frac{\hbar^2}{2} \sum_{\nu} \frac{1}{\mu} \Delta_{\nu}$$
(15,3)

(индекс ν нумерует частицы; Δ_{ν} есть оператор Лапласа, в котором дифференцирование производится по координатам ν-й частицы).

Вид гамильтониана для системы взаимодействующих друг с другом частиц не может быть выведен из одних только общих принципов квантовой механики. Оказывается, что он имеет вид, аналогичный функции Гамильтона в классической механике. Именно, он получается прибавлением к гамильтониану невзаимодействующих частиц некоторой функции $U(r_1, r_2, \ldots)$ от их координат:

$$\hat{H} = -\frac{\hbar^2}{2} \sum_{\nu} \frac{\Delta_{\nu}}{\mu} + U(r_1, r_2, \ldots).$$
(15,4)

Первый член можно рассматривать как оператор кинетической энергии, а второй — как оператор потенциальной энергии. Последний сводится к простому умножению на функцию U, и из предельного перехода к классической механике следует, что эта функция должна совпадать с той, которая определяет потенциальную энергию в классической механике. В частности, гамильтониан для одной частицы, находящейся во внешнем поле, есть

$$\hat{H} = \frac{p^2}{2\mu} + U(x, y, z) = -\frac{\hbar^2}{2\mu} \Delta + U(x, y, z),$$
(15,5)

где $U(x, y, z)$ — потенциальная энергия частицы во внешнем поле.

Отметим, что собственные значения оператора кинетической энергии положительны, что следает непосредственно из того, что этот оператор равен сумме квадратов операторов импульса с положительными коэффициентами. Поэтому и среднее значение кинетической энергии в произвольном состоянии тоже всегда положительно.

Подстановка выражений (15,2) — (15,5) в общее уравнение (8,1) даёт волновые уравнения для соответствующих систем. Выпишем здесь волновое уравнение для частицы во внешнем поле

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2\mu} \Delta \Psi + U(x, y, z) \Psi.$$
(15,6)
Уравнение же (10,2), определяющее стационарные состояния, принимает вид

\[\frac{\hbar^2}{2\mu} \Delta \Psi + [E - U(x, y, z)] \Psi = 0. \] (15.7)

Уравнения (15.6), (15.7) были получены Шредингером в 1926 г. и называются уравнениями Шредингера — соответственно со временем и без времени.

Для свободной частицы уравнение Шредингера (15.7) имеет вид

\[\frac{\hbar^2}{2\mu} \Delta \Psi + E \Psi = 0. \] (15.8)

Это уравнение имеет конечные во всём пространстве решения при любом положительном значении энергии \(E \) (включая нуль). В качестве этих решений можно взять общие собственные функции (13.5) операторов трёх компонент импульса. Полные волновые функции стационарных состояний будут тогда иметь вид:

\[\Psi = \text{const} \cdot e^{-\frac{E}{\hbar} t + \frac{p^2}{2\mu} r} \left(E = \frac{p^2}{2\mu} \right). \] (15.9)

Каждая такая функция описывает состояние, в котором частица обладает определёнными энергией \(E \) и импульсом \(p \). Это есть плоская волна, распространяющаяся в направлении \(p \) и обладающая частотой \(\frac{E}{\hbar} \) и длиной волны \(\frac{2\pi \hbar}{p} \) (последнюю называют де-Бройлевской длиной волны частицы 1).

Энергетический спектр свободно движущейся частицы оказывается, таким образом, непрерывным, простираться от нуля до \(+\infty \). Каждое из этих собственных значений (за исключением только значения \(E = 0 \)) выражено, причём выражение — бесконечной кратности. Действительно, каждому отличному от нуля значению \(E \) соответствует бесконечное множество собственных функций (15.9), отличающихся направлениями вектора \(p \) при одинаковой его абсолютной величине.

Прослежим, каким образом происходит в уравнении Шредингера предельный переход к классической механике, рассматривая для простоты всего одну частицу во внешнем поле. Подставляя в уравнение Шредингера (15.6) предельное выражение (6.1) волновой функции

\[\Psi = \text{ae}^{iS} \], получим, производя дифференцирования:

\[a \frac{\partial S}{\partial t} - i \hbar \frac{\partial a}{\partial t} + \frac{a}{2\mu} (\nabla S)^2 - \frac{i \hbar}{2\mu} a \Delta S - \frac{i \hbar}{\mu} \nabla S \nabla a - \frac{\hbar^2}{2\mu} \Delta a + Ua = 0. \]

В этом уравнении имеются чисто действительные и чисто мнимые члены (напоминаем, что \(S \) и \(a \) — действительны); приравнивая те

1) Понятие о волне, связанной с частицей, было впервые введено Л. де-Бройлем в 1924 г.

5 Зак. 2887. Ландец и Лифшиц, т. V, ч. I.
и другие в отдельности нулю, получим два уравнения

\[\frac{\partial S}{\partial t} + \frac{1}{2\mu} (\nabla S)^2 + U - \frac{\hbar^2}{2\mu a} \Delta a = 0, \]

\[\frac{\partial a}{\partial t} + \frac{a}{2\mu} \Delta S + \frac{1}{\mu} \nabla S \nabla a = 0. \]

Пренебрегая в первом из этих уравнений членом, содержащим \hbar^2, получим

\[\frac{\partial S}{\partial t} + \frac{1}{2\mu} (\Delta S)^2 + U = 0, \]

(15,10)

t. е., как и должно быть, известное классическое уравнение Гамильтона-Якоби для движения S частицы. Мы видим, кстати, что при $\hbar \to 0$ классическая механика справедлива с точностью до величин первого (а не нулевого) порядка по \hbar включительно.

Второе из полученных уравнений после умножения на $2a$ может быть переписано в виде

\[\frac{\partial a^2}{\partial t} + \text{div} \left(a^2 \frac{\nabla S}{\mu} \right) = 0. \]

(15,11)

Это уравнение имеет наглядный физический смысл. a^2 есть плотность вероятности нахождения частицы в том или ином месте пространства ($|\Psi|^2 = a^2$); $\frac{\nabla S}{\mu}$ есть классическая скорость v частицы. Поэтому уравнение (15,11) есть не что иное, как уравнение непрерывности, показывающее, что плотность вероятности «перемещается» по законам классической механики с классической скоростью v в каждой точке.

§ 16. Основные свойства уравнения Шрёдингера

Условия, которым должны удовлетворять решения уравнения Шрёдингера, имеют весьма общий характер. Прежде всего волновая функция должна быть однозначной и непрерывной во всём пространстве. Требование непрерывности сохраняется также и в тех случаях, когда само поле $U(x, y, z)$ имеет поверхности разрыва. На такой поверхности должны оставаться непрерывными как волновая функция, так и её производные. По поводу непрерывности производных надо, однако, оговориться, что она не имеет места, если за некоторой поверхностью потенциальная энергия U обращается в бесконечность. В область пространства, где $U = \infty$, частица, очевидно, вообще не может проникнуть, т. е. в этой области должно быть везде $\psi = 0$. Непрерывность ψ требует, чтобы на границе этой области ψ обращалось в нуль; производные же от ψ в этом случае испытывают, вообще говоря, скачок.

Если поле $U(x, y, z)$ нигде не обращается в бесконечность, то волновая функция тоже должна быть конечной во всём пространстве.
Если же $U(x, y, z)$ обращается в некоторой точке (скажем, в начале координат) в бесконечность, то хотя ψ и может иметь здесь особую точку, но во всяком случае требуется, чтобы сходился интеграл $\int |\psi|^2 dV$ по объёму вокруг этой точки и чтобы был конечен предел, к которому стремится при $r \to 0$ интеграл

$$\int (\psi_1^* \nabla \psi_2 - \psi_2^* \nabla \psi_1) d\mathbf{r},$$

взятый по поверхности сферы радиуса r вокруг начала координат (ψ_1, ψ_2 — любые два решения уравнения Шредингера, соответствующие различным собственным значениям энергии). Другими словами, должно быть:

$$|\psi|^2 r^3 \to 0, \quad \left(\psi_1^* \frac{\partial \psi_2}{\partial r} - \psi_2^* \frac{\partial \psi_1}{\partial r}\right) r^2 \to 0 \quad \text{при} \quad r \to 0. \quad (16,1)$$

Фактически эти условия обычно приводят к требованию конечности ψ в начале координат. Условия, налагаемые на интеграл по поверхности бесконечно малой сферы, необходимы для соблюдения взаимной ортогональности различных собственных функций (ср. доказательство ортогональности, основанное на уравнении Шредингера, в конце следующего параграфа).

Пусть U_{\min} есть минимальное значение функции $U(x, y, z)$. Поскольку гамильтониан частицы есть сумма двух членов — операторов кинетической \hat{T} и потенциальной энергии, то среднее значение энергии в произвольном состоянии равно сумме $\bar{E} = \bar{T} + \bar{U}$. Но все собственные значения оператора \hat{T} (совпадающего с гамильтонианом свободной частицы) положительны; поэтому и среднее значение $\bar{T} \geq 0$. Имея также в виду очевидное неравенство $\bar{U} \geq U_{\min}$, найдём, что и $\bar{E} \geq U_{\min}$. Поскольку это неравенство имеет место для любого состояния, то ясно, что оно справедливо и для всех собственных значений энергии:

$$E_n > U_{\min}. \quad (16,2)$$

Рассмотрим частицу, движущуюся в силовом поле, исчезающем на бесконечности; функцию $U(x, y, z)$, как обычно принято, определим так, чтобы на бесконечности она обращалась в нуль. Легко видеть, что спектр отрицательных собственных значений энергии будет тогда дискретным, т. е. все состояния с $E < 0$ в исчезающем на бесконечности поле суть состояния финитного движения частицы. Действительно, в стационарных состояниях непрерывного спектра, соответствующих инфтинитному движению, частица находится на бесконечности (см. § 10). Но на достаточно больших расстояниях наличием поля можно пренебречь, и движение частицы может рассматриваться как свободное; при свободном же движении энергия может быть только положительной.
Напротив, положительные собственные значения образуют непрерывный спектр и соответствуют инфинитному движению; при $E > 0$ уравнение Шредингера, вообще говоря, не имеет (в рассматриваемом поле) решений, для которых бы интеграл $\int |\psi|^2 dV$ сходился 1.

Обратим внимание на то, что в квантовой механике при финитном движении частица может находиться и в тех областях пространства, в которых $E < U$; вероятность $|\psi|^2$ нахождения частицы хотя и стремится быстро к нулю с увеличением расстояния в глубь такой области, но на всех конечных расстояниях всё же отлична от нуля. В этом отношении имеется принципиальное отличие от классической механики, в которой частица вообще не может проникнуть в область, где $U > E$. В классической механике невозможность проникновения в эту область связана с тем, что при $E < U$ кинетическая энергия была бы отрицательной, т. е. скорость — мнимой, что неложно. В квантовой механике собственные значения кинетической энергии тоже положительны; тем не менее мы не приходим здесь к противоречию, так как если процессом измерения частица локализуется в некоторой определённой точке пространства, то в результате этого же процесса состояние частицы нарушается таким образом, что она вообще перестаёт обладать какой-либо определённой кинетической энергией.

Если во всём пространстве $U(x, y, z) > 0$ (причём на бесконечности $U \to 0$), то в силу неравенства (16,2) имеем $E_n > 0$. Поскольку, с другой стороны, при $E > 0$ спектр должен быть непрерывным, то мы заключаем, что в рассматриваемом случае дискретный спектр вообще отсутствует, т. е. возможно только инфинитное движение частицы.

Предположим, что U в некоторой точке (которую мы выберем в качестве начала координат) обращается в $-\infty$ по закону

$$U \approx -\frac{\alpha}{r^s} \quad (\alpha > 0). \tag{16,3}$$

Рассмотрим волновую функцию, конечную в некоторой малой области (радиуса r_0) вокруг начала координат и равную нулю вне её. Неопределённость в значениях координат частицы в таком волновом пакете порядка r_0; поэтому неопределённость в значении импульса $\sim h/r_0$. Среднее значение кинетической энергии в этом состоянии порядка величины $h^2/\mu r_0^2$, а среднее значение потенциальной энергии $\sim -\alpha/r_0^5$. Предположим, сначала, что $s > 2$. Тогда сумма

$$\frac{h^2}{\mu r_0^2} \frac{\alpha}{r_0^5}$$

1) Надо, однако, оговориться, что при некоторых определённых видах функции $U(x, y, z)$ из непрерывного спектра может выпадать дискретный набор значений.
при достаточно малых r_0 принимает сколько угодно большие по абсолютной величине отрицательные значения. Но если средняя энергия может принимать такие значения, то это во всяком случае означает, что существуют отрицательные собственные значения энергии, сколько угодно большие по абсолютной величине. Уровнем энергии с большим $|E|$ соответствует движение частицы в очень малой области пространства вокруг начала координат. «Нормальное» состояние будет соответствовать частице, находящейся в самом начале координат, т.е. произойдёт «падение» частицы в точку $r=0$.

Если же $s < 2$, то энергия не может принимать сколько угодно больших по абсолютной величине отрицательных значений. Дискретный спектр начинается с некоторого конечного отрицательного значения. «Падения» частицы в центр в этом случае не происходит. Обратим внимание на то, что в классической механике «падение» частицы в центр было бы возможным во всяком поле притяжения (т.е. при любом положительном s). Случай $s=2$ будет рассмотрен особо в § 35.

Далее, исследуем характер энергетического спектра в зависимости от поведения поля на больших расстояниях. Предположим, что при $r \to \infty$ потенциальная энергия, будучи отрицательной, стремится к нулю по степенному закону (16.3) (в этой формуле теперь r велико). Рассмотрим волновой пакет, «заполняющий» шаровой слой большого радиуса r_0 и толщины $\Delta r \ll r_0$. Тогда снова порядок величины кинетической энергии будет $\hbar^2/\mu (\Delta r)^2$, а потенциальной: $-\alpha/r_0^2$. Будем увеличивать r_0, увеличивая одновременно и Δr (так, чтобы Δr росло пропорционально r_0). Если $s < 2$, то при достаточно больших r_0 сумма $\frac{\hbar^2}{\mu (\Delta r)^2} - \frac{\alpha}{r_0^2}$ станет отрицательной. Отсюда следует, что существуют стационарные состояния с отрицательной энергией, в которых частица может с заметной вероятностью находиться на больших расстояниях от начала координат. Но это означает, что существуют сколь угодно малые по абсолютной величине отрицательные уровни энергии (надо помнить, что в области пространства, где $U > E$, волновые функции быстро затухают). Таким образом в рассматриваемом случае дискретный спектр содержит бесконечное множество уровней, сгущающихся по направлению к уровню $E=0$.

Если же на бесконечности поле спадает, как $-1/r^s$ с $s > 2$, то сколь угодно малых по абсолютной величине отрицательных уровней нет. Дискретный спектр кончается уровнем с отличным от нуля абсолютным значением, так что общее число уровней конечно.

Уравнение Шредингера (без времени), как и накладываемые на его решения условия, — действительны. Поэтому его решения ψ всегда могут быть выбраны действительными ¹). Что касается собственных функций

¹) Эти утверждения не справедливы для систем, находящихся в магнитном поле.
невырожденных значений энергии, то они автоматически оказываются действительными с точностью до несущественного фазового множителя. В самом деле, \(\phi^* \) удовлетворяет тому же уравнению, что и \(\phi \), и потому тоже есть собственная функция для того же значения энергии; поэтому если это значение не выражено, то \(\phi \) и \(\phi^* \) должны быть по существу одинаковыми, т. е. могут отличаться лишь постоянным множителем (с модулем, равным единице). Волновые же функции, соответствующие одному и тому же выраженному уровню энергии, не обязательно действительны, но путём соответствующего выбора их линейных комбинаций всегда можно получить набор действительных функций.

Полные же волновые функции \(\Psi \) определяются уравнением, в коэффициенты которого входит \(i \). Это уравнение, однако, сохраняет свой вид, если в нём заменить \(t \) на \(-t \) и одновременно перейти к комплексно сопряжённому \(^1\). Поэтому можно всегда выбрать функции \(\Psi \) такими, чтобы \(\Psi \) и \(\Psi^* \) отличались только знаком у времени — результат, известный нам уже из формул (10,1), (10,3).

Как известно, уравнения классической механики не меняются при изменении знака времени, т. е. при замене будущего прошедшим. В квантовой механике симметрия по отношению к обоим направлениям времени выражается, как мы видим, в неизменности волнового уравнения при изменении знака \(t \) и одновременной замене \(\Psi \) на \(\Psi^* \). Надо, однако, помнить, что эта симметрия относится здесь только к уравнениям, но не к самому понятию измерения, играющему фундаментальную роль в квантовой механике (как об этом подробно шла речь в § 7). Таким образом в квантовой механике нет полной физической симметрии обоих направлений времени.

§ 17. Плотность потока

В классической механике скорость частицы равна её импульсу, делённому на массу. Покажем, что такое же соотношение имеет место, как и следовало ожидать, и в квантовой механике.

Согласно общей формуле (9,2) дифференцирования операторов по времени, имеем для оператора скорости \(\hat{v} \equiv \hat{r} \):

\[
\hat{v} = \frac{i}{\hbar} (\hat{H} \hat{r} - \hat{r} \hat{H}).
\]

Воспользовавшись выражением (15,5) для \(\hat{H} \) и формулой (14,5), получим:

\[
\hat{v} = \frac{\hat{p}}{\mu}.
\]

\(^1\) Предполагается, что потенциальная энергия \(U \) не зависит явно от времени — система либо замкнута, либо находится в постоянном (не магнитном) поле.
§ 17] Плотность потока 71

Такие же соотношения будут, очевидно, иметь место и между собственными значениями скорости и импульса и между их средними значениями в любом состоянии.

Скорость, как и импульс частицы, не может иметь определённого значения одновременно с её координатами. Но скорость, умножённая на бесконечно малый элемент времени dt, определяет смещение частицы за время dt. Поэтому факт несуществования скорости одновременно с координатами означает, что если частица находится в определённой точке пространства в некоторый момент времени, то она не будет иметь определённого положения уже в следующий бесконечно близкий момент времени.

Отметим полезную формулу для оператора \hat{f} производной по времени от некоторой величины $f(\mathbf{r})$, являющейся функцией радиус-вектора частицы. Имея в виду, что f коммутирует с $U(\mathbf{r})$, находим:

$$\hat{f} = \frac{i}{\hbar} \left(\hat{H} f - f \hat{H} \right) = \frac{i}{2\mu \hbar} (\hat{p}^2 f - f \hat{p}^2).$$

С помощью (14,4) пишем

$$\hat{p}^2 f = \hat{p} (f \hat{p} - i\hbar \nabla f) = \hat{p} f \hat{p} - i\hbar \nabla f$$

и аналогично для $f \hat{p}^2$. Подставляя в формулу для \hat{f}, получим искомое выражение

$$\hat{f} = \frac{1}{2\mu} (\hat{p} \nabla f - \nabla f \cdot \hat{p}). \quad (17,2)$$

Далее, найдём оператор ускорения. Имеем:

$$\hat{v} = \frac{i}{\hbar} \left(\hat{H} v - v \hat{H} \right) = \frac{i}{\mu \hbar} (\hat{H} \hat{p} - \hat{p} \hat{H}) = \frac{i}{\mu \hbar} (U \hat{p} - \hat{p} U),$$

[с \hat{p} коммутируют все члены в \hat{H}, за исключением $U(\mathbf{r})$].

Воспользовавшись формулой (14,4), находим:

$$\hat{v} = -\nabla U. \quad (17,3)$$

Это операторное уравнение по форме в точности совпадает с уравнением движения (уравнением Ньютона) классической механики.

Интеграл $\int \frac{d}{V} |\Psi|^2 dV$, взятый по некоторому конечному объёму V, представляет собой вероятность нахождения частицы в этом объёме. Вычислим производную от этой величины по времени. Имеем:

$$\frac{d}{dt} \int \frac{1}{V} |\Psi|^2 dV = \int \frac{1}{V} \left(\Psi \frac{\partial \Psi^*}{\partial t} + \Psi^* \frac{\partial \Psi}{\partial t} \right) dV = \frac{i}{\hbar} \int \frac{1}{V} \left(\Psi \hat{H} \Psi^* - \Psi^* \hat{H} \Psi \right) dV.$$

Подставляя сюда

$$\hat{H} = \hat{H}^* = -\frac{\hbar^2}{2\mu} \Delta + U(x, y, z)$$

выразим производную от полной энергии $\Psi^* \hat{H} \Psi$ по времени.
и используя тождество
\[\Psi \Delta \Psi^* - \Psi^* \Delta \Psi = \text{div} (\Psi \nabla \Psi^* - \Psi^* \nabla \Psi), \]
получим
\[\frac{d}{dt} \int_V |\Psi|^2 dV = - \int_V \text{div} \mathbf{i} dV, \]
где \(\mathbf{i} \) обозначает вектор:
\[\mathbf{i} = \frac{i\hbar}{2\mu} (\Psi \text{grad} \Psi^* - \Psi^* \text{grad} \Psi). \quad (17,4) \]
Интеграл от \(\text{div} \mathbf{i} \) может быть преобразован, согласно теореме Гаусса, в интеграл по замкнутой поверхности \(S \), окружающей объем \(V \):
\[\frac{d}{dt} \int_V |\Psi|^2 dV = - \oint_S \mathbf{i} \cdot d\mathbf{f}. \quad (17,5) \]
Отсюда видно, что вектор \(\mathbf{i} \) может быть назван вектором «плотности потока вероятности». Интеграл от этого вектора по поверхности есть вероятность того, что в течение единицы времени частица пересечет эту поверхность. Вектор \(\mathbf{i} \) и плотность вероятности \(|\Psi|^2 \) удовлетворяют уравнению
\[\frac{\partial |\Psi|^2}{\partial t} + \text{div} \mathbf{i} = 0, \quad (17,6) \]
аналогичному классическому уравнению непрерывности.

Вводя оператор импульса, можно написать вектор \(\mathbf{i} \) в виде
\[\mathbf{i} = \frac{1}{2\mu} (\Psi \hat{p} \Psi^* - \Psi^* \hat{p} \Psi). \quad (17,7) \]
Полезно рассмотреть, каким образом непосредственно из уравнения Шредингера следует взаимная ортогональность волновых функций состояний с различной энергией. Пусть \(\psi_m \) и \(\psi_n \) — две такие функции; они удовлетворяют уравнениям
\[-\frac{\hbar^2}{2\mu} \Delta \psi_m + U \psi_m = E_m \psi_m, \]
\[-\frac{\hbar^2}{2\mu} \Delta \psi_n^* + U \psi_n^* = E_n \psi_n^*. \]
Умножим первое из них на \(\psi_n^* \), а второе — на \(\psi_m \) и вычтем почленно друг из друга; это даёт:
\[(E_m - E_n) \psi_m \psi_n^* = \frac{\hbar^2}{2\mu} (\psi_m \Delta \psi_n^* - \psi_n^* \Delta \psi_m) = \frac{\hbar^2}{2\mu} \text{div} (\psi_m \nabla \psi_n^* - \psi_n^* \nabla \psi_m). \]

1) Элемент поверхности \(df \) определяется как вектор, равный по величине площади \(df \) элемента и направленный по внешней нормали к нему.
Если теперь проинтегрировать обе стороны уравнения по всему пространству, то правая сторона, будучи преобразована по теореме Гаусса, обратится в нуль, и мы получим

$$(E_m - E_n) \int \psi_m \psi^*_n dV = 0,$$

откуда, ввиду предполагаемого $E_m \neq E_n$, следует искомое соотношение ортогональности

$$\int \psi_m \psi^*_n dV = 0.$$

§ 18. Вариационный принцип

Уравнение Шредингера в общем виде $\hat{H}\psi = E\psi$ может быть получено из вариационного принципа

$$\delta \int \psi^* (\hat{H} - E) \psi dq = 0. \quad (18,1)$$

Ввиду комплексности ψ варьирование по ψ и ψ^* можно производить независимо. Варьируя по ψ^*, имеем

$$\int \delta \psi^* (\hat{H} - E) \psi dq = 0,$$

откуда, ввиду произвольности $\delta \psi^*$, получаем искомое уравнение $\hat{H}\psi = E\psi$. Варьирование по ψ не даёт ничего нового. Действительно, варьируя по ψ и воспользовавшись эрмитовостью оператора \hat{H}, имеем

$$\int \psi^* (\hat{H} - E) \delta \psi dq = \int \delta \psi (\hat{H}^* - E) \psi^* dq = 0,$$

откуда получается комплексно сопряжённое уравнение $\hat{H}^*\psi^* = E\psi^*$. Вариационный принцип (18,1) требует безусловного экстремума интеграла. Его можно представить в другом виде, рассматривая E как множитель Лагранжа в задаче об условном экстремуме

$$\delta \int \psi^* \hat{H}\psi dq = 0 \quad (18,2)$$

при дополнительном условии

$$\int \psi\psi^* dq = 1. \quad (18,3)$$

Минимальное (при дополнительном условии (18,3)) значение интеграла (18,2) представляет собой первое из собственных значений энергии, т. е. энергию E_0 нормального состояния. Осуществляющая этот минимум функция ψ есть, соответственно, волновая функция ψ_0
нормального состояния\(^1\)). Волновые же функции \(\psi_n (n > 0)\) следующих стационарных состояний соответствуют лишь экстремуму, а не истинному минимуму интеграла.

Для того чтобы получить из условия минимальности интеграла (18.2) волновую функцию \(\psi_1\) и энергию \(E_1\) следующего после нормального состояния, надо допускать в качестве конкурирующих функций \(\psi\) только те, которые удовлетворяют не только условию нормировки (18.3), но и условию ортогональности к волновой функции \(\psi_0\) нормального состояния \(\int \psi_0 \psi^* dV = 0\). Вообще, если известны волновые функции \(\psi_0, \psi_1, \ldots, \psi_{n-1}\) первых \(n\) состояний (состояния расположены в порядке возрастания их энергий), то волновая функция следующего состояния осуществляет минимум интеграла (18.2) при дополнительных условиях:

\[
\int \psi^2 dq = 1, \quad \int \psi \psi_m dq = 0, \quad m = 0, 1, 2, \ldots, n - 1. \tag{18.4}
\]

Приведём здесь некоторые общие теоремы, которые могут быть доказаны на основании вариационного принципа\(^2\).

Волновая функция \(\psi_0\) нормального состояния не обращается в нуль (или, как говорят, не имеет узлов) ни при каких конечных значениях координат\(^3\). Другими словами, она имеет одинаковый знак во всём пространстве. Отсюда следует, что волновые функции \(\psi_n (n > 0)\) других стационарных состояний, ортогональные к \(\psi_0\), непременно имеют узловые точки (если \(\psi_n\) — тоже постоянного знака, то интеграл \(\int \psi_0 \psi_n dq\) не может обратиться в нуль).

Далее, из факта отсутствия узлов у \(\psi_0\) следует, что нормальный энергетический уровень не может быть вырожденным. Действительно, предположим противное, и пусть \(\psi_0, \psi'_0\) — две различные собственные функции, соответствующие уровню \(E_0\). Всякая линейная комбинация \(c \psi_0 + c' \psi'_0\) тоже будет собственной функцией; но, выбирая соответствующим образом постоянные \(c, c'\), всегда можно добиться обращения этой функции в нуль в любой заданной точке пространства, т. е. мы получили бы собственную функцию с узлами.

Если движение происходит в ограниченной области пространства, то на границе этой области должно быть \(\psi = 0\) (см. § 16). Для определения уровня энергии нужно найти из вариационного принципа

\(^1\) Ниже в этом параграфе мы будем считать волновые функции \(\psi\) действительными, каковыми их всегда можно выбрать (если нет магнитного поля).

\(^2\) См., например, В. И. Смирнов. Курс высшей математики, том IV, 1941.

\(^3\) Эта теорема, вообще говоря, несправедлива для волновых функций систем, состоящих из нескольких тождественных частиц (см. примечание в конце § 61).
§ 19. Общие свойства одномерного движения

минимум интеграла (18,2) при этом граничном условии. Теорема об отсутствии узлов у волновой функции нормального состояния гласит здесь, что \(\psi_0 \) не обращается в нуль нигде внутри указанной области.

Отметим, что при увеличении размеров области движения все уровни энергии \(E_n \) уменьшаются; это следует непосредственно из того, что возрастание области увеличивает круг конкурирующих функций, осуществляющих минимум интеграла, в результате чего минимальное значение интеграла может только уменьшиться.

Выражение

\[
E_n = \int \psi_n^* \hat{H} \psi_n \, dV = \int \left[-\frac{\hbar^2}{2\mu} \psi_n \Delta \psi_n + U(x, y, z) \psi_n^2 \right] dV
\]

для уровней энергии дискретного спектра одной частицы может быть преобразовано к другому, часто более удобному виду. В первом члене подинтегрального выражения пишем:

\[
\psi_n \Delta \psi_n = \text{div} (\psi_n \nabla \psi_n) - (\nabla \psi_n)^2.
\]

Интеграл от \(\text{div} (\psi_n \nabla \psi_n) \) по пространству преобразуется в интеграл по бесконечно удаленной замкнутой поверхности, и поскольку на бесконечности волновые функции состояний дискретного спектра обращаются в нуль достаточно быстро, то этот интеграл исчезает. Таким образом

\[
E_n = \int \left[\frac{\hbar^2}{2\mu} (\nabla \psi_n)^2 + U(x, y, z) \psi_n^2 \right] dV. \tag{18,5}
\]

§ 19. Общие свойства одномерного движения

Если потенциальная энергия частицы зависит только от одной координаты \((x) \), то волновую функцию можно искать в виде произведения функции от \(y, z \) на функцию только от \(x \). Из них первая определяется уравнением Шредингера свободного движения, а вторая — одномерным уравнением Шредингера

\[
\frac{d^2 \psi}{dx^2} + \frac{2\mu}{\hbar^2} [E - U(x)] \psi = 0. \tag{19,1}
\]

К таким же одномерным уравнениям приводится, очевидно, задача о движении в поле с потенциальной энергией \(U(x, y, z) = U_1(x) + U_2(y) + U_3(z) \), разбивающейся на сумму функций, каждая из которых зависит только от одной из координат. В §§ 20—22 мы рассмотрим ряд конкретных примеров такого «одномерного» движения. Здесь же мы предварительно выясним некоторые общие его свойства.

Прежде всего покажем, что в одномерной задаче все энергетические уровни дискретного спектра не выражены. Для доказательства предположим противное, и пусть \(\psi_1 \) и \(\psi_2 \) — две различные собственные
функций, соответствующие одному и тому же значению энергии. Поскольку обе они удовлетворяют одному и тому же уравнению (19,1), то имеем
\[
\frac{\psi''_1}{\psi_1} = \frac{2\mu}{h^2} (U - E) = \frac{\psi''_2}{\psi_2}
\]
или \(\psi''_2 - \psi''_1 = 0\) (штрих означает дифференцирование по \(x\)). Интегрируя это соотношение, находим:
\[
\psi'_1 - \psi'_2 = \text{const.} \quad (19,2)
\]
Поскольку на бесконечности \(\psi_1 = \psi_2 = 0\), то const. должна быть равной нулю, так что
\[
\psi'_1 - \psi'_2 = 0,
\]
или \(\psi'_1/\psi_1 = \psi'_2/\psi_2\). Интегрируя ещё раз, получим \(\psi_1 = \text{const.} \psi_2\), т. е. обе функции по существу совпадают.

Для волновых функций \(\psi_n(x)\) дискретного спектра может быть высказана следующая (так называемая осцилляционная) теорема: функция \(\psi_n(x)\), соответствующая \(n + 1\)-му по величине собственному значению \(E_n\), обращается в нуль (при конечных значениях \(x\)) \(n\) раз.

Будем считать, что функция \(U(x)\) стремится при \(x \to \pm \infty\) к конечным пределам (но отнюдь не должна быть монотонной функцией). Предел \(U(\pm \infty)\) примем за начало отсчёта энергии (т. е. положим \(U(\pm \infty) = 0\)), а \(U(\infty)\) обозначим посредством \(U_0\) и будем считать, что \(U_0 > 0\). Дискретный спектр лежит в области таких значений энергии, при которых частица не может уйти на бесконечность; для этого энергия должна быть меньше обоих пределов \(U(\pm \infty)\), т. е. должна быть отрицательной:
\[
E < 0, \quad (19,3)
\]
при этом, конечно, во всяком случае должно быть \(E > U_{\min}\), т. е. функция \(U(x)\) должна иметь по крайней мере один минимум с \(U_{\min} < 0\).

Рассмотрим теперь область положительных значений энергии, меньших чем \(U_0\):
\[
0 < E < U_0. \quad (19,4)
\]
В этой области спектр будет непрерывным, а движение частицы в соответствующих стационарных состояниях — инфинитным, причём частица уходит в сторону \(x = + \infty\). Легко видеть, что все собственные значения энергии в этой части спектра тоже не выражены. Для этого достаточно заметить, что для приведённого выше (для

1) См., например, М. А. Лаврентьев, Л. А. Люстерник. Курс вариационного исчисления, 1938 г.
2) Если частица может находиться лишь на ограниченном отрезке оси \(x\), то надо говорить о нулях функции \(\psi_n(x)\) внутри этого отрезка.
дискретного спектра) доказательства достаточно, чтобы функции \(\psi_1, \psi_2 \) обращались в нуль хотя бы на одной из бесконечностей (в данном случае они обращаются в нуль при \(x \to -\infty \)).

При достаточно больших положительных значениях \(x \) в уравнении Шредингера (19,1) можно пренебречь \(U(x) \):

\[
\psi'' + \frac{2\mu}{\hbar^2} E\psi = 0.
\]

Это уравнение имеет действительные решения вида «стоящей плоской волны»:

\[
\psi = a \cos (kx + \delta),
\]

где \(a, \delta \) — постоянные, а «волновой вектор» \(k = \frac{p}{\hbar} = \frac{1}{\hbar} \sqrt{2\mu E} \). Этой формулой определяется асимптотический вид волновых функций невырожденных уровней энергии в участке (19,4) непрерывного спектра. При больших отрицательных значениях уравнение Шредингера есть

\[
\psi'' - \frac{2\mu}{\hbar^2} (U_0 - E) \psi = 0.
\]

Решение, не обращающееся при \(x \to -\infty \) в бесконечность, есть

\[
\psi = b e^{\alpha x}, \quad \alpha = \frac{1}{\hbar} \sqrt{2\mu (U_0 - E)}.
\]

Это есть асимптотический вид волновой функции при \(x \to -\infty \). Таким образом волновая функция экспоненциально затухает в глубь области, где \(E < U \).

Наконец, при

\[
E > U_0
\]

спектр будет непрерывным, а движение — инфинитным в обе стороны. В этой части спектра все уровни двукратно вырождены. Это следует из того, что соответствующие волновые функции определяются уравнением второго порядка (19,1), причем оба независимых решения этого уравнения удовлетворяют двум условиям на бесконечности (между тем как, например, в предыдущем случае одно из решений обращалось при \(x \to -\infty \) в бесконечность и потому должно было быть отброшено). Асимптотический вид волновой функции при \(x \to +\infty \) есть

\[
\psi = a_1 e^{ikx} + a_2 e^{-ikx}
\]

и аналогично для \(x \to -\infty \). Член с \(e^{ikx} \) соответствует частице, движущейся вправо, а член с \(e^{-ikx} \) — частице, движущейся влево.

Предположим, что функция \(U(x) \) — чётная [\(U(-x) = U(x) \)]. Тогда при изменении знака координаты уравнение Шредингера (19,1) не меняется. Отсюда следует, что если \(\psi(x) \) есть некоторое решение этого уравнения, то \(\psi(-x) \) тоже есть решение, совпадающее с \(\psi(x) \).
с точностью до постоянного множителя: $\psi(-x) = c\psi(x)$. Меняя знак x ещё раз, получим $\psi(x) = e^{i\delta}\psi(x)$, откуда $c = \pm 1$. Таким образом при симметричной (относительно точки $x = 0$) потенциальной энергии волновые функции стационарных состояний могут быть либо чётными [$\psi(-x) = \psi(x)$], либо нечётными [$\psi(-x) = -\psi(x)$].

Для нормировки волновых функций одномерного движения (в непрерывном спектре) существует простой способ, позволяющий определять нормировочный коэффициент непосредственно по асимптотическому выражению волновой функции для больших значений $|x|$.

Предварительно замечаем, что свободное одномерное движение частицы с импульсом p описывается волновой функцией (плоской волной):

$$\psi_p = \frac{1}{\sqrt{2\pi\hbar}} e^{i k x},$$

где $k = p/\hbar$ есть волновой вектор, а ψ_p нормированна на δ-функцию от импульса (ср. (13,8)). Волновая функция ψ_E, нормированная на δ-функцию от энергии, получится, согласно (5,11), умножением ψ_p на $\sqrt{\frac{dp}{dE}} = \frac{1}{\sqrt{v}} (v$ — скорость):

$$\psi_E = \frac{1}{\sqrt{2\pi\hbar v}} e^{i k x}.$$

(19,9)

Заметим, что плотность потока вероятности в этой волне равна

$$v|\psi_E|^2 = \frac{1}{2\pi\hbar}.$$

(19,10)

Рассмотрим волновую функцию стационарного состояния в участке (19,4) непрерывного спектра. Нормировочный интеграл расходится при $x \to \infty$ (при $x \to -\infty$ функция экспоненциально затухает, так что интеграл быстро сходится). Поэтому при определении нормировочной постоянной можно заменить ψ её асимптотическим значением (для больших $x > 0$) и производить интегрирование, выбрав в качестве нижнего предела любое конечное значение x, скажем ноль; это сводится к пренебрежению конечной величиной по сравнению с бесконечно большой. Покажем, что нормированная на δ-функцию от энергии волновая функция должна иметь асимптотический вид (19,5) с $a = \sqrt{\frac{2}{\pi\hbar v}}$, т. е.

$$\psi_E \approx \sqrt{\frac{2}{\pi\hbar v}} \cos(kx + \delta) = \frac{1}{\sqrt{2\pi\hbar v}} (e^{i(kx + \delta)} + e^{-i(kx + \delta)}).$$

(19,11)

1) В этих рассуждениях предполагается, что стационарное состояние не вырождено. В противном случае, при изменении знака x две волновые функции, относящиеся к данному уровню энергии, могут преобразовываться друг через друга. Однако в этом случае волновые функции стационарных состояний хотя и не обязательно чётны или нечётны, но всегда могут быть сделаны таковыми (путём выбора соответствующих линейных комбинаций исходных функций).
Поскольку мы не имеем в виду проверять взаимную ортогональность функций, соответствующих различным \(E \), то при подстановке функций (19,11) в нормировочный интеграл \(\int \psi_E^* \psi_{E'} \, dx \) считаем энергию \(E \) и \(E' \) сколь угодно близкими; поэтому можно положить \(\sigma = \sigma' \) и \(\delta = \delta' \) (\(\delta \) является, вообще говоря, функцией энергии). Далее, в подинтегральном выражении оставляем лишь те члены, которые при \(E = E' \) расходятся; другими словами, опускаем члены, содержащие множители \(e^{\pm i (k+k') x} \). Таким образом получаем

\[
\int \psi_E^* \psi_{E'} \, dx = \frac{1}{2\pi \hbar} \left(\int_0^\infty e^{i (k-k') x} \, dx + \int_0^\infty e^{-i (k-k') x} \, dx \right),
\]

или иначе:

\[
\int \psi_E^* \psi_{E'} \, dx = \frac{1}{2\pi \hbar} \int_{-\infty}^{+\infty} e^{i (k-k') x} \, dx.
\]

Но получившийся интеграл совпадает с нормировочным интегралом для волновой функции свободного движения (19,9), нормированной на \(\delta \)-функцию от энергии, чем и доказывается правильность выбранной нормировки.

Имея в виду равенство (19,10), мы можем сформулировать полученный результат в виде следующего правила. Представив асимптотическое выражение волновой функции в виде суммы двух бегущих в противоположные стороны плоских волн, надо выбрать нормировочный коэффициент таким образом, чтобы плотность потока вероятности в волне, бегущей по направлению к началу координат (или в направлении от начала координат), была равна \(1/2\pi \hbar \).

Аналогичным образом можно получить такое же правило для нормировки волновых функций движения, инфINITного в обе стороны. Волновая функция будет нормирована на \(\delta \)-функцию от энергии, если \(1/2\pi \hbar \) сумма потоков вероятности в волнах, бегущих по направлению к началу координат со стороны \(x = +\infty \) и со стороны \(x = -\infty \).

§ 20. «Потенциальный ящик»

В качестве простого примера одномерного движения рассмотрим движение в прямоугольной «потенциальной яме», т. е. в поле с кривой \(U(x) \), изображённой на рис. 1: \(U(x) = 0 \) при \(0 < x < a \), \(U(x) = U_0 \) при \(x < 0, \ x > a \). Заaranее очевидно, что при \(E < U_0 \) спектр будет дискретным, а при \(E > U_0 \) имеется непрерывный спектр двухкратно выраженных уровней.

В области \(0 < x < a \) имеем уравнение Шредингера

\[
\psi'' + \frac{2\mu}{\hbar^2} E \psi = 0
\]
(20,1)
(штрих означает дифференцирование по x), а в области вне ямы:

$$\psi'' + \frac{2\mu}{\hbar^2} (E - U_0) \psi = 0.$$ (20.2)

При $x = 0$, a решения этих уравнений должны переходить друг в друга непрерывно и с непрерывной производной, а при $x = \pm \infty$ решение уравнения (20.2) должно оставаться конечным (для дискретного спектра, $E < U_0$ — обращаться в нуль).

При $E < U_0$ обращающееся на бесконечности в нуль решение уравнения (20.2) есть

$$\psi = \text{const} \cdot e^{\mp x}, \quad x = \sqrt{\frac{2\mu}{\hbar^2} (U_0 - E)} \quad \text{(20.3)}$$

(знаки $-$ и $+$ в показателе относятся, соответственно, к областям $x > a$ и $x < 0$). Вероятность $|\psi|^2$ нахождения частицы экспоненциально затухает в глубь области, в которой $E < U(x)$. Вместо непрерывности ψ и ψ' на границе потенциальной ямы удобно потребовать непрерывности ψ и логарифмической производной $\frac{\psi'}{\psi}$. Учитывая (20.3), получаем граничное условие в виде:

$$\frac{\psi'}{\psi} = \mp x. \quad \text{(20.4)}$$

Рис. 1.

Мы не станем останавливаться здесь на определении уровней энергии в яме произвольной глубины U_0 (см. задачу 2) и разберём полностью только предельный случай бесконечно высоких стенок ($U_0 \to \infty$).

При $U_0 = \infty$ движение происходит лишь на ограниченном отрезке, и, как было указано в § 16, граничное условие в этих точках должно гласить:

$$\psi = 0. \quad \text{(20.5)}$$

Легко видеть, что это условие получается и из общего условия (20.4). Действительно, при $U_0 \to \infty$ имеем также и $x \to \infty$ и потому $\frac{\psi'}{\psi} \to \infty$; поскольку ψ' не может обращаться в бесконечность, то отсюда следует $\psi = 0$. Ищем решение уравнения (20.1) внутри ямы в виде:

$$\psi = c \sin (kx + \delta), \quad k = \sqrt{\frac{2\mu E}{\hbar^2}}. \quad \text{(20.6)}$$

Условие $\psi = 0$ при $x = 0$ даёт $\delta = 0$, после чего то же условие при $x = a$ даёт $\sin ka = 0$, откуда $ka = n\pi$ (n — целые положительные числа).
ные числа, начиная с единицы\(^1\), или

\[E_n = \frac{\pi^2 \hbar^2}{2 \mu a^2} n^2, \quad n = 1, 2, 3, \ldots \]

(20,7)

Этим определяются уровни энергии частицы в потенциальной яме. Нормированные волновые функции стационарных состояний суть

\[\psi_n = \sqrt{\frac{2}{a}} \sin \frac{\pi n}{a} x. \]

(20,8)

На основании этих результатов можно непосредственно написать уровни энергии для частицы в прямоугольном «потенциальном ящике», т. е. для трёхмерного движения в поле с потенциальной энергией \(U = 0 \) при \(0 < x < a, \ 0 < y < b, \ 0 < z < c \) и \(U = \infty \) вне этой области. Именно, эти уровни представляются суммами

\[E_{n_1n_2n_3} = \frac{\pi^2 \hbar^2}{2 \mu} \left(\frac{n_1^2}{a^2} + \frac{n_2^2}{b^2} + \frac{n_3^2}{c^2} \right) \quad (n_1, n_2, n_3 = 1, 2, 3, \ldots), \]

(20,9)

а соответствующие волновые функции — произведениями

\[\psi_{n_1n_2n_3} = \sqrt{\frac{8}{abc}} \sin \frac{\pi n_1}{a} x \cdot \sin \frac{\pi n_2}{b} y \cdot \sin \frac{\pi n_3}{c} z. \]

(20,10)

ЗАДАЧИ

1. Определить распределение вероятности различных значений импульса для нормального состояния частицы, находящейся в бесконечно глубокой прямоугольной потенциальной яме.

Решение. Коэффициенты \(a(p) \) разложения функции \(\psi_1 \) (20,8) по собственным функциям \(\psi_p = \frac{1}{\sqrt{2\pi\hbar}} e^{i p x} \) импульса равны:

\[a(p) = \frac{1}{\sqrt{\pi \alpha h}} \int_0^a \sin \left(\frac{\pi x}{a} \right) e^{i \frac{p x}{\hbar}} dx. \]

Вычисляя интеграл и возводя его модуль в квадрат, получим искомое распределение вероятностей

\[|a(p)|^2 = \frac{4\pi \hbar^3 a}{(p^2 a^2 + \pi^2 \hbar^2)^2} \cos^2 \frac{pa}{2\hbar} \cdot \]

2. Определить уровни энергии для потенциальной ямы, изображённой на рис. 2.

Решение. Дискретным является спектр энергий \(E < U_1 \), который мы и рассматриваем. В области \(x < 0 \) волновая функция

\[\psi = c_1 e^{i k x}, \quad k_1 = \sqrt{\frac{2\mu}{\hbar^2}} (U_1 - E), \]

1) При \(n = 0 \) получилось бы тождественно \(\psi = 0. \)
а в области $x > a$

$$\psi = c_2 e^{-x a} \sqrt{\frac{2 \mu}{h^2} (U_2 - E)}.$$

Внутри ямы ($0 < x < a$) ищем ψ в виде

$$\psi = c \sin (k x + \delta), \quad k = \sqrt{\frac{2 \mu E}{h^2}}.$$

Условие непрерывности $\frac{\psi'}{\psi}$ на границах ямы даёт уравнения

$$k \cot \delta = \gamma_1 = \sqrt{\frac{2 \mu}{h^2} U_1 - k^2}; \quad k \cot (a k + \delta) = - \gamma_2 = - \sqrt{\frac{2 \mu}{h^2} U_2 - k^2},$$

или

$$\sin \delta = \frac{kh}{\sqrt{2 \mu U_1}}, \quad \sin (ka + \delta) = - \frac{kh}{\sqrt{2 \mu U_2}}.$$

Исключая δ, получим трансцендентное уравнение

$$ka = n \pi - \arcsin \frac{kh}{\sqrt{2 \mu U_1}} - \arcsin \frac{kh}{\sqrt{2 \mu U_2}}$$

(где $n = 1, 2, 3, \ldots$, а значения \arcsin берутся между 0 и $\frac{\pi}{2}$), корни которого определяют уровни энергии $E = \frac{k^2 h^2}{2 \mu}$. Для каждого n имеется, вообще говоря, один корень; значения n нумеруют уровни в порядке их возрастания.

Поскольку аргумент \arcsin не может превышать 1, то ясно, что значение k могут лежать только в интервале между 0 и $\sqrt{\frac{2 \mu U_1}{h^2}}$. Левая сторона уравнения (1) есть монотонно возрастающая, а правая — монотонно убывающая функция k. Поэтому для существования корня уравнения (1) необходимо, чтобы при $k = \sqrt{\frac{2 \mu U_1}{h^2}}$ правая сторона была меньше левой. В частности, неравенство

$$a \sqrt{\frac{2 \mu U_1}{h}} \geq \frac{\pi}{2} - \arcsin \sqrt{\frac{U_1}{U_2}},$$

получающееся при $n = 1$, есть условие того, чтобы в яме существовал по крайней мере один уровень энергии. Мы видим, что при данных $U_1 \neq U_2$ всегда существуют настолько малые значения ширины a ямы, при которых не будет существовать ни одного дискретного уровня энергии. При $U_1 = U_2$ условие (2), очевидно, всегда выполняется.

При $U_1 = U_2 \equiv U_0$ (симметричная яма) уравнение (1) сводится к

$$\arcsin \frac{hk}{\sqrt{2 \mu U_0}} = \frac{n \pi - ka}{2}.$$

(3)
Вводя переменную $\xi = \frac{ka}{2}$, получим при нечётном n уравнение

$$\cos \xi = \pm \gamma, \quad \gamma = \frac{h}{a} \sqrt{\frac{2}{\mu U_0}},$$

причём должны браться те корни этого уравнения, для которых $\operatorname{tg} \xi > 0$. При чётном n получим уравнение

$$\sin \xi = \pm \gamma,$$

причём надо брать корни, для которых $\operatorname{tg} \xi < 0$. По корням этих двух уравнений определяются уровни энергии $E = 2 \xi^2 h^2 / \mu a^2$.

§ 21. Линейный осциллятор

Рассмотрим частицу, совершающую одномерные малые колебания (так называемый линейный осциллятор). Потенциальная энергия такой частицы равна, как известно, $\mu \omega^2 x^2 / 2$, где ω есть в классической механике собственная частота (циклическая) колебаний. Соответственно этому, гамильтониан осциллятора

$$\hat{H} = \frac{p^2}{2\mu} + \frac{\mu \omega^2 x^2}{2}.$$ \hspace{1cm} (21.1)

Поскольку потенциальная энергия обращается в бесконечность при $x = \pm \infty$, а её минимальное значение (при $x = 0$) есть нуль, то на основании общих правил заранее ясно, что энергетический спектр осциллятора будет дискретным с положительными значениями энергии.

Определим уровни энергии осциллятора с помощью матричного метода\(^1\). Будем исходить из «уравнений движения» в форме (17,3); в данном случае они дают:

$$\ddot{x} + \omega^2 x = 0.$$ \hspace{1cm} (21,2)

В матричном виде это уравнение гласит:

$$(\ddot{x})_{mn} + \omega^2 x_{mn} = 0.$$ \hspace{1cm} (21.3)

Для матричных элементов ускорения имеем, согласно (11,8),

$$(\ddot{x})_{mn} = i \omega_m (\dot{x})_{mn} = - \omega^2_{mn} x_{mn}.$$ \hspace{1cm} (21.4)

Поэтому получаем;

$$(\omega^2_{mn} - \omega^2) x_{mn} = 0.$$ \hspace{1cm} (21.5)

Это равенство удовлетворяется при $x_{mn} = 0$ или при $\omega_m = \pm \omega$. Другими словами, исчезают все матричные элементы x_{mn}, за исключением только тех, для которых $\omega_m = \omega$ или $\omega_m = - \omega$.

\(^1\) Это было сделано Гайзенбергом (1925 г.) ещё до открытия Шредингером волнового уравнения.
Пронумеруем все стационарные состояния таким образом, чтобы частота $\omega_m = \omega$ соответствовала переходу $m \rightarrow m - 1$ (т. е. $n = m - 1$), а частота $\omega_m = -\omega$ — переходу $m \rightarrow m + 1$. Соответственно этому, будем иметь:

$$x_{mn} = 0 \text{ при } n \neq m \pm 1, \quad x_{mn} \neq 0 \text{ при } n = m \pm 1.$$

Будем предполагать, что волновые функции ψ_n выбраны действительными. Поскольку x есть величина действительная, то и все матричные элементы x_{mn} будут действительными. Условие эрмитовости (11,10) приводят теперь к тому, что матрица x_{mn} симметрична:

$$x_{mn} = x_{nm}.$$

Для вычисления отличных от нуля матричных элементов координаты воспользуемся правилом коммутации

$$\hat{x} \hat{x} - \hat{x} \hat{x} = -i \frac{\hbar}{\mu},$$

написав его в матричном виде:

$$(\hat{x} \hat{x})_{mn} - (\hat{x} \hat{x})_{mn} = -i \frac{\hbar}{\mu} \delta_{mn}.$$

С помощью правила умножения матриц (11,12) имеем отсюда для $m = n$

$$i \sum_i (\omega_{ml} x_{im} x_{im} - x_{ml} \omega_{im} x_{im}) = -i \frac{\hbar}{\mu}$$

(мы подставили $x_{ml} = i \omega_{ml} x_{ml}$), или, замечая, что $\omega_{ml} = -\omega_{im}$ $x_{ml} = x_{im}$:

$$\sum_i \omega_{ml} x_{ml}^2 = -\frac{\hbar}{2\mu}.$$

В этой сумме отличны от нуля только члены с $l = m + 1$, $\omega_{ml} = -\omega$ и $l = m - 1$, $\omega_{ml} = \omega$, так что получаем:

$$(x_{m+1, m})^2 - (x_{m, m-1})^2 = \frac{\hbar}{2\mu \omega}. \quad (21,3)$$

Из этого равенства заключаем, что величины $(x_{m+1, m})^2$ образуют арифметическую прогрессию, неограниченную сверху, но непременно ограниченную снизу, так как в ней могут содержаться только положительные члены. Поскольку мы пока установили только относительное расположение номеров состояний m, но не абсолютные их значения, то мы можем произвольно выбрать значение m, соответствующее первому — нормальному — состоянию осциллятора. Положим его равным нулю. Соответственно этому $x_{0, -1}$ надо считать тождес-
стственно равным нулю, и последовательное применение уравнений (21,3) с \(m = 0, 1, \ldots \) приводит к результату

\[(x_{n-1} n_{-1})^2 = \frac{n \hbar}{2 \mu \omega}. \]

Таким образом окончательно получаем следующее выражение для отличных от нуля матричных элементов координаты:\(^1\)

\[x_{n-1} n_{-1} = \sqrt{\frac{n \hbar}{2 \mu \omega}}. \tag{21,4} \]

Матрица оператора \(\hat{H} \) — диагональна и матричные элементы \(H_{nn} \) представляют собой искомые собственные значения энергии \(E_n \) осциллятора. Для их вычисления пишем:

\[
H_{nn} = E_n = \frac{\mu}{2} \left[(x^2)_{nn} + \omega^2 (x^2)_n \right] = \frac{\mu}{2} \left[\sum_i \omega_{nl} x_n x_{nl} x_{ln} + \omega^2 \sum_i x_{nl} x_{ln} \right] = \frac{\mu}{2} \sum_i (\omega^2 + \omega_{nl}) x_{ln}^2.
\]

В сумме по \(l \) отличны от нуля только члены с \(l = n \pm 1 \); подставляя (21,4), получаем:

\[E_n = \left(n + \frac{1}{2} \right) \hbar \omega, \quad n = 0, 1, 2, \ldots \tag{21,5} \]

Таким образом уровни энергии осциллятора расположены друг от друга через равные интервалы \(\hbar \omega \). Энергия нормального состояния \((n = 0) \) равна \(\hbar \omega / 2 \); подчеркнём, что сна сказывается отличной от нуля.

Результат (21,5) можно получить и путём решения уравнения Шредингера. Это уравнение в случае осциллятора имеет вид

\[\frac{d^2 \psi}{dx^2} + \frac{2 \mu}{\hbar^2} \left(E - \frac{\mu \omega^2 x^2}{2} \right) \psi = 0. \tag{21,6} \]

Здесь удобно ввести вместо координаты \(x \) безразмерную переменную \(\xi \) согласно соотношению

\[\xi = \sqrt{\frac{\mu \omega}{\hbar}} x. \tag{21,7} \]

Тогда получим уравнение

\[\psi' + \left(\frac{2E}{\hbar \omega} - \xi^2 \right) \psi = 0. \tag{21,8} \]

(Здесь штрих означает дифференцирование по \(\xi \).)

\(^1\) Мы выбираем неопределённые фазы \(\alpha_n \) (см. сноску на стр. 46) таким образом, чтобы получить во всех матричных элементах (21,4) знак + перед корнем. Такой выбор всегда возможен для матрицы, в которой отличны от нуля только элементы для переходов между состояниями с соседними номерами.
При больших ξ можно опустить $2E/h\omega$ по сравнению с ξ^2; уравнение $\psi'' = $ $2\xi^2\psi$ имеет асимптотические интегралы $\psi = e^{\pm \frac{\xi^2}{2}}$ (дифференцирование этой функции действительно даёт, при пренебрежении членами более низкого порядка по ξ, $\psi'' = \xi^2\psi$). Поскольку волновая функция ψ должна оставаться при $\xi = \pm \infty$ конечной, то в показателе должен быть выбран знак минус. В связи с этим естественно сделать в уравнении (21,8) подстановку

$$\psi = e^{-\frac{\xi^2}{2}}\chi(\xi).$$

Для функции $\chi(\xi)$ получаем уравнение (вводим обозначение $2E/h\omega = 2n$; поскольку нам заранее известно, что $E > 0$, то $n > 1/2$)

$$\chi'' - 2\xi\chi' + 2n\chi = 0,$$

причём функция χ должна быть конечной при всех конечных ξ, а при $\xi = \pm \infty$ может обращаться в бесконечность не быстрее конечной степени ξ (так, чтобы функция ψ обращалась в нуль).

Такие решения уравнения (21,10) существуют лишь при целых положительных (включая значение ноль) значениях числа n (см. § a математических дополнений); это даёт для энергии известные уже нам собственные значения (21,5). Соответствующие различным целым значениям n решения уравнения (21,10) суть $\chi = \text{const. } H_n(\xi)$, где $H_n(\xi)$ — так называемые полиномы Эрмита, представляющие собой полиномы n-й степени по ξ, определяемые формулой

$$H_n(\xi) = (-1)^n e^{\xi^2} \frac{d^n e^{-\xi^2}}{d\xi^n}.$$

Волновая функция стационарных состояний осциллятора имеет, следовательно, вид $\psi_n = c_n e^{-\frac{\xi^2}{2}} H_n(\xi)$. Определяя постоянные c_n так, чтобы функции ψ_n удовлетворяли условию нормировки

$$\int_{-\infty}^{+\infty} \psi_n^2(x) \, dx = 1,$$

получим (см. (a, 7))

$$\psi_n(x) = \left(\frac{\mu \omega}{\pi \hbar}\right)^{1/4} \frac{1}{\sqrt{2^{n} n!}} e^{-\frac{\mu \omega}{2\hbar} x^2} H_n\left(x \sqrt{\frac{\mu \omega}{\hbar}}\right).$$

Так, волновая функция нормального состояния есть

$$\psi_0(x) = \left(\frac{\mu \omega}{\hbar \pi}\right)^{1/4} e^{-\frac{\mu \omega}{2\hbar} x^2}.$$
Вычисляя интегралы \[\int_{-\infty}^{+\infty} \psi_n \psi_m \xi \, d\xi, \] можно определить матричные элементы координаты; такое вычисление приводит, разумеется, k тем же значениям (21,4).

В заключение покажем, каким образом можно вычислить волновые функции \(\psi_n \), исходя из матричного метода. Замечаем, что в матрицах операторов \(\hat{x} \pm i \omega \hat{\chi} \) отличны от нуля только элементы

\[(\hat{x} - i \omega \hat{\chi})_{n-1, n} = i \omega n - 1, n \quad x_{n-1, n} - i \omega x_{n-1, n} = -2i \omega x_{n-1, n} \]

или

\[(\hat{x} - i \omega \hat{\chi})_{n-1, n} = - (x + i \omega \hat{\chi})_{n-1} = -i \sqrt{\frac{2 \omega \hbar n}{\mu}}. \quad (21,14) \]

Исходя из общей формулы (11,11) \[\hat{j} \psi_n = \sum_m j_{m} \psi_m \] и учитывая, что \(\psi_{-1} = 0 \), заключаем, что

\[(\hat{x} - i \omega \hat{\chi}) \psi_0 = 0. \]

После подстановки выражений \(\hat{x} = -i \frac{\hbar}{\mu} \frac{\partial}{\partial x}, \hat{\chi} = \chi \) для операторов, получаем отсюда уравнение

\[\frac{\partial \psi_n}{\partial x} = - \frac{\mu \omega}{\hbar} x \psi_n, \]

нормированное решение которого есть (21,13). Далее, поскольку

\[(\hat{x} + i \omega \hat{\chi}) \psi_{n-1} = (\hat{x} + i \omega \hat{\chi})_{n, n-1} \psi_n = i \sqrt{\frac{2 \omega \hbar n}{\mu}} \psi_n, \]

tо получаем рекуррентную формулу

\[\psi_n = \sqrt{\frac{\mu}{2 \omega \hbar n}} \left(\frac{\hbar}{\mu} \frac{\partial}{\partial x} + \omega x \right) \psi_{n-1} = \frac{1}{\sqrt{2n}} \left(- \frac{\partial}{\partial \xi} + \xi \right) \psi_{n-1} = \]

\[= - \frac{1}{\sqrt{2n}} e^{-\frac{\xi^2}{2}} \frac{d}{d\xi} \left(e^{\frac{\xi^2}{2}} \psi_{n-1} \right), \]

н-кратное применение которой к функции (21,13) непосредственно приводит к выражению (21,12) для нормированных функций \(\psi_n \).

Задачи

1. Определить распределение вероятностей различных значений импульса для осциллятора.

Решение. Вместо того чтобы разлагать волновую функцию стационарного состояния по собственным функциям импульса, в случае осциллятора прще исходить непосредственно из уравнения Шредингера в «p-представления». Подставляя в (21,1) оператор координаты (13,12) \(\hat{\chi} = \hbar \frac{\partial}{\partial \mu}, \)

\[\psi_{n+1} = \frac{1}{\sqrt{2n+1}} \left(- \hbar \frac{\partial}{\partial \xi} + \xi \right) \psi_{n} = \]

\[\psi_{n} = \sqrt{\frac{\mu}{2 \omega \hbar n}} \left(\frac{\hbar}{\mu} \frac{\partial}{\partial x} + \omega x \right) \psi_{n-1} = \frac{1}{\sqrt{2n}} \left(- \frac{\partial}{\partial \xi} + \xi \right) \psi_{n-1} = \]

\[= - \frac{1}{\sqrt{2n}} e^{-\frac{\xi^2}{2}} \frac{d}{d\xi} \left(e^{\frac{\xi^2}{2}} \psi_{n-1} \right), \]

н-кратное применение которой к функции (21,13) непосредственно приводит к выражению (21,12) для нормированных функций \(\psi_n \).
получим гамильтониан в «p-представлении»:

$$\hat{H} = \frac{p^2}{2\mu} - \frac{\mu \omega^2 \hbar^2}{2} \frac{\partial^2}{\partial p^2}.$$

Соответствующее уравнение Шредингера $\hat{H}a(p) = Ea(p)$ для волновой функции $a(p)$ в p-представлении есть

$$\frac{d^2a(p)}{dp^2} + \frac{2}{\mu \omega^2 \hbar^2} \left(E - \frac{p^2}{2\mu} \right) a(p) = 0.$$

Это уравнение — в точности такого же вида, как и (21,6); поэтому его решения могут быть написаны непосредственно по аналогии с (21,12) (заменив в этой формуле $x \sqrt{\frac{\mu \omega}{\hbar}}$ на $p/\sqrt{\mu \omega \hbar}$). Таким образом находим искомое распределение вероятностей в виде

$$|a_n(p)|^2 = \frac{1}{2^n n!} \frac{\sqrt{\sqrt{\mu \omega \hbar}}}{\sqrt{\pi \mu \omega \hbar}} e^{-\frac{p^2}{\mu \omega \hbar}} H_n^2 \left(\frac{p}{\sqrt{\mu \omega \hbar}} \right).$$

2. Определить нижний предел для возможных значений энергии осциллятора с помощью соотношения неопределённости (14,8a).

Решение. Имеем для среднего значения энергии осциллятора

$$\overline{E} = \frac{\mu \omega^2}{2} x^2 + \frac{p^2}{2\mu} \geq \frac{\mu \omega^2}{2} (\Delta x)^2 + \frac{1}{2\mu} (\Delta p)^2,$$

или, используя соотношение (14,8a):

$$\overline{E} \geq \frac{(\Delta p)^2}{2\mu} + \frac{\mu \omega^2 \hbar^2}{8 (\Delta p)^2}.$$

Рис. 3. Определяя минимальное значение этого выражения (рассматриваемого как функция от $(\Delta p)^2$), находим нижний предел для средних, а потому и для всех вообще возможных значений энергии:

$$E \geq \frac{\hbar \omega}{2}.$$

3. Определить уровни энергии для частицы, движущейся в поле с потенциальной энергией

$$U(x) = A(e^{-2ax} - 2e^{-ax})$$

(рис. 3; Ф. Морэ).

Решение. Спектр положительных собственных значений энергии — непрерывен (причём уровни не выражены), а спектр отрицательных значений — дискретен.

Уравнение Шредингера гласит:

$$\frac{d^2\psi}{dx^2} + \frac{2\mu}{\hbar^2} (E - Ae^{-2ax} - 2Ae^{-ax}) \psi = 0.$$

Вводим новую переменную

$$\xi = \frac{i \sqrt{2\mu A}}{\alpha h} e^{-ax}$$
(пробегающую значения от 0 до $+\infty$) и обозначения (рассматриваем дискретный спектр, так что $E < 0$)

$$s = \frac{\sqrt{2\mu E}}{a\hbar}, \quad n = \frac{\sqrt{2\mu A}}{a\hbar} - (s + \frac{1}{2}).$$ (1)

Тогда уравнение Шредингера приобретает вид:

$$\psi'' + \frac{1}{\xi} \psi' + \left(-\frac{1}{4} + \frac{n + s + 1/2}{\xi} - \frac{s^2}{\xi^2} \right) \psi = 0.$$

При $\xi \to \infty$ функция ψ ведет себя асимптотически как $e^{\pm \xi/2}$, а при $\xi \to 0$ функция ψ пропорциональна $\xi^{\pm s}$. Из соображений конечности должно быть выбрано решение, ведущее себя как $e^{-\xi/2}$ при $\xi \to \infty$ и как ξ^s при $\xi \to 0$.

Делаем подстановку

$$\psi = e^{-\xi/2} \xi^s w(\xi)$$

и получаем для w уравнение

$$\xi w'' + (2s + 1 - \xi) w' + nw = 0,$$ (2)

которое должно быть решено при условиях: w конечно при $\xi = 0$, а при $\xi \to \infty w$ обращается в бесконечность. Уравнение (2) есть уравнение выраженной гипергеометрической функции (см. § d математических дополнений)

$$w = F(- n, 2s + 1, \xi).$$

Решение, удовлетворяющее требуемому условию, получается при целом неотрицательном n (причем функция F сводится к полиному). Согласно определениям (1), получаем, следовательно, для уровней энергии значения

$$- E_n = A \left[1 - \frac{a\hbar}{\sqrt{2\mu A}} \left(n + \frac{1}{2} \right) \right]^2,$$

где n пробегает целые положительные значения, начиная от нуля и до наибольшего значения, при котором еще $\frac{\sqrt{2\mu A}}{a\hbar} > n + \frac{1}{2}$ (так что параметр s, в соответствии с его определением, положителен). Таким образом дискретный спектр содержит ограниченный ряд уровней. Если $\frac{\sqrt{2\mu A}}{a\hbar} < \frac{1}{2}$, то дискретный спектр вообще отсутствует.

4. То же при $U = - \frac{U_0}{\cosh^2 ax}$ (рис. 4).

Примечание. Спектр положительных энергий непрерывен, а отрицательных — дискретен; рассматриваем последний. Уравнение Шредингера

$$\frac{d^2 \psi}{dx^2} + \frac{2\mu}{\hbar^2} \left(E + \frac{U_0}{\cosh^2 ax} \right) \psi = 0.$$

Делаем подстановку

$$\psi = \frac{w}{\cosh^2 ax}, \quad s = \frac{1}{2} \left(-1 + \sqrt{1 + \frac{8\mu U_0}{a^2 \hbar^2}} \right),$$ (1)
и получаем:
\[
\frac{d^2w}{dx^2} - 2s\alpha \operatorname{sh} \alpha x \frac{dw}{dx} + \left(e^s s^2 + \frac{2\mu E}{\hbar^2} \right) w = 0
\]
(\(s\) выбрано так, чтобы коэффициент при \(w\) оказался постоянным). Это уравнение может быть приведено к гипергеометрическому введением новой переменной
\[
\xi = \operatorname{sh}^2 \alpha x. \tag{2}
\]

Вводя также постоянную \(\epsilon = \frac{\sqrt{-2\mu E}}{\hbar}\alpha\), получим:
\[
\xi (1 + \xi) w'' + \left[(1 - s) \frac{\xi}{2} + \frac{1}{2} \right] w' + \frac{s^2 - \epsilon^2}{4} w = 0. \tag{3}
\]

Поскольку потенциальная энергия \(U(x)\) — чётная функция координаты, то волновые функции стационарных состояний должны быть либо чётными, либо нечётными функциями (см. § 19). Так как \(\operatorname{sh} \alpha x\) — чётная функция, то чётность \(\psi\) совпадает с чётностью \(w(x)\). Чётный и нечётный (по \(x\)) частные интегралы уравнения (3) суть:
\[
w_1 = F\left(\frac{-s - \epsilon}{2}, \frac{-s - \epsilon}{2}, \frac{1}{2}, -\xi \right),
\]
\[
w_2 = \sqrt{\xi} F\left(\frac{-s - \epsilon + 1}{2}, \frac{-s - \epsilon + 1}{2}, \frac{3}{2}, -\xi \right) \tag{4}
\]
(при изменении знака \(x, \xi\) остаётся неизменным, а \(\sqrt{\xi} = \operatorname{sh} x\) меняет знак). Для того чтобы \(\psi = (1 + \xi)^{-s/2} w_1\) обращалось в нуль при \(\xi \to \infty\), параметр \(\frac{s - \epsilon}{2}\) должен быть целым отрицательным числом (включая нуль); тогда \(F\) есть полином степени \(\frac{s - \epsilon}{2}\) и \(\psi\) при \(\xi \to \infty\) обращается в нуль, как \(\xi^{-s/2}\).

Аналогично, для \(\psi = (1 + \xi)^{-s/2} w_2\) это условие удовлетворяется при целом отрицательном \(\frac{-s + \epsilon + 1}{2}\).

Таким образом уровни энергии определяются из \(s - \epsilon = n\), или
\[
E = -\frac{\hbar^2 \alpha^2}{8\mu} \left[-(1 + 2n) + \sqrt{1 + \frac{8\mu U_0}{\alpha^2 \hbar^2}} \right]^2,
\]
где \(n\) пробегает целые положительные значения, начиная с нуля. Имеется конечное число уровней, определяемое условием \(\epsilon > 0\), т. е.
\[
2n < \sqrt{1 + \frac{8\mu U_0}{\alpha^2 \hbar^2}} - 1.
\]

§ 22. Движение в однородном поле

Рассмотрим движение частицы в однородном внешнем поле. Направление поля выберем в качестве оси \(x\), и пусть \(F\) есть сила, действующая в поле на частицу; в электрическом поле напряжённости \(E\) эта сила равна \(F = eE\), где \(e\) — заряд частицы.
§ 22] ДВИЖЕНИЕ В ОДНОРОДНОМ ПОЛЕ 91

Потенциальная энергия частицы в однородном поле имеет вид $U = -Fx + \text{const.}$; выбирая постоянную так, чтобы было $U = 0$ при $x = 0$, имеем $U = -Fx$. Уравнение Шредингера рассматриваемой задачи имеет вид

$$\frac{d^2 \psi}{dx^2} + \frac{2\mu}{\hbar^2} (E + Fx) \psi = 0. \quad (22,1)$$

Поскольку U стремится к $\pm \infty$ при $x \to -\infty$ и $U \to -\infty$ при $x \to +\infty$, то заранее очевидно, что уровни энергии образуют непрерывный спектр, заполняющий весь интервал значений энергии E от $-\infty$ до $+\infty$. Все эти собственные значения не выражены и соответствуют движению, финитному со стороны $x = -\infty$ и инфинитному в направлении $x \to +\infty$.

Введём вместо координаты безразмерную переменную

$$\xi = \left(x + \frac{E}{F}\right) \sqrt[3]{\frac{2\mu F}{\hbar^2}}. \quad (22,2)$$

Тогда уравнение (22,1) принимает вид

$$\psi'' + \xi \psi = 0. \quad (22,3)$$

Это уравнение вовсе не содержит параметра энергии. Поэтому, получив его решение, удовлетворяющее необходимым условиям конечности, мы тем самым получим собственную функцию для произвольных значений энергии.

Решение уравнения (22,3), конечное при всех x, имеет вид (см. § 6 математических дополнений):

$$\psi(\xi) = A \Phi(-\xi), \quad (22,4)$$

где

$$\Phi(\xi) = \frac{1}{\sqrt[3]{\pi}} \int_{-\infty}^{+\infty} \cos \left(\frac{u^3}{3} + u\xi\right) du.$$

есть так называемая функция Эйри, а A — нормировочный множитель, который мы определим ниже.

При $\xi \to -\infty$ функция $\psi(\xi)$ стремится к нулю экспоненциально. Асимптотическое выражение, определяющее $\psi(\xi)$ при больших по абсолютной величине отрицательных значениях ξ, имеет вид (см. (b, 41)):

$$\psi(\xi) \approx \frac{A}{2|\xi|^{1/4}} e^{-\frac{2}{3} |\xi|^{3/2}}. \quad (22,5)$$

При больших же положительных значениях ξ асимптотическое выражение функции $\psi(\xi)$ будет следующим (см. (b, 51)):

$$\psi(\xi) = \frac{A}{\xi^{1/4}} \sin \left(\frac{2}{3} \xi^{3/4} + \frac{\pi}{4}\right). \quad (22,6)$$
Обратим внимание на то, что аргумент синуса есть, с точностью до постоянной, делённое на \(h \) действие частицы:

\[
\frac{1}{\hbar} S = \frac{1}{\hbar} \int p \, dx = \frac{1}{\hbar} \int \sqrt{2\mu (E + Fx)} \, dx = \frac{2\sqrt{2\mu}}{3F\hbar} (E + Fx)^{\frac{3}{2}} + \text{const.} = \frac{2}{3} \xi^{\frac{3}{2}} + \text{const.}
\]

Другими словами, волновая функция в этой области квазиклассична.

Согласно общему правилу (5,4) нормировки собственных функций непрерывного спектра, приведём функции (22,4) к нормированному на \(\delta \)-функцию от энергии виду:

\[
\int_{-\infty}^{+\infty} \psi(\xi) \psi(\xi') \, d\xi = \delta (E' - E). \tag{22,7}
\]

В § 19 был указан простой способ определения нормировочного коэффициента с помощью асимптотического выражения волновых функций. Следуя этому способу, представляем функцию (22,6) в виде суммы двух бегущих волн:

\[
\psi(\xi) \approx \frac{A}{2\xi^{\frac{3}{2}}} e^{-i\left(\frac{2}{3} \xi^{\frac{3}{2}} - \frac{\pi}{4}\right)} + \frac{A}{2\xi^{\frac{3}{2}}} e^{-i\left(\frac{2}{3} \xi^{\frac{3}{2}} - \frac{\pi}{4}\right)}.
\]

Плотность потока вероятности \(\langle \psi | \psi \rangle^2 \), вычисленная с помощью каждого из этих двух членов, должна быть равна \(1/2\pi\hbar \):

\[
\sqrt{\frac{2}{\mu} (E + Fx)} \left(\frac{A}{2\xi^{\frac{3}{2}}} \right)^2 = A^2 \left(\frac{2\hbar F}{4\mu \xi^{\frac{3}{2}}} \right)^{\frac{1}{2}} = \frac{1}{2\pi\hbar},
\]

откуда находим:

\[
A = \frac{(2\mu)^{\frac{1}{2}}}{\pi^{\frac{1}{2}} F^{\frac{1}{2}} \hbar^{\frac{1}{2}}}. \tag{22,8}
\]

ЗАДАЧА

Определить волновые функции в \(p \)-представлении для частицы в однородном поле.

Решение. Гамильтоновский оператор в \(p \)-представлении есть

\[
\hat{H} = \frac{p^2}{2\mu} - i\hbar F \frac{\partial}{\partial p},
\]

tак что уравнение Шредингера для волновой функции \(a(p) \) имеет вид:

\[
ihF \frac{da}{dp} + \left(\frac{p^2}{2\mu} - E \right) a = 0.
\]
Решая это уравнение, получим искомые функции

\[a_E(p) = \frac{1}{\sqrt{2\pi \hbar F}} e^{-\frac{i}{\hbar F} \left(E_p - \frac{p^2}{2m} \right)} \]

Эти функции нормированы согласно условию

\[\int_{-\infty}^{\infty} a^*_E(p) a_E(p) \, dp = \delta(E' - E). \]

§ 23. Коэффициент прохождения

Рассмотрим движение частиц в поле изображённого на рис. 5 типа: \(U(x) \) монотонно возрастает от одного постоянного предела \(U = 0 \) при \(x \to -\infty \) до другого \(U = U_0 \) при \(x \to +\infty \). Согласно классической механике, частица с энергией \(E < U_0 \), двигающаяся в таком поле слева направо, дойдя до «потенциальной стенки», «отражается» от неё, начиная двигаться в обратном направлении; если же \(E > U_0 \), то частица продолжает двигаться в прежнем направлении с уменьшенной скоростью. В квантовой механике возникает новое явление — даже при \(E > U_0 \) частица может «отразиться» от потенциальной стенки. Вероятность отражения должна вычисляться, принципиально, следующим образом.

При больших положительных значениях \(x \) волновая функция должна описывать частицу, прошедшую «над стенкой» и движущуюся в положительном направлении ося \(x \), т. е. должна иметь асимптотический вид:

при \(x \to \infty \): \(\psi \approx A e^{ik_1x} \), \(k_2 = \frac{1}{\hbar} \sqrt{2\mu (E - U_0)} \) \hspace{1cm} (23.1)

(\(A \) — постоянная). Найдя решение уравнения Шредингера, удовлетворяющее этому предельному условию, вычисляем асимптотическое выражение при \(x \to -\infty \); оно является линейной комбинацией двух решений уравнения свободного движения, т. е. имеет вид

при \(x \to -\infty \): \(\psi \approx e^{ik_2x} + Be^{-ik_1x} \), \(k_1 = \frac{1}{\hbar} \sqrt{2\mu E} \) \hspace{1cm} (23.2)

Первый член соответствует падающей на «стенку» частице (предполагаем \(\psi \) нормированной таким образом, чтобы коэффициент при этом члене был равен единице); второй же член изображает отражённую от «стенки» частицу. Плотность потока вероятности в падающей волне равна \(k_1 \), в отражённой: \(k_1 |B|^2 \), а в прошедшей: \(k_2 |A|^2 \). Определим «коэффициент прохождения» \(D \) частицы как отношение плотности потока вероятности в прошедшей волне к плот-
УРАВНЕНИЕ ШРЕДИНГЕРА

ности потока в падающей:

\[D = \frac{k_2}{k_1} |A|^2. \] \hspace{1cm} (23,3)

Аналогично можно определить «коэффициент отражения» \(R \) как отношение плотности отражённого потока к падающему; очевидно, что \(R = 1 - D \):

\[R = |B|^2 = 1 - \frac{k_2}{k_1} |A|^2 \] \hspace{1cm} (23,4)

(это соотношение между \(A \) и \(B \) выполняется автоматически).

Существенным свойством коэффициента прохождения (или коэффициента отражения) является то, что он одинаков (при заданной энергии \(E > U_0 \)) для частиц, движущихся в положительном или отрицательном направлении оси \(x \). Действительно, рассмотрим частицу, движущуюся справа налево, и пусть \(\psi' \) есть её волновая функция. При \(x \rightarrow -\infty \) она должна удовлетворять предельному условию

\[\psi' \approx A'e^{-ik_2x} \] \hspace{1cm} (23,5)

(«прошедшая» волна), а асимптотический вид при \(x \rightarrow +\infty \) есть

\[\psi' \approx e^{-ik_2x} + B'e^{ik_2x}. \] \hspace{1cm} (23,6)

Поскольку \(\psi \) и \(\psi' \) есть два различных решения одного и того же уравнения, то мы можем воспользоваться соотношением (19,3), подразумевая под \(\psi_1, \psi_2 \) функции \(\psi, \psi' \). Вычисляя выражение

\[\psi \frac{d\psi'}{dx} - \psi' \frac{d\psi}{dx} \]

один раз при \(x \rightarrow -\infty \), а другой — при \(x \rightarrow +\infty \) и приравнивая, получим \(2ik_1A' = 2ik_2A \), откуда

\[\frac{k_2}{k_1} |A|^2 = \frac{k_1}{k_2} |A'|^2, \]

t. е. коэффициенты прохождения \(D = D' \), что и требовалось доказать.

Если частица движется слева направо с энергией \(E < U_0 \), то \(k_2 \) чисто мнимо, и волновая функция экспоненциально затухает при \(x \rightarrow -\infty \). Отражённый поток равен падающему, т. е. происходит «полное отражение» частицы от потенциальной стенки. Подчеркнём, однако, что в этом случае вероятность нахождения частицы в области, где \(E < U_0 \), всё же отлична от нуля, хотя и быстро за- тухает с увеличением \(x \).

ЗАДАЧИ

1. Определить коэффициент отражения частицы от прямоугольной потенциальной стенки (рис. 6); энергия частицы \(E > U_0 \).

Решение. Во всей области \(x > 0 \) волновая функция имеет вид (23,1), а в области \(x < 0 \) — (23,2). Постоянные \(A \) и \(B \) определяются из условия не-
при непрерывности ψ и $\frac{d\psi}{dx}$ при $x = 0$:

$$1 + B = A, \quad k_1(1 - B) = k_2A,$$

откуда

$$A = \frac{2k_1}{k_1 + k_2}, \quad B = \frac{k_1 - k_2}{k_1 + k_2}.$$

Коэффициент отражения (23.4) \(^{1)}:

$$R = \left(\frac{k_1 - k_2}{k_1 + k_2}\right)^2 = \left(\frac{p_1 - p_2}{p_1 + p_2}\right)^2.$$

При $E = U_0$ ($k_2 = 0$) R обращается в единицу, а при $E \to \infty$ стремится к нулю, как $R = \left(\frac{U_0}{4E}\right)^2$.

2. Определить коэффициент проникновения частицы через прямоугольный потенциальный барьер (рис. 7).

Решение. Пусть $E > U_0$ и падающая частица движется слева направо. Тогда имеем для волновой функции в различных областях выражения вида:

при $x < 0$: $\psi = e^{ik_1x} + Ae^{-ik_1x}$,

при $0 < x < a$: $\psi = Be^{ik_2x} + B'e^{-ik_2x}$,

при $x > a$: $\psi = Ce^{ik_1x}$

(со стороны $x > a$ должна быть только прошедшая волна, распространяющаяся в положительном направлении оси x). Постоянные A, B, B', C определяются из условий непрерывности ψ и $\frac{d\psi}{dx}$ в точках $x = 0, a$. Коэффициент проникновения определяется как $D = k_1|C|^2/k_1 = |C|^2$. При вычислении получается следующий результат:

$$D = \frac{4k_1^2k_2^2}{(k_1^2 - k_2^2)^2\sin^2 ak_2 + 4k_1^2k_2^3}.$$

\(^1\) В предельном случае классической механики коэффициент отражения должен обратиться в нуль. Между тем, полученное выражение вовсе не содержит квантовой постоянной. Это кажущееся противоречие разъясняется следующим образом. Классическому пределу соответствует случай, когда де-бройлевская длина волны частицы $\lambda = \hbar/p$ мала по сравнению с характерическими размерами задачи, т. е. по сравнению с расстояниями, на которых заметно меняется поле $U(x)$. В рассматриваемом же схематическом примере это расстояние равно нулю (в точке $x = 0$), так что предельный переход не может быть произведен.
При $E < U_0$ k_3 есть чисто мнимая величина; соответствующие выражения для D получаются заменой k_2 на $i\kappa_2$, где $h\kappa_2 = \sqrt{2\mu(U_0 - E)}$:

$$D = \frac{4k^2\kappa^2}{(k_1^2 + \kappa_2^2) \text{sh}^2 a\kappa_2 + 4k_1^2\kappa_2^2}.$$

3. Определить коэффициент отрыва частиц от потенциальной стены, определяемой формулой $U(x) = U_0(1 + e^{-ax})$ (рис. 5); энергия частиц $E > U_0$.

Решение. Уравнение Шредингера гласит:

$$\frac{d^2\psi}{dx^2} + \frac{2\mu}{\hbar^2} \left(E - \frac{U_0}{1 + e^{-ax}} \right) \psi = 0.$$

Мы должны найти решение, которое при $x \rightarrow +\infty$ имеет вид:

$$\psi = \text{const} \cdot e^{ik_2x}.$$

Вводим новую переменную

$$\xi = -e^{-ax}$$

(пробегающую значения от $-\infty$ до 0) и ищем решение в виде:

$$\psi = \frac{\xi^{-k_2}}{\alpha} w(\xi),$$

где $w(\xi)$ стремится к постоянной при $\xi \rightarrow 0$ (т. е. при $x \rightarrow \infty$). Для $w(\xi)$ получаем уравнение гипергеометрического типа:

$$\xi(1 - \xi) w'' + \left(1 - \frac{2i}{\alpha}k_1 \right) (1 - \xi) w' + \frac{1}{\alpha^2} (k_2^2 - k_1^2) w = 0,$$

имеющее решением гипергеометрическую функцию

$$w = F\left(\frac{i}{\alpha} (k_1 - k_2), -\frac{i}{\alpha} (k_1 + k_2), -\frac{2i}{\alpha} k_2 + 1, \xi \right)$$

(постоянный множитель не пишем). При $\xi \rightarrow 0$ эта функция стремится к 1, т. е. удовлетворяет поставленному условию.

Асимптотический вид функции w при $\xi \rightarrow -\infty$ (т. е. $x \rightarrow -\infty$) есть 1):

$$w \approx \xi^{-\frac{i}{\alpha}k_2} \left[C_1 (1 + \xi) + C_2 (1 + \xi) \right] =$$

$$= (-1)^{-\frac{i}{\alpha}k_2} \left[C_1 e^{ik_1x} + C_2 e^{-ik_2x} \right],$$

где

$$C_1 = \frac{\Gamma\left(-\frac{2i}{\alpha} k_1 \right) \Gamma\left(-\frac{2i}{\alpha} k_2 + 1 \right)}{\Gamma\left(-\frac{i}{\alpha} (k_1 + k_2) \right) \Gamma\left(-\frac{i}{\alpha} (k_1 + k_2) + 1 \right)},$$

$$C_2 = \frac{\Gamma\left(\frac{2i}{\alpha} k_1 \right) \Gamma\left(-\frac{2i}{\alpha} k_2 + 1 \right)}{\Gamma\left(\frac{i}{\alpha} (k_1 - k_2) \right) \Gamma\left(\frac{i}{\alpha} (k_1 - k_2) + 1 \right)}.$$

1) См. формулу (6), в каждом из двух слагаемых которой надо брать лишь первый член разложения, т. е. заменить гипергеометрическую функции от $1/z$ единицей.
Искомый коэффициент отражения есть \(R = \left| \frac{C_2}{C_1} \right|^2 \); вычисление с помощью известных формул

\[
\Gamma (x + 1) = x \Gamma (x), \quad \Gamma (x) \Gamma (1 - x) = \frac{\pi}{\sin \pi x}
\]

приводит к результату

\[
R = \left(\frac{\text{sh} \frac{\pi}{a} (k_1 - k_2)}{\text{sh} \frac{\pi}{a} (k_1 + k_2)} \right)^2.
\]

При \(E = U_0 \) (\(k_2 = 0 \)) \(R \) обращается в единицу, а при \(E \to \infty \) стремится к нулю по формуле

\[
R = \left(\frac{\pi U_0}{ah} \right)^2 \frac{2\mu}{E} e^{-\frac{4\pi}{ah} \sqrt{2uE}}.
\]

При предельном переходе к классической механике \(R \) обращается, как и следовало, в нуль.

4. Определить коэффициент прохождения частицы через потенциальный барьер, определяемый формулой

\[
U(x) = \frac{U_0}{\text{ch}^2 ax}
\]

(рис. 8); энергия частицы \(E < U_0 \).

Решение. Решение уравнения Шредингера совпадает с полученным

Рис. 8.

в задаче 4 § 21 решением (4), в котором только надо изменить знак постоянной \(U_0 \) и считать \(E \) положительной. Таким образом

\[
\psi = \text{ch}^{-2} ax \left\{ C_1 F \left(-s + \frac{i k}{a}, \frac{1}{2}, -\text{sh}^2 ax \right) + C_2 \text{sh} ax F \left(-s + \frac{i k}{a} + 1, \frac{3}{2}, -\text{sh}^2 ax \right) \right\}
\]

где

\[
s = \frac{1}{2} \left(-1 + \sqrt{1 - \frac{8\mu U_0}{a^2 \hbar^2}} \right), \quad k = \frac{1}{\hbar} \sqrt{2\mu E}.
\]

Асимптотический вид этого решения при \(x \to \pm \infty \) легко найти с помощью формулы (е, 6). Отношение постоянных \(C_1 \) и \(C_2 \) подбираем так, чтобы при
\[x \to -\infty \text{ волновая функция содержала только волну } \sim e^{ikx}, \text{ после чего из асимптотического вида при } x \to \infty \text{ находим амплитуду прошедшей волны. В результате вычисления получается окончательно следующее выражение для коэффициента прохождения:} \]

\[D = \frac{\operatorname{sh}^2 \frac{\pi k}{\alpha}}{\operatorname{sh}^2 \frac{\pi k}{\alpha} + \cos^2 \left(\frac{\pi}{2} \sqrt{1 - \frac{8\mu U_0}{\hbar^2 \alpha^2}} \right)} \]

(если \(\frac{8\mu U_0}{\hbar^2 \alpha^2} < 1 \)), или

\[D = \frac{\operatorname{sh}^2 \frac{\pi k}{\alpha}}{\operatorname{sh}^2 \frac{\pi k}{2} + \operatorname{ch}^2 \left(\frac{\pi}{2} \sqrt{\frac{8\mu U_0}{\hbar^2 \alpha^2} - 1} \right)} \]

(если \(\frac{8\mu U_0}{\hbar^2 \alpha^2} > 1 \)).
ГЛАВА IV
МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ

§ 24. Момент количества движения

В § 13 при выводе закона сохранения импульса мы воспользовались однородностью пространства по отношению к замкнутой системе частиц. Наряду с однородностью, пространство обладает также и свойством изотропии — все направления в нём эквивалентны. Поэтому гамилтониан замкнутой системы должен не меняться при повороте всей системы на целый на произвольный угол вокруг произвольной оси. Достаточно, как и в § 13, потребовать выполнения этого условия для произвольного бесконечно малого поворота.

Пусть \(\delta \varphi \) есть вектор бесконечно малого поворота, равный по величине углу \(\delta \varphi \) поворота и направленный по оси, вокруг которой производится поворот. Изменения \(\delta \mathbf{r}_a \) (радиусов-векторов частиц \(\mathbf{r}_a \)) при таком повороте, как известно, равны:

\[
\delta \mathbf{r}_a = [\delta \varphi \cdot \mathbf{r}_a]
\]

(квадратные скобки означают векторное произведение). Произвольная функция \(\psi(\mathbf{r}_1, \mathbf{r}_2, \ldots) \) при этом преобразовании переходит в функцию

\[
\psi(\mathbf{r}_1 + \delta \mathbf{r}_1, \mathbf{r}_2 + \delta \mathbf{r}_2, \ldots) = \psi(\mathbf{r}_1, \mathbf{r}_2, \ldots) + \sum_a \delta \mathbf{r}_a \nabla_a \psi = \psi(\mathbf{r}_1, \mathbf{r}_2, \ldots) + \sum_a [\delta \varphi \cdot \mathbf{r}_a] \nabla_a \psi = (1 + \delta \varphi \sum_a [\mathbf{r}_a \nabla_a]) \psi(\mathbf{r}_1, \mathbf{r}_2, \ldots).
\]

Выражение

\[
1 + \delta \varphi \sum_a [\mathbf{r}_a \nabla_a]
\]

можно рассматривать как «оператор бесконечно малого поворота». Тот факт, что бесконечно малый поворот не меняет гамильтониан системы, выражается (см. § 13) коммутативностью «оператора поворота» с оператором \(\hat{H} \). Поскольку оператор умножения на единицу
коммутирует вообще со всяким оператором, а $\delta \varphi$ есть постоянный вектор, то это условие сводится к соотношению

$$\left(\sum_a [r_a \nabla_a] \hat{H} - \hat{H} \left(\sum_a [r_a \nabla_a] \right) \right) = 0,$$

выражающему собой некоторый закон сохранения.

Величина, сохранение которой для замкнутой системы следует из свойства изотропии пространства, есть момент количества движения системы. Таким образом оператор $\sum_a [r_a \nabla_a]$ должен соответствовать, с точностью до постоянного множителя, полному моменту количества движения системы, а каждый из членов суммы $[r_a \nabla_a]$ — моменту отдельной частицы.

Коэффициент пропорциональности должен быть положен равным $-i\hbar$; это непосредственно подтверждается тем, что тогда выражение для оператора момента частицы $-i\hbar [r \nabla] = [r \hat{p}]$ будет в точности соответствовать обычному классическому выражению $[r \hat{p}]$. В дальнейшем мы будем всегда пользоваться моментом, измеренным в единицах \hbar. Оператор определённого таким образом момента отдельной частицы мы будем обозначать посредством \hat{I}, а момента всей системы — посредством \hat{I}. Таким образом имеем для операторов компонент момента частицы выражения

$$h \hat{I}_x = y \hat{p}_x - z \hat{p}_y, \quad h \hat{I}_y = x \hat{p}_x - x \hat{p}_y, \quad h \hat{I}_z = x \hat{p}_y - y \hat{p}_x.$$ (24,2)

Для системы, находящейся во внешнем поле, момент количества движения в общем случае не сохраняется. Однако сохранение момента всё же может иметь место при определённой симметрии поля. Так, если система находится в центрально-симметрическом поле, то все направления в пространстве, исходящие из центра, эквивалентны, и потому будет сохраняться момент количества движения относительно этого центра. Аналогично, в аксиально-симметрическом поле сохраняется составляющая момента вдоль оси симметрии. Все эти законы сохранения, имеющие место в классической механике, остаются в силе и в квантовой механике.

У системы с несохраняющимся моментом в стационарных состояниях момент не имеет определённых значений. В таких случаях иногда представляет интерес среднее значение момента в данном стационарном состоянии. Легко видеть, что во всём невырожденном стационарном состоянии среднее значение момента равно нулю. Действительно, при изменении знака времени энергия не меняется, и поскольку данному уровню энергии соответствует всего одно стационарное состояние, то, следовательно, при замене t на $-t$ состояние системы должно остаться неизменным. Это значит, что должны остаться неизменными и средние значения всех величин, в частности момента. Но при изменении знака времён момент количества движе-
ния меняет знак, и мы получили бы \(\vec{L} = -\vec{L} \); отсюда следует, что \(\vec{L} = 0 \). Тот же результат можно получить и исходя из математического определения среднего значения \(\vec{L} \) как интеграла от \(\psi^* \hat{L} \psi \). Волновые функции невырожденных состояний действительны (см. конец § 16). Поэтому выражение

\[
\vec{L} = -i\hbar \int \psi (\sum_a \left[r_a \nabla_a \right]) \psi \, dq
\]

чисто мнимо, а поскольку \(\vec{L} \) должно быть, разумеется, действительной величиной, то ясно, что \(\vec{L} = 0 \).

Выясним правила коммутации операторов момента с операторами координат и импульсов. С помощью соотношений (14,2) легко находим:

\[
\begin{align*}
\{ \hat{l}_x, x \} &= 0, & \{ \hat{l}_x, y \} &= iz, & \{ \hat{l}_x, z \} &= -iy, \\
\{ \hat{l}_y, y \} &= 0, & \{ \hat{l}_y, x \} &= ix, & \{ \hat{l}_y, x \} &= -iz, \\
\{ \hat{l}_z, z \} &= 0, & \{ \hat{l}_z, x \} &= iy, & \{ \hat{l}_z, y \} &= -ix.
\end{align*}
\]

(24,3)

Так, например,

\[
\hat{l}_x y - y \hat{l}_x = \frac{1}{\hbar} (y \hat{p}_x - x \hat{p}_y) y - y (y \hat{p}_x - x \hat{p}_y) = \frac{z}{\hbar} \{ \hat{p}_y, y \} = iz.
\]

Все соотношения (24,3) могут быть написаны в тензорном виде следующим образом:

\[
\{ \hat{l}_i, x_k \} = i\varepsilon_{ikl} x_l,
\]

(24,4)

где \(\varepsilon_{ikl} \) есть антисимметрический единичный тензор третьего ранга \(^1\), а по дважды повторяющимся индексам подразумевается суммирование (так называемое суммирование по нym индексам).

Как легко убедиться, совершенно аналогичные соотношения коммутации имеют место для операторов момента и импульса:

\[
\{ \hat{l}_i, \hat{p}_k \} = i\varepsilon_{ikl} \hat{p}_l.
\]

(24,5)

\(^1\) Антисимметрический единичный тензор третьего ранга \(\varepsilon_{ikl} \) (называемый также единичным аксиальным тензором) определяется как тензор, антисимметричный по всем трём индексам, причём \(\varepsilon_{123} = 1 \). Очевидно, что из 27 его компонент отличны от нуля только те 6, у которых индексы \(i, k, l \) образуют какую-либо перестановку чисел 1, 2, 3. При этом компоненты равны \(-1\) при перестановке \(i, k, l \) получается из 1, 2, 3 чётным числом парных перестановок чисел (транспозиций), и равны \(-1\) при нечётном числе транспозиций. Очевидно, что \(\varepsilon_{ikl}^2 = 6 \). Компоненты вектора \(\mathbf{C} = [\mathbf{A} \mathbf{B}] \), являющегося векторным произведением двух векторов \(\mathbf{A} \) и \(\mathbf{B} \), могут быть написаны с помощью тензора \(\varepsilon_{ikl} \) в виде

\[
C_i = \varepsilon_{ikl} A_k B_l,
\]
При помощи этих формул легко найти правила коммутации для операторов \(\hat{I}_x, \hat{I}_y, \hat{I}_z \) друг с другом. Имеем:

\[
\begin{align*}
\hbar(\hat{I}_x \hat{I}_y - \hat{I}_y \hat{I}_x) &= \hat{I}_y (z \hat{p}_x - x \hat{p}_z) - (z \hat{p}_x - x \hat{p}_z) \hat{I}_x = \\
&= (\hat{I}_x z - z \hat{I}_x) \hat{p}_x - (z \hat{a} \hat{p}_x - \hat{p}_x \hat{a}) = - i \hbar p_y + i x \hat{p}_y = i \hbar \hat{I}_y.
\end{align*}
\]

Таким образом

\[\{\hat{I}_y, \hat{I}_x\} = i \hbar \hat{I}_x, \quad \{\hat{I}_z, \hat{I}_x\} = i \hbar \hat{I}_y, \quad \{\hat{I}_x, \hat{I}_y\} = i \hbar \hat{I}_z \tag{24,6}\]

или

\[\{\hat{I}_a, \hat{I}_k\} = i e_{aik} \hbar \hat{I}_l \tag{24,7}\]

В точности такие же соотношения имеют место и для операторов \(\hat{L}_x, \hat{L}_y, \hat{L}_z \) полного момента системы. Действительно, поскольку операторы моментов различных частиц коммутируют друг с другом, то, например:

\[
\Sigma_{a} \hat{I}_{ay} \Sigma_{a} \hat{I}_{az}^{*} - \Sigma_{a} \hat{I}_{az} \Sigma_{a} \hat{I}_{ay} = \Sigma_{a} (\hat{I}_{ay} \hat{I}_{az} - \hat{I}_{az} \hat{I}_{ay}) = i \Sigma \hat{I}_{az}.
\]

Таким образом

\[\{\hat{L}_y \hat{L}_x\} = i \hbar \hat{L}_y, \quad \{\hat{L}_z \hat{L}_x\} = i \hbar \hat{L}_y, \quad \{\hat{L}_x, \hat{L}_y\} = i \hbar \hat{L}_z. \tag{24,8}\]

Соотношения (24,8) показывают, что три компоненты момента не могут одновременно иметь определённые значения (за исключением только случая, когда все три компоненты одновременно равны нулю — см. ниже). В этом отношении момент существенно отличается от импульса, у которого три компоненты могут иметь одновременно определённые значения.

Из операторов \(\hat{I}_x, \hat{L}_y, \hat{L}_z \) составим оператор \(\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2 \), который можно рассматривать как оператор квадрата абсолютной величины вектора момента; обозначим его как \(\hat{L}^2 \):

\[
\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2 \tag{24,9}
\]

(а для отдельной частицы — соответственно, как \(\hat{I}^2 \); оператор \(\hat{L}^2 \), разумеется, не равен сумме \(\hat{I}^2 \)). Покажем, что этот оператор коммутирует с каждым из операторов \(\hat{L}_x, \hat{L}_y, \hat{L}_z \). Имеем, используя (24,8):

\[
\begin{align*}
\{\hat{L}_x^2, \hat{L}_z\} &= \hat{L}_x \{\hat{L}_x, \hat{L}_z\} + \{\hat{L}_z, \hat{L}_x\} \hat{L}_x = - i (\hat{L}_x \hat{L}_y + \hat{L}_y \hat{L}_x), \\
\{\hat{L}_y^2, \hat{L}_z\} &= i (\hat{L}_x \hat{L}_y + \hat{L}_y \hat{L}_x), \\
\{\hat{L}_z^2, \hat{L}_z\} &= 0.
\end{align*}
\]

Складывая эти равенства, получим \(\{\hat{L}^2, \hat{L}_z\} = 0 \); то же самое имеет, очевидно, место и для \(\hat{L}_x, \hat{L}_y \).
Таким образом

\[\{ \hat{L}_z, \hat{L}_\varphi \} = 0, \quad \{ \hat{L}_y, \hat{L}_\varphi \} = 0, \quad \{ \hat{L}_x, \hat{L}_\varphi \} = 0. \] \hspace{1cm} (24,10)

Физически эти соотношения означают, что квадрат момента количества движения (т. е. его абсолютная величина) может иметь определённое значение одновременно с одной из его составляющих.

Для операторов компонент момента одной частицы часто бывает удобным пользоваться их выражениями в сферических координатах вместо декартовых. Вводя сферические координаты \(r, \theta, \varphi \) согласно обычным соотношениям

\[x = r \sin \theta \cos \varphi, \quad y = r \sin \theta \sin \varphi, \quad z = r \cos \theta, \]

получим, после простого вычисления, следующее выражение для оператора компоненты момента \(\hat{L}_z \) вдоль полярной оси:

\[\hat{L}_z = -i \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) = -i \frac{\partial}{\partial \varphi}. \] \hspace{1cm} (24,11)

Вместо операторов \(\hat{L}_x, \hat{L}_y \) обычно бывает удобнее пользоваться их комплексными комбинациями \(\hat{L}_x \pm i \hat{L}_y \); для них получаем:

\[\hat{L}_x + i \hat{L}_y = e^{i \varphi} \left(\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \varphi} \right), \]

\[\hat{L}_x - i \hat{L}_y = e^{-i \varphi} \left(-\frac{\partial}{\partial \theta} - i \cot \theta \frac{\partial}{\partial \varphi} \right). \] \hspace{1cm} (24,12)

Выразим оператор \(\hat{L}_z \) квадрата момента системы через операторы \(\hat{L}_x \pm i \hat{L}_y \). Воспользовавшись третьим из соотношений (24,8), найдём:

\[(\hat{L}_x + i \hat{L}_y) (\hat{L}_x - i \hat{L}_y) = \hat{L}_x^2 + \hat{L}_y^2 - i (\hat{L}_x \hat{L}_y - \hat{L}_y \hat{L}_x) = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z. \]

Прибавляя к обеим сторонам равенства \(\hat{L}_z^2 \), получим:

\[\hat{L}_z^2 = (\hat{L}_x + i \hat{L}_y) (\hat{L}_x - i \hat{L}_y) + \hat{L}_z^2 - \hat{L}_z. \] \hspace{1cm} (24,13)

Аналогично,

\[\hat{L}_z^2 = (\hat{L}_x - i \hat{L}_y) (\hat{L}_x + i \hat{L}_y) + \hat{L}_z^2 + \hat{L}_z. \] \hspace{1cm} (24,14)

Подставляя сюда (24,11), (24,12), получим, после простого вычисления, следующее выражение для оператора \(\hat{L}^2 \) квадрата момента отдельной частицы в сферических координатах:

\[\hat{L}^2 = - \left[\frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \right]. \] \hspace{1cm} (24,15)

Обратим внимание на то, что это есть, с точностью до множителя, угловая часть оператора Лапласа.
§ 25. Собственные значения момента

Для того чтобы определить собственные значения компоненты момента количества движения частицы вдоль некоторого направления, удобно воспользоваться выражением для её оператора в сферических координатах, выбрав полярную ось вдоль рассматриваемого направления. Согласно формуле (24,11), уравнение \(\dot{\psi} + 2 \psi = 0 \) записывается в виде:

\[
-i \frac{\partial \psi}{\partial \varphi} = \hat{I}_z \psi.
\]
(25.1)

Его решение есть

\[
\psi = f(r, \theta) e^{i \varphi},
\]

где \(f(r, \theta) \) — произвольная функция от \(r \) и \(\theta \). Для того чтобы функция \(\psi \) была однозначной функцией, необходимо, чтобы она была периодична по \(\varphi \) с периодом \(2\pi \). Отсюда находим:

\[
\hat{I}_z = m, \quad m = 0, \pm 1, \pm 2, \ldots
\]
(25.2)

Таким образом собственные значения \(\hat{I}_z \) равны положительным и отрицательным целым числам, включая значение нуль. Зависящий от \(\varphi \) множитель, характерный для собственных функций оператора \(\hat{I}_z \), обозначим посредством

\[
\Phi_m(\varphi) = \frac{1}{\sqrt{2\pi}} e^{im\varphi}.
\]
(25.3)

Эти функции нормированы так, что

\[
\int_0^{2\pi} \Phi_m^*(\varphi) \Phi_{m'}(\varphi) d\varphi = \delta_{mm'}.
\]
(25.4)

Собственные значения \(z \)-компонеты полного момента системы, очевидно, тоже равны положительным и отрицательным целым числам:

\[
\hat{L}_z = M, \quad M = 0, \pm 1, \pm 2, \ldots
\]
(25.5)

(это непосредственно следует из (25.2) в связи с тем, что оператор \(\hat{L}_z \) равен сумме коммутирующих друг с другом операторов \(\hat{I}_z \) для отдельных частиц).

Поскольку направление оси \(z \) заранее ничем не выделено, то ясно, что тот же результат получится для \(\hat{L}_x, \hat{L}_y \), и вообще для составляющей момента по любому направлению, — всё они могут принимать, будучи измерены, лишь целые значения. Этот результат может показаться, на первый взгляд, парадоксальным, особенно, если применить его к двум бесконечно близким направлениям. В действительности, однако, надо иметь в виду, что единственная общая собственная функция операторов \(\hat{L}_x, \hat{L}_y, \hat{L}_z \) соответствует одновременным значениям

\[
\hat{L}_x = \hat{L}_y = \hat{L}_z = 0;
\]
в этом случае вектор момента количества движения, а поэтому и его проекция на любое направление равны нулю. Если же хотя бы одно из собственных значений L_x, L_y, L_z отлично от нуля, то остальные собственные функции у операторов \hat{L}_x, \hat{L}_y, \hat{L}_z нет. Другими словами, не существует такого состояния, в котором два или три составляющих момента по различным направлениям имели бы одновременно определённые (отличные от нуля) значения, так что мы можем говорить лишь о целочисленности одной из них.

Стационарные состояния системы, отличающиеся только значением L_z, обладают одинаковой энергией — это следует уже из общих соображений, связанных с тем, что направление оси z заранее ничем не выделено. Таким образом энергетические уровни системы с сохраняющимся (отличным от нуля) моментом во всяком случае выражены 1).

Перейдём теперь к отысканию собственных значений квадрата L^2 момента и покажем, каким образом можно найти эти значения, исходя из одних только условий коммутации (24,3). Обозначим посредством ψ_M волновые функции стационарных состояний, относящихся к одному вырожденному уровню энергии и отличающихся значением $L_z = M$. Вместе с энергией в этих состояниях имеет определённое (одинаковое) значение также и квадрат L^2 момента 2).

Прежде всего замечаем, что поскольку разность

$$\hat{L}^2 - L_z^2 = \hat{L}_x^2 + \hat{L}_y^2$$

равна оператору существенно положительной физической величины $L_x^2 + L_y^2$, то при данном значении L^2 квадрата момента для всех возможных собственных значений величины L_z должно выпол-

1) Это обстоятельство является частным случаем указанной в § 10 общей теоремы об выражении углеров при наличии, по крайней мере, двух сохраняющихся величин с некоммутирующими операторами. Здесь такими величинами являются компоненты момента.

2) Здесь подразумевается, что нет никакого дополнительного выражения, приводящего к одинаковости значений энергии при различных значениях квадрата момента. Это справедливо для дискретного спектра (за исключением случая так называемого "случайного вырождения" в кулононом поле, см. § 36) и, вообще говоря, несправедливо для энергетических уровней непрерывного спектра. Однако и при наличии такого дополнительного вырождения всегда можно выбирать собственные функции так, чтобы они соответствовали состояниям с определёнными значениями L^2, и из них затем выбирать состояния с одинаковыми значениями E и L^2. Математически это выражается в том, что матрицы коммутирующих друг с другом операторов всегда можно привести одновременно к диагональному виду.

В дальнейшем мы будем в аналогичных случаях для краткости говорить так, как если бы никакого дополнительного вырождения не было, имея в виду, что получаемые результаты в действительности, согласно сказанному, от этого предположения не зависят.
ниться неравенство $L_z^3 \geq L_z^2$ или
$$-\sqrt{L_z^3} \leq L_z \leq +\sqrt{L_z^2}.$$ Таким образом возможные значения L_z (при данном L^2) ограничены некоторыми верхним и нижним пределами; обозначим значение целого числа, соответствующее наибольшему значению $|L_z|$, посредством L.

Далее, с помощью правил коммутации (24,8) легко убедиться в том, что имеет место соотношение
$$\hat{L}_z (\hat{\omega}_x \pm i\hat{\omega}_y) = (\hat{\omega}_x \pm i\hat{\omega}_y) (\hat{L}_z \pm 1).$$ (25,6)
Применяя операторы в обеих сторонах этого равенства к функции ψ_M и помня, что $\hat{L}_z \psi_M = M \psi_M$, получим:
$$\hat{L}_z (\hat{\omega}_x \pm i\hat{\omega}_y) \psi_M = (M \pm 1) (\hat{\omega}_x \pm i\hat{\omega}_y) \psi_M.$$ Отсюда видно, что функция $(\hat{\omega}_x \pm i\hat{\omega}_y) \psi_M$ есть (с точностью до нормировочной постоянной) собственная функция, соответствующая значению $M \pm 1$ величины L_z; мы можем написать:
$$\psi_{M+1} = \text{const.} (\hat{\omega}_x + i\hat{\omega}_y) \psi_M,$$
$$\psi_{M-1} = \text{const.} (\hat{\omega}_x - i\hat{\omega}_y) \psi_M.$$ (25,7)
Если в первом из этих равенств положить $M = L$, то должно быть тождественно
$$(\hat{\omega}_x + i\hat{\omega}_y) \psi_L = 0,$$ (25,8)
поскольку состояний с $M > L$ по определению нет. Применяя к этому равенству оператор $\hat{\omega}_x - i\hat{\omega}_y$ и воспользовавшись соотношением (24,14), получим:
$$(\hat{\omega}_x - i\hat{\omega}_y) (\hat{\omega}_x + i\hat{\omega}_y) \psi_L = (\hat{L}^2 - \hat{L}_z^2 - \hat{L}_z) \psi_L = 0.$$ Но поскольку ψ_M — общие собственные функции операторов \hat{L}^2 и \hat{L}_z, то
$$\hat{L}^2 \psi_L = L^2 \psi_L, \quad \hat{L}_z^2 \psi_L = L^2 \psi_L, \quad \hat{L}_z \psi_L = \hat{L}_z \psi_L,$$ так что полученное уравнение даёт $L^2 - L^2 - L = 0$ или
$$L^2 = L (L + 1).$$ (25,9)
Если бы мы под L подразумевали абсолютную величину наименьшего значения L_z и воспользовались второй из формул (25,7) вместо первой, то мы совершенно аналогичным образом получили бы ту же формулу (25,9); отсюда следует, что наибольшее и наименьшее значения L_z (при заданном L^2) одинаковы по абсолютной величине.
Формулой (25.9) определяются искомые собственные значения квадрата момента; число \(L \) пробегает все целые положительные значения, включая значение нуль. При заданном значении числа \(L \) компонента \(L_z = M \) момента может иметь значения

\[
M = L, \quad L - 1, \ldots, -L, \quad (25.10)
\]

t. e. всего \(2L + 1 \) различных значений. Уровень энергии, соответствующий моменту \(L \), таким образом, \((2L + 1)-кратно вырожден. Состояние с равным нулю моментом \(L = 0 \) (при этом и все три его компоненты равны нулю) не вырождено; отметим, что волновая функция такого состояния сферически симметрична. Это следует уже хотя бы из того, что при воздействии оператора момента она обращается в нуль, т. е. не меняется в результате операции любого бесконечно малого поворота.

Для момента одной частицы мы будем писать формулу (25.9) в виде:

\[
I^2 = l \(l + 1 \), \quad (25.11)
\]

t. e. будем обозначать момент отдельной частицы малой буквой \(I \).

Вычислим матричные элементы величин \(L_x \) и \(L_y \) в представлении, в котором, наряду с энергией, диагональны \(L_z \) и \(L^2 \). Прежде всего замечаем, что поскольку операторы \(\hat{L}_x, \hat{L}_y \) коммутируют с оператором \(\hat{H} \), то их матрицы диагональны по отношению к энергии, т. е. все матричные элементы для переходов между состояниями с различной энергией (и различными моментами \(L \)) равны нулю. Таким образом достаточно рассмотреть матричные элементы для переходов внутри группы состояний с различными значениями \(M \), соответствующих одному вырожденному уровню энергии.

Из формулы (25.7) видно, что в матрице оператора \(\hat{L}_x + i \hat{L}_y \) отличны от нуля только элементы, соответствующие переходам \(M + 1 \rightarrow M \), а в матрице оператора \(\hat{L}_x - i \hat{L}_y \) — элементы с \(M -1 \rightarrow M \). Учитывая это, находим диагональные матричные элементы в обеих сторонах равенства (24.13) и получаем 2):

\[
\begin{align*}
L (L + 1) &= (L_x + iL_y)_M, M - 1 (L_x - iL_y)_{M - 1}, M + 1 M^2 - M.
\end{align*}
\]

Замечая, что, в силу эрмитовости операторов \(\hat{L}_x, \hat{L}_y \)

\[
(L_x - iL_y)_{M - 1}, M = (L_x + iL_y)_{M, M - 1}^*,
\]

1) Мы будем часто говорить для краткости, как это обычно принято, о «моменте \(L \)» системы, подразумевая при этом момент с квадратом, равным \(L (L + 1) \).

2) В обозначениях матричных элементов мы опускаем для краткости все индексы, по которым они диагональны (в том числе индекс \(L \)).
переписываем это равенство в виде:

\[|(L_x + iL_y)_{M, M-1}|^2 = L(L+1) - M(M-1) = (L-M+1)(L+M), \]
откуда 1) (Борн, Гайзенберг, Иордан; 1926):

\[(L_x + iL_y)_{M, M-1} = (L_x - iL_y)_{M-1, M} = \sqrt{(L+M)(L-M+1)}. \]
(25,12)

Для отличных от нуля матричных элементов самих величин \(L_x \) и \(L_y \) отсюда имеем:

\[(L_x)_{M, M-1} = (L_x)_{M-1, M} = \frac{1}{2} \sqrt{(L+M)(L-M+1)}, \]
(25,13)

\[(L_y)_{M, M-1} = -(L_y)_{M-1, M} = -\frac{i}{2} \sqrt{(L+M)(L-M+1)} \]

В аналогичных формулах для момента частицы надо писать \(l, m \) вместо \(L, M \).

§ 26. Собственные функции момента

Заданием значений \(l^2 \) и \(l_z \) волновая функция частицы не определяется полностью. Это видно уже из того, что выражения для операторов этих величин в сферических координатах содержат только углы \(\theta \) и \(\varphi \), так что зависимость их собственных функций от \(r \) остаётся неопределённой. Именно, функции \(\psi_{lm} \) имеют вид \(\psi_{lm} = f(r) F(\theta, \varphi) \), где функция \(f(r) \) — произвольна. Мы будем рассматривать здесь только характерную для собственных функций момента зависимость от углов, опуская зависящий от \(r \) неопределённый множитель и нормируя функции \(\psi_{lm} \) так, чтобы было

\[\int |\psi_{lm}|^2 d\theta = 1 \]

(\(d\theta = \sin \theta \, d\theta \, d\varphi \) — элемент телесного угла).

Как показывают дальнейшие вычисления, задача об определении общих собственных функций операторов \(\hat{\mathbf{l}}^2 \) и \(\hat{\mathbf{l}}_z \) допускает разделение переменных \(\theta \) и \(\varphi \), и эти функции можно искать в виде:

\[\psi_{lm} = \Phi_{m}(\varphi) \Theta_{lm}(\theta), \]
(26,1)

где \(\Phi_{m}(\varphi) \) — собственные функции оператора \(\hat{\mathbf{l}}_z \), определяемые формулой (25,3). Поскольку функции \(\Phi_{m} \) уже нормированы условием (25,4), то \(\Theta_{lm} \) должны быть нормированы согласно условию:

\[\int_0^\pi |\Theta_{lm}|^2 \sin \theta \, d\theta = 1. \]
(26,2)

1) Мы выбираем неопределённые фазовые множители так, чтобы во всех матричных элементах получить знак + перед корнем (см. сноску на стр. 85).
Функции ψ_{lm} с различными l или m автоматически оказываются взаимно ортогональными:

$$\int_0^{2\pi} \int_0^\pi \psi_{l'm'}^{*} \psi_{lm} \sin \theta \, d\theta \, d\varphi = \delta_{ll'} \delta_{mm'}, \quad (26,3)$$

как собственные функции операторов момента, соответствующие различным собственным значениям. В отдельности ортогональны также и функции $\Phi_m(\varphi)$ (см. (25,4)) как собственные функции оператора \hat{l}, соответствующие различным его собственным значениям m. Функции же $\Theta_{lm}(\theta)$ сами по себе не являются собственными функциями какого-либо из операторов момента; как следует из (26,3), они взаимно ортогональны при различных l, но не при различных m.

Наиболее прямой способ вычисления искомых функций есть непосредственное решение задачи об отыскании собственных функций оператора $\hat{\Theta}$, написанного в сферических координатах (формула (24,15)). Уравнение $\hat{\Theta} \psi = \lambda \psi$ гласит:

$$\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 \psi}{\partial \varphi^2} + l(l+1) \psi = 0.$$

Подставляя в это уравнение ψ в виде (26,1), получим для функции Θ_{lm} уравнение

$$\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta_{lm}}{d\theta} \right) - \frac{m^2}{\sin^2 \theta} \Theta_{lm} + l(l+1) \Theta_{lm} = 0. \quad (26,4)$$

Это уравнение хорошо известно из теории шаровых функций. Оно имеет решения, удовлетворяющие условиям конечности и однозначности, при целых положительных значениях $l \gg |m|$, в согласии с полученным выше матричным методом собственными значениями момента. Соответствующие решения представляют собой так называемые присоединённые полиномы Лежандра $P_l^m(\cos \theta)$ (см. § с математических дополнений). Таким образом $\Theta_{lm} = \text{const.} \, P_l^m$. Определяя const. из условия нормировки (26,2), получим:

$$\Theta_{lm}(\theta) = (\frac{\sqrt{2l+1}}{2}) \frac{(l-m)!}{(l+m)!} P_l^m(\cos \theta) \quad (26,5)$$

(см. (c, 11)). Здесь предполагается, что $m \geq 0$. Для отрицательных m мы определим постоянный множитель таким образом, чтобы было

$$\Theta_{l, -|m|} = (-1)^m \Theta_{l, |m|}. \quad (26,6)$$

Другими словами, Θ_{lm} с $m < 0$ изображится формулой (26,5), в которой надо при этом писать $|m|$ вместо m, и опустить множитель $(-1)^m$. Такой выбор знаков в функциях Θ_{lm} соответствует сделанному нами в предыдущем параграфе выбору знаков матричных
элементов момента\(^1\)). При \(m = 0\) присоединённые полиномы Лежандра называются просто полиномами Лежандра \(P_l(\cos \theta)\); имеем:

\[
\Theta_l^0 = \sqrt{\frac{2l+1}{2}} P_l(\cos \theta). \tag{26,7}
\]

Сделаем несколько замечаний по поводу собственных функций момента. При \(l = 0\) (так что и \(m = 0\)) эта функция сводится к постоянной. Другими словами, волновые функции состояний частицы с равным нулю моментом зависят только от \(r\), т. е. обладают полной шаровой симметрией.

При заданном \(m\) значения \(l\), начинающиеся с \(|m|\), нумеруют последовательные собственные значения величины \(l\) в порядке их возрастания. Поэтому на основании общей теоремы о нулях собственных функций (§ 19) мы можем заключить, что функция \(\Theta_{lm}\) обращается в нуль при \(l - |m|\) различных значениях угла \(\theta\); другими словами, она имеет в качестве угловых линий \(l - |m|\) «кругов широт» шара. Что касается полных угловых функций \(\Theta_{lm}(\theta) \Phi_m(\varphi)\), то если выбрать их с действительными множителями \(\cos m\varphi\) или \(\sin m\varphi\) вместо \(e^{\pm in\varphi}\), то они будут иметь в качестве угловых линий ещё \(|m|\) «меридианов кругов»; общее число угловых линий будет, таким образом, равно \(l\).

Наконец, покажем, каким образом можно вычислить функции \(\Theta_{lm}\) матричным методом. Это делается аналогично тому, как были вычислены в § 21 волновые функции осциллятора. Исходя из равенства (25,8)

\[
(\hat{i}_x + i\hat{i}_y) \psi_u = 0.
\]

Воспользовавшись выражением (24,12) для оператора \(\hat{i}_x + i\hat{i}_y\) и подставляя \(\psi_u = \frac{1}{\sqrt{2\pi}} e^{ia_x \theta} \Theta_u(\theta)\), получаем для \(\Theta_u\) уравнение

\[
\frac{d\Theta_u}{d\theta} - l \cot \theta \Theta_u = 0,
\]

откуда \(\Theta_u = \text{const} \cdot \sin^l \theta\). Определяя постоянную из условия нормировки, получим:

\[
\Theta_u = (-1)^l \sqrt{\frac{(2l+1)!}{2^{2l+l}}} \frac{1}{2^{2l+l}} \sin^l \theta. \tag{26,8}
\]

\(^1\) Обратим внимание на своеобразный характер последовательности знаков: множитель \(-1\) в нормировке функций \(\Theta_{lm}\) имеется лишь при нечётных положительных значениях \(m\).

Произведение \(\Phi_m(\varphi) \Theta_{lm}(\theta)\) представляет собой, с математической точки зрения, определённым образом нормированную шаровую функцию; мы будем иногда обозначать её посредством

\[
Y_{lm}(\theta, \varphi) = \Phi_m(\varphi) \Theta_{lm}(\theta). \tag{26,1a}
\]

\(^2\) Каждая такая функция соответствует состоянию, в котором \(l_z\) не имеет определённого значения, а может иметь, с равной вероятностью, значения \(\pm mh\).
Далее, используя (25,12), пишем:

\[(\hat{l}_x - i \hat{l}_y) \psi_{l,m+1} = (l_x - il_y)_{lm} \psi_{lm} = \sqrt{(l-m)(l+m+1)} \psi_{lm}.\]

Повторное применение этой формулы даёт:

\[\sqrt{(l-m)!} \psi_{lm} = \frac{1}{\sqrt{2l!}} (\hat{l}_x - i \hat{l}_y)^{l-m} \psi_{lm}.\]

Вычисление правой стороны равенства легко производится с помощью выражения (24,12) для оператора \(\hat{l}_x - i \hat{l}_y\). Имеем:

\[(\hat{l}_x - i \hat{l}_y) e^{il_\theta} \Theta_{ll} (\theta) = e^{il\theta} \sin^l \theta \frac{d}{d (\cos \theta)} \left(\sin^l \theta \cdot \Theta_{ll} \right).\]

Повторное применение этой формулы даёт:

\[(\hat{l}_x - i \hat{l}_y)^{l-m} e^{il_\theta} \Theta_{ll} = e^{im\theta} \sin^{-m} \theta \frac{d^{l-m}}{d (\cos \theta)^{l-m}} \left(\sin^l \theta \cdot \Theta_{ll} \right).\]

Наконец, используя эти соотношения и выражение (26,8) для \(\Theta_{ll}\), получим формулу

\[\Theta_{lm} (\theta) = (-1)^l \sqrt{\frac{2l+1}{2}} \frac{(l+m)!}{2l!\sin^l \theta} \frac{d^{l-m}}{d (\cos \theta)^{l-m}} \sin^{2l} \theta,\]

совпадающую с (26,5).

\section*{§ 27. Матричные элементы векторов}

Рассмотрим снова замкнутую систему частиц, и пусть \(f\) есть любая характеризующая её скалярная физическая величина, а \(\hat{f}\) — соответствующий этой величине оператор. Всякий скаляр инвариантен по отношению к повороту системы координат. Поэтому скалярный оператор \(\hat{f}\) не меняется под влиянием операции поворота, т. е. коммутирует с оператором поворота. Но мы знаем, что оператор бесконечно малого поворота с точностью до постоянного множителя совпадает с оператором момента количества движения, так что

\[\{f, L_x\} = \{\hat{f}, \hat{L}_x\} = \{\hat{f}, \hat{L}_z\} = 0 \quad (27,1)\]

(а также и \(\{\hat{f}, \hat{L}_y\} = 0\)).

Из коммутативности \(\hat{f}\) с оператором момента следует, что матрица величины \(f\) в представлении, в котором \(L_x^2\) и \(L_x\) диагональны, тоже будет диагональна по индексам \(LM\). Будем условно обозначать посредством \(n\) совокупность всех остальных индексов, определяющих

1) Все результаты этого параграфа справедливы и для частицы в центрально-симметрическом поле (вдвоем всегда, когда имеет место сохранение полного момента системы).
состояние системы. Покажем, что матричные элементы $f^{nLM}_{n'L'M'}$ не зависят от значения индекса M. Для этого воспользуемся коммутативностью \hat{f} с $\hat{L}_x + i \hat{L}_y$:

$$\hat{f}(\hat{L}_x + i \hat{L}_y)(\hat{L}_x + i \hat{L}_y)\hat{f} = 0.$$

Напишем матричный элемент этого равенства, соответствующий переходу $n, L, M \rightarrow n', L, M - 1$. Учитывая, что матрица оператора $\hat{L}_x + i \hat{L}_y$ имеет только элементы с $n, L, M \rightarrow n, L, M - 1$, получаем:

$$f^{nLM}_{n'LM}(\hat{L}_x + i \hat{L}_y)^{n'LM}_{nLM-1} = (\hat{L}_x + i \hat{L}_y)^{nLM}_{nLM-1} f^{nLM-1}_{n'LM-1} = 0$$

и поскольку матричные элементы оператора $\hat{L}_x + i \hat{L}_y$ не зависят от индекса n, то находим

$$f^{nLM}_{n'LM} = f^{nLM-1}_{n'LM-1},$$

откуда следует, что вообще все величины $f^{nLM}_{n'LM}$ с различными M (и одинаковыми остальными индексами) равны между собой.

Таким образом отличными от нуля матричными элементами величины f будут:

$$f^{nLM}_{n'LM} = f^{nL}_{n'L},$$

где $f^{nL}_{n'L}$ обозначает величины, зависящие от значений индексов n, n', L.

Если применить этот результат к самому гамильтониану, то мы получим известную уже нам независимость энергии стационарных состояний от M, т. е. $(2L + 1)$-кратное вырождение энергетических уровней.

Пусть, далее, A есть некоторая векторная действительная физическая величина, характеризующая замкнутую систему. При повороте системы координат (в частности, при воздействии оператора бесконечно малого поворота, т. е. оператора момента) компоненты вектора преобразуются друг через друга. Поэтому и в результате коммутации операторов \hat{L}_i с операторами \hat{A}_i должны получиться вновь компоненты того же вектора \hat{A}_i. Какие именно — можно непосредственно найти, замечая, что в частном случае, когда A есть радиус-вектор частицы, должны получиться формулы (24,3). Таким образом находим правила коммутации:

$$\{\hat{L}_x, \hat{A}_y\} = 0, \quad \{\hat{L}_x, \hat{A}_y\} = i\hat{A}_x, \quad \{\hat{L}_x, \hat{A}_z\} = -i\hat{A}_y,$$

$$\{\hat{L}_y, \hat{A}_x\} = 0, \quad \{\hat{L}_y, \hat{A}_x\} = i\hat{A}_y, \quad \{\hat{L}_y, \hat{A}_z\} = -i\hat{A}_x,$$

$$\{\hat{L}_z, \hat{A}_x\} = 0, \quad \{\hat{L}_z, \hat{A}_x\} = i\hat{A}_y, \quad \{\hat{L}_z, \hat{A}_y\} = -i\hat{A}_x.$$
или
\[\{ \hat{L}_i, \hat{A}_k \} = i e_{ikl} \hat{A}_l. \]
(27.4)

Эти правила коммутации дают возможность получить целый ряд результатов относительно формы матриц величин \(A_x, A_y, A_z \). Произведён для этого следующие, довольно длинные вычисления.

С помощью соотношений (27.3) находим:

\[
\begin{align*}
\{ \hat{L}^3_z, \hat{A}_x \} &= 0, \\
\{ \hat{L}^2_y, \hat{A}_x \} &= \hat{L}_y \{ \hat{L}_y, \hat{A}_x \} + \{ \hat{L}_y, \hat{A}_x \} \hat{L}_y = \\
&= -i (\hat{L}_y \hat{A}_x + \hat{A}_x \hat{L}_y) = -2i \hat{L}_y \hat{A}_x - \hat{A}_x, \\
\{ \hat{L}^2_z, \hat{A}_x \} &= 2i \hat{L}_z \hat{A}_x - \hat{A}_x.
\end{align*}
\]

Складывая эти равенства, получаем:

\[\{ \hat{L}^2, \hat{A}_x \} = 2i (\hat{L}_z \hat{A}_x - \hat{L}_y \hat{A}_x) - 2\hat{A}_x. \]

Далее, прокоммутируем этот оператор последовательно с \(\hat{L}^2_x, \hat{L}^2_y, \hat{L}^2_z \), для чего используем снова соотношения (27.3) и правила коммутации для операторов \(\hat{L}_x, \hat{L}_y, \hat{L}_z \) друг с другом. После простого, но довольно длинного приведения, которое мы здесь опускаем, получается:

\[\{ \hat{L}^3, \{ \hat{L}^2, \hat{A}_x \} \} = 2 (\hat{L}^2 \hat{A}_x + \hat{A}_x \hat{L}^2) - 4 \hat{L}_x (\hat{L} \hat{A}). \]

С другой стороны:

\[\{ \hat{L}^2, \{ \hat{L}^2, \hat{A}_x \} \} = \{ \hat{L}^3, (\hat{L}^2 \hat{A}_x - \hat{A}_x \hat{L}^2) \} = \hat{L}^4 \hat{A}_x - 2 \hat{L}^2 \hat{A}_x \hat{L}^2 + \hat{A}_x \hat{L}^4. \]

Приравнивая оба выражения, получаем:

\[\hat{L}^4 \hat{A}_x - 2 \hat{L}^2 \hat{A}_x \hat{L}^2 + \hat{A}_x \hat{L}^4 = \\
= 2 (\hat{L}^2 \hat{A}_x + \hat{A}_x \hat{L}^2) - 4 \hat{L}_x (\hat{L}_x \hat{A}_x + \hat{L}_y \hat{A}_y + \hat{L}_z \hat{A}_z). \]

Возьмём матричный элемент от этого уравнения, соответствующий переходу \(nLM \rightarrow n'L'M' \), где \(L' \neq L \). Поскольку матрица скаляра \(\hat{L}_x \hat{A}_x + \hat{L}_y \hat{A}_y + \hat{L}_z \hat{A}_z \) диагональна по \(M, L \), а матрица \(\hat{L}_x \) — диагональна по \(L \) и \(n \) (см. (25,13)), то для рассматриваемого перехода матричный элемент от последнего члена в уравнении исчезает. Остальные же дают

\[
\begin{align*}
[L^2 (L+1)^2 - 2L(L+1) L'(L'+1) + L'^2 (L'+1)^2](A_x)^{nLM}_{n'L'M'} = \\
= 2 [L(L+1) + L'(L'+1)](A_x)^{nLM}_{n'L'M'},
\end{align*}
\]

8 Зак. 3337. Ландсёр и Лифшиц, т. V, ч. I.
или, после перегруппировки и приведения членов:

\[(L + L' + 1)^2 - 1 \cdot [(L - L')^2 - 1] (A_{x})_{n'L'M'}^{nLM} = 0 \quad (L' \neq L).\]

Первая скобка не может обратиться в нуль, поскольку \(L \neq L'\) и \(L, L' \gg 0\). Вторая исчезает лишь при \(L' - L = \pm 1\). Присоединяя также не исключённый этими рассуждениями случай \(L' = L\), приходя к результату, что матричные элементы \(A_{x}\) могут быть отлишины от нуля лишь при

\[L' - L = 0, \pm 1\]

(27.5)

(это есть, конечно, лишь необходимое, но недостаточное условие).

С тем же успехом мы могли бы производить вычисления для \(\hat{A}_{y}\) или \(\hat{A}_{z}\) вместо \(\hat{A}_{x}\), так что полученное, как говорят, правило отбора для индекса \(L\) относится ко всем трём компонентам вектора (использованная при выводе диагональность \(L_{x}\) по \(L\) имеет место и для \(L_{z}\), матрица которого диагональна и по \(L\), и по \(M\)).

Кроме правила отбора (27.5), имеет место дополнительное правило, запрещающее переходы между всевыми двумя состояниями с \(L = 0\) (при \(L = 0\), разумеется, и \(M = 0\). Его легко получить, например, взяв диагональный по \(L\) и \(M\) матричный элемент от равенства \(\hat{L}_{y}, \hat{A}_{z} = i\hat{A}_{x}\) и положив затем \(L = M = 0\); это непосредственно даёт:

\[(A_{x})_{n'00}^{n0} = 0.\]

Далее, выведем правило отбора для индекса \(M\). Вместо \(\hat{A}_{x}, \hat{A}_{y}\) здесь удобно пользоваться комплексными комбинациями \((\hat{A}_{x} \pm i\hat{A}_{y})\).

Имеем

\[\{\hat{L}_{x}, \hat{A}_{x} - i\hat{A}_{y}\} = \{\hat{L}_{z}, \hat{A}_{x}\} - i\{\hat{L}_{z}, \hat{A}_{y}\} = -(\hat{A}_{x} - i\hat{A}_{y})\]

так что

\[\hat{L}_{z}(\hat{A}_{x} - i\hat{A}_{y}) - (\hat{A}_{x} - i\hat{A}_{y})\hat{L}_{z} = -(\hat{A}_{x} - i\hat{A}_{y}).\]

(27.6)

Взяв матричный элемент \(nLM \rightarrow n'LM'\), получим

\[M(A_{x} - iA_{y})_{n'L'M'}^{nLM} = (A_{x} - iA_{y})_{n'L'M'}^{nLM}, \quad M' = -(A_{x} - iA_{y})_{n'L'M'}^{nLM},\]

или

\[(M - M' + 1)(A_{x} - iA_{y})_{n'L'M'}^{nLM} = 0.\]

Отсюда следует, что матричные элементы от \(A_{x} - iA_{y}\) могут быть отличны от нуля лишь при

\[M' = M + 1.\]

Аналогично найдём, что матричные элементы от \(A_{x} + iA_{y}\) могут быть отличны от нуля только при

\[M' = M - 1.\]
§ 27] МАТРИЧНЫЕ ЭЛЕМЕНТЫ ВЕКТОРОВ

Для самих A_x и A_y имеем, следовательно, место правило отбора

$$M' = M \pm 1.$$ \hspace{1cm} (27,7)

Что касается матрицы A_z, то из $\hat{A}_z \hat{L}_z - \hat{L}_z \hat{A}_z = 0$ следует, что она (как и матрица L_z) диагональна по M, т. е. правило отбора гласит:

$$M' = M.$$ \hspace{1cm} (27,8)

Оказывается возможным определить в общем зависимости матричных элементов вектора от числа M (Борн, Гейзенберг и Иордан, 1926). Для этого пишем

$$\{\hat{L}_x - i\hat{L}_y, \hat{A}_x - i\hat{A}_y\} =$$

$$= \{\hat{L}_x, \hat{A}_x\} - i\{\hat{L}_y, \hat{A}_y\} - i\{\hat{L}_x, \hat{A}_y\} - \{\hat{L}_y, \hat{A}_x\} = 0$$

или

$$\{\hat{L}_x - i\hat{L}_y\} (\hat{A}_x - i\hat{A}_y) - (\hat{A}_x - i\hat{A}_y) (\hat{L}_x - i\hat{L}_y) = 0.$$ \hspace{1cm} (27,9)

Взяв наиболее общий, удовлетворяющий правилам отбора матричный элемент этого уравнения, получим

$$(L_x - iL_y)_{nLM}^{n'LM-1} (A_x - iA_y)_{n'L'M+1}^{nL} -$$

$$- (A_x - iA_y)_{n'L'M+1}^{nLM-1} (L_x - iL_y)_{n'LM}^{n'L'M+1} = 0$$

или подставляя выражение (25,12) для матричных элементов от $L_x - iL_y$:

$$(A_x - iA_y)_{n'L'M+1}^{nLM} \frac{\sqrt{(L+M)(L-M+1)}}{V(L'+M+1)(L'-M)} =$$

$$= (A_x - iA_y)_{n'L'M}^{nLM-1} \frac{\sqrt{(L'+M+1)(L'-M)}}{V(L-M+1)(L+M)}$$

$$(L' = L = 0, \pm 1).$$ \hspace{1cm} (27,10)

Положив здесь $L' = L$, получим

$$\frac{(A_x - iA_y)_{nLM+1}^{nLM}}{\sqrt{(L-M)(L+M+1)}} = \frac{(A_x - iA_y)_{n'L'M}^{nLM-1}}{\sqrt{(L-M+1)(L+M)}}$$

и поскольку это справедливо для всякого M, то мы видим, что стоящие здесь отношения должны быть не зависимыми от M. Обозначая это отношение посредством $A_{n'L}^{nL}$, получим:

$$(A_x - iA_y)_{n'L'M+1}^{nLM} = A_{n'L}^{nL} \sqrt{(L-M)(L+M+1)}.$$

Аналогичным способом, полагая в (27,10) $L' = L \pm 1$, получим выражения для остальных матричных элементов от $A_x - iA_y$.

Матричные элементы от $A_x + iA_y$ не требуют особого вычисления, поскольку в силу эрмитовости \hat{A}_x и \hat{A}_y имеем:

$$(A_x + iA_y)_{n'L'M}^{nLM} = (A_x + iA_y)_{nLM}^{n'L'M} = [(A_x - iA_y)_{n'L'M}^{nLM}]*.$$
При этом надо иметь в виду, что, как будет видно ниже, величины \(A_{n't}^{nL} \) обладают свойством \(A_{n't}^{nL} = A_{nL}' \). В результате получаем следующие формулы для отличных от нуля матричных элементов от \(A_x = iA_y \):

\[
(A_x - iA_y)_{n'LM-1}^{nLM} = (A_x + iA_y)_{n'LM-1}^{nLM} = A_{n'L}^{nL} \sqrt{(L - M + 1)(L + M)},
\]

(27,11)

\[
(A_x - iA_y)_{n'L-1M}^{nLM-1} = (A_x + iA_y)_{n'L-1M}^{nLM} = A_{n'rL-1}^{nL} \sqrt{(L - M + 1)(L - M)}.
\]

Для вычисления матричных элементов от \(A_x \) исходим из соотношения

\[
\{ \hat{L}_x + i\hat{L}_y, \hat{A}_x - i\hat{A}_y \} = \{ \hat{L}_x, \hat{A}_x - i\hat{A}_y \} + 2i \{ \hat{L}_y, \hat{A}_x - i\hat{A}_y \} = 2i \{ \hat{L}_y, \hat{A}_x \} = 2\hat{A}_x
\]

или

(27,12)

Поскольку матричные элементы от \((L_x + iL_y) \) и \((A_x - iA_y) \) нам уже известны, то отсюда можно непосредственно вычислить матричные элементы от \(A_x \). Опуская эти простые вычисления, приводим окончательные выражения для отличных от нуля матричных элементов от \(A_x \):

\[
(A_x)_{n'L}^{nLM} = A_{n'L}^{nL} M,
\]

(27,13)

\[
(A_x)_{n'L-1M}^{nLM} = A_{n'rL-1}^{nL} \sqrt{L^2 - M^2}.
\]

Из эрмитовости \(\hat{A}_x \) следует, что \((A_x)_{n'L}^{nLM*} = (A_x)_{n'rL}^{nLM} \); подстановка выражений (27,13) приводит к соотношению

\[
A_{n'L}^{nLM} = A_{n'rL}^{nLM},
\]

(27,14)

которое мы уже использовали выше.

Аналогичные формулы для матричных элементов тензорных физических величин можно получить непосредственно с помощью формул для векторов. Для этого достаточно рассмотреть вектор, представляющий собой произведение двух (или нескольких) векторов,
и вычислить его матричные элементы, согласно правилу умножения матриц.²)

Полезно заметить формулу, связывающую матричные элементы скаляра \mathbf{AB} (\mathbf{A}, \mathbf{B} — две векторные физические величины) с коэффициентами $A_{n_1}^{n_1}$, $B_{n_1}^{n_1}$ в формулах (27,11), (27,13). Вычисление удобно приводить, написав оператор $\hat{\mathbf{AB}}$ в виде:

$$\hat{\mathbf{AB}} = \frac{1}{2} \left(\hat{A}_x + i \hat{A}_y \right) \left(\hat{B}_x - i \hat{B}_y \right) + \frac{1}{2} \left(\hat{A}_x - i \hat{A}_y \right) \left(\hat{B}_x + i \hat{B}_y \right) + \hat{A}_z \hat{B}_z.$$

Заранее очевидно, что матрица \mathbf{AB} (как и всякого скаляра) диагональна по L и M. Вычисление приводит к результату

$$(\mathbf{AB})_{n_1}^{n_1 LM} = (L + 1) (2L + 3) \sum_{n_1} A_{n_1}^{n_1 L} B_{n_1}^{n_1 L+1} +$$

$$+ L (L + 1) \sum_{n_1} A_{n_1}^{n_1 L} B_{n_1}^{n_1 L} + L (2L - 1) \sum_{n_1} A_{n_1}^{n_1 L} B_{n_1}^{n_1 L-1}. \quad (27,15)$$

§ 28. Чётность состояния

Наряду с параллельным переносом системы координат (использованным в § 13) и её поворотом (использованным в § 24), имеется ещё одно преобразование, оставляющее неизменным гамильтониан замкнутой системы. Это есть так называемое преобразование инверсии, заключающееся в одновременном изменении знака всех координат. В классической механике инвариантность функции Гамильтона по отношению к инверсии не приводит к каким-либо законам сохранения. В квантовой же механике положение меняется.

Обозначим посредством \hat{I} оператор инверсии; его действие на функцию заключается в изменении знака всех координат. И инвариантность \hat{H} по отношению к инверсии означает, что

$$\hat{H} \hat{I} - \hat{I} \hat{H} = 0. \quad (28,1)$$

Оператор \hat{I} коммутирует также и с операторами момента количества движения:

$$\{ \hat{I}, \hat{L}_x \} = \{ \hat{I}, \hat{L}_y \} = \{ \hat{I}, \hat{L}_z \} = 0, \quad \{ \hat{I}, \hat{L}^2 \} = 0 \quad (28,2)$$

(при инверсии меняют знак как сами координаты, так и операторы дифференцирования по ним, а потому операторы момента остаются неизменными).

Легко найти собственные значения I оператора инверсии, определяемые уравнением

$$\hat{I} \psi = I \psi.$$
Для этого замечаем, что двукратное применение оператора \(\hat{I} \) приводит к тождеству — все координаты вообще не меняются. Другими словами, имеем \(\hat{I}^2\psi = I^2\psi = \psi \), т. е. \(I^2 = 1 \), откуда
\[
I = \pm 1. \tag{28,3}
\]
Таким образом собственные функции оператора инверсии либо не меняются вовсе при воздействии этого оператора, либо меняют свой знак. В первом случае волновую функцию (и соответствующее состояние) называют чётной, а во втором — нечётной.

Равенство (28,1) выражает, следовательно, «закон сохранения чётности»: если состояние замкнутой системы обладает определённой чётностью (т. е. если оно чётно или нечётно), то эта чётность сохраняется со временем.

Равенства (28,2) означают физически, что система может обладать определёными \(L \) и \(M \) и в то же время определённой чётностью состояния. При этом можно утверждать, что все состояния, отличающиеся только значением \(M \), обладают одинаковой чётностью. Это может быть доказано, исходя из соотношения
\[
(\hat{L}_x + i\hat{L}_y)\hat{I} - \hat{I} (\hat{L}_x + i\hat{L}_y) = 0
\]
в точности тем же путём, каким был получен результат (27,2).

При преобразовании инверсии скалярные величины либо не меняются вовсе (истинные скаляры), либо меняют знак (так называемые псевдоскаляры) ¹). Если физическая величина \(f \) есть истинный скаляр, то её оператор коммутирует с \(\hat{I} \):
\[
\hat{I} \hat{f} = \hat{f} \hat{I} = 0. \tag{28,4}
\]
Отсюда следует, что если матрица \(I \) диагональна, то и матрица \(f \) диагональна по индексу, указывающему чётность состояния, т. е. отличны от нуля матричные элементы только для переходов \(u \rightarrow u \), \(g \rightarrow g \) (индексами \(g \) и \(u \) отмечаем соответственно чётные и нечётные состояния).

Для оператора же псевдоскалярной величины имеем \(\hat{I} \hat{f} = -\hat{f} \hat{I} \), или
\[
\hat{I} \hat{f} = -\hat{f} \hat{I} = 0;
\]
\(\hat{I} \) «антикоммутирует» с \(\hat{f} \). Матричный элемент этого равенства для перехода с \(g \rightarrow g \) есть
\[
I_{gg}f_{gg} + f_{gg}I_{gg} = 0,
\]
и поскольку \(I_{gg} = 1 \), то \(f_{gg} = 0 \) (мы опускаем все индексы, кроме индекса, указывающего чётность). Аналогично находим, что \(f_{uu} = 0 \).

¹) Псевдоскаляром является, например, скалярное произведение аксиального и полярного векторов.
Таким образом в матрице псевдоскалярной величины могут быть отличны от нуля только недиагональные по индексу чётности элементы (переходы с изменением чётности).

Для векторных величин получаются аналогичные результаты. Операторы полярного вектора \(^1\) антикоммутируют с \(\hat{I}\) и в их матрицах (в представлении, где \(\hat{I}\) диагонально) имеются только элементы для переходов с изменением чётности. Операторы же аксиального вектора коммутируют с \(\hat{I}\) и их матрицы содержат только элементы для переходов без изменения чётности.

Полезно указать также и другой способ получения этих результатов. Например, матричный элемент скаляра \(f\) для перехода между состояниями различной чётности есть интеграл \(f_{ug} = \int \psi_u^* \hat{f} \psi_g \, dq\), где функция \(\psi_g\) — чётна, а \(\psi_u\) — нечётна. При изменении знака всех координат подинтегральное выражение меняет знак, если \(f\) есть истинный скаляр; с другой стороны, интеграл, взятый по всему пространству, не может измениться от изменения обозначения переменных интегрирования. Отсюда следует, что \(f_{ug} = -f_{ug}\), т. е. \(f_{ug} = 0\).

Определим, какова чётность состояния одной частицы с моментом количества движения \(l\). Преобразование инверсии \((x \to -x, \ y \to -y, \ z \to -z)\) состоит, для сферических координат, в преобразовании

\[
\begin{align*}
 r &\to r, \quad \theta \to \pi - \theta, \quad \varphi \to \varphi + \pi.
\end{align*}
\]

Зависимость волновой функции частицы от углов задаётся собственной функцией момента \(Y_{l\ell m}\), которая, с точностью до несущественной для нас здесь постоянной, имеет вид \(P^m_l (\cos \theta) e^{i\ell \phi}\). При замене \(\varphi\) на \(\varphi + \pi\) множитель \(e^{i\ell \phi}\) умножается на \((-1)^m\), а при замене \(\theta\) на \(\pi - \theta\) \(P^m_l (\cos \theta)\) переходит в \(P^m_{l'} (-\cos \theta) = (-1)^{l-m} P^m_l (\cos \theta)\). Таким образом вся функция умножится на число \((-1)^\ell\) (не зависящее от \(m\), в согласии со сказанным выше), т. е. чётность состояния с данным значением \(l\) есть

\[
 l = (-1)^\ell. \quad (28,7)
\]

Мы видим, что все состояния с чётным \(l\) — чётны, а с нечётным \(l\) — нечётны.

Векторная физическая величина, относящаяся к отдельной частице, может иметь матричные элементы лишь для переходов с \(l \to l, l \pm 1\) (§ 27). Имея это в виду и сопоставляя формулу (28,7) со сказанным выше относительно изменения чётности в матричных элементах векторов, мы приходим к выводу, что матричные элементы полярного вектора отличны от нуля только для переходов с \(l \to l \pm 1\), а у аксиального вектора — для переходов с \(l \to l\).

\(^1\) Обычные, полярные, векторы при преобразовании инверсии меняют свой знак. Аксиальные же векторы (например, векторное произведение двух полярных векторов) при этом преобразовании совершенно не изменяются.
§ 29. Матричные элементы сферических функций

Вычислим матричные элементы единичного вектора \(\mathbf{n} \) в направлении радиуса-вектора; его компоненты суть

\[
 n_x = \sin \theta \cos \varphi, \quad n_y = \sin \theta \sin \varphi, \quad n_z = \cos \theta;
\]

вместо \(n_x, n_y \) удобнее рассматривать их комплексные комбинации

\[
 n_x \pm i n_y = \sin \theta e^{\pm i \varphi}.
\]

Поскольку \(\mathbf{n} \) есть обычный (полярный) вектор, то заранее известно, что его матричные элементы отличны от нуля только для переходов с \(l \rightarrow l \pm 1 \) (см. конец § 28). Их зависимость от квантового числа \(m \) определяется общими формулами (27,11), (27,13), так что в этих формулах мы должны вычислить только коэффициент \(A^l_{l-1} \), который мы для данного случая обозначим посредством \(n^l_{l-1} \). Для этого достаточно вычислить, например, \((\cos \theta)_{l-1}^{10} \). Имеем:

\[
 (\cos \theta)_{l-1}^{10} = \int_0^\pi \Theta_{10} \cos \theta \Theta_{l-1,0} \sin \theta \, d\theta = \]

\[
 = \frac{\sqrt{(2l+1)(2l-1)}}{2} \int_0\pi P_l(\cos \theta) P_{l-1}(\cos \theta) P_1(\cos \theta) \sin \theta \, d\theta = \]

\[
 = \frac{l}{\sqrt{4l^2-1}}
\]

(\(\cos \theta = P_1(\cos \theta) \)); интеграл вычисляется непосредственно по формуле (c, 17) математического дополнения. Сравнение с формулами (27,13) показывает, что \(n^l_{l-1} = 1/\sqrt{4l^2-1} \). Таким образом

\[
 n^l_{l-1} = n^l_{l-1} = \frac{1}{\sqrt{4l^2-1}}, \quad n^l_0 = 0. \quad (29,2)
\]

Компоненты вектора \(\mathbf{n} \) являются в то же время тремя сферическими функциями порядка \(l = 1 \). В вычислениях, связанных с решением некоторых квантовомеханических задач, иногда приходится иметь дело с матричными элементами и других сферических функций по отношению к собственным функциям момента частицы.

Матричные элементы сферической функции \(L^m_i (\cos \theta) e^{i m \varphi} \) имеют вид:

\[
 (P^m_i e^{i m \varphi})_{l_1 m_1}^{l_2 m_2} = \int \Phi^*_{l_1 m_1}(\varphi) \Theta_{l_1 m_1}(\theta) P^m_i(\cos \theta) e^{i m \varphi} \Phi_{l_2 m_2}(\varphi) \Theta_{l_2 m_2}(\theta) \, d\theta = \]

\[
 = (-1)^{m_1 + m_2} \frac{1}{4\pi} \sqrt{\frac{(2l_1 + 1)(2l_2 + 1)(l_1 - m_1)! (l_2 - m_2)!}{(l_1 + m_1)! (l_2 + m_2)!}} \times \]

\[
 \times \int P^m_{l_1}(\cos \theta) P_{l_2}^{m_2}(\cos \theta) P^m_i(\cos \theta) e^{i (m_1 + m_2 - m_1) \varphi} \, d\theta.
\]
При интегрировании по $d\varphi$ интеграл не обратится в нуль только при условии, что $m - m_2 - m_1 = 0$. Таким образом для квантового числа m имеет место правило отбора:

$$m_1 - m_2 = m.$$ (29,3)

Интеграл же от произведения трёх полиномов Лежандра с такими m_1, m_2, m отличен от нуля при условии 1), что сумма $l_1 + l_2 + l$ есть чётное число:

$$l_1 + l_2 + l = 2p,$$ (29,4)

и что каждое из чисел l_1, l_2, l больше (или равно) разности и меньше (или равно) суммы двух других:

$$l_1 + l_2 > l > |l_1 - l_2|, \quad l_1 + l > l_2$$ (29,5)

(другими словами, l_1, l_2, l должны быть длинами сторон треугольника с чётным периметром).

Отличные от нуля матричные элементы

$$(P_l^m e^{im\varphi})_{l_2 m_2}^{l_1 m_1} = (-1)^m \frac{1}{2} \sqrt{\frac{(2l_1 + 1)(2l_2 + 1)(l_1 - m_1)!(l_2 - m_1 + m)!}{(l_1 + m_1)!(l_2 + m_1 - m)!}} \times
\int_0^\pi P_{l_1}^{m_1} (\cos \theta) P_{l_2}^{m_2} (\cos \theta) P_l^m (\cos \theta) \sin \theta d\theta$$ (29,6)

могут быть вычислены в общем виде с помощью формул (с, 14); мы не станем записывать здесь этой громоздкой формулы.

Пусть f есть некоторая сферическая функция. Покажем, каким образом можно вычислить встречающиеся в некоторых вычислениях суммы квадратов модулей матричных элементов вида

$$\sum_{m_1 = -l_1}^{l_1} \sum_{m_2 = -l_2}^{l_2} \left| f_{l_1 m_1} \right|^2 =
\frac{1}{16\pi^2} \sum_{m_1} \sum_{m_2} \frac{(2l_1 + 1)(2l_2 + 1)(l_1 - m_1)!(l_2 - m_2)!(l_1 + m_1)!(l_2 + m_2)!}{(l_1 + m_1)!(l_2 + m_2)!} \int f P_{l_1}^{m_1} (\cos \theta) P_{l_2}^{m_2} (\cos \theta) e^{l(m_1 - m_2)\varphi} d\varphi d\theta.$$

Переписываем квадрат модуля интеграла в виде двойного интеграла:

$$\int \int f f^* P_{l_1}^{m_1} (\cos \theta) P_{l_1}^{m_1} (\cos \theta') e^{-im_1 (\varphi - \varphi')} P_{l_2}^{m_2} (\cos \theta) P_{l_2}^{m_2} (\cos \theta') e^{im_2 (\varphi - \varphi')} d\varphi d\theta.$$

Подставляя это выражение в производящую сумму и полагая под знаком интеграла, получим производное двух сумм вида:

$$f \frac{2l_1 + 1}{4\pi} \sum_{m_1 = -l_1}^{l_1} \frac{(l_1 - m_1)!}{(l_1 + m_1)!} P_{l_1}^{m_1} (\cos \theta) P_{l_1}^{m_1} (\cos \theta') e^{-im_1 (\varphi - \varphi')}.$$

1) См. § с математическими дополнениями.
Но, согласно теореме сложения сферических функций (с, 8), эта сумма равна
\[f \frac{2l_1 + 1}{4\pi} P_{l_1}(\cos \gamma), \]
где \(\gamma \) есть угол между двумя направлениями, определяемыми углами \(\theta, \varphi \) и \(\theta', \varphi' \). Таким образом получим:
\[\sum_{m_1} \sum_{m_2} \left| f_{l_1 m_1} \right|^2 = \frac{(2l_1 + 1)(2l_2 + 1)}{16\pi^2} \int \int f' P_{l_1}(\cos \gamma) P_{l_2}(\cos \gamma) \, d\theta \, d\phi'. \quad (29,7) \]
Пусть \(f = P_l(\cos \theta) \). Для вычисления интеграла поступим следующим образом. Выбираем в качестве новой полярной оси направление \((\theta, \varphi) \) и разлагаем функцию \(f' = P_l(\cos \theta') \) согласно теореме сложения:
\[P_l(\cos \theta') = P_l(\cos \theta) P_l(\cos \gamma) + 2 \sum_{m=1}^{l} \frac{(l-m)!}{(l+m)!} P_l^m(\cos \theta) P_l^m(\cos \gamma) \cos m\Phi \]
(где \(\Phi \) — угол азимута между направлениями прежней полярной оси и направлением \(\theta', \varphi' \)). При подстановке этого разложения в (29,8) и интегрировании по \(d\Phi \) все члены, кроме первого, обратятся в нуль и останется:
\[\sum_{m_1} \sum_{m_2} \left| (P_l)_{l_1 m_1} \right|^2 = \frac{(2l_1 + 1)(2l_2 + 1)}{16\pi^2} \int \int \left[P_l(\cos \theta) \right]^2 P_l(\cos \gamma) P_{l_1}(\cos \gamma) P_{l_2}(\cos \gamma) \, d\theta \, d\phi'. \]
Для интегрирования снова выбираем направление \((\theta, \varphi) \) в качестве полярной оси и заменяем \(d\theta \, d\phi' \) на \(2\pi \sin \theta \, d\theta \cdot 2\pi \sin \gamma \, d\gamma \). Интегралы по \(d\theta \) и \(d\gamma \) определяются формулами (с, 9) и (с, 17). В результате получаем:
\[\sum_{m_1} \sum_{m_2} \left| (P_l)_{l_1 m_1} \right|^2 = \frac{(2l_1 + 1)(2l_2 + 1)(2l + 1)(p)!^2}{(2l_1 + 1)(2p + 1)(l_1 + l_2 - l)! (l_1 - l_2 + l)! (l_2 + l - l_1)! (l_1 + l_2 + l)! (l - l_1)! (p - l_1)! (p - l_2)!} \quad (29,8) \]
(где \(2p = l + l_1 + l_2 \)).
Сумма (29,7), очевидно, не зависит от выбора направлений осей координат. С другой стороны, при повороте системы координат функция \(P_l(\cos \theta) \) переходит в линейную комбинацию других сферических функций \(P_l^m(\cos \theta) e^{im\varphi} \) (с тем же значением \(l \)). Исходя из
Эти обстоятельства, легко показать, что формула
\[\sum \sum |f_{l_1m_1}^{l_2m_2}|^2 = \]
\[= \frac{(2l_1 + 1)(2l_2 + 1)(p!)^2 (l_1 + l_2 - l)! (l_1 - l_2 + l)! (l_2 + l - l_1)!}{4\pi (2p + 1)! [(p - l_1)(p - l_2)(p - l)]^2} \int |f|^2 \, dl \] (29, 9)
(совпадающая с (29, 8) при \(f = P_l(\cos \theta) \)) справедлива для любой сферической функции порядка \(l \).

§ 30. Сложение моментов

Рассмотрим систему, состоящую из двух невзаимодействующих 1) друг с другом частей, для каждой из которых имеет место закон сохранения момента количества движения. Момент количества движения \(L \) всей системы можно рассматривать как сумму моментов \(L_1 \) и \(L_2 \) её частей.

Пусть \(L_1, L_2 \) — квантовые числа, определяющие значения квадратов \(L_1^2, L_2^2 \) моментов, а \(M_1, M_2 \) — их проекции на ось \(z \). Посредством \(L \) и \(M \) обозначим соответствующие числа для квадрата \(L_2 \) и проекции \(L_z \) полного момента. Возникает вопрос о «законе сложения» моментов: каковы возможные значения \(L \) при заданных значениях \(L_1 \) и \(L_2 \)? Что касается закона сложения для компонент момента, то он очевиден: из того, что \(\hat{L}_z = \hat{L}_{1z} + \hat{L}_{2z} \), следует \(M = M_1 + M_2 \). Для операторов же квадратов моментов такого простого соотношения нет и для вывода их «закона сложения» рассуждаем следующим образом.

Если выбрать в качестве полной системы физических величин величины \(L_1^2, L_2^2, L_{1z}, L_{2z} \), то каждое состояние будет определяться значениями чисел \(L_1, L_2, M_1, M_2 \). При заданных \(L_1 \) и \(L_2 \) числа \(M_1, M_2 \) пробегают, соответственно, по \((2L_1 + 1)\) и \((2L_2 + 1)\) различных чисел с одинаковыми \(L_1, L_2, L \). Волновые функции состояний в этом описании обозначим как \(\psi_{\ell_1\ell_2\mathcal{M}_1\mathcal{M}_2} \).

Вместо четырёх указанных величин в качестве полной системы можно выбрать четыре величины \(L_1^2, L_2^2, L, \mathcal{M} \). Тогда каждое состояние будет характеризоваться значениями чисел \(L_1, L_2, L, M \) (соответствующие волновые функции обозначим как \(\psi_{\ell_1\ell_2\ell\mathcal{M}} \)). При заданных

1) Фактически, впрочем, речь идёт о частях, взаимодействие которых настолько слабо, что им можно пренебречь.
2) И ряд других величин, которые вместе с четырьмя указанными образуют полную систему. Эти остальные величинны играют роли в дальнейших рассуждениях и для краткости выражений мы о них не говорим вовсе, называя условной полной систему четырёх указанных величин.
L_1 и L_2 должно быть, разумеется, попрежнему $(2L_1 + 1) (2L_2 + 1)$ различных состояний, т. е. при заданных L_1, L_2 пара чисел L, M может пробегать $(2L_1 + 1)(2L_2 + 1)$ пар значений. Эти значения можно определить с помощью следующих рассуждений.

Каждому значению L соответствуют $2L + 1$ различных возможных значений M от $-L$ до $+L$. Наибольшее возможное в состоянии φ (при заданных L_1 и L_2) значение M есть $M = L_1 + L_2$, получающееся при $M_1 = L_1$, $M_2 = L_2$. Поэтому и наибольшее возможное значение M в состояниях ψ, а следовательно, и наибольшее L, есть $L_1 + L_2$. Далее, имеются два состояния φ с $M = L_1 + L_2 - 1$, именно при $M_1 = L_1$, $M_2 = L_2 - 1$ или при $M_1 = L_1 - 1$, $M_2 = L_2$. Следовательно, должно быть и два состояния ψ с этим значением M; одно из них есть состояние с $L = L_1 + L_2$ (и $M = L - 1$), а другое, очевидно, с $L = L_1 + L_2 - 1$ (причём $M = L$). Для значения $M = L_1 + L_2 - 2$ есть три различных состояния φ — с параметрами значений (M_1, M_2): $(L_1, L_2 - 2)$, $(L_1 - 1, L_2 - 1)$, $(L_1 - 2, L_2)$. Это значит, что наряду со значениями $L = L_1 + L_2$, $L = L_1 + L_2 - 1$, возможно также и значение $L = L_1 + L_2 - 2$.

Продолжая эти рассуждения, мы придём к результату, что при заданных L_1 и L_2 число L может пробегать значений $L = L_1 + L_2$, $L = L_1 + L_2 - 1$, ..., $|L_1 - L_2|$, \hspace{1cm} (30,1)
всего $2L_2 + 1$ (считая, что $L_2 \leq L_1$) различных значений. Легко проверить, что получается действительно $(2L_1 + 1) (2L_2 + 1)$ различных значений пары чисел M, L. При этом существенно отметить следующее обстоятельство. Если рассматривать как различные лишь состояния с различными значениями L, то каждому из возможных значений L (30,1) будет соответствовать всего по одному состоянию.

Этот результат можно наглядно изобразить с помощью так называемой «векторной модели». Если ввести два вектора L_1, L_2 длинами L_1 и L_2, то значения L изображаются как целочисленные длины векторов L, получающихся в результате векторного сложения L_1 и L_2; наибольшее $(L_1 + L_2)$ значение L получается при параллельных, а наименьшее $(|L_1 - L_2|)$ — при антипаратально- ных L_1 и L_2.

Полученное правило сложения моментов даёт, разумеется, возможность складывать и произвольное (больше двух) число моментов посредством повторного его применения.

В состояниях с определёнными значениями моментов L_1, L_2 и полного момента L имеют определённые значения также и скалярные произведения L_1, L_2, $L_1 L_2$, L_1^2, L_2^2. Легко найти эти значения. Для вычисления $L_1 L_2$ пишем $L = \hat{L}_1 + \hat{L}_2$ или, возвращая в квадрат и перенося члены:

$$2\hat{L}_1 \hat{L}_2 = \hat{L}^2 - \hat{L}_1^2 - \hat{L}_2^2.$$
Заменив операторы в правой стороне равенства их собственными значениями, получим собственное значение оператора в левой стороне равенства:

\[L_1 L_2 = \frac{1}{2} \{ L (L + 1) - L_1 (L_1 + 1) - L_2 (L_2 + 1) \}. \quad (30,2) \]

Аналогичным образом найдём:

\[LL_1 = \frac{1}{2} \{ L (L + 1) + L_1 (L_1 + 1) - L_2 (L_2 + 1) \}. \quad (30,3) \]

Выясним теперь «правило сложения чётностей». Как мы знаем, волновая функция \(\Psi \) системы, состоящей из двух независимых частей, представляет собой произведение волновых функций \(\Psi_1 \) и \(\Psi_2 \) этих частей. Ясно поэтому, что если обе последние обладают одинаковой чётностью (т. е. обе меняют или обе не меняют свой знак при изменении знака всех координат), то волновая функция всей системы будет чётной. Напротив, если \(\Psi_1 \) и \(\Psi_2 \) обладают различной чётностью, то функция \(\Psi \) будет нечётной.

Это правило, разумеется, непосредственно обобщается на случай системы, состоящей из произвольного числа \(n \) невзаимодействующих частей. Если эти части находятся в состояниях с определёнными чётностями, определяющимися соответствующими собственными значениями \(l_i = \pm 1 \) оператора \(\hat{l} \), то чётность \(I \) состояния всей системы определяется произведением

\[I = l_1 l_2 \ldots l_n. \quad (30,4) \]

В частности, если речь идёт о системе частиц, находящихся в центрально-симметрическом поле (принятым взаимодействие частиц друг с другом можно считать слабым), то \(l_i = (-1)^{l_i} \), где \(l_i \) — момент \(i \)-й частицы (см. (28,7)), так что чётность состояния всей системы определяется величиной

\[I = (-1)^{l_1 + l_2 + \ldots + l_n}. \quad (30,5) \]

Подчеркнём, что здесь в показателе стоит алгебраическая сумма моментов \(l_i \), вообще говоря, отличная от их «векторной суммы», т. е. момента \(L \) системы.

Если замкнутая система распадается на части (под влиянием действующих в ней самой сил), то её полные момент и чётность должны сохраняться. Это обстоятельство может сделать невозможным распад системы, даже если он возможен в энергетическом отношении.

Рассмотрим, например, атом, находящийся в чётном состоянии с моментом \(L = 0 \), причём энергетически он мог бы распасться на свободный электрон и ион в нечётном состоянии с тем же моментом \(L = 0 \). Легко видеть, что фактически такой распад не может произойти будет, как говорят, «запрещён»). Действительно, в силу закона со-
хранения момента, свободный электрон должен быть тоже обладать
равным нулю моментом и поэтому находиться в чётном состоянии
\(I = (-1)^0 = +1 \), но тогда состояние системы ион + свободный
электрон было бы нечётным, между тем как первоначальное состоя-
ние атома было чётным.

§ 31. Матричные элементы при сложении моментов

В этом параграфе мы выведем ряд формул, имеющих не столько
самостоятельный интерес, сколько полезных для различных квантово-
механических расчётов.

Рассмотрим снова систему, состоящую из двух частей (о кото-
рых мы будем условно говорить, как о подсистемах 1 и 2), с моментами
\(L_1 \) и \(L_2 \) и будем предполагать взаимодействие этих частей
настоятельно слабым, что в первом приближении можно считать мо-
менты \(L_1 \) и \(L_2 \) сохраняющимися 1).

Матричные элементы моментов \(L_1 \) и \(L_2 \) в каждой из подсистем
определяются формулами (25,13), в которых надо при этом под \(L, M \)
подразумевать соответственно \(L_1, M_1 \) или \(L_2, M_2 \). Возникает вопрос
о вычислении матричных элементов тех же моментов по отношению
к волновым функциям стационарных состояний системы в целом,
в которых имею определённые значения абсолютная величина и
\(z \)-компоненты полного монента \(L \).

Состояния системы определяются квантовыми числами \(L_1, L_2, L, M \),
a также рядом других чисел, совокупность которых для каждой из
подсистем обозначаем условно посредством \(n_1, n_2 \). Операторы \(\hat{L}_1 \) и
\(\hat{L}_2 \) коммутируют с гамильтонианом (в котором пренебрежено взаимо-
действием подсистем), а также друг с другом (так как относятся к
dвум разным подсистемам), но не с оператором \(L \) полного момента.
Поэтому их матрицы диагональны по \(n_1, n_2, L_1, L_2 \); для краткости
будем опускать эти индексы у матричных элементов.

При вычислении интересующих нас матричных элементов можно
воспользоваться общими формулами (27,11), (27,13), подразумевая
под произвольным вектором \(\mathbf{A} \) вектор \(L_1 \) (или \(L_2 \)). Этими формулами непосредственно определяется зависимость матричных элементов \((L_1)_{pL}^{nM} \) от квантового числа \(M \) и остаётся вычислить зависимо-
мость коэффициентов в этих формулах от \(L \). Будем обозначать эти
коэффициенты (величины \(A_{nL}^{nL} \) в (27,11), (27,13)) посредством \((L_1)_{L}^{L} \).

1) В примененииях формул, которые будут выведены в этом параграфе,
обычно приходится иметь дело не со сложением орбитальных моментов
dвух различных систем, а со сложением орбитального момента \(L \) атома (или
молекулы) с его же спином \(S \) (см. ниже главу VIII), причём их взаимодей-
ствие считается слабым. Все выводимые здесь формулы полностью примени-
мы и к этому случаю, и вообще к сложению любых коммутирующих друг
с другом слабо взаимодействующих моментов.

Диагональная компонента \((L_1)_L^L\) легко вычисляется, исходя из тождества

\[
\hat{L}_1 \hat{L} = \frac{1}{2} \left(\hat{L}_1^2 - \hat{L}_2^2 + \hat{L}_1^2 \right).
\]

Вычисляем диагональные матричные элементы для обеих сторон этого равенства; с правой стороны это есть просто собственное значение стоящего там оператора, а в левой получим \((L_1)_L^L L = (L + 1),\)

как это непосредственно видно из формул (27,15) (с \(L_1, L\) вместо \(A, B\)). В результате получаем:

\[
(L_1)_L^L = \frac{L_1 (L_1 + 1) - L_2 (L_2 + 1) + L (L + 1)}{2L (L + 1)}.
\]

Выражение для \((L_2)_L^L\) отличается перестановкой индексов 1 и 2.

Вычисление недиагональных компонент более сложно. Исходя из тождеств

\[
\hat{L}_1^2 = \frac{1}{2} \left(\hat{L}_1^2 + i \hat{L}_{1y} \right) \left(\hat{L}_1^2 - i \hat{L}_{1y} \right) + \frac{1}{2} \left(\hat{L}_1^2 + i \hat{L}_{1y} \right) \hat{L}_1^2 + \hat{L}_1^2.
\]

Берём от первого равенства матричный элемент для перехода \(L, M \rightarrow L, M + 1\), а от второго — диагональный матричный элемент.

После вычисления, которое мы здесь опускаем, получаем следующие два соотношения:

\[
(L_1)_L^L = \left| L_1_{L + 1} \right|^2 (2L + 3) + \left| L_1_{L - 1} \right|^2 (2L - 1) = L_1^L.
\]

\[
L_1 (L_1 + 1) = \left| L_1_{L - 1} \right|^2 L_1 (2L - 1) + \left| L_1_{L + 1} \right|^2 (L + 1)(2L + 3) +
\]

\[
+ \left(L_1^L \right)^2 (L + 1).
\]

Компонента \(L_1^L\) уже известна нам, так что из этих двух уравнений можно вычислить \(L_1_{L + 1}\) и \(L_1_{L - 1}\). В результате получаем 1):

\[
(L_1)_L^{L - 1} = (L_1)_L^{L - 1} =
\]

\[
\frac{\sqrt{(L - 1_L + L_2) (L + L_1 + L_2 + 1) (L_1 + L_2 - L + 1) (L + L_2 - L_2)}}{2L \sqrt{(2L + 1)(2L - 1)}}.
\]

Что касается аналогичных выражений для \(L_2\), то имеет место просто

\[
(L_2)_L^{L - 1} = -(L_1)_L^{L - 1}.
\]

1) Произвольную фазу выбираем так, чтобы получить действительные положительные величины.
Это следует непосредственно из того, что матрица вектора \(\mathbf{L} = \mathbf{L}_1 + \mathbf{L}_2 \) должна быть диагональной по \(\mathbf{L} \).

Далее, произведён аналогичные вычисления для произвольной векторной физической величины \(\mathbf{A} \) ¹, характеризующей подсистему 2. Её матричные элементы в этой подсистеме определяются формулами (27,11), (27,13), в которых надо при этом под \(n, L, M \) подразумевать \(n_2, L_2, M_2 \); коэффициенты \(A \) в этих формулах обозначим посредством \(A_{n_2}^{L_2} \). Возникает вопрос о вычислении матричных элементов вектора \(\mathbf{A} \) относительно системы в целом; покажем, как они могут быть выражены через те же величины \(A_{12}^{L_2} \).

Поскольку величина \(\mathbf{A} \) относится к подсистеме 2, то её оператор коммутирует с оператором \(\hat{L}_1 \) момента подсистемы 1. Поэтому матрица величины \(\mathbf{A} \) диагональна по \(\mathbf{L}_1 \); она диагональна также и по квантовым числам \(n_1 \) подсистемы 1. Эти индексы мы будем для краткости опускать и будем писать искомые матричные элементы, как \(A_{n_2}^{L_2 L M L M L L} \). Их зависимость от \(M \) определяется общими формулами (27,11), (27,13), в которых под \(n \) надо подразумевать совокупность чисел \(n_1, n_2, L_1, L_2 \). Коэффициенты \(A \) в этих формулах обозначаем теперь естественным образом как \(A_{n_2}^{L_2 L L L} \).

Прежде всего замечаем, что поскольку \(\mathbf{A} \) удовлетворяет правилам коммутации (27,3), как с полным моментом системы \(\mathbf{L} \), так и с моментом \(\mathbf{L}_2 \) подсистемы 2, к которой величина \(\mathbf{A} \) относится, то для отличных от нуля матричных элементов от \(\mathbf{A} \) должно быть, наряду с \(\mathbf{L}' = \mathbf{L} \pm 1 \), \(\mathbf{L} \), также и \(\mathbf{L}' = \mathbf{L}_2 \pm 1 \), \(\mathbf{L}_2 \). Мы не станем воспроизводить здесь полностью дальнейшие довольно длинные вычисления; укажем лишь, что надо исходить из уравнения

\[
(\hat{L}_1 - i \hat{L}_1) \hat{A}_2 = \hat{A}_2 (\hat{L}_1 + i \hat{L}_1),
\]

от которого берутся матричные элементы для переходов \(nL_2L'M \rightarrow nL'_2L''M' \) со следующими значениями \(L', L'' \). \(L' = L - 1; \hat{L} = \hat{L}_1 + 1; L' = L + 1; \hat{L} = \hat{L}_1 - 1, \) и значениями \(L_2' = L_2 + 1; L_2' = L_2 - 1 \). В результате получается ряд соотношений между различными компонентами \(A_{n_2}^{L_2 L L L} \), из которых можно определить зависимость этих величин от \(A_{n_2}^{L_2 L} \). Приводим окончательные

¹) Если под \(\mathbf{L}_1 \) понимать спин \(S \) атома, а под \(\mathbf{L}_2 \) — его орбитальный момент \(\mathbf{L} \), то \(\mathbf{A} \) может быть дипольным моментом атома, орбитальным моментом, радиусом-вектором отдельного элемента и т. п.
результаты:
\[
\begin{align*}
A_{n_2 L_3 L - 1}^{n_2 L_2 L} &= \\
&= A_{n_2 L_3 L - 1}^{n_2 L_2 L} \frac{\sqrt{(L - L_1 + L_2)(L + L_1 + L_2 + 1)(L_1 + L_2 - L + 1)(L + L_1 - L_2)}}{2L \sqrt{(2L - 1)(2L + 1)}} \\
&= - A_{n_2 L_3 L - 1}^{n_2 L_2 L} \frac{\sqrt{(L_1 + L_2 - L)(L + L_1 - L_2 + 1)(L_1 + L_2 - L + 1)(L + L_1 - L_2)}}{2L \sqrt{(2L - 1)(2L + 1)}} \\
A_{n_2 L_3 L - 1}^{n_2 L_3 L} &= \\
&= A_{n_2 L_3 L - 1}^{n_2 L_3 L} \frac{\sqrt{(L - L_1 + L_2)(L + L_1 + L_2 + 1)(L_1 + L_2 - L)(L + L_1 - L_2 + 1)}}{2L(L + 1)} \\
A_{n_2 L_3 L - 1}^{n_2 L_3 L} &= \\
&= A_{n_2 L_3 L - 1}^{n_2 L_3 L} \frac{\sqrt{(L - L_1 + L_2)(L + L_1 + L_2 + 1)(L - L_1 + L_2 - 1)(L + L_1 + L_2)}}{2L \sqrt{(2L + 1)(2L - 1)}} \\
A_{n_2 L_3 L - 1}^{n_2 L_3 L} &= A_{n_2 L_3 L - 1}^{n_2 L_3 L} \frac{L(L + 1) - L_1(L_1 + 1) + L_2(L_2 + 1)}{2L(L + 1)}.
\end{align*}
\]

Остальные отличные от нуля элементы равны комплексно сопряженным от написанных здесь; например,
\[
A_{n_2 L_3 L - 1}^{n_2 L_3 L} = \left(A_{n_2 L_3 L - 1}^{n_2 L_3 L} \right)^*.
\]

Коэффициенты $A_{n_2 L_3 L - 1}^{n_2 L_3 L}$ представляют собой некоторые функции от L_2, не зависящие от L_1. Их обозначения совпадают с обозначением соответствующих коэффициентов в матричных элементах величины A в подсистеме 2. Легко видеть, что те и другие действительно совпадают, так что полученными формулами устанавливается связь между матричными элементами одной и той же величины A в подсистеме 2 и в системе в целом. Для этого замечаем, что если в некотором состоянии числа L, M имеют наибольшие возможные (при данных L_1 и L_2) значения
\[
L = M = L_1 + L_2, \quad L' = M' = L_1 + L_2.
\]
Тогда при $L = M = L_1 + L_2,\quad L' = M' = L_1 + L_2$ матричный элемент величины A для системы в целом ($A_{n_2 L_3 L}^{n_2 L_2 L}$) должен совпадать с матричным элементом для подсистемы 2 ($A_{n_2 L_3 L}^{n_2 L_3 L}$). Вычисляя тот и другой и приравнивая их, непосредственно убеждаемся в том, что коэффициенты $A_{n_2 L_3 L - 1}^{n_2 L_3 L}$ в обоих случаях одинаковы.
Наконец, пусть в есть другая векторная физическая величина, характеризующая подсистему 1 и потому коммутирующая с \hat{L}_2. Для неё имеют место те же формулы (31.5), в которых надо только переставить индексы 1 и 2 и, кроме того, изменить знак у тех компонент, которые не диагональны по одному из чисел L_1 или L^1 (т. е. в первой и третьей формулах). Приведём здесь для справок полезные в некоторых вычислениях формулы для матричных элементов скаляра \mathbf{AB} в представлении n_1, n_2, L_1, L_2, L, M. Они вычисляются непосредственно по правилу умножения матриц и равны:

\[
(\mathbf{AB})_{n_1 n_2 L_1 L_2 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10} L_{11} L_{12} L_{13}} = \frac{1}{2} \left[(L + 1) - L_1 (L_1 + 1) - L_2 (L_2 + 1) \right] A_{n_2 L_2} B_{n_1 L_1},
\]

\[
(\mathbf{AB})_{n_1 n_2 L_1 L_2 - 1 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10} L_{11} L_{12} L_{13}} = \frac{1}{2} \sqrt{(L - L_1 - L_2)(L_1 + L_2 - L)(L + L_1 + L_2 + 1)(L + L_1 - L_2 + 1)} A_{n_2 L_2} B_{n_1 L_1},
\]

\[
(\mathbf{AB})_{n_1 n_2 L_1 L_2 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10} L_{11} L_{12} L_{13}} = \frac{1}{2} \sqrt{(L + L_1 - L_2)(L + L_2 - L_1 + 1)(L + L_1 + L_2 + 1)(L_1 - L_2 - L)} A_{n_2 L_2} B_{n_1 L_1},
\]

\[
(\mathbf{AB})_{n_1 n_2 L_1 L_2 - 1 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10} L_{11} L_{12} L_{13}} = -\frac{1}{2} \sqrt{(L_1 + L_2 + L + 1)(L_1 + L_2 + L)(L_1 + L_2 - L)(L_1 - L_2 - L - 1)} A_{n_2 L_2} B_{n_1 L_1},
\]

\[
(\mathbf{AB})_{n_1 n_2 L_1 L_2 L_3 L_4 L_5 L_6 L_7 L_8 L_9 L_{10} L_{11} L_{12} L_{13}} = \frac{1}{2} \sqrt{(L + L_2 - L_1)(L + L_2 - L_1 + 1)(L + L_1 - L_2)(L + L_1 - L_2 + 1)} A_{n_2 L_2} B_{n_1 L_1}.
\]

Остальные отличные от нуля элементы равны комплексно сопряжённым от написанных здесь.

1) Знаки в формулах (31.5) связаны с выбором знака в (31.2); приведённые знаки соответствуют сделанному нами ранее выбору положительного знака перед корнем в (31.2).
Глава V
ДВИЖЕНИЕ В ЦЕНТРАЛЬНО-СИММЕТРИЧЕСКОМ ПОЛЕ

§ 32. Движение в центрально-симметрическом поле

Задача о движении двух взаимодействующих друг с другом частиц в квантовой механике может быть сведена к задаче об одной частице, — аналогично тому, как это может быть сделано в классической механике. Гамильтониан двух частиц (с массами μ_1, μ_2), взаимодействующих по закону $U(r)$ (r — расстояние между частицами), имеет вид:

$$\hat{H} = -\frac{\hbar^2}{2\mu_1} \Delta_1 - \frac{\hbar^2}{2\mu_2} \Delta_2 + U(r),$$ \hspace{1cm} (32.1)

где Δ_1, Δ_2 — операторы Лапласа по координатам частиц. Введём вместо радиусов-векторов частиц r_1 и r_2 новые переменные R и r:

$$r = r_2 - r_1, \quad R = \frac{\mu_1 r_1 + \mu_2 r_2}{\mu_1 + \mu_2};$$ \hspace{1cm} (32.2)

r есть вектор взаимного расстояния, а R — радиус-вектор центра инерции частиц. Простое вычисление приводит к результату

$$\hat{H} = -\frac{\hbar^2}{2(\mu_1 + \mu_2)} \Delta_R - \frac{\hbar^2}{2\mu} \Delta + U(r)$$ \hspace{1cm} (32.3)

(Δ_R и Δ — операторы Лапласа соответственно по компонентам векторов R и r; $\mu_1 + \mu_2$ — полная масса системы, $\mu = \frac{\mu_1\mu_2}{\mu_1 + \mu_2}$ — так называемая приведённая масса). Таким образом гамильтониан распадается на сумму двух независимых частей. Соответственно этому, можно искать $\psi(r_1, r_2)$ в виде произведения $\varphi(R) \psi(r)$, где функция $\varphi(R)$ описывает движение центра инерции (как свободное движение частицы с массой $\mu_1 + \mu_2$), а $\psi(r)$ описывает относительное движение частиц (как движение частицы массы μ в центрально-симметрическом поле $U = U(r)$).

Уравнение Шредингера для движения частицы в центрально-симметрическом поле имеет вид:

$$\Delta \psi + \frac{2\mu}{\hbar^2} [E - U(r)] \psi = 0.$$ \hspace{1cm} (32.4)
Воспользовавшись известным выражением для оператора Лапласа в сферических координатах, напишем это уравнение в виде:

$$
\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 \psi}{\partial \varphi^2} \right] + \frac{2\mu}{h^2} [E - U(r)] \psi = 0. \quad (32.5)
$$

Если ввести сюда оператор \hat{I}^2 (24,15) квадрата момента, то мы получим 1):

$$
\frac{\hbar^2}{2\mu} \left[-\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \hat{I}^2 \psi \right] + U(r) \psi = E\psi. \quad (32.6)
$$

При движении в центрально-симметрическом поле момент количества движения сохраняется. Будем рассматривать стационарные состояния, в которых I^2 и I_z имеют определённые значения. Другими словами, ищем общие собственные функции операторов \hat{H}, \hat{I}^2 и \hat{I}_z.

Требование, чтобы ψ было собственной функцией операторов \hat{I}^2 и \hat{I}_z, определяет её зависимость от углов. Соответственно этому, ищем решения уравнения (32.6) в виде:

$$
\psi = R(r) Y_{lm}(\theta, \varphi), \quad (32.7)
$$

где функции $Y_{lm}(\theta, \varphi)$, определяются формулами § 26.

Поскольку $\hat{I}^2 Y_{lm} = l(l+1) Y_{lm}$, то для «радиальной функции» $R(r)$ получаем уравнение

$$
\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) - \frac{l(l+1)}{r^2} R + \frac{2\mu}{h^2} [E - U(r)] R = 0. \quad (32.8)
$$

Заметим, что это уравнение не содержит вовсе значения $I_z = m$, что соответствует известному уже нам $(2l + 1)$-кратному вырождению уровней.

Займёмся исследованием радиальной части волновых функций. Подстановкой

$$
R(r) = \frac{\chi(r)}{r} \quad (32.9)
$$

уравнение (32.8) приводится к виду:

$$
\frac{d^2 \chi}{dr^2} + \left[\frac{2\mu}{h^2} (E - U) - \frac{l(l+1)}{r^2} \right] \chi = 0. \quad (32.10)
$$

1) Если ввести оператор радиальной компоненты импульса p_r в виде

$$
\hat{p}_r \psi = -i\hbar \frac{1}{r} \frac{\partial}{\partial r} (r \psi) = -i\hbar \left(\frac{\partial}{\partial r} + \frac{1}{r} \right) \psi,
$$

то гамильтониан напишется в виде:

$$
\hat{H} = \frac{1}{2\mu} \left(\hat{p}_r^2 + \frac{\hbar^2 l_z^2}{r^2} \right) + U(r),
$$

совпадающим по форме с классической функцией Гамильтона в сферических координатах.
Если поле $U(r)$ везде конечно, то должна быть конечной во всём пространстве, включая начало координат, также и волновая функция ψ, а следовательно, и её радіальная часть $R(r)$. Отсюда следует, что $\chi(r)$ должна обращаться при $r=0$ в нуль:

$$\chi(0) = 0.$$ \hspace{1cm} (32,11)

В действительности это условие сохраняется (см. § 35) также и для поля, обращающегося при $r \to 0$ в бесконечность.

Условие нормировки для радиальной функции $R(r)$ определяется интегралом $\int_0^\infty |R|^2 r^2 dr$, а для функции $\chi(r)$, следовательно, интегралом $\int_0^\infty |\chi|^2 dr$.

Уравнение (32,10) формально совпадает с уравнением Шредингера для одномерного движения в поле с потенциальной энергией

$$U_1(r) = U(r) + \frac{\hbar^2}{2m} \frac{l(l+1)}{r^2},$$ \hspace{1cm} (32,12)

равной сумме энергии $U(r)$ и члена

$$\frac{\hbar^2 l(l+1)}{2m r^2} = \frac{\hbar^2 l^2}{2m r^3},$$

который можно назвать центробежной энергией. Таким образом задача о движении в центрально-симметрическом поле сводится к задаче об одномерном движении в области, ограниченной с одной стороны (граничное условие при $r=0$).

При одномерном движении в ограниченной с одной стороны области уровне энергии не вырождены (§ 19). Поэтому мы можем сказать, что заданием значения энергии решение уравнения (32,10), т. е. радиальная часть волновой функции, определяется полностью. Имея также в виду, что угловая часть волновой функции полностью определяется значениями l и m, мы приходим к выводу, что при движении в центрально-симметрическом поле волновая функция полностью определяется значениями E, l, m. Другими словами, энергия, квадрат момента и z-компоненты момента составляют вместе полный набор физических величин для такого движения.

Сведение задачи о движении в центрально-симметрическом поле к одномерному позволяет применить осцилляционную теорему (см. § 19). Она приводит к следующему результату. Расположим собственные значения энергии (дискретного спектра) при заданном l в порядке возрастания, перенумеровав их порядковыми номерами n_r, причём наиболее низкому уровню приписывается номер $n_r = 0$. Тогда n_r определяет число узлов радиальной части волновой функции при конечных значениях r (не считая точки $r=0$). Число n_r называют
радиальным квантовым числом. Число l при движении в центрально-симметрическом поле иногда называют азимутальным квантовым числом, а m — магнитным квантовым числом.

Нормальным состоянием при движении частицы в центрально-симметрическом поле всегда является состояние с $l = 0$; действительно, при $l \neq 0$ угловая часть волнового функции во всяком случае имеет узлы, между тем как волновая функция нормального состояния не должна иметь узлов вовсе. Можно также утверждать, что наименьшее возможное при заданном l собственное значение энергии растёт с увеличением l. Это следует уже из того, что наличие момента связано с добавлением в гамильтониане существенно положительного члена $\hbar^2 l(l+1)/2m r^2$, растущего с увеличением l.

Определим вид радиальной функции вблизи начала координат. При этом будем считать, что

$$\lim_{r \to 0} U(r) r^2 = 0.$$

Ищем $R(r)$ в виде степенного ряда по r, оставляя при малых r только первый член разложения; другими словами, ищем $R(r)$ в виде $R = \text{const.} r^s$. Подставляя это в уравнение

$$\frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) - l(l+1) R = 0,$$

получающееся из (32,8) умножением последнего на r^2 и переходом к $r \to 0$, найдём:

$$s(s+1) = l(l+1).$$

Отсюда

$$s = l \quad \text{или} \quad s = -(l+1).$$

Решение с $s = -(l+1)$ не удовлетворяет необходимым условиям; оно обращается в бесконечность при $r = 0$ (напомним, что $l \geq 0$). Таким образом остаётся решение с $s = l$, т. е. вблизи начала координат волновые функции состояний с данным l пропорциональны r^l:

$$R_l \approx \text{const.} r^l.$$

(32,13)

Вероятность частицы находиться на расстоянии от центра между r и $r + dr$ определяется величиной $r^2 |R|^2$ и поэтому пропорциональна r^{2l+1}. Мы видим, что она тем быстрее обращается в нуль в начале координат, чем больше значение l.

§ 33. Свободное движение (сферические координаты)

Волновая функция свободно движущейся частицы

$$\psi_p = \text{const.} e^{i \frac{p^2 r^2}{2\hbar}}$$

описывает стационарное состояние, в котором частица обладает определённым импульсом p (и энергией $E = \frac{p^2}{2\mu}$). Рассмотрим теперь та-
§ 33] СВОБОДНОЕ ДВИЖЕНИЕ (СФЕРЛВСКИЕ КООРДИНАТЫ) 135

кие стационарные состояния свободной частицы, в которых она сбладает, наряду с энергией, определёнными абсолютной величиной и z-компонентой момента. Вместо энергии нам будет удобно ввести «волновой вектор»

\[k = \frac{p}{\hbar} = \frac{\sqrt{2\mu E}}{\hbar}. \]
(33,1)

Волновая функция состояния с моментом \(l \) и его проекцией \(m \) имеет вид:

\[\psi_{klm} = R_{kl}(r) Y_{lm}(\theta, \varphi), \]
(33,2)

где радиальная функция определяется уравнением

\[R''_{kl} + \frac{2}{r} R'_{kl} + \left[k^2 - \frac{l(l+1)}{r^2} \right] R_{kl} = 0 \]
(33,3)

(уравнение (32,8) с \(U(r) \equiv 0 \)). Волновые функции \(\psi_{klm} \) удовлетворяют условиям нормировки и взаимной ортогональности:

\[\int \psi^*_k \psi_{lm} \psi_{klm} dV = \delta_{ll'} \delta_{mm'} \delta (k' - k). \]

Взаимная ортогональность при различных \(l, l' \) и \(m, m' \) обеспечивается угловыми функциями. Радиальные же функции должны быть нормированы условием

\[\int_0^\infty r^2 R_{k'l'} R_{kl} dr = \delta (k' - k). \]
(33,4)

Если нормировать волновые функции не «по шкале \(k \)», а «по шкале энергии», т. е. условием

\[\int_0^\infty r^2 R_{E'l'} R_{E'l} dr = \delta (E' - E), \]

то, согласно общей формуле (5,11), имеем:

\[R_{El} = R_{kl} \sqrt{\frac{dk}{dE}} = \frac{1}{\hbar} \sqrt{\frac{\mu}{k}} R_{kl}. \]
(33,5)

При \(l = 0 \) уравнение (33,3) можно написать, как

\[\frac{d^2}{dr^2} (r R_{k0}) + k^2 R_{k0} = 0; \]

его решением, конечным при \(r = 0 \), будет:

\[R_{k0} = A \frac{\sin kr}{r}. \]
Для определения нормировочной постоянной вычисляем интеграл:

\[\int_0^\infty R_{k_0}R_{k'0}r^2 \, dr = A^2 \int_0^\infty \sin kr \sin k'r \, dr = \]

\[= \frac{A^2}{2} \int_0^\infty \left[\cos (k - k') r - \cos (k + k') r \right] \, dr. \]

Интеграл от \(\cos (k + k') r \) с \(k_1, k' > 0 \) не расходится. Интеграл же от первого члена даёт с помощью формулы (13,7а):

\[\int_0^\infty R_{k_0}R_{k'0}r^2 \, dr = \frac{A^2 \pi}{2} \delta (k' - k). \]

Сравнивая с (33,4), получаем:

\[A = \sqrt{\frac{2}{\pi}}. \]

Таким образом нормированная функция \(R_{k_0} \) имеет вид \(^1\):

\[R_{k_0} = \sqrt{\frac{2}{\pi}} \frac{\sin kr}{r}. \] \hspace{1cm} (33,6)

Для решения уравнения (33,3) с \(l \neq 0 \) делаем подстановку

\[R_{kl} \Rightarrow r^l \chi_{kl}. \]

Для \(\chi_{kl} \) будем иметь уравнение

\[\chi_{kl}'' + \frac{2(l+1)}{r} \chi_{kl}' + k^2 \chi_{kl} = 0. \]

Если продифференцировать это уравнение по \(r \), то получим:

\[\chi_{kl}'''' + \frac{2(l+1)}{r} \chi_{kl}'' + \left[k^2 - \frac{2(l+1)}{r^2} \right] \chi_{kl}' = 0. \]

Подстановкой \(\chi_{kl} = r^{l+1} \chi_{k,l+1} \) оно приводится к виду:

\[\chi_{k,l+1}'' + \frac{2(l+2)}{r} \chi_{k,l+1}' + k^2 \chi_{k,l+1} = 0, \]

действительно совпадающему с тем, которому должна удовлетворять функция \(\chi_{k,l+1} \). Таким образом последовательные функции \(\chi_{kl} \) связаны друг с другом посредством

\[\chi_{k,l+1} = \frac{1}{r} \chi_{kl}', \]

\(^1\) Нормировку можно было бы произвести и с помощью способа, указанного в конце § 19.
а потому
\[\chi_{kl} = \left(\frac{d}{dr} \right)^l \chi_{k0}, \]
gде \(\chi_{k0} = R_{k0} \) определяется формулой (33,6) (это выражение может быть, разумеется, умножено еще на произвольную постоянную).

Таким образом окончательно находим следующее выражение для радиальных функций свободного движения частицы:

\[R_{kl} = (-1)^l \sqrt{\frac{2}{\pi}} \left[\frac{d^l}{dr^l} \right] \frac{1}{kr} \sin kr \] \hspace{1cm} (33,7)

(множитель \(k^{-l} \) введен для нормировки — см. ниже; множитель \((-1)^l\) — из соображений удобства 1).

Для получения асимптотического выражения радиальной функции (33,7) на больших расстояниях замечаем, что член, наименее быстро убывающий с \(r \) при \(r \to \infty \), получается при \(l \)-кратном дифференцировании \(\sin kr \):

\[R_{kl} \approx (-1)^l \sqrt{\frac{2}{\pi}} \frac{1}{kr} \frac{d^l}{dr^l} \sin kr. \]

Поскольку
\[-\frac{d}{dr} \sin kr = k \sin \left(kr - \frac{\pi}{2} \right), \ldots, \left(-\frac{d}{dr} \right)^l \sin kr = k^l \sin \left(kr - \frac{\pi l}{2} \right), \]
то получаем следующее асимптотическое выражение:

\[R_{kl} \approx \sqrt{\frac{2}{\pi}} \frac{1}{kr} \frac{\sin \left(kr - \frac{\pi l}{2} \right)}{r}. \] \hspace{1cm} (33,8)

Нормирование функций \(R_{kl} \) можно производить с помощью их асимптотических выражений так, как это было объяснено в § 19. Сравнивая асимптотическую формулу (33,8) с нормированной функцией \(R_{k0} \) (33,6), видим, что функции \(R_{kl} \) с выбранным в (33,7) коэффициентом действительно нормированы должным образом.

1) Функции \(R_{kl} \) могут быть выражены через бесселевы функции полуцелого порядка в виде:

\[R_{kl} = \sqrt{\frac{k}{r}} J_{l+\frac{1}{2}} (kr). \] \hspace{1cm} (33,7a)

Первые несколько функций \(R_{kl} \) будут следующими:

\[R_{k0} = \sqrt{\frac{2}{\pi}} k \frac{\sin kr}{kr}, \quad R_{k1} = \sqrt{\frac{2}{\pi}} k \left[\frac{\sin kr - \cos kr}{kr} \right], \]

\[R_{k2} = \sqrt{\frac{2}{\pi}} k \left[\left(\frac{3}{(kr)^4} - \frac{1}{(kr)^2} \right) \sin kr - \frac{3 \cos kr}{(kr)^2} \right]. \]
Вблизи начала координат (малые r) имеем, сохраняя только член с наиболее низкой степенью r:

\[
\left(\frac{1}{r} \frac{d}{dr}\right)^{l} \sin kr \approx \frac{1}{r} \frac{d}{dr} \sum_{n=0}^{\infty} (-1)^{n} \frac{k^{2n+1} r^{2n}}{(2n+1)!} = \frac{(-1)^{l}}{r} \frac{d}{dr} \frac{k^{2l+1} r^{2l}}{(2l+1)} = \\
= (-1)^{l} k^{2l+1} \frac{2 \cdot 4 \ldots 2l}{(2l+1)!} = (-1)^{l} k^{2l+1} \frac{1}{1 \cdot 3 \ldots (2l+1)}.
\]

Таким образом, вблизи начала координат функции R_{kl} имеют вид:

\[
R_{kl} \approx \sqrt{\frac{2}{\pi}} \frac{k^{l+1}}{1 \cdot 3 \ldots (2l+1)} r^{l},
\]

в согласии с общим результатом (32,13).

В некоторых задачах приходится рассматривать волновые функции, не удовлетворяющие обычным условиям конечности, а соответствующие потоку частиц, исходящему из начала координат. Волновая функция, описывающая такой поток частиц с моментом $l = 0$, получится, если взять вместо «стоящей сферической волны» (33.6) решение в виде «расходящейся сферической волны»:

\[
R_{k0}^{+} = A \frac{e^{ikr}}{r}. \tag{33.10}
\]

В начале координат эта функция обращается в бесконечность.

Аналогично, поток частиц, падающих на центр (с моментом $l = 0$), описывается волновой функцией в виде «сходящейся сферической волны»:

\[
R_{k0}^{-} = A \frac{e^{-ikr}}{r}. \tag{33.11}
\]

В общем случае для отличного от нуля момента l получим решение уравнения (33,3) в виде\footnote{Эти функции могут быть выражены через функции Ганкеля:

\[
R_{kl}^{\pm} = A \sqrt{\frac{k^{l}}{2r}} H_{l+\frac{1}{2}}^{(1,2)}(kr), \tag{33.12a}
\]}

\[
R_{kl}^{+} = (-1)^{l} A \frac{r^{l}}{k^{l}} \left(\frac{1}{r} \frac{d}{dr}\right)^{l} \frac{e^{ikr}}{r}. \tag{33.12}
\]

Асимптотическое выражение для этой функции есть

\[
R_{kl}^{\pm} \approx \frac{A}{r} e^{\pm i\left(kr - \frac{n^{2}}{2}\right)}. \tag{33.13}
\]

\footnote{1}
Вблизи же начала координат она имеет вид:

$$R_{kl} \approx A \frac{1 \cdot 3 \ldots (2l-1)}{2^{l-1} k^l} \frac{r^{-l-1}}{i}.$$ (33,14)

Нормируем эти функции так, чтобы они соответствовали испусканию (или поглощению) в единицу времени одной частицы. Для этого заметим, что на больших расстояниях сферическая волна в каждом небольшом участке может рассматриваться как плоская и плотность потока вероятности в ней равна $i = \psi \psi^*$, где $v = \frac{k}{\mu}$ — скорость частицы. Нормировка определяется условием $\int i df = 1$, где интегрирование производится по сферической поверхности большого радиуса r, т. е. $\int ir^2 do = 1$, где do — элемент телесного угла. Оставляя нормировку угловых функций прежней, мы должны, следовательно, положить коэффициент A в радиальной функции равным

$$A = \frac{1}{\sqrt{v}} = \sqrt{\frac{\mu}{kh}}.$$ (33,15)

Асимптотическое выражение, аналогичное (33,8), имеет место не только для радиальной части волновой функции свободного движения, но и при движении (с положительной энергией) в любом поле, достаточно быстро убывающем с расстоянием1). На больших расстояниях можно пренебречь в уравнении Шредингера как полем, так и центробежной энергией, и остаётся приближённое уравнение

$$\frac{1}{r} \frac{d^2 (rR_{kl})}{dr^2} + k^2 R_{kl} = 0.$$

Общее решение этого уравнения есть

$$R_{kl} \approx \sqrt{\frac{2}{\pi}} \sin \left(kr - \frac{l\pi}{2} + \delta_t \right),$$ (33,16)

gде δ_t — постоянная, а постоянный множитель выбран в соответствии с нормировкой волновой функции «по шкале k»2). Постоянная фаза δ_t определяется граничным условием (конечность R_{kl} при $r \to 0$), при котором должно решаться точное уравнение Шредингера, и не может быть вычислена в общем виде. Фазы δ_t являются, разумеется, функциями как от l, так и от k и представляют собой существенную характеристику собственных функций непрерывного спекра.

1) Как будет показано в § 105, поле должно убывать, как r^{-s} с $s > 1$, или ещё быстрее.

2) Член $- \frac{l\pi}{2}$ в аргументе синуса прибавлен для того, чтобы в отсутствии поля во всём пространстве было $\delta_t = 0$.
ЗАДАЧА

Определить уровни энергии для движения частицы с моментом \(l = 0 \) в центрально-симметрической потенциальной яме: \(U(r) = -U_0 \) при \(r < a \), \(U(r) = 0 \) при \(r > a \).

Решение. При \(l = 0 \) волновые функции зависят только от \(r \). Внутри ямы уравнение Шрейдингера имеет вид:

\[
\frac{1}{r} \frac{d^2}{dr^2} (r \psi) + k^2 \psi = 0, \quad k = \frac{1}{\hbar} \sqrt{2 \mu (U_0 - |E|)}.
\]

Решением, конечным при \(r = 0 \), будет

\[
\psi = A \frac{\sin kr}{r}.
\]

При \(r > a \) имеем уравнение

\[
\frac{1}{r} \frac{d^3}{dr^3} (r \psi) - \frac{\omega^2}{r^2} \psi = 0, \quad \omega = \frac{1}{\hbar} \sqrt{2 \mu |E|}.
\]

Решением, обращающимся в нуль на бесконечности, будет:

\[
\psi = A e^{-\omega r}.
\]

Условие непрерывности логарифмической производной от \(r \psi \) при \(r = a \) даёт

\[
k \ctg ka = -\omega = -\sqrt{\frac{2 \mu U_0}{\hbar^2} - k^2}, \tag{1}
\]

или

\[
\sin ka = \pm \sqrt{\frac{\hbar^2}{2 \mu a^2 U_0} - k^2/ka}. \tag{2}
\]

Этим уравнением определяются, неявным образом, искомые уровни энергии (должны быть взяты те корни уравнения, для которых \(\ctg ka < 0 \), как это следует из (1)). Первый из этих уровней (уровни с \(l = 0 \)) является в то же время самым глубоким из всех вообще уровней энергии (см. § 32), т. е. соответствует нормальному состоянию частицы.

При слишком малой глубине \(U_0 \) потенциальной ямы уровни отрицательной энергии вообще отсутствуют, частица не может "удержаться" ямой. Это легко видеть из уравнения (2) с помощью следующего графического построения. Корни уравнения вида \(\pm \sin x = ax \) изображаются точками пересечения прямой \(y = ax \) кривыми \(y = \pm \sin x \), причём мы должны рассматривать только те точки пересечения, в которых \(\ctg x < 0 \); соответствующие участки кривых \(y = \pm \sin x \) изображены на рис. 9 сплошной линией. Мы видим, что при слишком больших \(a \) (малых \(U_0 \)) таких точек пересечения вообще нет. Первая такая точка появляется, когда прямая \(y = ax \) занимает положение \(Oa \), т. е. при \(a = \frac{2}{\pi} \), и находится при \(x = \frac{\pi}{2} \). Полагая

\[
a = \frac{h}{\sqrt{2 \mu a^2 U_0}}, \quad x = ka,
\]

получаем отсюда для минимальной глубины ямы, при
которой появляется первый отрицательный уровень:

$$U_{0 \min} = \frac{\pi^2 \hbar^2}{8\mu a^2}.$$ (3)

Эта величина тем больше, чем меньше радиус ямы a. Положение первого уровня E_1 в момент его появления определяется из $ka = \frac{\pi}{2}$ и равно $E_1 = 0$, как и естественно было ожидать. По мере дальнейшего увеличения глубины ямы нормальный уровень E_1 тоже понижается.

§ 34. Разложение плоской волны

Рассмотрим свободную частицу, движущуюся с определённым импульсом $p = \hbar k$ в положительном направлении оси z. Волновая функция такой частицы имеет вид:

$$\psi = \text{const. } e^{ikz}.$$

Разложим эту функцию по волновым функциям ψ_{klm} свободного движения с определёнными моментами. Поскольку в рассматриваемом состоянии энергия имеет определённое значение $E = \frac{k^2 \hbar^2}{2M}$, то ясно, что в искомое разложение войдут только функции с тем же k. Далее, поскольку функция e^{ikz} обладает аксиальной симметрией вокруг оси z, то в её разложение могут войти только функции, не зависящие от угла φ, т. е. функции с $m = 0$. Таким образом должно быть

$$e^{ikz} = \sum_{l=0}^{\infty} a_l \psi_{kl0} = \sum_{l=0}^{\infty} a_l R_{kl} \Theta_{l0} \Phi_0,$$

где a_l — постоянные. Подставляя выражения (25,3), (26,7), (33,7) для функций Φ, Θ, R, получаем

$$e^{ikz} = \sum_{l=0}^{\infty} C_l P_l (\cos \theta) \left(\frac{r}{k}\right)^l \left(\frac{1}{r} \frac{d}{dr}\right)^l \sin kr \frac{kr}{kr} \quad (z = r \cos \theta),$$

где C_l — другие постоянные. Эти постоянные удобно определить, сравнивая коэффициенты при $(r \cos \theta)^n$ в разложениях обеих сторон равенства по степеням r. В правой стороне равенства такой член имеется только в n-м слагаемом; при $l > n$ разложение радиальной функции начинается с более высоких степеней r, а при $n < l$ полином $P_l (\cos \theta)$ содержит более низкие степени $\cos \theta$. Член с $\cos^l \theta$ в $P_l (\cos \theta)$ имеет коэффициентом $\frac{(2l)!}{2^l (l!)^2}$ (ср. формулу (c, 2)). Пользуясь также формулой (33,9), найдём интересующий нас член разложения правой стороны равенства

$$(-1)^l C_l \frac{(2l)! (kr \cos \theta)^l}{2^l (l!)^2 1 \cdot 3 \ldots (2l + 1)}.$$
В левой стороне равенства соответствующий (в разложении $e^{ikr\cos \theta}$) член есть

$$\frac{(ikr \cos \theta)^i}{l!}.$$

Приравнивая обе эти величины, найдём $C_l = (-i)^l (2l + 1)$. Таким образом окончательно получаем искомое разложение:

$$e^{ikz} = \sum_{l=0}^{\infty} (-i)^l (2l + 1) P_l (\cos \theta) \left(\frac{r}{k} \right)^l \left(\frac{1}{r} \frac{d}{dr} \right)^l \sin kr \frac{kr}{kr}. \quad (34,1)$$

На больших расстояниях это соотношение принимает асимптотическую форму:

$$e^{ikz} \approx \frac{1}{kr} \sum_{l=0}^{\infty} i^l (2l + 1) P_l (\cos \theta) \sin (kr - \frac{ln}{2}). \quad (34,1a)$$

Нормируем волновую функцию e^{ikz} на равную единице плотность потока вероятности, т. е. так, чтобы она соответствовала потоку частиц (параллельному оси z), через единицу площади сечения которого проходит в единицу времени одна частица. Легко видеть, что такая функция есть

$$\psi = \frac{1}{\sqrt{v}} e^{ikz} = \sqrt{\frac{\nu}{kh}} e^{ikz} \quad (34,2)$$

(v — скорость частиц). Умножая обе стороны равенства (34,1) на $\sqrt{\frac{\nu}{kh}}$ и вводя в правой его стороне нормированные функции $\psi_{klm}^\pm = R_{kl} (r) Y_{lm} (\theta, \varphi)$, получим:

$$\frac{1}{\sqrt{v}} e^{ikz} = \sum_{l=0}^{\infty} (-1)^l i^{l-1} \sqrt{\pi (2l + 1)} \frac{1}{k} (\psi_{kl0}^+ - \psi_{kl0}^-).$$

Квадрат модуля коэффициента при ψ_{kl0}^- (или ψ_{kl0}^+) в этом разложении определяет, согласно общим правилам, вероятность того, что частица в падающем на центр (или расходящемся из центра) потоке будет обладать моментом l (относительно начала координат). Поскольку волновая функция $\frac{1}{\sqrt{v}} e^{ikz}$ соответствует потоку частиц с равной единице плотностью, то эта «вероятность» обладает размерностью квадрата длины; она может быть наглядно истолкована как величина «прицельной площади» (в плоскости x, y), на которую должна попасть падающая частица, в случае если её момент равен l. Обозначая эту величину посредством σ_l, имеем:

$$\sigma_l = \frac{\pi}{k^2} (2l + 1) = \pi \left(\frac{\lambda}{2\pi} \right)^2 (2l + 1) \quad (34,3)$$

(λ — де-Броилевская длина волны частицы).
При больших значениях \(l \) сумма прицельных площадей по интервалу \(\Delta l \) значений \(l \) (такому, что \(1 \ll \Delta l \ll l \)) равна:

\[
\sum_{\Delta l} \sigma_l \approx \frac{\pi}{\hbar^2} 2l \Delta l = 2\pi \frac{\hbar^2}{\rho^2} \Delta l.
\]

При подстановке классического выражения для момента \(\hbar l = \rho p \) (где \(\rho \) — так называемое прицельное расстояние) это выражение переходит в

\[
2\pi \rho \Delta \rho,
\]
что совпадает с классическим выражением. Это обстоятельство не случайно: мы увидим в дальнейшем, что при больших значениях \(l \) движение квазиклассично (см. главу VII).

§ 35. «Падение» частицы на центр

Для выяснения некоторых особенностей квантовомеханического движения полезно изучить случай, не имеющий, правда, непосредственного физического смысла, — движение частицы в поле с потенциальной энергией, обрабатывающейся в некоторой точке (начале координат) в бесконечность по закону \(U(r) \approx -\frac{\beta}{r^2} \), \(\beta > 0 \); вид поля вдали от начала координат нас не будет интересовать. Мы видели в § 16, что это есть случай, как раз промежуточный между теми, когда имеются обычные стационарные состояния, и случаями, когда происходит «падение» частицы в начало координат.

Вблизи начала координат уравнение Шредингера в рассматривающем случае будет следующим:

\[
R'' + \frac{2}{r} R' + \frac{\gamma}{r^2} R = 0 \quad (35,1)
\]

\((R(r) — радиальная часть волновой функции), где введена постоянная

\[
\gamma = \frac{2\mu \beta}{\hbar^2} - l(l+1) \quad (35,2)
\]

и опущены все члены более низкого порядка по \(\frac{1}{r} \); значение энергии \(E \) предполагается конечным, и потому соответствующий член в уравнении тоже опущен.

Ищем \(R \) в виде \(R \sim r^s \); тогда получаем для \(s \) квадратное уравнение

\[
s(s+1) + \gamma = 0
\]

с двумя корнями

\[
s_1 = -\frac{1}{2} + \sqrt{\frac{1}{4} - \gamma}, \quad s_2 = -\frac{1}{2} - \sqrt{\frac{1}{4} - \gamma}. \quad (35,3)
\]
Для дальнейшего исследования удобно поступить следующим образом. Выделим вокруг начала координат малую область радиуса r_0 и заменим функцию $-\frac{y}{r^2}$ в этой области постоянной величиной $-\frac{y}{r_0^2}$.

Определив волновые функции в таком «обрезанном» поле, мы затем посмотрим, что получается при переходе к пределу $r_0 \to 0$.

Предположим сначала, что $\gamma < 1/4$. Тогда s_1 и s_2 — действительные отрицательные числа, причём $s_1 > s_2$. При $r > r_0$ общее решение уравнения Шредингера имеет вид (речь идёт везде о малых r):

$$ R = Ar^{s_1} + Br^{s_2} $$

(A, B — постоянные). При $r < r_0$ решение уравнения

$$ R'' + \frac{2}{r} R' + \frac{Y}{r_0^2} R = 0, $$

конечное в начале координат, имеет вид:

$$ R = C \frac{\sin kr}{r}, \quad k = \frac{\sqrt{\gamma}}{r_0}. $$

При $r = r_0$ функция R и её производная R' должны быть непрерывными функциями. Удобно написать одно из условий в виде условия непрерывности логарифмической производной от rR. Это приводит к уравнению

$$ \frac{A(s_1 + 1) r_0^{s_1} + B(s_2 + 1) r_0^{s_2}}{Ar_0^{s_1} + Br_0^{s_2}} = \frac{k}{\operatorname{ctg} kr_0}$$

или

$$ \frac{A(s_1 + 1) r_0^{s_1} + B(s_2 + 1) r_0^{s_2}}{Ar_0^{s_1} + Br_0^{s_2}} = \sqrt{\gamma} \operatorname{ctg} \sqrt{\gamma}. $$

Решённое относительно отношения B/A, это уравнение дает выражение вида:

$$ \frac{B}{A} = \text{const.} \ r_0^{s_1 - s_2}. $$

Переходя теперь к пределу $r_0 \to 0$, находим, что $\frac{B}{A} \to 0$ (напоминаем, что $s_1 > s_2$). Таким образом из двух расходящихся в начале координат решений уравнения Шредингера (35,1) должно быть выбрано то, которое обращается в бесконечность менее быстро:

$$ R = A \frac{1}{r^{s_1}}. $$

Пусть теперь $\gamma > 1/4$. Тогда s_1 и s_2 комплексны:

$$ s_1 = -\frac{1}{2} + i \sqrt{\gamma - \frac{1}{4}}, \quad s_2 = s_1^*.$$
Повторяя предыдущие рассуждения, снова придём к равенству (35,6), которое при подстановке значений \(s_1 \) и \(s_3 \) даёт:

\[
\frac{B}{A} = \text{const.} \ r_0^{\gamma \frac{\Gamma}{4} - 1}.
\] (35,8)

При переходе к пределу \(r_0 \to 0 \) это выражение не стремится ни к какому определённому пределу, так что мы не получаем никакого критерия для выбора одного определённого решения. Два независимых решения имеют, вблизи начала координат, вид:

\[
R = \text{const.} \ \frac{1}{\sqrt{r}} e^{\pm i \sqrt{\gamma - \frac{1}{4}} \ln r}.
\]

Общий вид действительного решения может быть написан следующим образом:

\[
R = \text{const.} \ \frac{1}{\sqrt{r}} \cos \left(\sqrt{\gamma - \frac{1}{4}} \ln r \pm \text{const.} \right).
\] (35,9)

Эта функция обладает бесконечным числом нулей. Поскольку, с одной стороны, выражение (35,9) справедливо для волновой функции (при достаточно малых \(r \)) при любом конечном значении энергии \(E \) частицы, а с другой стороны, волновая функция нормального состояния совсем не должна иметь нулей, то мы можем заключить, что «нормальное состояние» частицы в рассматриваемом поле соответствует энергии \(E = -\infty \). Но во всём состоянии дискретного спектра частица находится в основном в области пространства, в которой \(E > U \). Поэтому при \(E \to -\infty \) частица находится в бесконечно малой области вокруг начала координат, т. е. происходит «падение» частицы в центр.

«Критическое» поле \(U_{kr} \), при котором становится возможным «падение» частицы в центр, соответствует значению \(\gamma = 1/4 \). Наименьшее значение коэффициента при \(-1/r^2 \) получается при \(l = 0, \) т. е.

\[
U_{kr} = - \frac{\hbar^2}{8\mu r^2}.
\] (35,10)

Из формулы (35,3) (для \(s_1 \)) видно, что допускаемое решение уравнения Шредингера (вблизи точки, где \(U \sim 1/r^2 \)) расходится при \(r \to \infty \) не быстрее чем \(1/\sqrt{r} \). Если поле обращается при \(r \to 0 \) в бесконечность медленнее чем \(1/r^2 \), то в уравнении Шредингера в области вблизи начала координат можно вовсе пренебречь \(U(r) \) по сравнению с остальными членами, и мы получим те же решения, что и для свободного движения, т. е. \(\psi \sim r^l \) (см. § 33). Наконец, если поле обращается в бесконечность быстрее чем \(1/r^2 \) (как \(-1/r^s \) с \(s > 2 \)), то волновая функция вблизи начала координат пропорциональна \(r^{\frac{s}{2} - 1} \) (см. задачу 2 § 49). Во всех этих случаях произведение \(r^\psi \) обращается при \(r = 0 \) в нуль.
Далее, исследуем свойства решений уравнения Шредингера в поле, спадающем на больших расстояниях по закону $U \approx -\frac{\beta}{r^2}$ при прозрачном его виде на малых расстояниях. Предположим сначала, что $\gamma < 1/4$. Легко видеть, что в этом случае может существовать лишь конечное число отрицательных уровней энергии. Действительно, при энергии $E = 0$ уравнение Шредингера на больших расстояниях имеет вид (35.1) с общим решением (35.4). Но функция (35.4) не имеет (при $r \neq 0$) нулей; поэтому все нули искомой радиальной волновой функции лежат на конечных расстояниях от начала координат и их число, во всяком случае, конечно. Другими словами, порядковый номер уровня $E = 0$, замыкающего дискретный спектр, конечен.

Если же $\gamma > 1/4$, то дискретный спектр содержит бесконечное число отрицательных уровней энергии. Действительно, волновая функция состояния с $E = 0$ имеет на больших расстояниях вид (35.9) с бесконечным числом нулей, так что E порядковый номер во всяком случае бесконечен.

Наконец, пусть поле $U = -\frac{\beta}{r^2}$ во всём пространстве. Тогда при $\gamma > 1/4$ происходит <<падение>> частицы. Если же $\gamma < 1/4$, то отрицательные уровни энергии отсутствуют вовсе. Действительно, волновая функция состояния с $E = 0$ будет во всём пространстве вида (35.7); она не имеет вовсе нулей на больших расстояниях, т. е. соответствует наиболее низкому (при данном l) уровню энергии.

§ 36. Движение в кулоновом поле (сферические координаты)

Весьма важным случаем движения в центрально-симметрическом поле является движение в кулоновом поле

$$U = \pm \frac{\alpha}{r}$$

(α — положительная постоянная). Мы будем рассматривать сначала кулоново притяжение, соответственно чему будем писать $U = -\frac{\alpha}{r}$. Из общих соображений заранее очевидно, что спектр отрицательных собственных значений энергии будет дискретным (с бесконечным числом уровней), а спектр положительных энергий — непрерывным.

Уравнение (32.8) для радиальных функций имеет вид:

$$\frac{d^2R}{dr^2} + \frac{2}{r} \frac{dR}{dr} - \frac{l(l+1)}{r^2} R + \frac{2\mu}{\hbar^2} \left(E + \frac{\alpha}{r} \right) R = 0. \quad (36.1)$$

Если речь идёт об относительном движении двух притягивающихся частиц, то под μ надо подразумевать их приведённую массу.

В вычислениях, связанных с кулоновым полем, удобно пользоваться вместо обычных особыми единицами для измерения всех

1) Предполагается, что при малых r поле таково, что <<падения>> частицы не происходит.
величин, которые мы будем называть кулоновыми единицами. Именно, в качестве единиц измерения массы, длины и времени выберем соответственно:

\[\mu, \quad \frac{h^2}{\mu \alpha}, \quad \frac{h^3}{\mu \alpha^2}. \]

Все остальные единицы выводятся отсюда; так, единицей энергии будет

\[\frac{\mu \alpha^2}{h^2}. \]

Ниже, в этом и следующем параграфах, мы везде (где это не оговорено особо) пользуемся этими единицами\(^1\).

Переписываем уравнение (36,1) в новых единицах:

\[\frac{d^2R}{dr^2} + 2 \frac{dR}{dr} \frac{l(l+1)}{r^2} R + 2 \left(E + \frac{1}{r} \right) R = 0. \tag{36,2} \]

Введём вместо параметра \(E \) и переменной \(r \) новые величины

\[n = \frac{1}{\sqrt{-2E}}, \quad \rho = \frac{2r}{n}. \tag{36,3} \]

При отрицательных \(E \) (которые мы будем рассматривать сначала) \(n \) есть действительное положительное число. Уравнение (36,2) после подстановки (36,3) приобретает вид:

\[R'' + \frac{2}{\rho} R' + \left[-\frac{1}{4} + n \frac{l(l+1)}{\rho^2} \right] R = 0 \tag{36,4} \]

(штрихи означают дифференцирование по \(\rho \)).

При малых \(\rho \) решение, удовлетворяющее необходимым условиям конечности, пропорционально \(\rho^l \) (см. (32,13)). Для выяснения асимптотического поведения \(R \) при больших \(\rho \) опускаем в (36,4) члены с \(\frac{1}{\rho} \) и \(\frac{1}{\rho^2} \) и получаем уравнение

\[R'' = \frac{R}{4}, \]

\(^1\) Если \(\mu = 9,11 \cdot 10^{-28} \) \(e \) есть масса электрона, а \(\alpha = e^2 \) (\(e \) — заряд электрона), то кулоновы единицы совпадают с так называемыми атомными единицами. Атомная единица длины:

\[\frac{h^2}{\mu e^2} = 0,529 \cdot 10^{-8} \text{ см} \]

(так называемый боровский радиус). Атомная единица энергии равна

\[\frac{\mu e^4}{h^2} = 4,304 \cdot 10^{-11} \text{ эрг} = 27,07 \text{ эл.-вольт.} \]

Атомная единица заряда есть \(e = 4,80 \cdot 10^{-10} \) эл.-стат. единиц. Переход в формулах к атомным единицам производится, формально, положив \(e = 1, \mu = 1, \]

\(h = 1. \)
откуда \(R = e^{\pm \rho/2} \). Интересующее нас исчезающее на бесконечности решение, следовательно, при больших \(\rho \) ведёт себя, как \(e^{-\rho/2} \).

Ввиду этого естественно сделать подстановку

\[
R = \rho^l e^{-\rho/2} w(\rho),
\]
после чего уравнение (36,4) приобретает вид:

\[
\rho w'' + (2l + 2 - \rho) w' + (n - l - 1) w = 0.
\]

Решение этого уравнения должно расходиться на бесконечности не быстрее конечной степени \(\rho \), а при \(\rho \to 0 \) должно быть конечным. Удовлетворяющее последнему условию решение есть вырожденная гипергеометрическая функция

\[
w = F\left(-n + l + 1, \quad 2l + 2, \quad \rho\right)
\]
(см. § d математических дополнений) \(^1\)). Решение, удовлетворяющее условию на бесконечности, получится лишь при целых отрицательных (или равном нулю) значениях \(-n + l + 1\), когда функция (36,7) сводится к полиному степени \(n - l - 1\). В противном случае она расходится на бесконечности, как \(e^{\rho} \) (см. \((d, 14)\)).

Таким образом мы приходим к выводу, что число \(n \) должно быть целым положительным, причём при данном \(l \) должно быть:

\[
n \gg l + 1.
\]

Вспоминая определение (36.3) параметра \(n \), находим:

\[
E = -\frac{1}{2n^2}, \quad n = 1, 2, \ldots
\]

Этим решается задача об определении уровней энергии дискретного спектра в кулоновом поле. Мы видим, что имеется бесконечное множество уровней между нормальным уровнем \(E_1 = -\frac{1}{2} \) и нулем. Интервалы между каждыми двумя последовательными уровнями уменьшаются с увеличением \(n \); уровни сгущаются по мере приближения к значению \(E = 0 \), при котором дискретный спектр смыкается с непрерывным. В обычных единицах формула (36,9) имеет вид \(^2\):

\[
E = -\frac{\mu a^2}{2\hbar^2 n^2}.
\]

Целое число \(n \) называется главным квантовым числом. Радиальное же квантовое число, определённое в § 32, равно:

\[
n_r = n - l - 1.
\]

\(^1\) Второе решение уравнения (36,6) расходится при \(\rho \to 0 \), как \(\rho^{-2l-1} \).

\(^2\) Формула (36,10) была получена впервые Бором в 1913 г. до появления квантовой механики. В квантовой механике она была выведена В. Паули в 1926 г. с помощью матричного метода, а через несколько месяцев — Шредингером (с помощью волнового уравнения). Оригинальный способ решения кулоновой задачи с помощью волнового уравнения в импульсном представлении был дан В. А. Фоком (Изв. АН СССР, серия физич., 1935, № 2, стр. 169).
При заданном значении главного квантового числа число \(l \) может принимать значения

\[
l = 0, 1, \ldots, n - 1, \quad (36,11)
\]
всего \(n \) различных значений. В выражение (36,9) для энергии входит только число \(n \). Поэтому все состояния с различными \(l \), но одинаковыми \(n \) обладают одинаковой энергией. Таким образом каждое собственное значение оказывается вырожденным не только по магнитному квантовому числу \(m \) (как при всяком движении в центрально-симметрическом поле), но и по числу \(l \). Это последнее выражение (о нём говорят, как о «случайном») специфично именно для кулонового поля. Каждому данному значению \(l \) соответствует, как мы знаем, \(2l + 1 \) различных значений \(m \). Поэтому кратность выражения \(n \)-го уровня энергии равна:

\[
\sum_{l=0}^{n-1} (2l + 1) = n^2. \quad (36,12)
\]

Волновые функции стационарных состояний определяются формулами (36,5), (36,7). Вырожденная гипергеометрическая функция с целыми значениями обоих параметров совпадает, с точностью до множителя, с так называемыми обобщёнными полиномами Лагерра (см. § 4 в математическом дополнении). Поэтому

\[
R_{nl} = \text{const.} \rho^l e^{-\rho/2} L_{n+l}^{2l+1} (\rho).
\]

Радиальные функции должны быть нормированы условием

\[
\int_0^\infty R_{nl}^2 r^2 dr = 1.
\]

Их окончательный вид следующий 1):

\[
R_{nl} = -\frac{2}{n^2} \sqrt{\frac{(n-l-1)!}{[n+l]!}} e^{-r/n} \left(\frac{2r}{n}\right)^l L_{n+l}^{2l+1} \left(\frac{2r}{n}\right) =
\]

\[
= \frac{2}{n^l + 2(2l+1)!} \sqrt{\frac{(n+l)!}{(n-l-1)!}} (2r)^l e^{-r/n} F\left(-n+l+1, 2l+2, \frac{2r}{n}\right)
\]

(вычисление нормировочного интеграла см. § f, интеграл (f, 6) 1).

1) Приведём в явном виде несколько первых функций \(R_{nl} \):

\[
R_{10} = 2e^{-r}, \quad R_{20} = \frac{1}{\sqrt{2}} e^{-r^2} \left(1 - \frac{r}{2}\right), \quad R_{21} = \frac{1}{2\sqrt{6}} e^{-r^2} r,
\]

\[
R_{30} = \frac{2}{3\sqrt{3}} e^{-r^3} \left(1 - \frac{2}{3} r + \frac{2}{27} r^2\right),
\]

\[
R_{31} = \frac{8}{27\sqrt{6}} e^{-r^3} r \left(1 - \frac{r}{6}\right), \quad R_{32} = \frac{4}{81\sqrt{30}} e^{-r^3} r^2.
\]
Вблизи начала координат \(R_{nl} \) имеет вид:

\[
R_{nl} \approx r^l \frac{2^{l+1}}{n^{2l+1}(2l+1)!} \sqrt{(n+1)!} \frac{(n-l-1)!}{(n-l-1)!}.
\] (36,14)

На больших расстояниях

\[
R_{nl} \approx (-1)^{n-l-1} \frac{2^n}{n^{n+1}\sqrt{(n+l)!}(n-l-1)!} r^{n-l-1} e^{-r/n}.
\] (36,15)

Волновая функция \(R_{00} \) нормального состояния затухает экспоненционально на расстояниях порядка \(r \sim 1 \), т.е. в обычных единицах, \(r \sim \hbar^2/\mu a \).

Средние значения различных степеней \(\bar{r} \) вычисляются по формуле

\[
\bar{r}^k = \int_0^\infty r^{k+2} R_{nl}^2 dr.
\]

Очная формула для \(\bar{r}^k \) может быть получена с помощью формулы (f, 7). Здесь приведем несколько первых величин \(\bar{r}^k \) (с положительными и отрицательными \(k \)):

\[
\bar{r} = \frac{1}{2} [3n^2 - l(l+1)], \quad \bar{r}^2 = \frac{n^2}{2} [5n^2 + 1 - 3l(l+1)],
\]

\[
\bar{r}^{-1} = \frac{1}{n^2}, \quad \bar{r}^{-2} = \frac{1}{n^2 (l + \frac{1}{2})}.
\] (36,16)

Спектр положительных собственных значений энергии непрерывен и простирется от нуля до бесконечности. Каждое из этих собственных значений выражено, с бесконечной кратностью; каждому значению \(E \) соответствует бесконечное множество состояний с \(l \), пребывающими все целые значения от 0 до \(\infty \) (и со всеми возможными, при данных \(l \), значениями \(m \)).

Определяемое формулами (36,2) число \(n \) и переменная \(r \) теперь чисто мнимы:

\[
n = -\frac{i}{\sqrt{2E}} = -\frac{i}{k}, \quad \rho = 2ikr
\] (36,17)

(мы ввели вместо энергии «волновой вектор» \(k = \sqrt{2E} \)). Радиальные собственные функции непрерывного спектра имеют вид:

\[
R_{kl} = \frac{C_k}{(2l+1)!} (2kr)^l e^{-ikr} F\left(\frac{i}{k} + l + 1, 2l + 2, 2ikr\right), \] (36,18)

1) Нормировочный интеграл можно вычислить также, подставляя выражение (d, 13) для полиномов Лагерра и интегрируя по частям (подобно тому как вычислен интеграл (с, 11) для полиномов Лежандра).
где C_k — нормировочный множитель. Они могут быть представлены в виде комплексного интеграла (см. § d).

$$R_{kl} = C_k (2kr)^l e^{-ikr} \frac{1}{2\pi i} \oint e^\xi \left(1 - \frac{2ikr}{\xi} \right)^{i-l-1} \xi^{-2l-2} d\xi, \quad (36,19)$$

который берётся по контуру, изображённому на рис. 101). Подстановкой $\xi = 2ikr \left(t + \frac{1}{2} \right)$ этот интеграл приводится к более симметричному виду:

$$R_{kl} = C_k \left(\frac{-2kr}{2\pi} \right)^{i-l-1} e^{2ikt} \left(t + \frac{1}{2} \right)^{- \frac{i}{k} - l - 1} \left(t - \frac{1}{2} \right)^{i} k^{-l-1} dt \quad (36,20)$$

путь интегрирования обходит в положительном направлении точки $t = \pm \frac{1}{2}$). Из этого выражения непосредственно видно, что функции R_{kl} действительны.

Асимптотическое разложение (d, 9) выраженной гипергеометрической функции позволяет непосредственно получить такое же разложение для волновых функций R_{kl}. Два члена в (d, 9) приводят в функции R_{kl} к двум комплексно сопряжённым выражениям, и в результате получается:

$$R_{kl} =$$

$$= C_k e^{-\pi/2k} \frac{1}{kr} \Re \left\{ e^{ - \frac{i}{k} \left[kr - \frac{\pi}{2} (l+1) + \frac{1}{k} \ln 2kr \right] } \frac{\Gamma(l+1-\frac{i}{k}) }{ \Gamma\left(l+1 - \frac{i}{k} \right) } G\left(l+1+\frac{i}{k}, \frac{i}{k} - l - 2ikt \right) \right\}. \quad (36,21)$$

Если нормировать волновые функции «по шкале k» (т. е. условием (33,4)), то нормировочный коэффициент C_k равен:

$$C_k = \sqrt{\frac{2}{\pi} ke^{\pi/2k}} \left| \Gamma\left(l+1-\frac{i}{k} \right) \right|. \quad (36,22)$$

1) Вместо этого контура можно воспользоваться также любой замкнутой петлей, обходящей особые точки $\xi = 0$ и $\xi = 2ikr$ в положительном направлении. При целом l функция $V(\xi) = \xi^{-n-l} (\xi - 2ikr)^n - l$ (см. § d) возвращается к исходному значению при обходе вдоль такого контура.
Действительно, асимптотическое выражение \(R_{kl} \) при больших \(r \) (первый член разложения (36,21)) тогда имеет вид:

\[
R_{kl} \approx \sqrt{\frac{2}{\pi}} \frac{1}{r} \sin\left(kr + \frac{1}{k} \ln 2kr - \frac{\pi}{2} l + \delta_l\right),
\]

\[
\delta_l = \arg \Gamma\left(l + 1 - \frac{i}{k}\right),
\]

(36,23)

в согласии с общим видом (33,16) нормированных волновых функций непрерывного спектра в центрально-симметрическом поле. Выражение (36,23) отличается от (33,16) наличием логарифмического члена в аргументе у синуса; поскольку, однако, \(\ln r \) растет при увеличении \(r \) медленно по сравнению с самим \(r \), то при вычислении нормировочного интеграла, рассеивающегося на бесконечности, наличие этого члена не существенно.

Модуль \(\Gamma \)-функции, входящий в выражение (36,22) для нормировочного множителя, может быть выражен через элементарные функции. Воспользовавшись известными свойствами \(\Gamma \)-функций

\[
\Gamma(z + 1) = z \Gamma(z), \quad \Gamma(z) \Gamma(1 - z) = \frac{\pi}{\sin \pi z},
\]

имеем

\[
\Gamma\left(l + 1 + \frac{i}{k}\right) = (l + \frac{i}{k}) \ldots (1 + \frac{i}{k}) \frac{\Gamma\left(\frac{i}{k}\right)}{\Gamma(l + \frac{i}{k})},
\]

\[
\Gamma\left(l + 1 - \frac{i}{k}\right) = (l - \frac{i}{k}) \ldots (1 - \frac{i}{k}) \frac{\Gamma(1 - \frac{i}{k})}{\Gamma(l - \frac{i}{k})}
\]

и далее:

\[
\left|\Gamma\left(l + 1 - \frac{i}{k}\right)\right| = \left[\Gamma\left(l + 1 - \frac{i}{k}\right) \Gamma\left(l + 1 + \frac{i}{k}\right)\right]^{1/2} =
\]

\[
= \sqrt{\frac{\pi}{L}} \prod_{q=1}^{l} \sqrt{s^2 + \frac{1}{r^2}} \sinh^{-1/2} \frac{\pi}{k}.
\]

Таким образом

\[
C_k = \frac{2 \sqrt{k}}{\sqrt{1 - e^{-2\pi/k}}} \prod_{q=1}^{l} \sqrt{s^2 + \frac{1}{r^2}}.
\]

(36,24)

Радиальные функции \(R_{E_1} \), нормированные «по шкале энергии» получаются из функций \(R_{kl} \) делением на \(\sqrt{k} \); \(R_{E_1} = \frac{1}{\sqrt{k}} R_{kl} \) (см. (33,5)).

Предельным переходом к \(E \to 0 \) (т. е. \(k \to 0 \)) можно получать из \(R_{E_1} \) правильным образом нормированную радиальную функцию \(R_{0l} \) для особого случая равной нулю энергии 1). Предел ряда

1) Оказывается, что именно нормированная по шкале энергии функция \(R_{E_1} \) останется конечной в пределе \(E \to 0 \), между тем как \(R_{kl} \to 0 \) при \(k \to 0 \)
§ 36] ДВИЖЕНИЕ В КУЛОНОВОМ ПОЛЕ (СФЕРИЧЕСКИЕ КООРДИНАТЫ) 153

\[F\left(\frac{i}{k} + l + 1, 2l + 2, 2ik\right) \text{ при } k \to 0 \text{ есть} \]

\[1 - \frac{2r}{(2l + 2)!} + \frac{(2r)^2}{(2l + 2)(2l + 3) 2!} - \cdots = \]

\[= (2l + 1)! (2r)^{-l+1/2} J_{2l+1}(\sqrt{8r}), \]

gде \(J_{2l+1} \) — функция Бесселя порядка \(2l + 1 \). Отсюда без труда получаем:

\[R_{0l} = \sqrt{\frac{2}{r}} J_{2l+1}(\sqrt{8r}). \] \hspace{1cm} (36,25)

Асимптотический вид этой функции при больших \(r \) следующий:

\[R_{0l} \approx \sqrt{\frac{2}{\pi r^3}} \sin \left(\sqrt{8r} - l\pi - \frac{\pi}{4} \right). \] \hspace{1cm} (36,26)

В кулоновом поле отталкивания \(U = \frac{\alpha}{r} \) имеется только непрерывный спектр положительных собственных значений энергии. Уравнение Шредингера в этом поле может быть формально получено из уравнения для поля притяжения изменением знака у \(r \). Поэтому волновые функции стационарных состояний получаются непосредственно из (36,18) посредством этой же замены. Нормировочный коэффициент снова определяется по асимптотическому выражению и в результате получается:

\[R_{kl} = \frac{C_k}{(2l + 1)!} (2kr)^l e^{ikr} F\left(\frac{i}{k} + l + 1, 2l + 2, -2ikr\right), \]

\[C_k = \sqrt{\frac{2}{\pi k}} e^{-\pi/2k} \left| \Gamma\left(l + 1 + \frac{i}{k}\right) \right| = \frac{2\sqrt{k}}{\sqrt{2} \Gamma\left(l + \frac{1}{k}\right)} \prod_{s=1}^{l} \sqrt{s^2 + \frac{1}{k^2}}. \] \hspace{1cm} (36,27)

Асимптотическое выражение этой функции при больших \(r \) имеет вид:

\[R_{kl} \approx \sqrt{\frac{2}{\pi}} \frac{1}{r} \sin \left(kr - \frac{1}{k} \ln 2kr - \frac{l\pi}{2} + \delta_e \right), \]

\[\delta_e = \arg \Gamma\left(l + 1 + \frac{i}{k}\right). \] \hspace{1cm} (36,28)

ЗАДАЧИ

1. Определить уровни энергии частицы, движущейся в центрально-симметрическом поле с потенциальной энергией \(U = \frac{A}{r^2} - \frac{B}{r} \) (рис. 11).

РЕШЕНИЕ. Спектр положительных энергий непрерывен, а отрицательных — дискретен; рассматриваем последний, Уравнением Шредингера для
радиальной функции будет:
\[
\frac{d^2R}{dr^2} + \frac{2}{r} \frac{dR}{dr} + \frac{2\mu}{\hbar^2} \left(E - \frac{\hbar^2}{2\mu} \frac{l(l+1)}{r^2} - \frac{A}{r^2} + \frac{B}{r^2} \right) R = 0. \tag{1}
\]
Вводим новую переменную
\[
\rho = 2 \frac{\sqrt{-2\mu E}}{\hbar} r
\]
и обозначения
\[
\frac{2\mu A}{\hbar^2} + l(l+1) = s(s+1), \tag{2}
\]
\[
\frac{B}{\hbar} \sqrt{-\frac{\mu}{2E}} = n. \tag{3}
\]
Тогда уравнение (1) приобретает вид:
\[
R'' + \frac{2}{\rho} R' + \left(-\frac{1}{4} + \frac{n}{\rho} - \frac{s(s+1)}{\rho^2} \right) R = 0,
\]
формально совпадающий с (36,4). Поэтому сразу заключаем, что удовлетворяющее необходимым условиям решение есть
\[
R = \rho^s e^{-\nu/2} F(-n+s+1, 2s+2, \nu),
\]
причём \(n-s-1=p\) должно быть целым положительным числом (или нулём), а под \(s\) надо понимать положительный корень уравнения (2). Согласно определению (3), получаем, следовательно, уровни энергии:
\[
-E_p = \frac{2B^2\mu}{\hbar^2} \left[2p+1 + \sqrt{(2l+1)^2 + \frac{8\mu A}{\hbar^2}} \right]^{-2}.
\]
2. То же при \(U = \frac{A}{r^2} + Br^2\) (рис. 12).

Решение. Имеется только дискретный спектр. Уравнение Шредингера будет следующим:
\[
\frac{d^2R}{dr^2} + \frac{2}{r} \frac{dR}{dr} + \frac{2\mu}{\hbar^2} \left(E - \frac{\hbar^2}{2\mu} \frac{l(l+1)}{r^2} - \frac{A}{r^2} - Br^2 \right) R = 0.
\]
Вводя переменную
\[
\xi = \frac{\sqrt{2\mu B}}{\hbar} r^2
\]
§ 37] Движение в кулоновом поле (параболические координаты) 155

и обозначения

\[l(l + 1) + \frac{2\mu A}{\hbar^2} = 2s(2s - 1), \quad \sqrt{\frac{2\mu}{B}} \frac{E}{\hbar} = 4(n + s) + 1, \]

получаем уравнение

\[\xi R'' + \frac{1}{2} R' + \left[n + s + \frac{1}{4} - \frac{\xi}{4} - \frac{s(s - \frac{1}{2})}{\xi} \right] R = 0. \]

Искомое решение ведёт себя при \(\xi \to \infty \) асимптотически, как \(e^{-\xi/2} \), а при малых \(\xi \) пропорционально \(\xi \), где под \(s \) надо понимать положительное значение

\[s = \frac{1}{4} \left[1 + \sqrt{(2l + 1)^2 + \frac{8\mu A}{\hbar^2}} \right]. \]

Поэтому ищем решение в виде:

\[R = e^{-\xi/2} \xi^s w, \]

и получаем для \(w \) уравнение

\[\xi w'' + \left(2s + \frac{1}{2} - \xi \right) w' + nw = 0, \]

откуда

\[w = F(-n, 2s + \frac{1}{2}, \xi), \]

причём \(n \) должно быть целым неотрицательным числом. Для уровней энергии получаем, следовательно, бесконечное множество равноотстоящих значений

\[E_n = \hbar \sqrt{\frac{B}{2\mu}} \left[4n + 2 + \sqrt{(2l + 1)^2 + \frac{8\mu A}{\hbar^2}} \right], \quad n = 0, 1, 2, \ldots \]

§ 37. Движение в кулоновом поле (параболические координаты)

Разделение переменных в уравнении Шредингера, написанном в сферических координатах, всегда возможно для движения в любом центрально-симметрическом поле. В случае кулонова поля разделение переменных оказывается возможным также и в так называемых параболических координатах. Решение задачи о движении в кулоновом поле в параболических координатах полезно при исследовании ряда задач, в которых определённое направление в пространстве является выделенным, например, благодаря наличию внешнего (помимо кулонового) электрического поля (§ 73).

Параболические координаты \(\xi, \eta, \varphi \) определяются уравнениями

\[x = \sqrt{\xi\eta} \cos \varphi, \quad y = \sqrt{\xi\eta} \sin \varphi, \quad z = \frac{1}{2} (\xi - \eta), \]

или обратно:

\[\xi = r + z, \quad \eta = r - z, \quad \varphi = \arctg \frac{y}{x}; \quad (37,2) \]

или:

\[r = \sqrt{x^2 + y^2 + z^2} = \frac{1}{2} (\xi + \eta) \quad (37,1) \]
ξ и η пробегают значения от 0 до ∞, φ — от 0 до 2π. Поверхности $\xi = \text{const.}$ и $\eta = \text{const.}$ представляют собой параболоиды вращения с осью вдоль оси x и фокусом в начале координат. Эта система координат ортогональна. Элемент длины определяется выражением

$$dl^2 = \frac{\xi + \eta}{4\xi} d\xi^2 + \frac{\xi + \eta}{4\eta} d\eta^2 + \xi d\varphi^2,$$ \hspace{1cm} (37.3)

а элемент объёма:

$$dV = \frac{1}{4} (\xi + \eta) d\xi d\eta d\varphi.$$ \hspace{1cm} (37.4)

Из (37.3) следует для оператора Лапласа выражение

$$\Delta = \frac{4}{\xi + \eta} \left[\frac{\partial}{\partial \xi} (\xi \frac{\partial}{\partial \xi}) + \frac{\partial}{\partial \eta} (\eta \frac{\partial}{\partial \eta}) \right] + \frac{1}{\xi \eta} \frac{\partial^2}{\partial \varphi^2}.$$ \hspace{1cm} (37.5)

Уравнение Шредингера для частицы в кулоновом поле притяжения $U = -\frac{1}{r} = -\frac{2}{\xi + \eta}$ приобретает вид:

$$\frac{4}{\xi + \eta} \left[\frac{\partial}{\partial \xi} (\xi \frac{\partial}{\partial \xi}) + \frac{\partial}{\partial \eta} (\eta \frac{\partial}{\partial \eta}) \right] + \frac{1}{\xi \eta} \frac{\partial^2}{\partial \varphi^2} + 2 \left(E + \frac{2}{\xi + \eta} \right) \psi = 0.$$ \hspace{1cm} (37.6)

Ищем собственные функции ψ в виде:

$$\psi = f_1(\xi) f_2(\eta) e^{im\varphi},$$ \hspace{1cm} (37.7)

где m — магнитное квантовое число. Подставляя это выражение в уравнение (37.6) умноженное на $\frac{\xi + \eta}{4}$, и разделяя переменные ξ и η, получим для f_1 и f_2 уравнения

$$\frac{d}{d\xi} \left(\xi \frac{df_1}{d\xi} \right) + \left[\frac{E}{2} \xi - \frac{m^2}{4\xi} + \beta_1 \right] f_1 = 0,$$

$$\frac{d}{d\eta} \left(\eta \frac{df_2}{d\eta} \right) + \left[\frac{2}{2} \eta - \frac{m^2}{4\eta} + \beta_2 \right] f_2 = 0,$$ \hspace{1cm} (37.8)

где «параметры разделения» β_1, β_2 связаны друг с другом посредством

$$\beta_1 + \beta_2 = 1.$$ \hspace{1cm} (37.9)

Рассмотрим дискретный спектр энергии ($E < 0$). Вводим вместо E, ξ, η величины

$$n = \frac{1}{\sqrt{-2E}}, \quad \rho_1 = \xi \sqrt{-2E} = \frac{\xi}{n}, \quad \rho_2 = \frac{\eta}{n},$$ \hspace{1cm} (37.10)

после чего получаем уравнение для f_1:

$$\frac{d^2 f_1}{d\rho_1^2} + \frac{1}{\rho_1} \frac{df_1}{d\rho_1} + \left[-\frac{1}{4} + \frac{1}{\rho_1} \left(\frac{|m| + 1}{2} + n_1 \right) - \frac{m^2}{4\rho_1^2} \right] f_1 = 0.$$ \hspace{1cm} (37.11)
и такое же уравнение для \(f_2 \), причём мы ввели также обозначения

\[
\begin{align*}
 n_1 &= \frac{|m| + 1}{2} + n_{2,1}, \\
 n_2 &= \frac{|m| + 1}{2} + n_{2,2}.
\end{align*}
\] (37,12)

Подобно тому как было сделано для уравнения (36,4), находим, что \(f_1 \) ведёт себя при больших \(\rho_1 \), как \(e^{-\nu_1/2} \), а при малых \(\rho_1 \) — как \(\rho_1^{1/2} \). Соответственно этому, ищем решение уравнения (37,11) в виде:

\[
f_1 (\rho_1) = e^{-\nu_1/2} \rho_1^{1/2} \varphi_1 (\rho_1)
\]

(и аналогично для \(f_2 \)), и получаем для \(\varphi_1 \) уравнение

\[
\rho_1 \varphi''_1 + (|m| + 1 - \rho_1) \varphi'_1 + n_1 \varphi_1 = 0.
\]

Это есть снова уравнение вырожденной гипергеометрической функции. Решение, удовлетворяющее условиям конечности, будет вида:

\[
\varphi_1 = F (-n_1, |m| + 1, \rho_1),
\]

причём \(n_1 \) должно быть целым неотрицательным числом.

Таким образом, каждое стационарное состояние дискретного спектра определяется в параболических координатах тремя целыми числами: «параболическими квантовыми числами» \(n_1 \) и \(n_2 \) и магнитным квантовым числом \(m \). Для числа \(n \) («главное квантовое число») имеем из (37,9) и (37,12):

\[
n = n_1 + n_2 + |m| + 1.
\] (37,13)

Для уровня энергии получается, разумеется, прежний результат (36,9).

При заданном \(n \) число \(|m| \) может принимать \(n \) различных значений от 0 до \(n - 1 \). При фиксированных \(n \) и \(|m| \) число \(n_1 \) пробегает \(n - |m| \) значений от 0 до \(n - |m| - 1 \). Учитывая также, что при заданном \(|m| \) можно еще выбрать функции \(\varphi_1 \) с \(m = \pm |m| \), найдём, что всего для данного \(n \) имеется

\[
2 \sum_{m = 1}^{n - 1} (n - m) + (n - 0) = n^2
\]

различных состояний — в соответствии с полученным в § 36 результатом.

Волновые функции \(\psi_{n_1 n_2 m} \) дискретного спектра должны быть нормированы условием

\[
\int |\psi_{n_1 n_2 m}|^2 dV = \frac{1}{4} \int \int \int |\psi_{n_1 n_2 m}|^2 (\xi + \eta) \; d\xi \; d\eta = 1. \] (37,14)

Нормированные функции имеют вид:

\[
\psi_{n_1 n_2 m} = \frac{\sqrt{2}}{n^2} f_{n_1} (\frac{\xi}{n}) f_{n_2} (\frac{\eta}{n}) \frac{e^{im\varphi}}{\sqrt{2\pi}}.
\] (37,15)
где

\[f_{pm}(\rho) = \frac{1}{|m|!} \sqrt{\frac{(p-1)!}{p!}} F(-p, |m|+1, \rho). \quad (37,16) \]

Волновые функции в параболических координатах, в противоположность волновым функциям в сферических координатах, не симметричны относительно плоскости \(z=0 \). При \(n_1 > n_2 \) вероятность нахождения частицы на стороне \(z > 0 \) больше, чем на стороне \(z < 0 \), а при \(n_1 < n_2 \) — наоборот.

Непрерывному спектру \((E > 0) \) соответствует непрерывный спектр действительных значений параметров \(\beta_1, \beta_2 \) в уравнениях \((37,8) \) (разумеется, попрежнему связанных соотношением \((37,9) \)). Мы не станем выписывать здесь соответствующих волновых функций, поскольку ими обычно не приходится пользоваться. Уравнения \((37,8) \), рассматриваемые как уравнения для «собственных значений» величин \(\beta_1, \beta_2 \), обладают (при \(E > 0 \)) также и спектром комплексных значений \(\beta_1, \beta_2 \). Соответствующие волновые функции будут выписаны в § 112, где мы воспользуемся ими для решения задачи о рассеянии в кулоновом поле.
Глава VI

Теория возмущений

§ 38. Возмущения, не зависящие от времени

Точное решение уравнения Шредингера может быть найдено лишь в сравнительно небольшом числе простейших случаев. Большинство задач квантовой механики приводит к слишком сложным уравнениям, которые не могут быть решены точным образом. Часто, однако, в условиях задачи фигурируют величины разного порядка; среди них могут оказаться малые величины, после пренебрежения которыми задача упрощается настолько, что делается возможным ее точное решение. В таком случае первый шаг в решении поставленной физической задачи состоит в точном решении упрощённой задачи, а второй — в приближённом вычислении поправок, обусловленных малыми членами, отброшенными в упрощённой задаче. Существует общий метод для вычисления этих поправок, который носит название теории возмущений.

Предположим, что гамильтониан данной физической системы имеет вид:

$$\hat{H} = \hat{H}_0 + \hat{V},$$

где \(\hat{V} \) представляет собой малую поправку («возмущение») к «невозмущённому» оператору \(\hat{H}_0 \). В §§ 38—39 мы будем рассматривать возмущения \(\hat{V} \), не зависящие явно от времени (то же самое предполагается и в отношении \(\hat{H}_0 \)). Условия, необходимые для того, чтобы можно было рассматривать оператор \(\hat{V} \) как «малый» по сравнению с оператором \(\hat{H} \), будут выведены ниже.

Задача теории возмущений для дискретного спектра может быть сформулирована следующим образом. Предполагается, что собственные функции \(\psi_n^{(0)} \) и собственные значения \(E_n^{(0)} \) дискретного спектра невозмущённого оператора \(\hat{H}_0 \) известны, т. е. известны точные решения уравнения

$$\hat{H}_0 \psi^{(0)} = E^{(0)} \psi^{(0)}. \quad (38,1)$$

Требуется найти приближённые решения уравнения

$$\hat{H} \psi = (\hat{H}_0 + \hat{V}) \psi = E \psi, \quad (38,2)$$
т. е. приближенные выражения для собственных функций ψ_n и значений E_n возмущенного оператора \hat{H}.

В этом параграфе мы будем предполагать, что все собственные значения оператора \hat{H}_0 не выражены. Кроме того, для упрощения выводов будем считать, что имеется только дискретный спектр собственных значений; все формулы обобщаются на случай наличия непрерывного спектра непосредственным образом.

Вычисления удобно производить с самого начала в матричном виде. Для этого разложим искомую функцию ψ по функциям $\psi_m^{(0)}$:

$$\psi = \sum_m c_m \psi_m^{(0)}.$$

(38.3)

Подставляя это разложение в (38.2), получим

$$\sum_m c_m (E_m^{(0)} + \hat{V}) \psi_m^{(0)} = \sum_m c_m E_m^{(0)},$$

а умножив это равенство с обеих сторон на $\psi_k^{(0)}$ и интегрируя, найдем:

$$(E - E_k^{(0)}) c_k = \sum_m V_{km} c_m.$$

(38.4)

Здесь введена матрица V_{km} оператора возмущения \hat{V}, определенная с помощью невозмущенных функций $\psi_m^{(0)}$:

$$V_{km} = \int \psi_k^{(0)*} \hat{V} \psi_m^{(0)} dq.$$

(38.5)

Будем искать значения коэффициентов c_m и энергии E в виде рядов

$$E = E^{(0)} + E^{(1)} + E^{(2)} + \cdots,$$

$$c_m = c_m^{(0)} + c_m^{(1)} + c_m^{(2)} + \cdots,$$

gде величины $E^{(1)}$, $c_m^{(1)}$ — того же порядка малости, что и возмущение \hat{V}, величины $E^{(2)}$, $c_m^{(2)}$ — второго порядка малости (считая \hat{V} — первого порядка малости) и т. д.

Определим поправки к n-му собственному значению и собственной функции, соответственно чему полагаем: $c_n^{(0)} = 1$, $c_m^{(0)} = 0$, $m \neq n$. Для отыскания первого приближения подставляем в уравнение (38.4) $E = E_n^{(0)} + E_n^{(1)}$, $c_k = c_k^{(0)} + c_k^{(1)}$, сохраняя только члены первого порядка. Уравнение с $k = n$ даёт:

$$E_n^{(1)} = V_{nn} = \int \psi_n^{(0)*} \hat{V} \psi_n^{(0)} dq.$$

(38.6)

Таким образом поправка первого приближения с собственному значению $E_n^{(0)}$ равна среднему значению возмущения в состоянии $\psi_n^{(0)}$.
§ 38] ВОЗМУЩЕНИЯ, НЕ ЗАВИСИМЫЕ ОТ ВРЕМЕНИ

Уравнение (38,4) с \(k \neq n \) даёт:

\[
c^{(1)}_k = \frac{V_{kn}}{E_n^{(0)} - E_k^{(0)}} \quad (k \neq n),
\]

а \(c^{(1)}_n \) остаётся произвольным и должно быть выбрано так, чтобы функция \(\psi_n = \psi^{(0)}_n + \psi^{(1)}_n \) была нормирована с точностью до членов первого порядка включительно. Для этого можно положить \(c^{(1)}_n = 0 \). Действительно, функция

\[
\psi^{(1)}_n = \sum_m \frac{V_{mn}}{E_n^{(0)} - E_m^{(0)}} \psi^{(0)}_m
\] \((38,7) \)

(штрих у знака суммы означает, что при суммировании по \(m \) надо опустить член с \(m = n \)) ортогональна к \(\psi^{(0)}_n \), а поэтому интеграл от \(|\psi^{(0)}_n + \psi^{(1)}_n|^2 \) отличается от единицы лишь на величину второго порядка малости.

Формула (38,7) определяет поправку первого приближения к волновым функциям. Из неё, кстати, видно, каково условие применимости рассматриваемого метода теории возмущений. Именно должно иметь место неравенство

\[
|V_{mn}| \ll |E_n^{(0)} - E_m^{(0)}|, \quad (38,8)
\]

t. е. матричные элементы оператора \(\hat{V} \) должны быть малы по сравнению с соответствующими разностями невозмущённых уровней энергии.

Далее, определим поправку второго приближения к собственному значению \(E^{(0)} \). Для этого подставляем в (38,4) \(E = E_n^{(0)} + E_n^{(1)} + E_n^{(2)} \), \(c_k = c_k^{(0)} + c_k^{(1)} + c_k^{(2)} \) и рассматриваем члены второго порядка малости. Уравнение с \(k = n \) даёт

\[
E_n^{(2)} c^{(0)}_n = \sum_m V_{nm} c^{(1)}_m,
\]

откуда

\[
E_n^{(2)} = \sum_m \frac{|V_{mn}|^2}{E_n^{(0)} - E_m^{(0)}} \quad (38,9)
\]

(мы подставили \(c^{(1)}_m = V_{mn}/(E_n^{(0)} - E_m^{(0)}) \) и воспользовались тем, что в силу эрмитовости оператора \(\hat{V} : V_{mn} = V_{nm}^{*} \)).

Отметим, что поправка второго приближения к энергии нормального состояния всегда отрицательна. Действительно, раз \(E_n^{(0)} \) соответствует наименьшему значению, то все члены в сумме (38,9) отрицательны.

Дальнейшие приближения можно вычислить совершенно аналогичным образом.
Полученные результаты непосредственно обобщаются на случай наличия у оператора \hat{H}_0 также и непрерывного спектра (причём речь идёт попрежнему о возмущённом состоянии дискретного спектра). Для этого надо только к суммам по дискретному спектру прибавить соответствующие интегралы по непрерывному спектру. Будем отличать различные состояния непрерывного спектра индексом ν, пробегающим непрерывный ряд значений; под ν условно подразумевается совокупность значений величин, достаточных для полного определения состояния (если состояния непрерывного спектра вырождены, что почти всегда и бывает, то задания одной только энергии недостаточно для определения состояния) \(^1\). Тогда, например, вместо (38,7) надо будет писать

$$
\psi_{n}^{(1)} = \sum_{m} \frac{V_{mn}}{E_{n}^{(0)} - E_{m}^{(0)}} \psi_{m}^{(0)} + \int \frac{V_{vn}}{E_{n}^{(0)} - E_{\nu}} \psi_{n}^{(0)} d\nu \tag{38,10}
$$

и аналогично для других формул.

Задачи

1. Определить поправку второго приближения $\psi_{n}^{(2)}$ к собственным функциям.

Решение. Коэффициенты, $c_{n}^{(2)}$, $k \neq n$, вычисляем из уравнений (38,4) с $k \neq n$, написанных с точностью до членов второго порядка, а коэффициент $c_{n}^{(2)}$ подбираем так, чтобы функция $\psi_{n} = \psi_{n}^{(0)} + \psi_{n}^{(1)} + \psi_{n}^{(2)}$ была нормирована с точностью до членов второго порядка. В результате находим:

$$
\psi_{n}^{(2)} = \sum'_{m} \sum'_{k} \frac{V_{mk} V_{kn}}{h^2 \omega_{nk} \omega_{nm}} \psi_{m}^{(0)} - \sum'_{m} \frac{V_{nn} V_{mn}}{h^2 \omega_{nm}^2} \psi_{n}^{(0)} - \psi_{n}^{(0)} \sum'_{m} \frac{|V_{mn}|^2}{h^2 \omega_{nm}^2},
$$

где мы ввели частоты

$$
\omega_{nm} = \frac{1}{h} (E_{n}^{(0)} - E_{m}^{(0)}).
$$

2. Определить поправку третьего приближения к собственным значениям энергии.

Решение. Выписывая в уравнении (38,4) с $k = n$ члены третьего порядка малости, получим:

$$
E_{n}^{(3)} = \sum'_{k} \sum'_{m} \frac{V_{nm} V_{mk} V_{kn}}{h^2 \omega_{mn} \omega_{kn}} - V_{nn} \sum'_{m} \frac{|V_{nm}|^2}{h^2 \omega_{nm}^2}.
$$

3. Определить уровни энергии ангармонического линейного осциллятора с гамильтонианом

$$
\hat{H} = \hat{p}^2 + \frac{x^2 \omega^2}{2} + \alpha x^3 + \beta x^4.
$$

\(^1\) При этом волновые функции $\psi_{n}^{(0)}$ должны быть нормированы на δ-функцию от величин ν.
Решение. Матричные элементы от x^3 и x^4 можно получить непосредственно, согласно правилу умножения матриц, используя выражение (21,4) для матричных элементов от x. Для отличных от нуля матричных элементов от x^3 найдём:

$$(x^3)_{n-3} n = (x^3)_{n}, n-3 = \left(\frac{h}{\mu \omega}\right)^{3/2} \sqrt{\frac{n(n-1)(n-2)}{8}},$$

$$(x^3)_{n-1}, n = (x^3)_{n}, n-1 = \left(\frac{h}{\mu \omega}\right)^{3/2} \sqrt{\frac{9n^3}{8}}.$$

Диагональные элементы в этой матрице отсутствуют, так что поправка первого приближения от члена αx^3 в гамильтониане (рассматриваемого как возмущение к гармоническому осциллятору) отсутствует. Поправка же второго приближения от этого члена — того же порядка, что и поправка первого приближения от члена βx^4. Диагональные матричные элементы от x^4 имеют вид:

$$(x^4)_{n,n} = \left(\frac{h}{\mu \omega}\right)^2 \frac{3}{4} (2n^2 + 2n + 1).$$

С помощью общих формул (38,6) и (38,9) находим в результате следующее приближённое выражение для уровней энергии ангармонического осциллятора:

$$E_n = h\omega \left(n + \frac{1}{2}\right) + \frac{15}{4} \frac{a^2}{h\omega} \left(\frac{h}{\mu \omega}\right)^2 \left(n^2 + n + \frac{11}{30}\right) + \frac{3}{2} \beta \left(\frac{h}{\mu \omega}\right)^2 \left(n^2 + n + \frac{1}{2}\right).$$

§ 39. Секулярное уравнение

Обратимся теперь к случаю, когда невозмущённый оператор \hat{H}_0 имеет вырожденные собственные значения. Будем обозначать посредством $\psi_n^{(0)}$, $\psi_n^{(0)}$, ... собственные функции, относящиеся к одному и тому же собственному значению энергии $E_n^{(0)}$. Выбор этих функций, как мы знаем, не однозначен — вместо них можно выбрать любые s (s — кратность вырождения уровня $E_n^{(0)}$) независимых линейных комбинаций этих же функций. Он перестаёт, однако, быть произвольным, если мы подчиним волновые функции требованию, чтобы их изменение под влиянием приложенного малого возмущения было малым.

Пока что будем подразумевать под $\psi_n^{(0)}$, $\psi_n^{(0)}$, ... некоторые произвольно выбранные невозмущённые собственные функции. Правильные функции нулевого приближения суть линейные комбинации вида $c_n^{(0)} \psi_n^{(0)} + c_n^{(0)} \psi_n^{(0)} + ...$. Коэффициенты в этих комбинациях определяются, вместе с поправками первого приближения к собственным значениям, следующим образом.

Выпишем уравнения (38,4) с $k = n, n', ...$, подставив в них в первом приближении $E = E_n^{(0)} + E^{(1)}$, причём для величин c_k достаточно ограничиться нулевыми значениями $c_n = c_n^{(0)}$, $c_n' = c_n^{(0)}$, ..., $c_m = 0$ при $m \neq n, n', ...$. Тогда получим

$$E^{(1)} c_n^{(0)} = \sum_{n'} V_{nn'} c_n^{(0)}$$
или
\[\sum_{n'} (V_{nn'} - E^{(1)} \delta_{nn'}) c_n^{(0)} = 0, \]
(39,1)
где \(n, n' \) пробегают все значения, нумерующие состояния, относящиеся к данному невозмущённому собственному значению \(E_n^{(0)} \). Эта система однородных линейных уравнений для величин \(c_n^{(0)} \) имеет отличные от нуля решения при условии обращения в нуль детерминанта, составленного из коэффициентов при неизвестных. Таким образом получаем уравнение
\[| V_{nn'} - E^{(1)} \delta_{nn'} | = 0. \]
(39,2)

Это уравнение — \(s \)-й степени по \(E^{(1)} \) и имеет, вообще говоря, \(s \)-различных действительных корней. Эти корни и представляют собой искомые поправки первого приближения к собственным значениям. Уравнение (39,2) называют секулярным 1). Отметим, что сумма его корней равна сумме диагональных матричных элементов \(V_{nn}, V_{n'n'}, \ldots \) (это есть коэффициент при \(E^{(1)} s^{-1} \) в уравнении).

Посставля поочерёдно корни уравнения (39,2) в систему (39,1) и решаю последнюю, найдём коэффициенты \(c_n^{(0)} \) и таким образом определим собственные функции нулевого приближения.

Отметим, что в результате возмущения первоначально вырожденный уровень энергии перестаёт, вообще говоря, быть вырожденным (корни уравнения (39,2), вообще говоря, различны); как говорят, возмущение «снимает» вырождение. Снятие вырождения может быть как полным, так и частичным (в последнем случае после наложения возмущения остаётся вырождение меньшей кратности, чем первоначальная).

Может оказаться, что все матричные элементы для переходов между состояниями \(n, n', \ldots \) одной энергии равны нулю. Тогда в первом приближении поправка к энергии отсутствует. Вычислим для этого случая поправку второго приближения. В уравнении (38,4) с \(k = n \) в левой стороне равенства полагаем \(E = E_n^{(0)} + E^{(2)} \), а вместо \(c_n \) пишем \(c_n^{(0)} \). В правой стороне отличны от нуля только члены с \(m \neq n, n', \ldots \), а поскольку \(c_m^{(0)} = 0 \), то имеем:
\[E^{(2)} c_n^{(0)} = \sum_m V_{nm} c_m^{(1)}. \]
(39,3)

Уравнение же (38,4) с \(k = m \neq n, n' \ldots \) даёт, с точностью до членов первого порядка:
\[(E_n^{(0)} - E_m^{(0)}) c_m^{(1)} = \sum_{n'} V_{mn'} c_n^{(0)}, \]

1) Название заимствовано из небесной механики.
откуда
\[c_n^{(1)} = \sum_{n'} \frac{V_{nn'}}{E_n^{(0)} - E_n^{(0)}} c_n^{(0)} . \]

Подставляя это в (39,3), получаем:
\[E^{(2)} c_n^{(0)} = \sum_{n'} c_n^{(0)} \sum_{m} \frac{V_{nm} V_{mn'}}{E_n^{(0)} - E_m^{(0)}} . \]

Эта система уравнений для \(c_n^{(0)} \) заменяет теперь систему (39,1); условие совместности этих уравнений есть
\[
\left| \sum_{m} \frac{V_{nm} V_{mn'}}{E_n^{(0)} - E_m^{(0)}} - E^{(3)} \delta_{nn'} \right| = 0. \tag{39,4}
\]

Таким образом поправки к энергии вычисляются и здесь как корни секулярного уравнения, в котором вместо матричных элементов \(V_{mn} \), стоят теперь суммы \(\sum_{m} \frac{V_{nm} V_{mn'}}{E_n^{(0)} - E_m^{(0)}} . \)

ЗАДАЧИ

1. Определить поправки первого приближения к собственному значению и правильные функции нулевого приближения для двукратно вырожденного уровня.

Решение. Уравнение (39,2) имеет здесь вид:
\[
\begin{vmatrix}
V_{11} - E^{(1)} & V_{21} \\
V_{12} & V_{22} - E^{(1)}
\end{vmatrix}
= 0
\]

(индексы 1, 2 соответствуют двум произвольно выбранным невозмущённым собственным функциям \(\psi_1^{(0)} \) и \(\psi_2^{(0)} \) данного двукратно вырожденного уровня). Решая его, находим:
\[E^{(1)} = \frac{1}{2} \left[(V_{11} + V_{12}) \pm \sqrt{(V_{11} - V_{12})^2 + 4 |V_{12}|^2} \right] . \tag{1} \]

Решая, далее, уравнения (39,1) с этими значениями \(E^{(1)} \), получим для коэффициентов в нормированных правильных функциях нулевого приближения \(\psi_n^{(0)} = c_1^{(0)} \psi_1^{(0)} + c_2^{(0)} \psi_2^{(0)} \) значения
\[
c_1^{(0)} = \left\{ \frac{V_{12}}{2 |V_{12}|} \left[1 \pm \sqrt{\frac{V_{11} - V_{22}}{(V_{11} - V_{22})^2 + 4 |V_{12}|^2}} \right] \right\}^{1/2} ,
\]
\[
c_2^{(0)} = \left\{ \frac{V_{12}}{2 |V_{12}|} \left[1 \mp \sqrt{\frac{V_{11} - V_{22}}{(V_{11} - V_{22})^2 + 4 |V_{12}|^2}} \right] \right\}^{1/2} . \tag{2} \]

2. Вывести формулы для поправки первого приближения к собственным функциям и второго приближения для собственных значений.

Решение. Будем считать, что в качестве функций \(\psi_n^{(0)} \) выбраны правильные функции нулевого приближения. Определённая с их помощью ма-
трица $V_{nn'}$, очевидно, диагональна по индексам n, n' (относящимся к одной и той же группе функций выраженного уровня), причем диагональные элементы $V_{nn'}, V_{n'n'}$ равны соответствующим поправкам первого приближения $E_{n}^{(1)}, E_{n'}^{(1)}, \ldots$

Рассмотрим возмущение собственной функции $\psi_{n}^{(0)}$, так что в нулевом приближении $E = E_{n}^{(0)}, \psi_{n}^{(0)} = 1, c_{m}^{(0)} = 0$ при $m \neq n$. В первом приближении $E = E_{n}^{(0)} + V_{nn'}, c_{n} = 1 + c_{n}^{(1)}, c_{m} = c_{m}^{(1)}$. Выпишем из общей системы (38,4) уравнение с $k \neq n, n', \ldots$, сохраняя в нём члены первого порядка:

$$(E_{n}^{(0)} - E_{k}^{(0)}) c_{k}^{(0)} = V_{kn} c_{n}^{(1)} = V_{kn},$$
откуда

$$c_{k}^{(1)} = \frac{V_{kn}}{E_{n}^{(0)} - E_{k}^{(0)}} \quad \text{(при} \ k \neq n, n', \ldots). \quad (1)$$

Далее, выписываем уравнение с $k = n'$, сохранив в нём члены второго порядка:

$$E_{n}^{(1)} c_{n}^{(1)} = V_{n'n'} c_{n}^{(1)} + \sum_{m} V_{n'm} c_{m}^{(1)}$$
(в сумме по m опускаются члены с $m = n, n', \ldots$). Подставляя $E_{n}^{(1)} = V_{nn}$ и выражение (1) для $c_{m}^{(1)}$, получим:

$$c_{n}^{(1)} = \frac{1}{(V_{nn} - V_{n'n'})} \sum_{m} V_{n'm} c_{m}^{(1)}.$$ \quad (2)

Формулы (1), (2) определяют поправку $\psi_{n}^{(1)} = \sum_{m} (1) \psi_{m}^{(0)}$ первого приближения к собственным функциям.

Наконец, выписываю члены второго порядка в уравнении (38,4) с $k = n$, получим для поправки второго порядка к энергии формулу

$$E_{n}^{(2)} = \sum_{n'} V_{nm} V_{mn} (E_{n}^{(0)} - E_{m}^{(0)}), \quad (3)$$
формально совпадающую с (38,9).

3. В начальный момент времени $t = 0$ система находится в состоянии $\psi_{1}^{(0)}$, относящемся к двукратно выраженному уровню. Определить вероятность того, что в дальнейший момент времени t система будет находиться в другом состоянии $\psi_{2}^{(0)}$ того же энергии; переход происходит под влиянием постоянного возмущения.

Решение. Составляем правильные функции нулевого приближения

$$\psi = c_{1} \psi_{1} + c_{2} \psi_{2}, \quad \psi' = c'_{1} \psi_{1} + c'_{2} \psi_{2},$$
где $c_{1}, c_{2},$ и c'_{1}, c'_{2} — две пары коэффициентов, определяемые формулами (2) задачи 1 (индексы $^{(0)}$ у всех величин для краткости опускаем).

Обратно:

$$\psi_{1} = \frac{c_{2}' \psi - c_{2} \psi'}{c_{1} c_{2}' - c_{1}' c_{2}}.$$
Функции ψ и ψ' относятся к состояниям с возмущёнными энергиями $E + E^{(1)}$ и $E + E^{(1)'}$, где $E^{(1)}$, $E^{(1)'}$ — два значения поправки (1) задачи 1. Вводя временные множители, переходим к волновой функции, зависящей от времени:

$$\Psi_1 = \frac{e^{-\frac{it}{\hbar}}}{c_1 e_1' - c_2 e_2'} c_2' \psi e^{-\frac{it}{\hbar}E^{(1)}}, - c_3' \psi' e^{-\frac{it}{\hbar}E^{(1)'}},$$

(в момент $t = 0 \quad \Psi_1 = \psi_1$). Наконец, выражаю снова ψ, ψ' через ψ_1, ψ_2, получим Ψ_1 в виде линейной комбинации от ψ_1, ψ_2 с коэффициентами, зависящими от времени. Квадрат модуля коэффициента при ψ_2 определяет искомую вероятность перехода w_{12}. Вычисление дает

$$w_{12} = \left| \frac{c_2 e_2'}{c_1 e_1' - c_2 e_2'} \right|^2 \left| e^{-\frac{it}{\hbar}E^{(1)}t} - e^{-\frac{it}{\hbar}E^{(1)'}t} \right|^2,$$

или, подставляя формулы (1) и (2) задачи 1:

$$w_{12} = \left[\frac{\sqrt{V_{12}^2}}{V_{12}^2 + \frac{1}{2} V_{11}^2 - V_{12}^2} \right]^2 \left\{ 1 - \cos \left(\frac{1}{\hbar} \sqrt{(V_{11} - V_{12})^2 + 4 |V_{12}|^2} \cdot t \right) \right\}.$$

Мы видим, что вероятность периодически меняется между 0 и 1. Другими словами, система совершает периодические переходы между состояниями ψ_1 и ψ_2 с частотой $\frac{E^{(1)} - E^{(1)'}}{\hbar}$.

§ 40. Возмущения, зависящие от времени

Перейдём к изучению возмущений, зависящих явно от времени. Говорить о поправках к собственным значениям энергии в этом случае вообще нельзя, поскольку при зависящем от времени гамильтониане (каковым будет возмущённый оператор $\hat{H} = \hat{H}_0 + V(t)$) энергия вообще не сохраняется, так что стационарных состояний не существует. Задача заключается здесь в приближённом вычислении волновых функций по волновым функциям стационарных состояний невозмущённой системы.

Для этой цели мы применим метод, соответствующий известному методу вариации постоянных для решения линейных дифференциальных уравнений (П. Дирак, 1926). Пусть $\Psi^{(0)}_k$ — волновые функции (включающие временную множитель) стационарных состояний невозмущённой системы. Тогда произвольное решение невозмущённого волнового уравнения может быть записано в виде суммы: $\Psi = \sum_k a_k \Psi^{(0)}_k$.

Будем теперь искать решение возмущённого уравнения

$$i\hbar \frac{\partial \Psi}{\partial t} = (\hat{H}_0 + \hat{V}) \Psi \quad (40,1)$$

в виде суммы

$$\Psi = \sum_k a_k (t) \Psi^{(0)}_k \quad (40,2)$$
где коэффициенты разложения являются функциями времени. Подставляя (40,2) в (40,1) и помнит, что функции $\Psi_k^{(0)}$ удовлетворяют уравнению

$$i\hbar \frac{\partial \Psi_k^{(0)}}{\partial t} = \hat{H}_0 \Psi_k^{(0)},$$

получим:

$$i\hbar \sum_k \Psi_k^{(0)} \frac{da_k}{dt} = \sum_k a_k \hat{V} \Psi_k^{(0)}.$$

Умножая обе стороны равенства слева на $\Psi_m^{(0)*}$ и интегрируя, получим

$$i\hbar \frac{da_m}{dt} = \sum_k V_{mk}(t) a_k,$$ (40,3)

где

$$V_{mk}(t) = \int \Psi_m^{(0)*} \hat{V} \Psi_k^{(0)} \, dq = V_{mk} e^{\frac{i}{\hbar} (E_m^{(0)} - E_k^{(0)})t}$$

— матричные элементы возмущений, включающие временной множитель (надо, впрочем, иметь в виду, что при зависящем явно от времени \hat{V} величине V_{mk} тоже являются функциями времени).

В качестве невозмущённой волновой функции выберем волновую функцию n-го стационарного состояния, чему соответствуют значения коэффициентов в (40,2): $a_n^{(0)} = 1$, $a_k^{(0)} = 0$ при $k \neq n$. Для определения первого приближения ищем a_k в виде $a_k = a_k^{(0)} + a_k^{(1)}$, причём в правую сторону уравнения (40,3) (уже содержащую малые величины V_{mk}) подставляем $a_k = a_k^{(0)}$. Это даёт

$$i\hbar \frac{da_k^{(1)}}{dt} = V_{kn}(t).$$ (40,4)

Для того чтобы указать, к какой из невозмущённых функций вычисляется поправка, введём второй индекс у коэффициентов a_k, написав

$$\Psi_n = \sum_k a_k^{(n)} \Psi_k^{(0)}.$$

Соответственно этому, напишем результат интегрирования уравнения (40,4) в виде:

$$a_k^{(1)} = -\frac{i}{\hbar} \int V_{kn}(t) \, dt = -\frac{i}{\hbar} \int V_{kn} e^{i\omega_{kn}t} \, dt$$ (40,5)

(мы ввели частоты $\omega_{kn} = (E_k^{(0)} - E_n^{(0)})/\hbar$). Этим определяются волновые функции первого приближения.

Аналогичным образом можно вычислить последующие приближения (фактически в большинстве случаев оказывается достаточным уже первое приближение).
Рассмотрим более подробно важный случай периодического по времени возмущения \hat{V}, имеющего вид:
\[\hat{V} = \hat{F} e^{-i\omega t} + \hat{G} e^{i\omega t}, \]
(40.6)
где \hat{F} и \hat{G} — операторы, не зависящие от времени. В силу эрмитовости \hat{V} должно быть $V_{nm} = V_{mn}^*$, или
\[F_{nm} e^{-i\omega t} + G_{nm} e^{i\omega t} = F_{mn}^* e^{i\omega t} + G_{mn}^* e^{-i\omega t}, \]
откуда находим
\[G_{nm} = F_{mn}^*, \]
(40.7)
чем определяется связь между операторами \hat{G} и \hat{F}. Используя это соотношение, имеем:
\[V_{kn}(t) = V_{kn} e^{i\omega kn t} = F_{kn} e^{i(\omega kn - \omega) t} + F_{nk}^* e^{i(\omega kn + \omega) t}. \]
(40.8)
Подставляя в (40.5) и интегрируя, получаем следующее выражение для коэффициентов разложения волновых функций:
\[a_{kn}^{(1)} = -\frac{F_{kn} e^{i(\omega kn - \omega) t}}{h(\omega kn - \omega)} + \frac{F_{nk}^* e^{i(\omega kn + \omega) t}}{h(\omega kn + \omega)}. \]
(40.9)
Эти выражения применимы, если ни один из знаменателей не обращается в нуль \(^1\), т. е. если для всех k (при данном n)
\[E_k^{(0)} - E_n^{(0)} \neq \pm \hbar \omega. \]
(40.10)
Для ряда применений полезно иметь выражения для матричных элементов произвольной величины f, определённых с помощью возмущённых волновых функций. В первом приближении имеем
\[f_{nm}(t) = f_{nm}^{(0)}(t) + f_{nm}^{(1)}(t), \]
где
\[f_{nm}^{(0)}(t) = \int \Psi_n^{(0)*} \hat{f} \Psi_m^{(0)} dq = f_{nm}^{(0)} e^{i\omega nm t}, \]
\[f_{nm}^{(1)}(t) = \int (\Psi_n^{(0)} \hat{f} \Psi_m^{(1)} + \Psi_n^{(1)} \hat{f} \Psi_m^{(0)}) dq. \]
Подставляя сюда $\Psi_n^{(1)} = \sum_k a_{kn}^{(1)} \Psi_k^{(0)}$ с $a_{kn}^{(1)}$, определяющимися формулой (40.9), легко получить искомое выражение
\[f_{nm}^{(1)}(t) = -e^{i\omega nm t} \sum_k \left\{ \left[\frac{f_{nk}^{(0)} F_{km}}{h(\omega km - \omega)} + \frac{f_{km}^{(0)} F_{nk}}{h(\omega kn + \omega)} \right] e^{-i\omega t} + \right. \]
\[\left. + \left[\frac{f_{nk}^{(0)} F_{mk}^*}{h(\omega km + \omega)} + \frac{f_{km}^{(0)} F_{kn}^*}{h(\omega kn - \omega)} \right] e^{i\omega t} \right\}. \]
(40.11)

\(^1\) Точнее — не должны быть настолько малыми, чтобы величины $a_{kn}^{(1)}$ перестали быть малыми по сравнению с единицей.
Эта формула применима, если ни один из членов не обращается в бесконечность, т. е. если при всех k

$$E^{(0)}_k - E^{(0)}_n \neq \hbar \omega,$$

$$E^{(0)}_k - E^{(0)}_m \neq \hbar \omega.$$ (40,12)

Во всех написанных здесь формулах подразумевается, что имеется только дискретный спектр невозмущенных уровней энергии. Они, однако, непосредственно обобщаются на случай наличия также и непрерывного спектра (причём речь попрежнему идёт о возмущении состояний дискретного спектра), что достигается просто прибавлением к суммам по уровням дискретного спектра соответствующих интегралов по непрерывному спектру. При этом необходимо, чтобы в формулах (40,9), (40,11) знаменатели $\omega_{kn} \neq \omega$ были отличны от нуля при пробегании энергией $E^{(0)}_k$ всех значений не только дискретного, но и непрерывного спектров. Если, как это обычно имеет место, непрерывный спектр лежит выше всех уровней дискретного спектра, то, например, условие (40,10) должно быть дополнено условием

$$E^{(0)}_{\text{min}} - E^{(0)}_n > \hbar \omega,$$ (40,13)

где $E^{(0)}_{\text{min}}$ — энергия наиболее низкого уровня непрерывного спектра.

ЗАДАЧА

Определить изменение n-го и m-го решений уравнения Шредингера при наличии периодического возмущения (вида (40,6)) с частотой ω, такой, что $E^{(0)}_m - E^{(0)}_n = \hbar (\omega + \epsilon)$, где ϵ — малая величина.

Решение. Развитый в тексте метод здесь неприменим, так как коэффициент $a^{(1)}_{mn} (40,9)$ становится большим. Исходим снова из точных уравнений (40,3) с $V_{mk} (t)$ из (40,8). Очевидно, что наиболее существенный эффект возникнет от тех членов в суммах в правой стороне уравнений (40,3), в которых зависимость от времени определяется малой частотой $\omega_{mn} \approx \omega$. Опуская все остальные члены, получим систему из двух уравнений

$$i \hbar \frac{d a_{m}}{dt} = F_{mn} \left(e^{i \omega_{mn} t} a_{n} - e^{-i \omega_{mn} t} a_{n}^* \right),$$

$$i \hbar \frac{d a_{n}}{dt} = F_{mn}^* e^{-i \epsilon t} a_{m}.$$

Делаем подстановку

$$a_{n} e^{i \epsilon t} = b_{n},$$

и получаем уравнения

$$i \hbar \dot{b}_{n} = F_{mn} b_{n}, \quad i \hbar (\dot{b}_{n} - i \epsilon b_{n}) = F_{mn}^* a_{m}.$$
Исключая из них a_m, получим:
\[\ddot{b}_n - \frac{i}{\hbar} \dot{b}_n + \frac{1}{\hbar^2} |F_{mn}|^2 b_n = 0. \]
В качестве двух независимых решений этих уравнений можно выбрать
\[a_n = A e^{i\alpha t}, \quad a_m = -A \frac{\hbar \alpha}{F_{mn}} e^{i\alpha t}, \quad (1) \]
и
\[a_n = B e^{-i\alpha t}, \quad a_m = B \frac{\hbar \alpha}{F_{mn}} e^{-i\alpha t}, \quad (2) \]
где A, B — постоянные (которые должны быть определены из условия нормировки) и введены обозначения
\[\alpha_1 = -\frac{\varepsilon}{2} + \sqrt{\frac{\varepsilon^2}{4} + \frac{1}{\hbar^2} |F_{mn}|^2}, \quad \alpha_2 = \frac{\varepsilon}{2} + \sqrt{\frac{\varepsilon^2}{4} + \frac{1}{\hbar^2} |F_{mn}|^2}. \]
Таким образом под влиянием возмущения функции $\Psi_n^{(0)}, \Psi_m^{(0)}$ перейдут в функции $a_n \Psi_n^{(0)} + a_m \Psi_m^{(0)}$ с a_n, a_m из (1) или (2).
Пусть в начальный момент времени ($t = 0$) система находилась в состоянии $\Psi_m^{(0)}$. Состояние системы в последующие моменты времени определяется линейной комбинацией двух полученных нами функций, обращающейся при $t = 0$ в $\psi_m^{(0)}$.

\[\Psi = \left\{ \begin{array}{l}
\left. e^{\frac{ist}{2}} \cos \sqrt{\frac{\varepsilon^2}{4} + \frac{1}{\hbar^2} |F_{mn}|^2} t \right. \\
- \frac{1}{\sqrt{\frac{\varepsilon^2}{4} + \frac{1}{\hbar^2} |F_{mn}|^2}} \sin \sqrt{\frac{\varepsilon^2}{4} + \frac{1}{\hbar^2} |F_{mn}|^2} t \left. \right\} \Psi_m^{(0)} \\
- \left\{ \frac{\sqrt{\hbar^2 \varepsilon^2 + |F_{mn}|^2}}{\sqrt{\hbar^2 \varepsilon^2 + |F_{mn}|^2}} e^{\frac{ist}{2}} \sin \sqrt{\frac{\varepsilon^2}{4} + \frac{1}{\hbar^2} |F_{mn}|^2} t \right. \left. \right\} \Psi_n^{(0)}.
\right. \]

Квадрат модуля коэффициента при $\Psi_n^{(0)}$ равен
\[\frac{2 |F_{mn}|^2}{\hbar^2 \varepsilon^2 + 4 |F_{mn}|^2} \left\{ 1 - \cos \sqrt{\frac{\varepsilon^2}{4} + \frac{4 |F_{mn}|^2}{\hbar^2}} t \right\}. \quad (4) \]
Он определяет вероятность нахождения системы в момент времени t в состоянии $\Psi_n^{(0)}$. Мы видим, что это есть периодическая функция с периодом $2\pi \hbar (\varepsilon^2 \hbar^2 + 4 |F_{mn}|^2)^{-1/2}$, меняющаяся в пределах от 0 до $4 |F_{mn}|^2/(2 \varepsilon^2 + 4 |F_{mn}|^2)$.
При \(\varepsilon = 0 \) (точный резонанс) вероятность (4) обращается в
\[
\frac{1}{2} \left(1 - \cos \frac{2 |F_{mn}|}{\hbar} t \right).
\]
Она периодически меняется (с периодом \(\frac{\pi \hbar}{|F_{mn}|} \)) в пределах между 0 и 1; другими словами, система периодически переходит из состояния \(\Psi_{m}^{(0)} \) в состояние \(\Psi_{n}^{(0)} \).

§ 41. Вероятность перехода в дискретном спектре

Предположим, что возмущение \(V(t) \) действует всего лишь в течение некоторого конечного промежутка времени (или же, что \(V(t) \) достаточно быстро затухает при \(t \to \pm \infty \)). Пусть перед началом действия возмущения (или в пределе при \(t \to -\infty \)) система находилась в \(n \)-м стационарном состоянии (дискретного спектра). В произвольный последующий момент времени состояние системы будет определяться функцией
\[
\Psi = \sum_{k} a_{kn} \Psi_{k}^{(0)},
\]
где в первом приближении
\[
a_{kn} = a_{kn}^{(1)} = -\frac{i}{\hbar} \int_{-\infty}^{t} V_{kn} e^{i\omega_{kn} t} dt \quad (k \neq n),
\]
\[
a_{nn} = 1 + a_{nn}^{(1)} = 1 - \frac{i}{\hbar} \int_{-\infty}^{t} V_{nn} dt;
\]
предели интегрирования в (40,5) выбраны таким образом, чтобы при \(t \to -\infty \) все \(a_{kn}^{(1)} \) обращались в нуль. По истечении времени действия возмущения (или в пределе \(t \to +\infty \)) коэффициенты \(a_{kn} \) принимают постоянные значения \(a_{kn}(\infty) \), и система будет находиться в состоянии с волновой функцией
\[
\Psi = \sum_{k} a_{kn}(\infty) \Psi_{k}^{(0)},
\]
снова удовлетворяющей небозвуждённому волновому уравнению, но отличной от первоначальной функции \(\Psi_{n}^{(0)} \). Согласно общим правилам, квадрат модуля коэффициента \(a_{kn}(\infty) \) определяет вероятность системе иметь энергию \(E_{k}^{(0)} \), т. е. оказаться в \(k \)-м стационарном состоянии.

Таким образом под влиянием воздействия возмущения система может перейти из первоначального стационарного состояния в любое другое. Вероятность перехода из первоначального (\(n \)-го) в \(k \)-е стационарное состояние равна:
\[
\omega_{nk} = \frac{1}{\hbar^2} \left| \int_{-\infty}^{+\infty} V_{kn} e^{i\omega_{kn} t} dt \right|^2.
\]
(41,2)
Рассмотрим теперь возмущение, которое, раз возникнув, продолжает затем действовать неограниченно долго (оставаясь, разумеется, всё время малым). Другими словами, $V(t)$ стремится к нулю при $t \to -\infty$ и к конечному, отличному от нуля, пределу при $t \to +\infty$. Формула (41,2) здесь непосредственно неприменима, так как стоящий в ней интеграл расходится. Эта расходимость, однако, с физической точки зрения несущественна и может быть легко устранена. Для этого напишем, интегрируя по частям:

$$a_{kn} = -\frac{i}{h} \int_{-\infty}^{t} V_{kn} e^{i\omega_{kn}t} \, dt = -\frac{V_{kn} e^{i\omega_{kn}t}}{h\omega_{kn}} \bigg|_{-\infty}^{t} + \int_{-\infty}^{t} \frac{\partial V_{kn}}{\partial t} \frac{e^{i\omega_{kn}t}}{h\omega_{kn}} \, dt.$$

Значение первого члена на нижнем пределе исчезает, а на верхнем пределе формально совпадает с коэффициентами разложения в формуле (38,7) (наличие лишнего периодического множителя $e^{i\omega_{kn}t}$ связано просто с тем, что $a_{kn} = \text{коэффициенты разложения полной волновой функции } \Psi$, а c_{kn} в §38 — коэффициенты разложения не зависящей от времени функции Φ). Поэтому ясно, что его предел при $t \to +\infty$ определяет просто изменение первоначальной волновой функции $\Psi^{(0)}$ под влиянием «постоянной части» $V(+\infty)$ возмущения и не имеет, следовательно, отношения к переходам в другие состояния. Вероятность же перехода определяется квадратом второго члена и равна:

$$\omega_{nk} = \frac{1}{h^2 \omega_{kn}^2} \left| \int_{-\infty}^{+\infty} \frac{\partial V_{kn}}{\partial t} e^{i\omega_{kn}t} \, dt \right|^2.$$

(41,3)

В предельном случае очень быстрого, «мгновенного», включения возмущения производные $\frac{\partial V_{kn}}{\partial t}$ обращаются в бесконечность в «момент включения». В интеграле от $\frac{\partial V_{kn}}{\partial t} e^{i\omega_{kn}t}$ можно тогда вынести из-под знака сравнительно медленно меняющийся множитель $e^{i\omega_{kn}t}$, взяв его значение в этот момент. После этого интеграл сразу берётся, и мы получаем:

$$\omega_{nk} = \frac{|V_{kn}|^2}{\hbar^2 \omega_{kn}^2}.$$

(41,4)

Если возмущение $V(t)$ мало меняется на протяжении промежутков времени порядка периода $\frac{1}{\omega_{kn}}$ периодического множителя $e^{i\omega_{kn}t}$, то значение интеграла в (41,2) или в (41,3) будет очень малым. В пределе при сколь угодно медленном изменении приложенного возмущения вероятность всякого перехода с изменением энергии (т. е. с отличной от нуля частотой ω_{kn}) стремится к нулю. Итак, при достаточно медленном («адиабатическом») изменении приложенного возмущения система, находившаяся в некотором невырожденном стационарном состоянии, будет продолжать оставаться в том же состоянии.
§ 42. Вероятность перехода под влиянием периодического возмущения

Другого рода результаты получаются для вероятности перехода в состояния непрерывного спектра, происходящего под влиянием периодического возмущения. Предположим, что в некоторый начальный момент времени $t=0$ система находится в n-м стационарном состоянии дискретного спектра. Частоту ω периодического возмущения будем предполагать такой, что

$$h\omega > E_{\text{min}} - E_n^{(0)},$$

где E_{min} — значение энергии, с которого начинается непрерывный спектр.

Из результатов предыдущего параграфа (см. также задачу к § 40) заранее очевидно, что основную роль будут играть состояния со значениями энергии E_n в непосредственной близости к «резонансной» энергии $E_n^{(0)} + h\omega$, т. е. такие, для которых разность $\omega_n - \omega$ мала. По этой же причине в матричных элементах возмущения (40,8) достаточно рассматривать только первый член (с близкой к нулю частотой $\omega_n - \omega$). Подставляя этот член в (40,5) и интегрируя, получим:

$$a_n = -\frac{i}{\hbar} \int_0^t V_{vn}(t) \, dt = -F_{vn} \frac{e^{i(\omega_n - \omega)t} - 1}{\hbar(\omega_n - \omega)}.$$ \hspace{1cm} (42,2)

Нижний предел интегрирования выбран таким образом, чтобы при $t=0$ было $a_n = 0$, в соответствии с поставленным начальным условием.

Для квадрата модуля a_n отсюда находим:

$$|a_n|^2 = |F_{vn}|^2 \frac{4 \sin^2 \frac{\omega_n - \omega}{2} t}{\hbar^2 (\omega_n - \omega)^2}.$$ \hspace{1cm} (42,3)

Легко видеть, что при больших t стоящая здесь функция может быть представлена как пропорциональная t.

Для этого замечаем, что имеет место следующая формула:

$$\lim_{t \to \infty} \frac{\sin^2 \alpha t}{\pi t \alpha^2} = \delta(\alpha).$$ \hspace{1cm} (42,4)

Действительно, при $\alpha \neq 0$ написанный предел равен нулю, а при $\alpha = 0$ имеем $\frac{\sin^2 \alpha t}{t \alpha^2} = t$, так что предел равен бесконечности. Наконец, интегрируя по $d\alpha$ в пределах от $-\infty$ до $+\infty$, имеем (делаем

1) Напомним, что индекс ν относится к непрерывному спектру (см. конец § 38).
§ 43. ВЕРОЯТНОСТЬ ПЕРЕХОДА ПОД ВЛИЯНИЕМ ПОСТОЯННОГО ВОЗМУЩЕНИЯ. 175

Подстановку \(\alpha = \xi \):

\[
\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\sin^2 \alpha}{\xi^2} d\alpha = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\sin^2 \xi}{\xi^2} d\xi = 1.
\]

Таким образом функция, стоящая в левой стороне равенства (42,4), действительно удовлетворяет всем требованиям, определяющим \(\delta \)-функцию.

Соответственно этой формуле, мы можем написать при больших \(t \)

\[
|a_{vn}|^2 = \frac{1}{h^2} |F_{vn}|^2 \pi t \delta \left(\frac{\omega_{vn} - \omega}{2} \right)
\]

или, подставив \(h\omega_{vn} = E_v - E_n^{(0)} \) и воспользовавшись тем, что \(\delta(ax) = \frac{1}{a} \delta(x) \):

\[
|a_{vn}|^2 = \frac{2\pi}{h} |F_{vn}|^2 \delta (E_v - E_n^{(0)} - h\omega) t.
\]

Выражение \(|a_{vn}|^2 dv \) есть вероятность перехода из первоначального состояния в состояние, находящееся в интервале между \(v \) и \(v + dv \) (ср. § 5). Мы видим, что при больших \(t \) она оказывается пропорциональной истекшему с момента \(t = 0 \) промежутку времени. Вероятность же \(dw_{n_v} \), перехода в течение единицы времени равна 1):

\[
dw_{n_v} = \frac{2\pi}{h} |F_{vn}|^2 \delta (E_v - E_n^{(0)} - h\omega) dv.
\] \((42,5) \)

В соответствии с тем, что и ожидалось, она отлична от нуля лишь для переходов в состояние с энергией \(E_v = E_n^{(0)} + h\omega \). Если энергетические уровни непрерывного спектра не выражены, так что под \(v \) можно понимать значения одной только энергии, то весь «интервал» состояний \(dv \) сводится к одному состоянию с энергией \(E = E_n^{(0)} + h\omega \), и вероятность перехода в это состояние есть

\[
w_{nE} = \frac{2\pi}{h} |F_{nE}|^2.
\] \((42,6) \)

§ 43. Вероятность перехода под влиянием постоянного возмущения

Одним из важнейших применений теории возмущений является вычисление вероятности перехода в непрерывном спектре под влиянием постоянного (не зависящего от времени) возмущения. Мы уже

1) Легко проверить, что при учёте опущенного нами второго члена в (40,8) получились бы дополнительные выражения, которые, будучи под-chevronы на \(t \), стремятся при \(t \rightarrow + \infty \) к нулю.
упоминали, что состояния непрерывного спектра практически всегда вырождены. Выбрав определённым образом совокупность невозмущённых волновых функций, соответствующих некоторому данному уровню энергии, мы можем поставить задачу следующим образом: известно, что в начальный момент времени система находилась в одном из этих состояний: требуется определить вероятность перехода в другое состояние той же энергии. Если начальное состояние отмечать индексом \(\nu_0 \), то для переходов в состояния в интервале между \(\nu \) и \(\nu + d\nu \) имеем непосредственно из (42,5) (полагая \(\omega = 0 \) и меняя обозначения):

\[
d\omega_{\nu_0} = \frac{2\pi}{\hbar} |V_{\nu_\nu_0}|^2 \delta(E_{\nu} - E_{\nu_0}) d\nu. \tag{43,1}
\]

Это выражение, как и следовало, отлично от нуля лишь при \(E_{\nu} = E_{\nu_0} \): под влиянием постоянного возмущения переходы происходят лишь между состояниями с одинаковой энергией. Необходимо отметить, что для переходов из состояний непрерывного спектра величина \(d\omega_{\nu_0} \) не может рассматриваться непосредственно как вероятность перехода; она даже не обладает соответствующей размерностью (1/сек.), \(d\omega_{\nu_0} \) в формуле (43,1) изображает число переходов в единицу времени, причём его размерность зависит от выбранного способа нормировки волновых функций непрерывного спектра.

Вычислим возмущённую волновую функцию, которая в начальный момент совпадает с исходной невозмущённой функцией \(\psi^{(0)}_{\nu_0} \). Согласно формуле (42,2) (в которой полагаем \(\omega = 0 \) и изменяем обозначения) имеем:

\[
a^{(1)}_{\nu_\nu_0} = V_{\nu_\nu_0} \frac{\frac{t}{\hbar} (E_{\nu} - E_{\nu_0}) t}{E_{\nu_0} - E_{\nu}} - 1.
\]

Возмущённая волновая функция имеет вид:

\[
\Psi_{\nu_0} = \Psi^{(0)}_{\nu_0} + \int a^{(0)}_{\nu_\nu_0} \Psi^{(0)}_{\nu} d\nu,
\]

или

\[
\Psi_{\nu_0} = \left[\psi^{(0)}_{\nu_0} + \int V_{\nu_\nu_0} \psi^{(0)}_{\nu} \frac{1 - e^{\frac{t}{\hbar} (E_{\nu_0} - E_{\nu}) t}}{E_{\nu_0} - E_{\nu}} d\nu \right] e^{-\frac{t}{\hbar} E_{\nu_0} t}, \tag{43,2}
\]

где интегрирование производится по всему непрерывному спектру\(^1\). Выясним предельный вид этой функции при больших \(t \). Для этого выделяем из \(d\nu \) дифференциал \(dE_{\nu} \) энергии (написав \(d\nu = dE_{\nu} d\tau \), где \(d\tau \) есть произведение дифференциалов остальных величин, определяющих состояние непрерывного спектра) и рассматриваем формально

1) Если имеется также и дискретный спектр, то в этой (и следующих) формулах к интегралу надо добавить соответствующую сумму по состояниям дискретного спектра.
§ 43] ВЕРОЯТНОСТЬ ПЕРЕХОДА ПОД ВЛИЯНИЕМ ПОСТОЯННОЙ ВОЗМУЖ. 177

E_v как комплексную переменную. Интеграл

$$
\int V_{\nu \nu_0} \psi^{(0)}_{\nu_0} \frac{1 - e^{\frac{i}{\hbar} (E_{\nu_0} - E_v)t}}{E_{\nu_0} - E_v} dE_v
$$

в (43,2) берётся вдоль действительной оси. Сместим слегка путь интегрирования в нижнюю полуплоскость; это можно сделать, не меняя значения интеграла, поскольку подинтегральное выражение не имеет особенностей на действительной оси. После этого можно разбить интеграл на две части:

$$
\int V_{\nu \nu_0} \psi^{(0)}_{\nu_0} \frac{dE_v}{E_{\nu_0} - E_v} \quad \text{и} \quad - \int V_{\nu \nu_0} \psi^{(0)}_{\nu_0} e^{\frac{i}{\hbar} (E_{\nu_0} - E_v)t} dE_v
$$

(при интегрировании вдоль действительной оси эти интегралы не имеют смысла, так как расходятся в точке $E_v = E_{\nu_0}$). Поскольку на контуре интегрирования $\text{Im} (E_v) < 0$, то при стремлении t к бесконечности второй из написанных интегралов стремится к нулю (благодаря наличию множителя $\exp \left(\frac{1}{\hbar} \text{Im} (E_v)t \right)$ в подинтегральном выражении). В первом же интеграле можно вновь совместить путь интегрирования с действительной осью, обходя лишь при этом точку $E_v = E_{\nu_0}$ сверху.

Таким образом получим для волновой функции выражение

$$
\Psi_{\nu_0} = \left[\psi^{(0)}_{\nu_0} + \int \frac{V_{\nu \nu_0}}{E_{\nu_0} - E_v} \psi^{(0)}_{\nu} d\nu \right] e^{\frac{i}{\hbar} E_{\nu_0} t}, \quad (43,3)
$$

в котором интегрирование по переменной E_v производится вдоль пути, изображённого на рис. 13. Временной множитель показывает, что эта функция относится, как и следовало, к той же энергии E_{ν_0}, что и начальная невозмущённая функция. Другими словами, функция

$$
\psi_{\nu_0} = \psi^{(0)}_{\nu_0} + \int \frac{V_{\nu \nu_0}}{E_{\nu_0} - E v} \psi^{(0)}_{\nu} d\nu
$$

удовлетворяет уравнению Шредингера ($\hat{H}_0 + \hat{V}) \psi_{\nu_0} = E_{\nu_0} \psi_{\nu_0}$. В связи с этим естественно, что это выражение в точности соответствует формуле (38,7); метод, изложенный в § 38, не даёт, однако, возможности установить способ взятия интеграла, при котором ψ_{ν_0} соответствовало бы рассматриваемой здесь постановке задачи.

Произведённые выше вычисления соответствуют первому приближению теории возмущений. Нетрудно вычислить и второе приближение. Для этого надо вывести формулу следующего приближения для Ψ_{ν_0}, что легко сделать, воспользовавшись методом § 38 (знак

12 Зак. 3387. Ландау и Лифшиц, т. V, ч. I.
теперь способ, которым должны браться «расходящиеся» интегралы). Простое вычисление приводит к формуле:

\[\Psi_{\nu} = \left\{ \psi_{\nu_0}^{(0)} + \int \left[V_{\nu_0 \nu} + \int \frac{V_{\nu \nu'} V_{\nu' \nu_0}}{E_{\nu_0} - E_{\nu'}} d\nu' \right] \frac{d\nu}{E_{\nu_0} - E_{\nu}} \right\} e^{-\frac{i}{\hbar} E_{\nu_0} t}. \] (43.4)

Сравнивая это выражение с формулой (43.3), мы можем написать соответствующую формулу для вероятности (точнее, числа) переходов непосредственно по аналогии с (43.1):

\[d\omega_{\nu_0 \nu} = \frac{2\pi}{\hbar} \left| V_{\nu_0 \nu} + \int \frac{V_{\nu \nu'} V_{\nu' \nu_0}}{E_{\nu_0} - E_{\nu'}} d\nu' \right|^2 \delta (E_{\nu_0} - E_\nu) d\nu. \] (43.5)

Может оказаться, что матричный элемент \(V_{\nu_0 \nu} \) для рассматривающего перехода обращается в нуль. Тогда эффект первого приближения вообще отсутствует, и для числа переходов имеем:

\[d\omega_{\nu_0 \nu} = \frac{2\pi}{\hbar} \left| \int \frac{V_{\nu \nu'} V_{\nu' \nu_0}}{E_{\nu_0} - E_{\nu'}} d\nu' \right|^2 \delta (E_\nu - E_{\nu_0}) d\nu. \] (43.6)

(при применении этой формулы точка \(E_\nu = E_{\nu_0} \) не является обычно особой точкой подинтегрального выражения; поэтому способ интегрирования по \(dE_\nu \) вообще не существенен, и его можно производить непосредственно вдоль действительной оси).

О состояниях \(\nu' \), для которых \(V_{\nu \nu'} \) и \(V_{\nu' \nu_0} \) отличны от нуля, часто говорят, как о «промежуточных» для перехода \(\nu_0 \rightarrow \nu \). Может оказаться, что переход \(\nu_0 \rightarrow \nu \) возможен не через одно, а лишь через несколько последовательных промежуточных состояний. Формула (43.5) непосредственно обобщается на эти случаи. Так, если необходимы два промежуточных состояния, то

\[d\omega_{\nu_0 \nu} = \frac{2\pi}{\hbar} \left| \int \int \frac{V_{\nu \nu''} V_{\nu'' \nu'} V_{\nu' \nu_0}}{(E_{\nu_0} - E_{\nu''})(E_{\nu''} - E_{\nu'})} d\nu'' d\nu' \right|^2 \delta (E_\nu - E_{\nu_0}) d\nu. \] (43.7)

§ 44. Соотношение неопределённости для энергии

Рассмотрим систему, состоящую из двух слабо взаимодействующих частей. Предположим, что в некоторый момент времени известно, что эти части обладают определёнными значениями энергии, которые мы обозначим соответственно как \(E \) и \(e \). Пусть через некоторый интервал времени \(\Delta t \) производится снова измерение энергии; оно даёт некоторые значения \(E', e' \), вообще говоря, отличные от \(E, e \). Легко определить, каков порядок величины наиболее вероятного значения разности \(E' + e' - E - e \), которая будет обнаружена в результате измерения.

Согласно формуле (42.3) (с \(\omega = 0 \), вероятность перехода системы (за время \(t \)) под влиянием не зависящего от времени возмущения
из состояния с энергией \(E \) в состояние с энергией \(E' \) пропорциональна
\[
\frac{\sin^2 \frac{E' - E}{2\hbar} t}{(E' - E)^2}.
\]
Отсюда видно, что наиболее вероятное значение разности \(E' - E \) порядка величины \(h/t \).
Применив этот результат к рассматриваемому нами случаю (взаимодействие между частями системы), мы получим соотношение
\[
|E + \varepsilon - E' - \varepsilon'| \Delta t \sim h.
\] (44,1)
Таким образом, чем меньше интервал времени \(\Delta t \), тем большее изменение энергии будет обнаружено. Существенно, что его порядок величины \(h/\Delta t \) не зависит от величины возмущения. Определяемое соотношением (44,1) изменение энергии будет обнаружено даже при сколь угодно слабом взаимодействии между обеими частями системы. Этот результат является чисто квантовым и имеет глубокий физический смысл. Он показывает, что в квантовой механике закон сохранения энергии может быть проверен посредством двух измерений лишь с точностью до величины порядка \(h/\Delta t \), где \(\Delta t \) — интервал времени между измерениями.
О соотношении (44,1) часто говорят, как о соотношении неопределённости для энергии. Необходимо, однако, подчеркнуть, что его смысл не имеет ничего общего со смыслом соотношения неопределённости \(\Delta p \Delta x \sim h \) для координаты и импульса. В последнем \(\Delta p \) и \(\Delta x \) суть неопределённости в значениях импульса и координаты в один и тот же момент; они показывают, что эти две величины вообще не могут иметь одновременно строго определённых значений. Энергия же \(E, \varepsilon \), напротив, могут быть измерены в каждый данный момент времени с любой точностью. Величина \((E + \varepsilon) - (E' + \varepsilon') \) в (44,1) есть разность двух точно измеренных значений энергии \(E + \varepsilon \) в два различных момента времени, что, отнюдь не неопределённость в значениях энергии в определённый момент времени.
Если рассматривать \(E \) как энергию некоторой системы, а \(\varepsilon \) как энергию «измерительного прибора», то мы можем сказать, что энергия взаимодействия между ними может быть учтена лишь с точностью до \(h/\Delta t \). Обозначим посредством \(\Delta E, \Delta \varepsilon, \ldots \) погрешности в измерениях соответствующих величин. В благоприятном случае, когда \(\varepsilon, \varepsilon' \) известны точно (\(\Delta \varepsilon = \Delta \varepsilon' = 0 \)), имеем:
\[
\Delta (E - E') \sim \frac{h}{\Delta t}.
\] (44,2)
Из этого соотношения можно ввести важные следствия относительно измерения импульса. Процесс измерения импульса частицы (будем говорить для определённости об электроне) включает в себя
столкновение электрона с некоторой другой («измерительной») частицей, импульсы которой до и после столкновения могут считаться известными точно. Если применить к этому столкновению закон сохранения импульса, то мы получим три уравнения (три компоненты одного векторного уравнения) с шестью неизвестными — компонентами импульса электрона до и после столкновения. Для увеличения числа уравнений можно произвести ряд последовательных столкновений электрона с «измерительными» частицами и применить закон сохранения импульса к каждому из них. При этом, однако, увеличивается и число неизвестных (импульсы электрона между столкновениями), и легко сообразить, что при любом числе столкновений число неизвестных будет превышать на три число уравнений. Поэтому для измерения импульса электрона необходимо привлечь, наряду с законом сохранения импульса, также и закон сохранения энергии. Последний, однако, может быть применён, как мы видели, лишь с точностью до величины порядка $h/\Delta t$, где Δt — время между началом и концом рассматриваемого процесса.

Для упрощения дальнейших рассуждений удобно рассмотреть идеализированный мысленный эксперимент, в котором «измерительной частицей» является идеально отражающее плоское зеркало; тогда играет роль лишь одна компонента импульса — перпендикулярная к плоскости зеркала. Для определения импульса P частицы законы сохранения импульса и энергии дают уравнения

$$p' + P' - p - P = 0, \quad (44,3)$$

$$|\epsilon' + E' - \epsilon - E| \sim \frac{h}{\Delta t} \quad (44,4)$$

(P, E — импульс и энергия частицы, p, ϵ — то же для зеркала; величины без и со штрихами относятся соответственно к моментам до и после столкновения). Величины $p, p', \epsilon, \epsilon'$, относящиеся к «измерительной частице», могут рассматриваться как известные точно, т. е. их погрешности равны нулю. Тогда для погрешностей в остальных величинах имеем из написанных уравнений:

$$\Delta P = \Delta P', \quad \Delta E' - \Delta E \sim \frac{h}{\Delta t}.$$

Но $\Delta E = \frac{\partial E}{\partial P} \Delta P = v \Delta P$, где v — скорость электрона (до столкновения), и аналогично $\Delta E' = v' \Delta P' = v' \Delta P$. Поэтому получаем:

$$(v'_a - v_a) \Delta P_a \sim \frac{h}{\Delta t}. \quad (44,5)$$

1) Для произвольного здесь анализа несущественно, каким образом становится известной энергия «измерительной» частицы.
Мы приписали здесь индексы \(x \) у скоростей и импульса, имея в виду подчеркнуто, что это соотношение относится к каждой из их компонент в отдельности.

Это и есть искомое соотношение. Оно показывает, что измерение импульса электрона (при заданной степени точности \(\Delta P \)) неизбежно связано с изменением его скорости (т. е. и самого импульса). Это изменение тем больше, чем короче длится сам процесс измерения. Изменение скорости может быть сделано сколь угодно малым лишь при \(\Delta t \to \infty \), но измерения импульса, делящиеся в течение большого времени, вообще могут иметь смысл лишь для свободной частицы. Здесь в особенности ярко проявляется непревзойденность измерения импульса через короткие промежутки времени и «двуликая» природа измерения в квантовой механике — необходимость строгого различия между измеряемым значением величины и значением, создаваемым в результате процесса измерения\(^1\).

К произведённому в начале этого параграфа выводу, основанному на теории возмущений, можно подойти с другой точки зрения, применив его к распаду системы, происходящему под влиянием какого-либо возмущения. Пусть \(E_0 \) есть некоторый уровень энергии системы, вычисленный при полном пренебрежении возможностью её распада. Посредством \(\tau \) обозначим «продолжительность жизни» этого состояния системы, т. е. величину, обратную вероятности распада в единицу времени. Тогда тем же способом найдём, что

\[
|E_0 - E - \varepsilon| \sim \hbar/\tau, \quad (44,6)
\]

где \(E, \varepsilon \) — энергии обеих частей, на которые распалась система. Но по сумме \(E + \varepsilon \) можно судить об энергии системы до распада. Поэтому полученное соотношение показывает, что энергия способной к распаду системы в некотором «квазистационарном» состоянии может быть определена лишь с точностью до величины порядка \(\hbar/\tau \). Эту величину обычно называют «шириной» \(\Gamma \) уровня. Таким образом

\[
\Gamma \sim \hbar/\tau. \quad (44,7)
\]

§ 45. Потенциальная энергия как возмущение

Особого рассмотрения заслуживает случай, когда в качестве возмущения может рассматриваться плоская потенциальная энергия частицы во внешнем поле. Невозмущённое уравнение Шредингера есть тогда уравнение свободного движения частицы

\[
\Delta \psi^{(0)} + \hbar^2 \psi^{(0)} = 0, \quad k = \sqrt{2mE/\hbar^2} = \frac{P}{\hbar} \quad (45,1)
\]

\(^1\) Соотношение (41,5), как и выяснение физического смысла соотношения неопределённости для энергии, принадлежит Бору (1925).
и имеет решениями плоские волны. Энергетический спектр свободного движения непрерывен, так что мы имеем дело со своеобразным случаем теории возмущений в непрерывном спектре. Решение задачи удобнее получить здесь непосредственно, не прибегая к общим формулам.

Уравнение для поправки \(\psi^{(1)} \) первого приближения к волновой функции гласит:

\[
\Delta \psi^{(1)} + k^2 \psi^{(1)} = \frac{2\mu U}{h^2} \psi^{(0)}
\] (45,2)

\((U — \text{потенциальная энергия}) \). Решение этого уравнения, как известно, из электродинамики, может быть написано в виде «запаздывающих потенциалов», т. е. в виде ¹):

\[
\psi^{(1)}(x, y, z) = \frac{\mu}{2\pi \hbar^2} \int \psi^{(0)} U(x', y', z') e^{ikr} \frac{dV'}{r},
\] (45,3)

\((dV' = dx' dy' dz', \ r^2 = (x - x')^2 + (y - y')^2 + (z - z')^2).\)

Выясним, каким условиям должно удовлетворять поле \(U \) для того, чтобы его можно было рассматривать как возмущение. Условие применимости теории возмущений заключается в требовании \(\psi^{(1)} \ll \psi^{(0)} \). Пусть \(a \) есть порядок величины размеров области пространства, в котором поле заметно отличается от нуля. Предположим сначала, что энергия частицы настолько мала, что \(ak \) меньше или порядка единицы. Тогда множитель \(e^{ikr} \) в полинтегральном выражении в (45,3) несущественен при оценке порядка величины, и весь интеграл будет порядка \(|\psi^{(0)}| Ua^2 \), так что \(\psi^{(1)} \sim \frac{\mu |U| a^2}{\hbar^2} \psi^{(0)} \), и мы получаем условие

\[
|U| \ll \frac{\hbar^2}{\mu a^2} \quad (\text{при } ka \sim 1).
\] (45,4)

Отметим, что стоящее справа выражение имеет простой физический смысл — это есть порядок величины кинетической энергии, которой обладала бы частица, заключённая в объёме с линейными размерами (поскольку, согласно соотношению неопределенности, её импульс \(a \) был бы порядка \(h/a \)).

Рассмотрим, в частности, потенциальную яму настолько неглубокую, что для неё выполняется условие (45,4). Легко видеть, что в такой яме не существует отрицательных уровней энергии (Р. Пайерлс, 1929); мы видели это уже в задаче к § 33 для частного случая сферически-симметричной ямы. Действительно, при \(E = 0 \) невозмущённая волновая функция сводится к постоянной, которую можно условно принять равной единице: \(\psi^{(0)} = 1 \). Поскольку \(\psi^{(1)} \ll \psi^{(0)} \), то ясно, что волновая функция движения в яме, \(\phi = 1 + \psi^{(1)} \), нигде не обращается.

¹) Это есть частный интеграл уравнения (45,2), к которому может быть прибавлено ещё любое решение уравнения без правой части (т. е. невозмущённого уравнения (45,1)).
в нуль; собственная же функция, не имеющая условий, относится к нормальному состоянию, так что \(E = 0 \) останавливается наименьшим возможным значением энергии частицы. Таким образом, если яма недостаточно глубока, то возможно только инфинитное движение частицы, — частица не может "захватиться" ямой. Обратим внимание на то, что этот результат имеет специфически квантовый характер, — в классической механике частица может совершать финальное движение в любой потенциальной яме.

Необходимо подчеркнуть, что всё сказанное относится только к трёхмерной яме. В одно- и двухмерной яме (т. е. в которой поле есть функция только от одной или двух координат) всегда имеется уровень отрицательной энергии (см. задачи к этому параграфу). Это связано с тем, что в одно- и двухмерном случаях рассматриваемая теория возмущений вообще неприменима при равной нулю (или очень малой) энергии \(E \).

В случае больших энергий, когда \(ka \gg 1 \), множитель \(e^{ikr} \) в подинтегральном выражении играет существенную роль, сильно уменьшая величину интеграла. Решение (45,3) может быть в этом случае преобразовано к другому виду, для вывода которого, однако, удобнее обратиться непосредственно к уравнению (45,2). Выберем направление невозмущённого движения в качестве оси \(x \); тогда невозмущённая волновая функция имеет вид \(\psi^{(0)} = e^{ikx} \) (постоянный множитель условно полагаем равным единице). Ищем решение уравнения

\[
\Delta \psi^{(1)} + k^2 \psi^{(1)} = \frac{2\mu}{\hbar^2} U e^{ikx}
\]

в виде \(\psi^{(1)} = e^{ikx} f \), причём ввиду предполагаемой большой величины \(k \) достаточно сохранить в \(\Delta \psi^{(1)} \) только те члены, в которых дифференцируется (хотя бы один раз) множитель \(e^{ikx} \). Тогда мы получим для \(f \) уравнение

\[
2ik \frac{\partial f}{\partial x} = \frac{2\mu U}{\hbar^2},
\]

откуда

\[
\psi^{(1)} = e^{ikx} f = -\frac{i\mu}{\hbar^2 k} e^{ikx} \int U dx.
\]

1) В двухмерном случае \(\psi^{(1)} \) выражается (как известно из теории двухмерного волнового уравнения) в виде аналогичного (45,3) интеграла, в котором вместо \(\frac{e^{ikr}}{r} dx' dy' dz' \) стоит \(H_0^{(1)}(kr) dx' dy' \) (\(H_0^{(1)} \) — функция Ганкеля нулевого порядка первого рода), а \(r = \sqrt{(x' - x)^2 + (y' - y)^2} \). При \(k \to 0 \) функция Ганкеля, а с нею и весь интеграл стремятся логарифмически к бесконечности.

Аналогично, в одноммерном случае под знаком интеграла, определяющего \(\psi^{(1)} \), стоит \(\frac{e^{ikr}}{k} dx' \) (где \(r = |x' - x| \) и при \(k \to 0 \) \(\psi^{(1)} \) стремится к бесконечности, как \(1/k \).
Оценка этого интеграла даёт \(|\psi^{(1)}| \sim \frac{\mu U a}{h^2 k} \), так что условием применимости теории возмущений в этом случае будет:

\[
|U| \ll \frac{h^2}{\mu a^2} ka = \frac{hv}{a} \quad (ka \gg 1)
\] (45,6)

\((v = \frac{kh}{\mu} — скоростъ частицы) \). Обратим внимание на то, что это условие — более слабое, чем (45,4). Поэтому, если можем рассмотривать поле как возмущение при малых энергиях частицы, то это во всяком случае возможно и при больших энергиях, между тем как обратное, вообще говоря, не имеет места.

Применимость развитой здесь теории возмущений к кулоновому полю требует особого рассмотрения. В поле \(U = \frac{a}{r} \) нельзя выделить конечной области пространства, вне которой \(U \) было бы значительно меньше, чем внутри неё. Искомое условие можно получить, написав в (45,6) переменное расстояние \(r \) вместо параметра \(a \); это приводит к неравенству

\[
\frac{a}{hv} \ll 1.
\] (45,7)

Таким образом при больших энергиях частицы кулоново поле можно рассматривать как возмущение 1).

Наконец, выведем полезную при решении некоторых задач формулу, приближённо определяющую волновую функцию частицы с энергией \(E \), везде значительно превышающую потенциальную энергию \(U \) (выполняются каких-либо других условий при этом не требуется). В первом приближении зависимость волновой функции от координат такая же, как для свободного движения (направление которого выберем в качестве оси \(x \)). Соответственно этому, ищем \(\psi \) в виде \(\psi = e^{ikx} F \), где \(F \) есть функция координат, меняющаяся медленно по сравнению с множителем \(e^{ikx} \) (о ней, однако, нельзя, вообще говоря, утверждать, что она близка к единице). Подставляя в уравнение Шредингера, получим для \(F \) уравнение

\[
2ik \frac{\partial F}{\partial x} = \frac{2\mu}{h^2} UF,
\]

откуда

\[
\psi = e^{ikx} F = \text{const} \cdot e^{ikx} e^{-i \int \frac{U}{hv} dx}.
\] (45,8)

Это и есть искомое выражение.

1) Надо иметь в виду, что интеграл (45,5) с полем \(U = a/r \) расходится (логарифмически) при больших \(x/\sqrt{y^2 + z^2} \). Поэтому получаемая с помощью теории возмущений волновая функция в кулоновом поле неприменима внутри узкого конуса вокруг оси \(x \).
ЗАДАЧИ

1. Определить уровень энергии в одномерной потенциальной яме малой глубины; предполагается, что условие (45.4) выполнено, а интеграл \(\int_{-\infty}^{+\infty} U dx \) сходится.

Решение. Делаем предположение, подтверждающееся результатом, что уровень энергии \(|E| \ll |U| \). Тогда в правой стороне уравнения Шредингера

\[
\frac{d^2 \psi}{dx^2} = \frac{2\mu}{\hbar^2} ((U(x) - E) \psi
\]

можно в области ямы пренебречь \(E \), а также считать \(\psi \) постоянной, которую без ограничения общности можно положить равной единице:

\[
\frac{d^2 \psi}{dx^2} = \frac{2\mu}{\hbar^2} U.
\]

Пронтегрируем это равенство по \(dx \) между двумя точками \(\pm x_1 \), такими, что \(a \ll x_1 \ll \frac{1}{\kappa} \), где \(a \) — ширина ямы, а \(\kappa = \sqrt{\frac{2\mu |E|}{\hbar^2}} \). Ввиду сходимости интеграла от \(U(x) \), можно распространить справа интегрирование по всей области от \(-\infty\) до \(+\infty\):

\[
\left. \frac{d\psi}{dx} \right|_{-x_1}^{+x_1} = \frac{2\mu}{\hbar^2} \int_{-\infty}^{+\infty} U dx.
\]

(1)

Вдоль от ямы волновая функция имеет вид \(\psi = e^{\pm x} \). Подставляя это в (1) найдём:

\[-2\kappa = \frac{2\mu}{\hbar^2} \int_{-\infty}^{+\infty} U dx\]

или

\[|E| = \frac{\mu}{2\hbar^2} \left(\int_{-\infty}^{+\infty} U dx \right)^2.
\]

Мы видим, в согласии со сделанным предположением, что величина уровня оказывается малой величиной более высокого (второго) порядка, чем глубина ямы.

2. Определить уровень энергии в двухмерной потенциальной яме \(U = U(r) \). (\(r \) - радиус-вектор полярных координат в плоскости) малой глубины предполагается, что интеграл \(\int_0^{+\infty} r UdQr \) сходится.

Решение. Поступая, как в предыдущей задаче, получим в области ямы уравнение

\[
\frac{1}{r} \frac{d}{dr} \left(r \frac{d\psi}{dr} \right) = \frac{2\mu}{\hbar^2} U.
\]
Интегрируя его по \(dr \) от 0 до \(r_1 \) (где \(a \ll r_1 \ll 1/\chi \)), имеем:

\[
\left. \frac{d\psi}{dr} \right|_{r=r_1} = \frac{2\mu}{h^2 r_1} \int_0^{\infty} U(r) \, dr.
\]

Вдали от ямы уравнение двухмерного свободного движения

\[
\frac{1}{r} \frac{d}{dr} \left(r \frac{d\psi}{dr} \right) + \frac{2\mu}{h^2} E\psi = 0
\]

имеет решение (обращающееся на бесконечности в нуль) \(\psi = \text{const.} \, H_0^{(1)} (i\chi r) \), где \(H_0^{(1)} \) — функция Ганкеля первого рода нулевого порядка; при малых значениях аргумента главный член в \(H_0^{(1)} \) пропорционален \(\ln \chi r \). Имея это в виду, приравниваем при \(r \sim a \) логарифмические производные от \(\psi \), вычисленные в яме (правая сторона (1)) и вне её, и получаем

\[
\frac{1}{a \ln \chi a} \simeq \frac{2\mu}{h^2 a} \int_0^{\infty} U(r) \, r \, dr.
\]

откуда

\[
|E| \sim \frac{h^2}{\mu a^2} \exp \left\{ -\frac{h^2}{\mu} \left(\int_0^{\infty} |U(r) \, dr \right)^{-1} \right\}.
\]

Мы видим, что уровень энергии оказывается экспоненциально малым по сравнению с глубиной ямы.
Глава VII
Квазиклассический случай

§ 46. Волновая функция в квазиклассическом случае

Если де-брайлевские длины волн частиц малы по сравнению с характеристическими размерами, определяющими условия данной конкретной задачи, то свойства системы близки к классическим 1). (По аналогии с тем, как волновая оптика переходит в геометрическую при стремлении длины волны к н/дл.)

Произведём теперь более подробное исследование свойств «квазиклассических» систем. Для этого в уравнении Шредингера

\[\sum_a \frac{\hbar^2}{2v_a} \Delta_a \psi + (E - U) \psi = 0 \]

сделаем формальную подстановку

\[\psi = e^{\frac{i}{\hbar} \sigma}. \quad (46,1) \]

Для функции \(\sigma \) получаем уравнение

\[\sum_a \frac{1}{2v_a} (\nabla_a \sigma)^2 - \sum_a \frac{i\hbar}{2v_a} \Delta_a \sigma = E - U. \quad (46,2) \]

Соответственно тому, что система предполагается почти классической по своим свойствам, будем искать \(\sigma \) в виде ряда

\[\sigma = \sigma_0 + \frac{\hbar}{i} \sigma_1 + \left(\frac{\hbar}{i} \right)^2 \sigma_2 + \ldots, \quad (46,3) \]

расположенного по степеням \(\hbar \).

Мы начнём с рассмотрения наиболее простого случая — одномерного движения одной частицы. Уравнение (46,2) сводится тогда

1) Укажем, в частности, что состояние дискретного спектра с большими значениями квантового числа \(n \) имеют квазиклассический характер. Действительно, число \(n \) — порядковый номер состояния — определяет число узлов собственной функции (см. § 19). Но расстояние между соседними узлами совпадает по порядку величины с де-брайлевской длиной волны. При больших \(n \) это расстояние мало, так что длина волны мала по сравнению с размерами области движения.
к уравнению

\[
\frac{1}{2\mu} \sigma'^2 - i\hbar \frac{1}{2\mu} \sigma'' = E - U(x), \quad (46,4)
\]

(где штрих означает дифференцирование по координате \(x\)).

В первом приближении пишем \(\sigma = \sigma_0\) и опускаем в уравнении член, содержащий \(\hbar\):

\[
\frac{1}{2\mu} \sigma'^2 = E - U(x).
\]

Отсюда находим:

\[
\sigma_0 = \pm \int \sqrt{2\mu (E - U(x))} \, dx.
\]

Подинтегральное выражение представляет собой не что иное, как классический импульс \(p(x)\) частицы, выраженный в функции от координаты. Определив функцию \(p(x)\) со знаком \(+\) перед корнем, будем иметь

\[
\sigma_0 = \pm \int p \, dx, \quad p = \sqrt{2\mu (E - U)}, \quad (46,5)
\]

что и следовало ожидать в соответствии с предельным выражением \((6,1)\) для волновой функции 1).

Сделанное в уравнении \((46,4)\) пренебрежение законно только в том случае, если второй член в левой стороне равенства мал по сравнению с первым, т. е. должно быть \(\hbar \frac{\sigma''}{\sigma_0^2} \ll 1\) или

\[
\frac{d}{dx} \left(\frac{\hbar}{\sigma_0} \right) \ll 1.
\]

В первом приближении имеем, согласно \((46,5)\), \(\sigma' = p\), так что полученное условие можно написать в виде:

\[
\frac{d}{dx} \left(\frac{\lambda}{2\pi} \right) \ll 1, \quad (46,6)
\]

где \(\lambda(x) = 2\pi \hbar / p(x)\) есть де-Броилевская длина волны частицы, выраженная как функция от \(x\) с помощью классической функции \(p(x)\). Таким образом мы получили количественное условие «квазиклассичности» — длина волны частицы должна мало меняться на протяжении расстояний порядка её самой. Выводимые здесь формулы становятся неприменимыми в тех областях пространства, где это условие не выполняется.

1) Как известно, \(\int p \, dx\) есть не зависящая от времени часть действия.

Полное механическое действие \(S\) частицы есть \(S = -Et \pm \int p \, dx\). В \(\sigma_0\) член — \(Et\) отсутствует в соответствии с тем, что мы рассматриваем не зависящую от времени волновую функцию \(\psi\).
Условие (46,6) можно написать и в ином виде, заметив, что
\[\frac{dp}{dx} = \frac{d}{dx} \sqrt{2\mu (E - U)} = -\frac{\mu}{p} \frac{dU}{dx} = \frac{\mu F}{p}, \]
где \(F = -\frac{dU}{dx} \) есть классическая сила, действующая на частицу во внешнем поле. Вводя эту силу, находим:
\[\frac{\mu \hbar F}{p^3} \ll 1. \] (46,7)

Отсюда видно, что квазиклассическое приближение становится неприемлемым при слишком малом импульсе частицы. В частности, оно заведомо неприемлемо вблизи «точек поворота», т. е. вблизи тех точек, в которых частица, согласно классической механике, остановилась бы, после чего начала бы двигаться в обратном направлении. Эти точки определяются из равенства \(p(x) = 0 \), т. е. \(E = U(x) \). Это обстоятельство имеет простой наглядный смысл: при \(p \to 0 \) де-Броилевская длина волны стремится к бесконечности и потому во всяком случае не может считаться малой.

Перейдем к вычислению следующего члена в разложении (46,3). Члены первого порядка по \(\hbar \) в уравнении (46,4) дают
\[\sigma_0' \sigma_1 + \frac{\sigma_0''}{2} = 0, \]
откуда
\[\sigma_1 = -\frac{\sigma_0''}{2\sigma_0} = -\frac{p'}{2p}. \]
Интегрируя, находим:
\[\sigma_1 = -\frac{1}{2} \ln p \] (46,8)
(постоянную интегрирования опускаем).

Подставляя полученное выражение в (46,1), (46,3), получим волновую функцию в виде:
\[\psi = \frac{C_1}{\sqrt{p}} e^{\frac{i}{\hbar} \int p \, dx} + \frac{C_2}{\sqrt{p}} e^{-\frac{i}{\hbar} \int p \, dx}. \] (46,9)
Следующие члены в разложении (46,3) привели бы к появлению в предэкспоненциальных множителях членов порядка первой и более высоких степеней \(\hbar \); обычно нет необходимости в вычислении этих членов.

Наличие множителя \(1/\sqrt{p} \) в волновой функции допускает простое истолкование. Именно, вероятность нахождения частицы в точках с координатами между \(x \) и \(x + dx \) определяется квадратом \(|\psi|^2 \), т. е. в основном пропорциональна \(1/p \). Это как раз то, что и следовало ожидать для «квазиклассической частицы», поскольку при классическом
движении время, проводимое частицей на отрезке dx, обратно пропорционально скорости (или импульсу) частицы.

В «классически недостижимых» участках пространства, где $E < U(x)$, функция $p(x)$ — чисто мнимая, так что интегралы в показателях действительны. Волновую функцию в этих областях напишем в виде:

$$
\psi = \frac{C_1'}{\sqrt{|p|}} e^{-\frac{1}{\hbar} \int |p| \, dx} + \frac{C_2'}{\sqrt{|p|}} e^{\frac{1}{\hbar} \int |p| \, dx}.
$$
(46,10)

ЗАДАЧА

Определить волновую функцию в квазиклассическом приближении с точностью до членов порядка \hbar в предэкспоненциальном множителе.

Решение. Члены порядка \hbar^2 в уравнении (45,4) дают

$$
\sigma_0 \sigma_2' + \frac{1}{2} \sigma_1' + \frac{1}{2} \sigma_1 = 0,
$$
откуда (подставляя (46,5) и (46,8) для σ_0 и σ_1)

$$
\sigma_2' = \frac{p''}{4p^2} - \frac{3p'^2}{8p^3}.
$$

Интегрируя (причём первый член интегрируется по частям) и вводя силу $F = p'p/\mu$, получим:

$$
\sigma_2 = \frac{\mu F}{4p^3} - \frac{\mu^2}{8} \int \frac{F^2}{p^6} \, dx.
$$

Волновая функция в рассматриваемом приближении имеет вид:

$$
\psi = e^{i \frac{q}{\hbar} \sigma_2} = e^{i \frac{q}{\hbar} \sigma_0 + \sigma_1} (1 - i \hbar \sigma_2)
$$
или

$$
\psi = \text{const.} \frac{1}{\sqrt{p}} \left[1 - \frac{i \mu \hbar}{4} \frac{F}{p^3} + \frac{i \mu^2}{8} \int \frac{F^2}{p^6} \, dx \right] e^{i \frac{q}{\hbar} \int p \, dx}
$$

§ 47. Границные условия в квазиклассическом случае

Пусть $x = a$ есть точка поворота (так что $U(a) = E$); предположим, что кривая потенциальной энергии такова, что при всех $x < a U(x) > E$. Тогда движение будет во всяком случае фиинтиным со стороны отрицательных $x - a$. Как мы знаем, состояния одномерного движения, фиинтиного хотя бы с одной стороны, не вырождены (§ 19). Волновые же функции невырожденных состояний должны быть действительными (отвлекаясь от несущественного фазового множителя). В квазиклассическом случае в качестве таковых должна быть взята действительная линейная комбинация (46,9). Напишем её в виде:

$$
\psi = \frac{C}{\sqrt{p}} \sin \left(\frac{q}{p} \int_a^\infty p \, dx + \alpha \right),
$$
(47,1)
§ 47] ГРАНИЧНЫЕ УСЛОВИЯ В КВАЗИКЛАССИЧЕСКОМ СЛУЧАЕ 191

gде \(a \) — некоторая постоянная. Мы определим эту постоянную, исходя из требования, чтобы при малых \(x \sim a \), где квазиклассическое приближение становится неприемлемым, функция (47,1) переходила в решение точного уравнения Шредингера, обращающееся при \(x \to -\infty \) в нуль (Г. Крамерс, 1926).

Для исследования истинного вида волновой функции вблизи «точки поворота» мы можем разложить \(U(x) \) по степеням \(q \equiv x - a \), причём ввиду малости \(q \) достаточно ограничиться линейным членом

\[
U(q) = E - F_0 q
\]

(мы подставили \(U(0) = E \) и ввели обозначение \(F_0 = -\frac{\partial U}{\partial q}|_{q=0} \)).

Уравнение Шредингера приобретает вид:

\[
\frac{d^2\psi}{dq^2} + \frac{2m}{\hbar^2} F_0 q \psi = 0.
\]

Но это есть как раз то уравнение (22,1), которое нам встречалось при изучении движения в однородном поле (причём в (22,1) надо положить \(E = 0 \)); его решение даётся формулой (22,4).

Рассмотрим значения \(q \), которые, с одной стороны, настолько малы, что можно пользоваться разложением (47,2), но, с другой стороны, настолько велики, что можно воспользоваться асимптотическим представлением (22,6) функции (22,4) — такие значения \(q \) всегда существуют, если движение квазиклассично почти во всей области, что и предполагается. Подставляя в (22,6) выражение для \(\xi \), напишем волновую функцию в виде:

\[
\psi = \frac{C}{(2\mu F_0 x)^{1/4}} \sin \left(\frac{2}{3} \sqrt{\frac{2\mu F_0}{\hbar^2}} q^{3/4} + \frac{\pi}{4} \right).
\]

При классическом движении в поле с потенциальной энергией (47,2) импульс частицы равен

\[
p = \sqrt{2\mu (E - U)} = \sqrt{2\mu F_0 q},
\]

а действие

\[
\int_a^x p \, dx = \int_0^q p \, dq = \sqrt{2\mu F_0} \int_0^q \sqrt{q} \, dq = \frac{2}{3} \sqrt{2\mu F_0} q^{3/4}.
\]

Поэтому полученную волновую функцию можно написать в виде:

\[
\psi = \frac{C}{\sqrt{p}} \sin \left(\frac{1}{h} \int_a^x p \, dx + \frac{\pi}{4} \right) = \]

\[
= \frac{C}{\sqrt{p}} \cos \left(\frac{1}{h} \int_a^x p \, dx - \frac{\pi}{4} \right).
\]

(47,3)
Сравнивая эту функцию с квазиклассической функцией (47,1), мы видим, что они совпадают при соответствующем выборе в последней постоянной α. Таким образом функция (47,3) представляет собой искомую квазиклассическую волновую функцию одномерного движения в области справа от точки поворота (т. е. там, где \(U(x) < E \)).

Если бы область, где \(U(x) < E \), лежала слева от точки поворота \(x = b \), то надо было бы писать:

\[
\phi = \frac{C}{\sqrt{p}} \sin \left(\frac{1}{h} \int_a^b p \, dx + \frac{\pi}{4} \right) = \frac{C}{\sqrt{p}} \cos \left(\frac{1}{h} \int_b^a p \, dx + \frac{\pi}{4} \right). \tag{47,4}
\]

По другую сторону от точки поворота (т. е. в классически недостижимой области, где \(U > E \)) волновая функция должна затухать с увеличением \(|q| \). Отбрасывая в общей формуле (46,10) неограниченный возрастующий член, напишем действительную волновую функцию при \(x < a \) в виде:

\[
\phi = \frac{C'}{\sqrt{|p|}} e^{-\frac{1}{h} \left| \int_a^b p \, dx \right|}.
\]

Для того чтобы привести эту функцию в соответствие с функцией (47,3) справа от точки поворота \(^2\), надо сравнить её с асимптотическим выражением (22,5) для точной волновой функции вблизи точки остановки. В результате этого сравнения заключаем, что надо положить \(C' = C/2 \), где \(C \) есть нормировочная постоянная в функции (47,3). Таким образом квазиклассическая волновая функция при \(x < a \) имеет вид:

\[
\phi = \frac{C}{2 \sqrt{|p|}} e^{-\frac{1}{h} \left| \int_a^b p \, dx \right|}. \tag{47,5}
\]

Другое значение фазы получается в случае, если классически достижимая область движения ограничена (при \(x = a \)) бесконечно высокой «потенциальной стенкой». Тогда граничное условие для волнов....

\(^1\) Надо отметить, что выбор постоянной фазы в (47,3) в действительности не однозначен. Вместо \(\pi/4 \) можно написать любое другое число \(\pi/4 + n\pi \), где \(n \) — произвольное целое число. Такое изменение фазы либо не меняет функцию \(\psi \) вовсе, либо меняет её знак; общий же знак волновой функции физически вообще не существует.

\(^2\) Т. е. для того, чтобы эти две функции представляли приближённое выражение при \(x < a \) и \(x > a \) для одного и того же точного решения уравнения Шредингера.
новой функции при $x = a$ есть $\psi = 0$ (§ 16). Соответственно этому, в квазиклассической функции (47,1) надо выбрать α равной нулю, так что имеем:

\[
\begin{align*}
\text{при } x > a: & \quad \psi = \frac{C}{\sqrt{p}} \sin \frac{1}{\hbar} \int_a^x p \, dx, \\
\text{при } x < a: & \quad \psi = 0.
\end{align*}
\] (47,6)

§ 48. Правило квантования Бора

Полученные результаты позволяют вывести условия, определяющие квантовые уровни энергии в квазиклассическом случае. Для этого рассмотрим движение в области $a \leq x \leq b$, ограниченной двумя точками поворота ($x = a$ и $x = b$), между которыми $U(x) < E$; будем предполагать, что везде вне этой области $U(x) > E$. Движение будет тогда финальным, а энергетический спектр соответственно дискретным. Граничное условие в точке $x = a$ приводит (в области справа от неё) к волновой функции (47,3)

\[
\frac{C}{\sqrt{p}} \sin \left[\frac{1}{\hbar} \int_a^x p \, dx + \frac{\pi}{4} \right].
\]

Применяя же формулу (47,4) к области слева от точки $x = b$, получим ту же функцию в виде:

\[
\frac{C'}{\sqrt{p}} \sin \left[\frac{1}{\hbar} \int_a^b p \, dx + \frac{\pi}{4} \right].
\]

Для того чтобы эти два выражения совпадали во всей области, сумма их фаз (которая есть величина постоянная) должна быть целым кратным от π:

\[
\frac{1}{\hbar} \int_a^b p \, dx + \frac{\pi}{2} = (n + 1) \pi
\]

(причём $C = (-1)^n C'$). Отсюда

\[
\frac{1}{\hbar} \int_a^b p \, dx = \pi \left(n + \frac{1}{2}\right)
\]

1) В классической механике в таком поле частица совершала бы периодическое движение между точками $x = a$ и $x = b$ с периодом (время движения от точки $x = a$ до $x = b$ и обратно), равным

\[
T = 2 \int_a^b dx = 2 \mu \int_a^b \frac{dx}{p}
\]

(v — скорость частицы).
или
\[\oint p \, dx = 2\pi h \left(n + \frac{1}{2} \right), \]
(48,1)
где \(\oint p \, dx = 2 \int_a^b p \, dx \) есть интеграл, взятый по целому периоду классического движения частицы (в данном случае — по пути от точки \(x = a \) до точки \(x = b \) и обратно). Это и есть условие, определяющее в квазиклассическом случае стационарные состояния частицы. Оно соответствует правилу квантования Бора старой квантовой теории.

Легко видеть, что целое число \(n \) равно числу узлов волновой функции, а потому есть не что иное, как порядковый номер стационарного состояния. Действительно, фаза
\[\frac{1}{\hbar} \int_a^b p \, dx + \frac{\pi}{4} \]
волновой функции растёт от \(\frac{\pi}{4} \) в точке \(x = a \) до \(\left(n + \frac{3}{4} \right) \pi \) в точке \(x = b \), так что синус обращается в этом интервале в нуль \(n \) раз (вне интервала \(a \leq x \leq b \) волновая функция затухает монотонным образом, не имея нулей на конечных расстояниях). Напомним, в связи с этим, что квазиклассическое приближение, а потому и правило квантования (48,1) применимо лишь при больших \(n \).

При нормировке рассматриваемых волновых функций в нормировочном интеграле \(\int |\psi|^2 \, dx \) достаточно ограничиться интегрированием по интервалу \(a \leq x \leq b \), поскольку вне его \(\psi \) экспоненциально затухает. Подставляя (47,3), имеем:
\[C^2 \int_a^b \frac{dx}{p(x)} \sin^2 \left[\frac{1}{\hbar} \int_a^x p \, dx + \frac{\pi}{4} \right] = 1. \]

Выражение, стоящее под знаком синуса, есть (в квазиклассическом случае) быстро меняющаяся функция; поэтому можно, с достаточной точностью, заменить квадрат синуса его средним значением, т. е. \(1/2 \). Тогда получим:
\[\frac{C^2}{2} \int_a^b \frac{dx}{p(x)} = 1. \]

1) В некоторых случаях точное выражение для уровней энергии \(E(n) \) (как функции от квантового числа \(n \)), получающееся из точного уравнения Шредингера, таково, что при \(n \to \infty \) оно сохраняет свой вид; примерами являются уровни энергии в кулоновом поле и уровни энергии гармониче-
Вводя частоту $\omega = \frac{2\pi}{T}$ классического периодического движения, где

$$T = 2\mu \int_{a}^{b} \frac{dx}{p}$$

есть его период, получим: $C = \sqrt{\frac{2\omega \mu}{\pi}}$, т. е.

$$\psi = \sqrt{\frac{2\omega}{\pi \nu}} \sin \left[\frac{1}{h} \int_{0}^{x} p \, dx + \frac{\pi}{4} \right].$$

(48,2)

Следует помнить, что частота ω, вообще говоря, различна для разных уровней, будучи функцией энергии.

Соотношение (48,1) можно истолковать ещё и другим образом. Интеграл $\int p \, dx$ есть площадь, охватываемая замкнутой классической фазовой траекторией частицы (т. е. кривой в плоскости p, x — фазовом пространстве частицы). Разделив эту площадь на клетки площадью $2\pi \hbar$ каждая, мы получим всего n клеток. Но n есть число квантовых состояний с энергиями, не превышающими заданного её значения (соответствующего рассматриваемой фазовой траектории). Таким образом мы можем сказать, что в квазиклассическом случае каждому квантовому состоянию соответствует клетка в фазовом пространстве площадью в $2\pi \hbar$. Иначе, число состояний, отнесённое к элементу объёма $\Delta p \Delta x$ фазового пространства, есть

$$\frac{\Delta p \Delta x}{2\pi \hbar}.$$

(48,3)

Если ввести вместо импульса волновой вектор $k = \frac{p}{\hbar}$, то это число напишется, как

$$\frac{\Delta k \Delta x}{2\pi}.$$

(48,4)

Оно совпадает, как и следовало ожидать, с известным выражением для числа собственных колебаний волнового поля 1).

Исходя из правила квантования (48,1), можно выяснить общий характер распределения уровней в энергетическом спектре. Пусть ΔE есть расстояние между двумя соседними уровнями, т. е. уровнями с отличающимися на единицу квантовыми числами n. Поскольку ΔE мало (при больших n) по сравнению с самой энергией уровней, то на основании (48,1) можно написать:

$$\Delta E \int \frac{dp}{dE} \, dx = 2\pi \hbar.$$

ског оосцилятора. Естественно, что в этих случаях правило квантования Бора, применимое при больших n, даёт для функции $E(n)$ выражение, совпадающее с точным.

1) См., например, «Теория поля», § 52.
Но \(\frac{\partial E}{\partial \rho} = v \), так что
\[
\oint \frac{\partial p}{\partial E} \, dx = \oint \frac{dx}{v} = T.
\]
Поэтому получаем:
\[
\Delta E = \frac{2\pi}{T} \hbar = \hbar \omega. \tag{48,5}
\]
Таким образом расстояние между двумя соседними уровнями оказывается равным \(\hbar \omega \). Для целого ряда соседних уровней (разность номеров \(n \) которых мала по сравнению с самыми \(n \)) соответствующие частоты \(\omega \) можно приближённо считать одинаковыми. Поэтому мы приходим к выводу, что в каждом небольшом участке квазиклассической части спектра уровни расположены эквидистантно, через одинаковые интервалы \(\hbar \omega \). Этот результат, впрочем, можно было ожидать заранее, так как в квазиклассическом случае частоты, соответствующие переходам между различными уровнями энергии, должны быть целыми кратными классической частоты \(\omega \).

Представляет интерес проследить, во что переходят в классическом пределе матричные элементы какой-либо физической величины \(f \). Для этого исходим из того, что среднее значение \(\bar{f} \) в некотором квантовом состоянии в пределе должно перейти просто в классическое значение этой величины, если только само состояние в пределе даёт движение частицы по определённой траектории. Такому состоянию соответствует волновой пакет (см. § 6), получающийся суперпозицией ряда стационарных состояний с близкими значениями энергии. Волновая функция такого состояния имеет вид:
\[
\Psi = \sum_n a_n \Psi_n,
\]
где коэффициенты \(a_n \) заметно отличны от нуля только в некотором интервале \(\Delta n \) значений квантового числа \(n \), таком, что \(1 \ll \Delta n \ll n \); числа \(n \) предполагаются большими соответственно квазиклассичности стационарных состояний. Среднее значение \(\bar{f} \) равно, по определению,
\[
\bar{f} = \int \Psi^* f \Psi \, dx = \sum_n \sum_m a_n^* a_m f_{nm} e^{i \omega_{mn} t},
\]
или, заменив суммирование по \(n, m \) суммированием по \(n \) и разности \(s = m - n \):
\[
\bar{f} = \sum_n \sum_s a_{n+s}^* a_n f_{n+s} e^{i \omega_{st}},
\]
где написано \(\omega_{mn} = \omega_{n} \) в соответствии с (48,5).

Матричные элементы \(f_{nm} \), вычисленные с помощью квазиклассических волновых функций, быстро падают по величине с увеличением разности \(m - n \), являясь в то же время медленно меняющимися функциями самого числа \(n \) (при заданном \(m - n \)). Ввиду этого при-
блаженно можно написать

$$\vec{f} = \sum_n \sum_g a_n^* a_n f_s e^{i\omega st} = \sum_n |a_n|^2 \sum_s f_s e^{i\omega st},$$

где введено обозначение $f_s = f_{\bar{n}+s,n}$, а \bar{n} есть некоторое среднее значение квантowego числа в интервале Δn. Но $\sum_n |a_n|^2 = 1$; поэтому

$$\vec{f} = \sum_s f_s e^{i\omega st}.$$

Получившаяся сумма имеет вид обычного ряда Фурье. Поскольку \vec{f} должно в пределе совпадать с классической величиной $f(t)$, то мы приходим к результату, что матричные элементы f_{mn} в пределе переходят в компоненты f_{m-n} разложения классической функции $f(t)$ в ряд Фурье.

Аналогично, матричные элементы для переходов между состояниями непрерывного спектра переходят в компоненты разложения $f(t)$ в интеграл Фурье. При этом волновые функции стационарных состояний должны быть нормированы на δ-функцию от энергии, делённую на \hbar.

§ 49. Квазиклассическое движение в центрально-симметрическом поле

При движении в центрально-симметрическом поле волновая функция частицы распадается, как мы знаем, на угловую и радиальную части. Рассмотрим сначала первую из них.

Зависимость угловой волновой функции от угла φ (определяющаяся квантовым числом m) настолько проста, что вопрос о нахождении для неё приближённых формул вообще не возникает. Что же касается зависимости от полярного угла θ, то, согласно общему правилу, она квазиклассична, если соответствующее ей квантовое число l велико (более точная формулировка этого условия будет дана ниже).

Мы ограничимся здесь выводом квазиклассического выражения угловой функции лишь для наиболее важного в применениях случая состояний с равным нулю магнитным квантовым числом ($m = 0$). Эта функция совпадает с точностью до постоянного множителя с полиноном Лежандра $P_l (\cos \theta)$ (см. (26,7)) и удовлетворяет дифференциальному уравнению

$$\frac{d^2 P_l}{d\theta^2} + \cotg \theta \frac{d P_l}{d\theta} + l (l + 1) P_l = 0.$$ \hspace{1cm} (49,1)

Подстановкой

$$P_l (\cos \theta) = \frac{\chi (\theta)}{\sqrt{\sin \theta}}$$ \hspace{1cm} (49,2)

она приводится к уравнению

$$\chi'' + \left[(l + \frac{1}{2})^2 + \frac{1}{4} \cotg^2 \theta \right] \chi = 0,$$ \hspace{1cm} (49,3)
не содержащему первой производной и по виду аналогичному одномерному уравнению Шредингера.

В уравнении (49,3) роль «де-бройлевской длины волны» играет

$$\lambda = \left[\left(l + \frac{1}{2} \right)^2 + \frac{1}{4} \cot^2 \theta \right]^{-1/2}. $$

Требование малости производной $d\lambda/dx$ (условие (46,6)) приводит к неравенствам

$$\theta l \gg 1, \quad (\pi - \theta) l \gg 1 \quad (49,4)$$

(условия квазиклассичности угловой части волновой функции). При больших l эти условия выполняются почти во всём интервале значений θ, за исключением лишь области углов, очень близких к нулю или к π.

При выполнении условия (49,4) в уравнении (49,3) можно пренебречь вторым членом в квадратных скобках по сравнению с первым:

$$\gamma'' + \left(l + \frac{1}{2} \right)^2 \gamma = 0.$$

Решением этого уравнения будет:

$$\gamma = A \sin \left[\left(l + \frac{1}{2} \right) \theta + \alpha \right]$$

(A, α — постоянные). Таким образом $P_l(\cos \theta)$ приближённо имеет вид:

$$P_l(\cos \theta) = A \frac{\sin \left[\left(l + \frac{1}{2} \right) \theta + \alpha \right]}{\sqrt{\sin \theta}}. \quad (49,5)$$

Постоянные A и α можно определить следующим образом. Для углов $\theta \ll 1$ в уравнении (49,1) можно положить $\cot \theta \approx 1/\theta$; заменяя также приближённо $l(l+1)$ на $\left(l + \frac{1}{2} \right)^2$, получим уравнение

$$\frac{d^2 P_l}{d\theta^2} + \frac{1}{\theta} \frac{dP_l}{d\theta} + \left(l + \frac{1}{2} \right)^2 P_l = 0,$$

которое имеет решением функцию Бесселя нулевого порядка

$$P_l(\cos \theta) = J_0 \left[\left(l + \frac{1}{2} \right) \theta \right] \quad (\theta \ll 1). \quad (49,6)$$

Постоянный множитель положен равным единице, так как при $\theta = 0$ должно быть $P_l = 1$. Приближённое выражение (49,6) для P_l справедливо при всех углах $\theta \ll 1$. В частности, его можно применить и для углов в области $\frac{1}{l} \ll \theta \ll 1$, где оно должно совпадать с выражением (49,5), справедливым при всех $\gg 1/l$. При $\theta l \gg 1$ бес-
селеву функцию можно заменить её асимптотическим выражением для больших значений аргумента, и мы получим:

$$P_l \approx \sqrt{\frac{2}{\pi}} \sin \left[\left(\frac{1}{2} + \frac{1}{2} \right) \theta + \frac{\pi}{4} \right]$$

(в коэффициенте можно пренебречь 1/2 по сравнению с l). Сравнивая с (49,5), находим, что $A = \sqrt{\frac{2}{\pi l}}$, $\alpha = \frac{\pi}{4}$. Таким образом получаем окончательно следующее выражение для $P_l (\cos \theta)$, применимое в квазиклассическом случае:

$$P_l (\cos \theta) \approx \sqrt{\frac{2}{\pi l}} \sin \left[\left(\frac{1}{2} + \frac{1}{2} \right) \theta + \frac{\pi}{4} \right] \frac{1}{\sin \theta}.$$ \hspace{1cm} (49,6a)

Нормированная волновая функция Θ_{l0} получается, согласно (26,7), умножением на $\sqrt{\frac{2l+1}{2}} \approx Vl$:

$$\Theta_{l0} (\theta) \approx \sqrt{\frac{2}{\pi}} \sin \left[\left(\frac{1}{2} + \frac{1}{2} \right) \theta + \frac{\pi}{4} \right] \frac{1}{\sin \theta}.$$ \hspace{1cm} (49,7)

Перейдём к радиальной части волновой функции. В § 32 было показано, что функция $\chi (r) = rR (r)$ удовлетворяет уравнению, тождественному с одномерным уравнением Шредингера с потенциальной энергией

$$U_l (r) = U (r) + \frac{h^2}{2\mu} \frac{l(l+1)}{r^2}.$$

Поэтому мы можем применить полученные в предыдущих параграфах результаты, понимая под потенциальной энергией функцию $U_l (r)$.

Наиболее прост случай $l = 0$. Центробежная энергия отсутствует и если поле $U (r)$ удовлетворяет необходимому условию (46,6 — 7), то радиальная волновая функция будет квазиклассической во всём пространстве. При $r = 0$ должно быть $\chi = 0$, поэтому квазиклассическая функция $\chi (r)$ определяется формулой (47,6) (с $a = 0$).

Если же $l \neq 0$, то условию (46,6) должна удовлетворять также и центробежная энергия. В области небольших r, где центробежная энергия порядка величины полной энергии, длина волны $\lambda = \frac{h}{p} \sim \frac{r}{\lambda}$, и условие (46,6) даёт $l \gg 1$. Таким образом, если l невелико, в области небольших r условие квазиклассичности нарушается центробежной энергией. Для вычисления квазиклассических волновых функций (предполагается, что само поле $U (r)$ удовлетворяет условию квазиклассичности) можно в первом приближении выве пренебречь центробежной энергией как величиной, пропорциональной h^2. Лучшее приближение, однако, получится, если написать центробежную энергию
в виде \(\frac{h^2 s^2}{r^2} \) и подобрать постоянную \(s \) таким образом, чтобы вычисленная по обычным правилам квазиклассическая волновая функция имела при \(r \to \infty \) правильную фазу.

Для определения \(s \) рассмотрим простейший случай свободного движения. Квазиклассическая волновая функция должна определяться, согласно (47,3), формулой

\[
\chi(r) = \frac{C}{\sqrt{p}} \sin \left(\frac{1}{\hbar} \left(\int_{r_0}^{r} p \, dr + \frac{\pi}{4} \right) \right),
\]

где

\[
p = \sqrt{2\mu \left(E - \frac{h^2 s^2}{2\mu r^2} \right)} = \hbar \sqrt{\frac{h^2}{\mu} - \frac{s^2}{r^2}},
\]

а \(r_0 = \frac{s}{\hbar} \). Её фаза при больших \(r \) равна:

\[
\frac{1}{\hbar} \int_{r_0}^{r} p \, dr + \frac{\pi}{4} \simeq kr - \frac{s^2}{2} + \frac{\pi}{4}.
\]

Для того чтобы получить правильное значение \(kr - \frac{\pi l}{2} \), надо положить \(s = l \pm 1/2 \).

Таким образом радиальная квазиклассическая волновая функция должна вычисляться по формулам одномерного случая, причём под импульсом \(p \) надо подразумевать «радиальный импульс»

\[
p_r = \sqrt{2\mu \left[E - U(r) \right] - \frac{h^2(l + \frac{1}{2})^2}{2\mu r^2}}.
\]

Вопрос о применимости квазиклассического приближения к кулоновому полю \(U = \pm \frac{\alpha}{r} \) требует особого рассмотрения. Из всей области движения наиболее существенна часть, соответствующая расстояниям \(r \), при которых \(|U(r)| \sim |E| \), т. е. \(r \sim \frac{\alpha}{|E|} \). Условие квазиклассичности движения в этой области сводится к требованию малости длины волны \(\lambda \sim h/\sqrt{2\mu |E|} \) по сравнению с размерами \(r \sim \alpha/|E| \) области; это даёт

\[
|E| \ll \frac{\mu \alpha^2}{h^2},
\]

т. е. абсолютное значение энергии должно быть малым по сравнению с энергией частицы на первой боровской орбите. Это условие можно написать также и в виде:

\[
\frac{\alpha}{\hbar \nu} \gg 1.
\]

(49,9),(49,10)
§ 49] Квазиклассическое движение в центрально-симметрич. поле 201

gде \(v \sim \sqrt{\frac{|E|}{\mu}} \) — скорость частицы. Обратим внимание на то, что это условие обратно условию (45,7) применимости теории возмущений к кулоновому полю.

Что касается области малых расстояний (\(|U(r)| \gg E \)), то в кулоновом поле отталкивания она вообще не представляет интереса, поскольку при \(U \geq E \) квазиклассические волновые функции затухают экспоненциально. В поле же притяжения при малых \(l \) возможно проникновение частицы в область, где \(|U| \gg |E| \), так что возникает вопрос о границах применимости здесь квазиклассического приближения. Воспользуемся общим уравнением (46,7), положив в нём:

\[
F = \frac{dU}{dr} = \frac{a}{r^3}, \quad p = \frac{\sqrt{2\mu |U|}}{2} \sim \sqrt{\frac{\mu a}{r}}.
\]

В результате найдём, что область применимости квазиклассического приближения ограничивается расстояниями

\[
r \gg h^2/\mu a,
\]

т. е. расстояниями, большими по сравнению с «радиусом» первой боровской орбиты.

Задачи

1. Вычислить квазиклассические волновые функции в кулоновом поле притяжения.

Решение. В дискретном спектре \(E = -\frac{1}{2n^2} \) и радиальный импульс равен:

\[
p_r = \sqrt{-\frac{1}{n^2} + \frac{2}{r} - \left(\frac{l + \frac{1}{2}}{r^2}\right)^2}.
\]

Областью классического движения (\(p_r^2 > 0 \)) является область \(r_1 < r < r_2 \), где

\[
r_{1,2} = n^2 = n \sqrt{n^2 - \left(l + \frac{1}{2}\right)^2}.
\]

Радиальные волновые функции \(R(r) = \chi(r)/r \) в этой области вычисляются по формуле

\[
\chi(r) = \frac{C}{\sqrt{p_r}} \sin \int_{r_1}^{r} \left[p_r dr + \frac{\pi}{4} \right].
\]

1) Мы пользуемся кулоновыми единицами.
Вычисление даёт:

\[\chi_{nl} = C_n \left(\frac{2}{r} - \frac{1}{n^2} - \left(\frac{r+1}{2} \right)^2 \right)^{-\frac{1}{4}} \sin \left[\sqrt{2r - \frac{r^2}{n^2} - \left(\frac{r+1}{2} \right)^3} + \right. \\
+ n \arcsin \frac{r-n^2}{n \sqrt{n^2 - \left(\frac{r+1}{2} \right)^2}} - \left(\frac{r+1}{2} \right) \arcsin \frac{r - \left(\frac{r+1}{2} \right)^2}{n \sqrt{n^2 - \left(\frac{r+1}{2} \right)^2}} + \right. \\
\left. + (n-l) \frac{\pi}{2} \right] \]. \quad (1)

При вычислении нормировочного интеграла достаточно интегрировать по области между \(r_1 \) и \(r_2 \), так как вне её волновые функции затухают экспоненциально. При этом быстро меняющийся квадрат синуса можно заменить его средним значением 1/2, так что

\[\int_0^\infty \chi_{nl}^2 \, dr \approx \frac{C_n^2}{2} \int_{r_1}^{r_2} \frac{dr}{r} = \frac{C_n^2}{2} \pi n^3 = 1, \]

откуда

\[C_n = \sqrt{\frac{2}{\pi n^3}}. \quad (2) \]

В непрерывном спектре \(E = \frac{k^2}{2} \), а областью классического движения является \(r > r_1 \), где

\[r_1 = -\frac{1}{k^2} + \frac{1}{k^3} \sqrt{1 + k^2 \left(\frac{r+1}{2} \right)^2}. \]

Волновая функция в этой области имеет вид:

\[\chi_{kl} = C_k \left(k^2 + \frac{2}{r} - \left(\frac{r+1}{2} \right)^2 \right)^{-\frac{1}{4}} \sin \left[\sqrt{k^2 r^2 + 2r - \left(\frac{r+1}{2} \right)^3} + \right. \\
+ \frac{1}{k} \arctgh \frac{k^2 r + 1}{\sqrt{1 + k^2 \left(\frac{r+1}{2} \right)^2}} - \left(\frac{r+1}{2} \right) \arcsin \frac{r - \left(\frac{r+1}{2} \right)^2}{r \sqrt{1 + k^2 \left(\frac{r+1}{2} \right)^3} - \frac{l \pi}{2}} \right]. \quad (3) \]
Нормировочный коэффициент должен быть выбран таким образом, чтобы асимптотический вид этой функции при \(r \to \infty \) совпадал с (36,23)\(^1\):

\[
C_k = \sqrt{\frac{2k}{\pi}}.
\]

Отметим, что при \(\left(l + \frac{1}{2} \right)^2 \ll r \ll \frac{1}{k^2} \) функция (3) переходит, как это и должно быть, в (36,26).

2. Определить поведение волновой функции вблизи начала координат, если при \(r \to 0 \) поле обращается в бесконечность, как \(a/r^8 \) с \(s > 2 \).

Решение. При достаточно малых \(r \) де-борйлевская длина волны

\[
\lambda \sim \frac{h}{\sqrt{\mu |U|}} \sim \frac{h r^{s/2}}{\sqrt{\mu |a|}},
\]

так что \(\frac{d\lambda}{dr} \sim \frac{h}{\sqrt{\mu |a|}} r^{s-1} \ll 1 \); таким образом выполняется условие квазиklassичности. Если \(a < 0 \) (поле притяжения), то \(U_i \to -\infty \) при \(r \to 0 \). Область вблизи начала координат в этом случае классически достижима и радиальная волновая функция \(r^{s-1} \sim \frac{1}{\sqrt{p}} \), откуда

\[
\psi \sim r^{s-1}.
\]

Если же \(a > 0 \) (поле отталкивания), то область малых \(r \) классически недостижима. В этом случае волновая функция при \(r \to 0 \) экспоненциально стремится к нулю. Опуская множитель, при экспоненциальной функции, имеем:

\[
\psi \sim e^{-\frac{1}{h} \int_{r_0}^{r} P \, dr}
\]

или

\[
\psi \sim \exp \left\{ -\frac{2 \sqrt{2 \mu \alpha}}{(s-2) h} \left(\frac{r^{s-1}}{r} \right) \right\}.
\]

§ 50. Прохождение через потенциальный барьер

Рассмотрим движение частицы в поле типа, изображённого на рис. 14, характеризующегося наличием «потенциального барьера», т. е. участка, в котором потенциальная энергия \(U(x) \) превышает полную энергию \(E \) частицы. В классической механике потенциальный барьер «непроницаем» для частицы; в квантовой же механике частица может, с отличной от нуля вероятностью, пройти «сквозь барьер» (см. также задачу 2, § 23). Если поле \(U(x) \) удовлетворяет условиям квазиklassичности, то коэффициент прохождения через барьер может быть вычислен в общем виде. Заметим,

\[
\delta_x = \arg \Gamma \left(l + 1 - \frac{i}{k} \right) \text{ в (36,23) может быть вычислен приближённо с помощью известного асимптотического выражения Стирлинга для \(\Gamma \)-функции.}
\]

\(^1\) Заметим, что в квазиklassическом случае \(\frac{1}{k} \) велико и величина \(\delta_x \) в (36,23) может быть вычислена приближённо с помощью известного асимптотического выражения Стирлинга для \(\Gamma \)-функции.
что эти условия приводят, в частности, к тому, что барьер должен быть «широким» и потому коэффициент прохождения в квазиклассическом случае мал.

Чтобы не прерывать дальнейших вычислений, решим предварительно следующую задачу. Пусть квазиклассическая волновая функция в области справа от точки поворота \(x = b \) (где \(U(x) < E \)) имеет вид бегущей волны:

\[
\psi = \frac{C}{\sqrt{p}} e^{\frac{i}{\hbar} \int_{b}^{x} p \, dx - \frac{i\pi}{4}}. \tag{50,1}
\]

Требуется найти волновую функцию этого же состояния в области \(x < b \). Будем искать её в виде выражения

\[
\psi = \frac{C'}{\sqrt{|p|}} e^{\frac{1}{\hbar} \int_{b}^{x} p \, dx}, \tag{50,2}
\]

возрастающего по направлению в глубь области \(x < b \). Экспоненциально затухающим членом пренебрегаем по сравнению с возрастающим. Для определения коэффициента \(C' \) поступим следующим образом. Замечаем, что, согласно формулам (47,3) и (47,5), имеет место соответствие между функциями

\[
\psi = \frac{1}{2 \sqrt{|p|}} \left[\exp \left\{ \frac{i}{\hbar} \int_{b}^{x} p \, dx - \frac{i\pi}{4} \right\} + \exp \left\{ - \frac{i}{\hbar} \int_{b}^{x} p \, dx + \frac{i\pi}{4} \right\} \right]
\]

при \(x > b \) \(\tag{50,3} \)

\[
\psi = \frac{1}{2 \sqrt{|p|}} e^{-\frac{1}{\hbar} \int_{b}^{x} p \, dx}
\]

при \(x < b \).

С другой стороны, между двумя различными точными решениями \(\psi_1 \) и \(\psi_2 \) одномерного уравнения Шрёдингера существует соотношение (19,2)

\[
\psi_1 \psi_2' = \psi_2 \psi_1' = \text{const.}
\]

Применим это соотношение, понимая под \(\psi_1 \) решение, описывающееся формулами (50,1—2), а под \(\psi_2 \) — решение (50,3). Слева от точки \(x = b \) имеем

\[
\psi_1 \psi_2' - \psi_2 \psi_1' = -\frac{C'}{\hbar}
\]

1) В задаче о прохождении через потенциальный барьер мы имеем дело с движением, инфинитным в обоих направлениях; соответствующие уровни двукратно выражены (см. § 19), и потому волновые функции не обязательно действительны.
справа же находим:

$$\psi_1 \psi_2' - \psi_2 \psi_1' = \psi_2^2 \left(\frac{\psi_2}{\psi_1} \right)' = - \frac{iC}{\hbar}.$$

Приравнивая оба эти выражения, получим $C' = iC$. Таким образом искомая квазиклассическая волновая функция имеет вид:

при $x < b$: $\psi = \frac{iC}{\sqrt{p}} e^{\frac{1}{\hbar} \int_b^a p \, dx}$,

при $x > b$: $\psi = \frac{C}{\sqrt{p}} e^{\frac{i}{\hbar} \int_b^a p \, dx - \frac{i\pi}{4}}.$

(50,4)

Вернёмся теперь к вычислению коэффициента прохождения частицы через барьер. Пусть частица падает на барьер по направлению слева направо. Поскольку вероятность прохождения через барьер в квазиклассическом случае мала, то можно, с достаточной точностью, писать волновую функцию в области I (рис. 14) перед барьером такой, какой она была бы перед совершенно непроницаемой потенциальной стенкой, т. е. в форме (47,4):

$$\psi = \frac{2}{\sqrt{v}} \cos \left[\frac{1}{\hbar} \int_a^x p \, dx + \frac{\pi}{4} \right]$$

(50,5)

(мы ввели скорость $v = \frac{p}{\mu}$; о выборе нормировочного коэффициента см. ниже). Если написать её в виде суммы двух комплексных выражений

$$\psi = \frac{1}{\sqrt{v}} e^{\frac{i}{\hbar} \int_a^x p \, dx + \frac{i\pi}{4}} + \frac{1}{\sqrt{v}} e^{\frac{-i}{\hbar} \int_a^x p \, dx - \frac{i\pi}{4}},$$

то первый член (сводящийся при $x \to -\infty$ к плоской волне $\psi \sim e^{i \frac{p}{\hbar} x}$) описывает падающую на барьер частицу, а второй член — отражённую от барьера частицу. Выбранная нормировка соответствует равной единице плотности потока вероятности в падающей волне.

По другую сторону от точки поворота $x = a$ (в области II внутри барьера) волновой функции (50,5) соответствует, согласно результатам § 47, функция

$$\psi = \frac{1}{\sqrt{|v|}} e^{-\frac{1}{\hbar} \int_a^x p \, dx}.$$

(50,6)
Написав эту последнюю в виде:

$$\psi = \frac{1}{\sqrt{|v|}} e^{-\frac{1}{\hbar} \int_{a}^{b} p \, dx} e^{i \frac{1}{\hbar} \int_{a}^{b} p \, dx}$$, (50,7)

и применяя формулы (50,4), найдём волновую функцию в области III

$$\psi = -\frac{1}{\sqrt{|v|}} e^{-\frac{1}{\hbar} \int_{a}^{b} p \, dx} e^{i \frac{1}{\hbar} \int_{a}^{b} p \, dx + \frac{i \pi}{4}}$$, (50,8)

Вычисленная с помощью этой функции плотность потока в области III есть

$$D = e^{-\frac{2}{\hbar} \int_{a}^{b} p \, dx}$$, (50,9)

Поскольку плотность потока в падающей на барьер волне выбрана равной единице, то D представляет собой как раз искомый коэффициент прохождения через барьер. Подчеркнём, что эта формула применима лишь, когда стоящее в показателе выражение велико, так что само D мало.

Предположим, что частица находится в потенциальной яме, ограниченной с одной стороны квазиклассическим потенциальным барьером,

Рис. 15. Рис. 16.

а с другой — бесконечно высокой потенциальной стенкой (рис. 15). Тогда вместо коэффициента прохождения можно ввести вероятность ψ частицы выйти (в течение единицы времени) из ямы через барьер наружу. Ввиду квазиклассичности задачи мы можем рассуждать следующим образом. В течение единицы времени частица, совершающая классические колебания внутри ямы, $\frac{\omega}{2\pi}$ раз подходит к барьеру. Вероятность выхода получится умножением этого числа на коэффициент прохождения D, т. е.

$$\psi = \frac{\omega}{2\pi} e^{-\frac{2}{\hbar} \int_{a}^{b} p \, dx}$$, (50,10)
§ 50] ПРОХОЖДЕНИЕ ЧЕРЕЗ ПОТЕНЦИАЛЬНЫЙ БАРЬЕР 207

В предыдущем предполагалось, что поле \(U(x) \) удовлетворяет условию квазиклассичности на всем протяжении барьера (за исключением только непосредственной окрестности точек поворота). Фактически же обычно приходится иметь дело с барьерами изображённого на рис. 16 типа, в которых кривая потенциальной энергии с одной стороны идёт настолько круто, что квазиклассическое приближение неприменимо. Основной экспоненциальный множитель в \(D \) остаётся здесь тем же, что и в формуле (50,9); но предэкспоненциальный множитель (равный в (50,9) единице) меняется. Для его вычисления необходимо, принципиально, вычислить точную волновую функцию в «неквазиклассической» области и по соответствию с ней определить квазиклассическую волновую функцию внутри барьера. Вместо (50,6) для последней получим выражение

\[
\psi = \frac{\beta}{\sqrt{|v|}} e^{-\frac{1}{\hbar} \left\{ \int_a^b dp \, dx \right\}} \quad (50,11)
\]

с некоторым отличным от единицы коэффициентом \(\beta \). Соответственно, для коэффициента прохождения получим:

\[
D = \beta^2 e^{-\frac{2}{\hbar} \left\{ \int_a^b dp \, dx \right\}}. \quad (50,12)
\]

ЗАДАЧИ

1. Определить коэффициент прохождения через потенциальный барьер, изображённый на рис. 17: \(U(x) = 0 \) при \(x < 0 \), \(U(x) = U_0 - Fx \) при \(x > 0 \); вычислить только экспоненциальный множитель.

Решение. Простое вычисление приводит к результату

\[
D \sim \exp \left\{ -\frac{4 \sqrt{2\mu}}{3\hbar F} (U_0 - E)^{3/2} \right\}.
\]

2. Определить вероятность выхода частицы (с равным нулю моментом) из центрально-симметрической потенциальной ямы: \(U(r) = -U_0 \) при \(r < r_0 \), \(U(r) = \frac{a}{r} \) при \(r > r_0 \) (рис. 18).

Решение. Центрально-симметрическая задача сводится к одномерной, так что полученные выше формулы можно применять непосредственно. Имеем:

\[
w \sim \exp \left\{ -\frac{a}{\hbar E} \int_{r_0}^{a/E} \sqrt{2\mu \left(\frac{a}{r} - E \right)} \, dr \right\}.
\]

Вычисляя интеграл, окончательно получим:

\[
w \sim \exp \left\{ -\frac{2a}{\hbar} \sqrt{\frac{2\mu}{E}} \left[\arccos \sqrt{\frac{E_0}{a} - \sqrt{\frac{E_0}{a} \left(1 - \frac{E_0}{a} \right)}} \right] \right\}.
\]
В предельном случае \(r_0 \to 0 \) эта формула переходит в формулу

\[
\psi \sim e^{-\frac{\pi a}{\hbar} \sqrt{\frac{2\mu}{E}}} = e^{-\frac{2\pi a}{\hbar v}}.
\]

Эти формулы применимы, когда показатель велик, т. е. \(a/\hbar v \gg 1 \). Это условие, как и должно быть, совпадает с условием (49,10) квазиклассичности движения в кулоновом поле.

3. Поле \(U(x) \) представляет собой две симметричные потенциальные ямы (I и II, рис. 19), разделённые барьером. Если бы барьер был непроницаем для частиц, то существовали бы уровни энергии, отвечающие движению частицы только в одной или в другой яме, одинаковые для обеих ям. Возможность перехода через барьер приводит к расщеплению каждого из этих уровней на два близких уровня, соответствующих состояниям, в которых частица движется одновременно в обеих ямах. Определить величину расщепления (поле \(U(x) \)) предполагается квазиклассическим.

Решение. Пусть \(E_0 \) — некоторый уровень для движения частицы в одной яме (скажем, в яме I), а \(\psi_0(x) \) — соответствующая волновая функция (нормированная так, что интеграл от \(\psi_0^2 \) по области ямы I равен единице). При учёте малой вероятности перехода через барьер уровень расщепляется на уровни \(E_1 \) и \(E_2 \), с волновыми функциями, являющимися симметричной и антисимметричной комбинациями \(\psi_0(x) \) и \(\psi_0(-x) \):

\[
\psi_1(x) = \frac{1}{\sqrt{2}} [\psi_0(x) + \psi_0(-x)], \quad \psi_2(x) = \frac{1}{\sqrt{2}} [\psi_0(x) - \psi_0(-x)].
\] \(1 \)

Квазиклассическая функция \(\psi_0(x) \) экспоненциально затухает вне ямы, в частности в сторону отрицательных \(x \). Поэтому в области ямы I \(\psi_0(-x) \)

исчезающе мало по сравнению с \(\psi(x) \), а в яме II — наоборот. Функции (1) нормированы так, что равны единице их квадраты по ямам I и II.

Пиши уравнения Шрейдингера

\[
\psi_0'' + \frac{2\mu}{\hbar^2} (E_0 - U) \psi_0 = 0, \quad \psi_1'' + \frac{2\mu}{\hbar^2} (E_1 - U) \psi_1 = 0,
\]
§ 51. Вычисление квазиклассических матричных элементов

Непосредственное вычисление матричных элементов какой-либо физической величины f с помощью квазиклассических волновых функций представляет большие трудности. Мы предполагаем, что энергии состояний, для перехода между которыми вычисляется матричный элемент, не близки друг к другу, так что последний не сводится к компоненте Фурье от величины f (§ 48). Трудности связаны с тем, что в силу экспоненциального (с большой мнимой экспонентой) характера волновых функций подинтегральное выражение оказывается быстро осциллирующей величиной, что чрезвычайно затрудняет даже приближённую оценку интеграла.

Будем рассматривать одномерный случай (движение в поле $U(x)$) и предположим для простоты, что оператор физической величины f есть просто функция координаты $f(x)$. Пусть ψ_1 и ψ_2 суть волновые функции, соответствующие некоторым значениям E_1 и E_2 энергии частицы (причём $E_2 > E_1$, рис. 20); будем считать, что ψ_1, ψ_2 выбраны...
действительными. Мы должны вычислить интеграл

$$f_{12} = \int_{-\infty}^{+\infty} \psi_1 f\psi_2 \, dx.$$ \tag{51,1}$$

Волновая функция ψ_1 в областях по обе стороны от точки остановки $x = a_1$ не в непосредственной близости от последней имеет вид (47,3), (47,5):

при $x < a_1$: $\psi_1 = \frac{C_1}{2 \sqrt{|p_1|}} e^{\frac{-1}{h} \left| \int_{a_1}^x p_1 \, dx \right|}$, \tag{51,2}

при $x > a_1$: $\psi_1 = \frac{C_1}{\sqrt{p_1}} \cos \left(\frac{1}{h} \int_{a_1}^x p \, dx - \frac{\pi}{4} \right)$,

и аналогично для ψ_2 (с заменой индекса 1 индексом 2).

Однако вычисление интеграла (51,1) путем подстановки в него этих асимптотических выражений для волновых функций дало бы неправильный результат. Дело в том, что, как мы увидим ниже, этот интеграл является экспоненциально-малой величиной, между тем как подинтегральная функция сама по себе не мала. Поэтому уже относительно малое изменение последней изменяет, вообще говоря, порядок величины интеграла. Эта трудность может быть обойдена следующим образом.

Функцию ψ_2 представим в виде суммы $\psi_2 = \psi_2^+ + \psi_2^-$, разложив косинус (в области $x > a_2$) на сумму двух экспоненциальных выражений. Согласно формулам (50,4) будем иметь

при $x < a_2$: $\psi_2^+ = \frac{iC_2}{2 \sqrt{|p_2|}} e^{\frac{-1}{h} \left| \int_{a_2}^x p_2 \, dx \right|}$, \tag{51,3}

при $x > a_2$: $\psi_2^+ = \frac{C_2}{2 \sqrt{|p_2|}} e^{\frac{i}{h} \int_{a_2}^x p_2 \, dx - \frac{i\pi}{4}}$;

функция ψ_2^- комплексно сопряжена с $\psi_2^+ [\psi_2^- = (\psi_2^+)^*]$.

Интеграл (51,1) тоже разобьётся на сумму двух комплексно сопряжённых интегралов $f_{12} = f_{12}^+ + f_{12}^-$, вычислением которых мы и займёмся. Предварительно заметим, что интеграл

$$f_{12} = \int_{-\infty}^{+\infty} \psi_1 f\psi_2 \, dx$$

сходится. Действительно, хотя функция ψ_2^+ в области $x < a_2$ экспоненциально стремится к ∞, но зато функция ψ_1 в области $x < a_1$ ещё более быстро экспоненциально убывает (поскольку везде в области $x < a_2$ имеем $|p_1| > |p_2|$).
§ 51] ВЫЧИСЛЕНИЕ КВАЗИКЛАССИЧЕСКИХ МАТРИЧНЫХ ЭЛЕМЕНТОВ 211

Будем рассматривать координату x как комплексную переменную и сместим путь интегрирования с действительной оси в верхнюю полу плоскость. Когда x получает положительное мнимое приращение, в функции ψ_1 (в области $x > a_1$) появляется возрастающий член, но зато функция ψ_2^+ убывает быстрее, так как везде в области $x > a_1$ имеем $p_2 > p$. Поэтому подинтегральное выражение убывает.

Смещённый путь интегрирования не проходит уже через точки $x = a_1$, a_2 на действительной оси, вблизи которых квазиклассическое приближение неприимимо. Поэтому на всём пути можно пользоваться для ψ_1 и ψ_2 функциями, являющимися аналитическим продолжением (51,2) и (51,3) в верхнюю полуплоскость. Это будут функции

$$
\psi_1 = \frac{C_1}{2 \sqrt{2\mu (U - E_1)}} \int_{a_1}^{\infty} \frac{1}{\hbar} \int_{a_2}^{\infty} \sqrt{2\mu (U - E_1)} dx,
$$

$$
\psi_2^+ = \frac{C_2}{2 \sqrt{2\mu (U - E_2)}} \int_{a_2}^{\infty} \frac{1}{\hbar} \int_{a_1}^{\infty} \sqrt{2\mu (U - E_2)} dx,
$$

где корни определяются так, что на действительной оси в области $x < a$ они положительны.

В интеграле

$$
J_2^+ = \frac{iC_1C_2}{4 \sqrt{2\mu}} \int_{a_1}^{\infty} \frac{1}{\hbar} \int_{a_2}^{\infty} \sqrt{2\mu (U - E_1)} dx - \frac{1}{\hbar} \int_{a_1}^{\infty} \sqrt{2\mu (U - E_2)} dx \frac{f(x)}{\sqrt{(U - E_1)(U - E_2)}} dx
$$

поставим себе целью сместить путь интегрирования таким образом, чтобы, по возможности, уменьшить экспоненциальный множитель. Экспонента имеет экстремум лишь в точках, где $U(x) = \infty$ (при $E_1 = E_2$ её производная по x не обращается в нуль ни в каких других точках). Поэтому смешение контура интегрирования в верхнюю полуплоскость ограничивается лишь необходимостью обходить осевые точки функции $U(x)$; согласно общей теории линейных дифференциальных уравнений, они совпадают с осевыми точками волновых функций $\psi(x)$. Конкретный выбор контура зависит от конкретного вида поля $U(x)$. Так, если функция $U(x)$ имеет в верхней полуплоскости всего одну осевую точку $x = x_0$, то интегрирование можно производить по пути изображённого на рис. 21 типа. Основную роль в интеграле играет непосредственная

Рис. 21.
окрестность особой точки, так что в основном искомый матричный
элемент \(f_{12} = 2\Re \{ f^+_{12} \} \) пропорционален экспоненциальному выражению вида\(^1\)

\[
f_{12} \sim \exp \left\{ \frac{1}{\hbar} \int_{a_1}^{a_2} \sqrt{2\mu (U - E_1)} \, dx - \frac{1}{\hbar} \int_{a_1}^{a_2} \sqrt{2\mu (U - E_2)} \, dx \right\}. \tag{51,6}
\]

Вычисление предэкспоненциального множителя зависит от конкретного вида \(U(x) \). При наличии у \(U(x) \) нескольких особых точек надо, очевидно, выбрать ту из них, для которой экспонента в (51,6) имеет наибольшее значение.

В формуле (51,6) представляет интерес лишь действительная (всегда отрицательная) часть экспоненты; мнимая часть даёт несущественный фазовый множитель. Поэтому можно было бы написать в показателе взятое с обратным знаком абсолютное значение действительной части стоящего там выражения.

Квазиклассические радиальные волновые функции для движения в центрально-симметрическом поле (точнее, функции \(\chi = rR(r) \)) имеют, как мы знаем, такой же вид, как и одномерные, и вычисление матричных элементов величины \(f(r) \) должно производиться тем же способом. Однако под \(U(r) \) надо теперь понимать эффективную потенциальную энергию (сумма \(U(r) \) и центробежной энергии), и для состояний с различными \(l \) она будет различной. Имея в виду также и дальнейшие применения излагаемого метода (см. § 87), будем писать потенциальные энергии, соответствующие волновым функциям \(\chi_1 \) и \(\chi_3 \), в общем виде как некоторые \(U_1(r) \) и \(U_2(r) \). Тогда экспоненциальный множитель в подинтегральном выражении имеет вид:

\[
e^{\exp \left\{ \frac{1}{\hbar} \int_{a_1}^{r} \sqrt{2\mu (U_1 - E_1)} \, dr - \frac{1}{\hbar} \int_{a_1}^{r} \sqrt{2\mu (U_2 - E_2)} \, dr \right\}}.
\]

Экспонента имеет теперь экстремум не только в точках, где \(U_1(r) \)
или \(U_2(r) \) обращаются в бесконечность, но ещё в точках, где

\[
U_2(r) - U_1(r) = E_2 - E_1. \tag{51,7}
\]

Поэтому в формуле

\[
f_{12} \sim \exp \left\{ \frac{1}{\hbar} \int_{a_1}^{r_0} \sqrt{2\mu (U_1 - E_1)} \, dr - \frac{1}{\hbar} \int_{a}^{r_0} \sqrt{2\mu (U_2 - E_2)} \, dr \right\}. \tag{51,8}
\]

1) Этот результат был получен Л. Ландеу (1932).

Произведённая нами при выводе формулы (51,6) замена в подинтегральном выражении волновых функций их асимптотическими выражениями закона, поскольку в интеграле, взятом по изображённому на рис. 21 контуру, порядок величины интеграла определяется порядком величины подинтеграль-
среди конкурирующих значений \(r_0 \) надо иметь в виду не только особые точки \(U_1(r) \) и \(U_2(r) \), но и корни уравнения (51,7).

Централизно-симметричный случай отличается ещё и тем, что интегрирование по \(dr \) в (51,1) производится в пределах 0 (а не от \(-\infty\)) до \(+\infty\):

\[
f_{12} = \int_0^\infty \chi_1 f \chi_2 \, dr.
\]

В этом отношении надо различать два случая. Если подинтегральное выражение есть чётная функция от \(r \), то интегрирование можно формально распространить на всю область от \(-\infty\) до \(+\infty\), так что никаких отличий от предыдущего не возникает. Этот случай может иметь место, если \(U_1(r) \) и \(U_2(r) \) суть чётные функции \(r [U(-r) = U(r)] \). Тогда волновые функции \(\chi_1(r) \) и \(\chi_2(r) \) суть либо чётные, либо нечётные функции (см. конец § 19) и если функция \(f(r) \) тоже чётна или нечётна, то произведение \(\chi_1 f \chi_2 \) может оказаться чётным.

Если же подинтегральное выражение не является чётным (что во всяком случае имеет место, если \(U(r) \) не является чётной), то начало пути интегрирования не может быть сдвинуто из точки \(r = 0 \), и в число конкурирующих в (51,8) значений \(r_0 \) надо включить также и значение \(r_0 = 0 \).

З а д а ч и

1. Вычислить квазиклассические матричные элементы (ограничиваясь экспоненциальным множителем) в поле \(U = U_0 e^{-ax} \).

П р е д л а г а е м. \(U(x) \) обращается в бесконечность только при \(x \rightarrow -\infty \). Соответственно этому полагаем в (51.6) \(x_0 = -\infty \). Имея в виду, что при \(x > a_1 \) (или \(x > a_2 \)) подинтегральные выражения становятся мнимыми, можно распространить интегрирование до \(x = +\infty \), написав экспоненту в (51,6) в виде:

\[
\frac{V_{2\mu}}{\hbar} \Re \left\{ \int_{-\infty}^{+\infty} \left[\sqrt{U_0 e^{-ax} - E_2} - \sqrt{U_0 e^{-ax} - E_1} \right] \, dx \right\}.
\]

Интегралы от каждого из членов в скобках в отдельности расходятся на нижнем пределе. Поэтому вычисляем их сначала в пределах от \(-x\) до \(+\infty\) и затем переходим к пределу \(x \rightarrow \infty \). В результате получим

\[
f_{12} \sim e^{-\frac{\pi}{\hbar} (\rho_2 - \rho_1)},
\]

ногого выражения, и потому относительно малое изменение последнего не имеет существенного влияния на значение интеграла (ср. замечание на стр. 210).

1) При чётном \(U(r) \) радиальная волновая функция \(R(r) \) чётна (нечётна) при чётном (нечётном) \(l \), как это видно из её поведения при малых \(r \) (где \(R \sim r^l \)).
где \(p_1 = \sqrt{2\mu E_1} \), \(p_2 = \sqrt{2\mu E_2} \) — импульсы частицы на бесконечности \((x \to \infty)\) где движение является свободным.

2. То же в кулоновом поле \(U = \frac{\alpha}{r} \) для переходов между состояниями с \(l = 0 \).

Решение. Единственной особой точкой функции \(U(r) \) является точка \(r = 0 \). Соответствующие интегралы вычислены в задаче 2 § 50. В результате получаем по формуле (51,8)

\[
 f_{12} \sim e^{-\frac{\pi}{\hbar} \left(\frac{1}{v_2} - \frac{1}{v_1} \right)},
\]

где скорости \(v_1 = \sqrt{\frac{2}{\mu} E_1} \), \(v_2 = \sqrt{\frac{2}{\mu} E_2} \).

§ 52. Случай нескольких степеней свободы

Результаты, полученные в § 48, могут быть без труда обобщены на системы с несколькими степенями свободы. Предварительно напомним некоторые свойства финитного движения в классической механике 1). Финитное движение замкнутой системы является, как говорят, условно-периодическим, и всякая функция координат и импульсов может быть разложена в обобщенный ряд Фурье, в котором частоты равны суммам \(\sum_{i=1}^{s} p_i \omega_i \), где \(p_i \) — целые числа, а \(\omega_i \) — основные частоты, число которых равно числу \(s \) степеней свободы системы. Действие \(S \) такой системы является неоднозначной величиной, определенной лишь с точностью до суммы вида \(\sum_{i=1}^{s} m_i I_i \), где \(m_i \) — целые числа, а \(I_i \) — некоторые параметры, называемые переменными действия. Энергия системы может быть выражена в виде функции переменных действия, и тогда частоты \(\omega_i \) равны производным

\[
 \omega_i = 2\pi \frac{\partial E}{\partial I_i}.
\]

(52,1)

Волновая функция системы должна быть однозначной функцией.

В квазиклассическом случае она имеет вид \(\phi \sim e^{i \frac{S}{\hbar}} \), и не основании указанной неоднозначности действия мы непосредственно заключаем, что переменные действия \(I_i \) могут принимать лишь значения, являющиеся целыми кратными от \(2\pi \hbar \):

\[
 I_i = 2\pi \hbar n_i.
\]

(52,2)

1) См., например, 1-й том этого курса «Механика», § 62. Пользуемся случаем отметить, что в формулы указанного параграфа вкравалась ошибка. В формулах (62,12), (62,14), (62,16) в экспонентах нехватает множителя \(2\pi \), а в формуле (62,15) не нужен коэффициент \(2\pi \).
Эти равенства представляют собой искомую формулировку квазиклассических условий квантования Бора для систем с несколькими степенями свободы. В следующем приближении надо было бы писать

\[I_i = 2\pi \hbar (n_i + \gamma_i), \]

где \(\gamma_i \) — постоянные (ср. (48,1)). Как известно, если в классическом уравнении Гамильтона-Якоби переменные разделяются, то переменные действия равны интегралам

\[I_i = \oint p_i \, dq_i, \]

взятым по полным периодам изменения обобщённых координат \(q_i \). Тогда условия квантования напишутся в виде:

\[\oint p_i \, dq_i = 2\pi \hbar (n_i + \gamma_i). \]

При одной степени свободы это совпадает с (48,1), причём надо положить \(\gamma = 1/2 \).

Числа \(n_1, n_2, \ldots \) суть квантовые числа, определяющие стационарные состояния системы; квазиклассическому случаю соответствуют большие значения этих чисел. Разности близких уровней энергии для состояний, квантовые числа которых отличаются на \(\Delta n_1, \Delta n_2, \ldots \) (причём \(\Delta n_i \ll n_i \)), можно написать в виде:

\[\Delta E = \sum_{i=1}^{g} \Delta n_i \frac{\partial E}{\partial n_i}. \]

\(E \) есть энергия, рассматриваемая как функция чисел \(n_1, n_2, \ldots \). Соответствующие частоты суть

\[\frac{\Delta E}{\hbar} = \sum_{i} \frac{\Delta n_i}{\hbar} \frac{\partial E}{\partial n_i}. \]

В пределе эти частоты должны совпадать с классическими; легко видеть, что это условие соблюдается. Заменив дифференцирование по \(n_i \) дифференцированием по \(I_i \) согласно (52,2), получаем разности энергий в виде:

\[\Delta E = \sum_{i} \Delta n_i \frac{2\pi \hbar}{I_i} \frac{\partial E}{\partial I_i}, \]

или, используя (52,1),

\[\Delta E = \sum_{i} \hbar \omega_i \Delta n_i. \]

Таким образом частоты \(\frac{1}{\hbar} \Delta E \) являются величинами вида \(\sum p_i \omega_i \), как и должно быть.

1) Речь идёт везде о состояниях дискретного спектра.
Легко обобщить также и введённое в § 48 понятие о «клетках» в фазовом пространстве. Число состояний ΔN с квантовыми числами в интервалах Δn_i равно произведению $\prod \Delta n_i$. Заменяя, согласно (52.2),

$$\Delta n_i = \frac{1}{2\pi \hbar} \Delta I_i,$$

имеем:

$$\Delta N = \frac{\prod \Delta I_i}{(2\pi \hbar)^3}.$$

Будем описывать систему (рассматриваемую как классическую) так называемыми каноническими переменными 1) — переменными действия I_i и угловыми переменными w_i (определяемыми посредством $w_i = \frac{\partial S(q_i, I_i)}{\partial I_i}$).

Как известно, последние пробегают значения между 0 и 1, т. е. интервалы их изменения равны $\Delta w_i = 1$. Поэтому мы можем написать ΔN в виде:

$$\Delta N = \frac{\prod \Delta I_i \Delta w_i}{(2\pi \hbar)^3}.$$

Переход от обычных переменных q_i, p_i (обобщённых координат и импульсов) к каноническим переменным совершается посредством канонического преобразования. Каноническое же преобразование, как известно, не меняет объём фазового пространства (его якобиан равен единице). Поэтому мы можем заменить произведение $\prod \Delta I_i \Delta w_i$ произведением $\prod \Delta q_i \Delta p_i$, и таким образом получаем формулу

$$\Delta N = \frac{\prod \Delta q_i \Delta p_i}{(2\pi \hbar)^3},$$

непосредственно обобщающую результат (48.3). Мы можем сказать, что на каждое квантовое состояние системы с s степенями свободы «приходится» в её фазовом пространстве «клетка» объёмом в $(2\pi \hbar)^3$.

З а д а ч а

Определить (приближённо) число дискретных уровней энергии частицы, движущейся в центрально-симметрическом поле $U(r)$, удовлетворяющем условно квазиклассичности.

Решение. Число состояний, «приходящихся» на объём фазового пространства, соответствующий импульсам в интервале $0 \leq p \leq p_0$ и радиус-векторам в интервале между r и $r + dr$, равно:

$$\frac{4\pi}{3} \frac{p_0^3}{p_0^3} \cdot \frac{4\pi r^2 dr}{(2\pi \hbar)^3}$$

1) См. «Механика», § 62.
(число степеней свободы \(s = 3 \)). При заданном \(r \) частица может обладать (в своём классическом движении) импульсами, удовлетворяющими условию
\[
E = \frac{p^2}{2\mu} - |U(r)| < 0
\]
(поле \(U(r) \) предполагаем отрицательным во всём пространстве, так что конечному движению соответствуют отрицательные энергии). Подставляя
\[
p_0 = \sqrt{2\mu |U(r)|}
\]
и интегрируя по всем \(r \), получим полное число состояний дискретного спектра:
\[
\frac{4}{3\pi} \frac{\mu^{3/2}}{\hbar^3} \int_0^\infty |U(r)|^{3/2} r^3 dr.
\]
Этот интеграл расходится (т. е. число уровней бесконечно), если \(U(r) \) спадает на бесконечности, как \(r^{-8} \) с \(s < 2 \) в согласии с результатами § 16.
ГЛАВА VIII
СПИН
§ 53. Спин.

Рассмотрим систему, состоящую из нескольких частиц, скажем атомное ядро, совершающую как целое некоторое движение. Мы будем считать, что внутренняя энергия ядра имеет определённое значение. Однако этим внутреннее состояние ядра, вообще говоря, ещё не определяется полностью; именно, может ещё иметь различные направления в пространстве «внутренний» момент количества движения ядра \(L \) (т. е. момент количества движения частиц в их движении внутри ядра). Число возможных различных ориентаций этого момента равно, как мы знаем, \(2L + 1 \). Таким образом при рассмотрении движения ядра (находящегося в заданном внутреннем состоянии) как целого мы должны, наряду с его координатами, рассматривать ещё и одну дискретную переменную — проекцию его внутреннего момента на некоторое избранное направление в пространстве.

Мы видим, следовательно, что формализм квантовой механики допускает, при рассмотрении движения произвольной частицы, введение, наряду с её координатами, ещё некоторой специфической для каждой данной частицы переменной, могущей принимать ограниченное число дискретных значений. Мы не имеем, а priорi, никакого права считать, что такая переменная отсутствует в случае, когда частица является элементарной. Другими словами, мы должны, вообще говоря, считать, что в квантовой механике элементарной частице следует приписывать некоторый «собственный» момент, не связанный с её движением в пространстве. Это свойство элементарных частиц является специфически квантовым (исчезающим при переходе к пределу \(h
ightarrow 0 \), см. примечание на стр. 220) и поэтому принципиально не допускает классической интерпретации. В частности, было бы совершенно бесмысленным представлять себе «собственный» момент элементарной частицы как результат её вращения вокруг «своей оси», уже хотя бы потому, что элементарной частице нельзя вообще приписывать каких бы то ни было конечных размеров (как это следует из теории относительности 1).

1) См., например «Теория, поля», § 8.
Собственный момент количества движения частицы называют её «спином» в отличие от момента, связанного с движением частицы в пространстве, о котором говорят как об орбитальном моменте. Спин частицы (измеренный, как и орбитальный момент, в единицах \(h \)) мы будем обозначать посредством \(s \).

В предыдущих главах мы всегда подразумевали, что три координаты являются для частицы полной системой величин, задание которых вполне определяет её состояние. Теперь мы видим, что это, вообще говоря, не так: для полного определения состояния частицы должны быть указаны не только её координаты, но и направление вектора спина. Поэтому и волновая функция частицы должна быть функцией четырёх переменных — трёх координат и «переменной спина», указывающей значение проекции спина на выбранное направление в пространстве и пробегающее ограниченное число дискретных значений. Эти значения можно приписывать волновым функциям в качестве индекса. Таким образом волновая функция частицы, обладающей отличным от нуля спином, представляет собой в действительности не одну, а совокупность нескольких различных функций координат, отличающихся своим «спиновым индексом».

Квантовомеханический оператор, соответствующий спину частицы, при применении его к волновой функции воздействует именно на «переменную спина». Другими словами, он каким-то образом преобразует функции, различающиеся спиновым индексом, друг через друга. Вид этого оператора будет установлен ниже. Но, уже исходя из смысла общих соображений, легко убедиться в том, что операторы \(\hat{s}_x \), \(\hat{s}_y \), \(\hat{s}_z \) удовлетворяют таким же условиям коммутации, как и операторы орбитального момента.

Оператор момента количества движения в основном совпадает с оператором бесконечно малого поворота. При выводе в § 24 выражения для оператора орбитального момента мы рассматривали результат применения операции поворота к функции координат. В случае спин-момента такой вывод теряет смысл, поскольку оператор спина действует на «спиновую переменную», а не на координаты. Поэтому для получения искомых соотношений коммутации мы должны рассматривать операцию бесконечно малого поворота в общем виде, как поворот системы координат. Производя последовательно бесконечно малые повороты вокруг оси \(x \) и оси \(y \), а затем вокруг этих же осей в обратном порядке, легко убедиться непосредственным вычислением, что разница между результатами обоих этих операций

1) Речь может идти как об элементарной частице, так и о частице, хотя и составной, но ведущей себя в том или ином рассматриваемом круге как элементарная (например, об атомном ядре).
2) От английского слова «to spin» — вертеть веретено. Физическая идея о наличии у электрона собственного момента количества движения была высказана Г. Юнгебеком и С. Гаудсмитом в 1925 г. В квантовую механику спин был введён В. Паули в 1927 г.
эквивалентна бесконечно малому повороту вокруг оси \(z \) (на угол, равный произведению углов поворота вокруг осей \(x \) и \(y \)). Мы не станем производить здесь этих простых вычислений, в результате которых вновь получаются обычные соотношения коммутации между операторами компонент момента количества движения, которые, следовательно, должны иметь место и для операторов спина:

\[
\{ \hat{s}_y, \hat{s}_z \} = i \hat{s}_x, \quad \{ \hat{s}_z, \hat{s}_x \} = i \hat{s}_y, \quad \{ \hat{s}_x, \hat{s}_y \} = i \hat{s}_z
\] (53,1)

свсеми вытекающими из них физическими следствиями.

Соотношения коммутации (53,1) дают возможность определить возможные значения абсолютной величины и компонент спина. Весь вывод, произведённый в § 25 (формулы (25,6 — 9)), был основан только на соотношениях коммутации и потому полностью применим и здесь; надо только вместо \(L \) в формулах (25,6 — 9) подразумевать \(s \). Из формул (25,7) следует, что собственные значения \(z \)-компоненты спина образуют последовательность чисел, отличных одна от другой. Мы не можем, однако, теперь утверждать, что сами эти значения должны быть целыми, как это имело место для компоненты \(L_z \) орбитального момента (приведённый в начале § 25 вывод здесь неприменим, поскольку он основан на выражении (24,11) для оператора \(\hat{L}_z \), специфическом для орбитального момента).

Далее, мы найдём, что последовательность собственных значений \(s_z \) ограничена сверху и снизу значениями, одинаковыми по абсолютной величине и противоположными по знаку, который мы обозначим посредством \(\pm s \). Разность \(2s \) между наибольшим и наименьшим значениями \(s_z \) должна быть целым числом или нулем. Следовательно, число \(s \) может иметь значения 0, 1/2, 1, 3/2, ...

Таким образом собственные значения квадрата спина равны

\[
s^2 = s(s + 1),
\] (53,2)

где \(s \) может быть либо целым числом (включая значение нуль), либо полуцелым. При заданном \(s \) компонента \(s_z \) спина может пробегать значения \(s, s - 1, \ldots, -s \) — всего \(2s + 1 \) значений. В связи с сказаным выше мы приходим к результату, что состояние частицы со спином \(s \) должно описываться волновой функцией, представляющей собой совокупность \(2s + 1 \) функций.

Опыт показывает, что большинство элементарных частиц — электроны, позитроны, протоны и нейтроны — обладает спином, равным 1/2. Что касается мезotronов, то их спин, повидимому, равен нулю.

1) Поскольку \(s \) есть для каждого рода частиц заданное число, то при предельном переходе к классической механике \((h \to 0) \) спин-момент \(hs \) обращается в нуль. Для орбитального момента такое рассуждение не имеет смысла, поскольку \(l \) может иметь произвольные значения. Переходу к классической механике соответствует одновременное стремление \(h \) к нулю и \(l \) к бесконечности, так что произведение \(hl \) остается конечным.
Полный момент количества движения частицы складывается из её орбитального момента \(l \) и спина \(s \). Очевидно, что оператор полного момента равен просто сумме операторов орбитального момента и спина. Это следует непосредственно из того, что эти операторы действуют на различные переменные и потому независимы друг от друга. Собственные значения полного момента

\[j = l + s \] (53,3)

определяются, следовательно, тем же правилом «векторной модели», что и сумма орбитальных моментов двух различных частиц (§ 30). Именно, при заданных значениях \(l \) и \(s \) полный момент может иметь значения \(l + s, l + s - 1, \ldots, |l - s| \). Так, у электрона (спин 1/2) с орбитальным моментом \(l \) полный момент может быть равен \(j = l \pm \frac{1}{2} \).

Оператор полного момента \(J \) системы частиц равен сумме операторов моментов \(j \) каждой из них, так что его значения определяются снова правилами векторной модели. Момент \(J \) можно представить в виде:

\[J = L + S, \quad L = \sum_a l_a, \quad S = \sum_a s_a \] (53,4)

где \(S \) можно назвать полным спином, а \(L - \) полным орбитальным моментом системы. Отметим, что если полный спин системы — полуцелый (или целый), то то же самое будет иметь место и для полного момента, поскольку орбитальный момент всегда целый. В частности, если система состоит из чётного числа одинаковых частиц, то её полный спин во всяком случае целый, а потому будет целым и полный момент.

Операторы полного момента частицы \(j \) (или системы частиц \(J \)) удовлетворяют тем же правилам коммутации, что и операторы орбитального момента или спина, поскольку эти правила являются вообще общими правилами коммутации, справедливыми для всякого момента количества движения. Следующие из правил коммутации формулы (25,13) для матричных элементов момента тоже справедливы для всякого момента, если матричные элементы определять по отношению к собственным функциям этого же момента. Мы, однако, условились определять матричные элементы по отношению к системе волновых функций стационарных состояний. Если придерживаться этого правила, то формулы (25,13) будут иметь место лишь для сохранившегося момента (который может иметь определённые значения одновременно с энергией). Таковым является, строго говоря, только полный момент \(J \) системы. Все эти замечания относятся в полной мере и к формулам (27,11), (27,13) для матричных элементов произвольных векторных величин.

Операторы орбитального момента и спина, действуя на функции совершенно различных переменных, разумеется, коммутируют друг
§ 54. Спиноры

Пусть $\psi(x, y, z; \sigma)$ есть волновая функция частицы со спином σ; σ означает z-компоненту спина и пробегает значения от $-s$ до $+s$. О функциях $\psi(\sigma)$ с различными значениями σ будем говорить, как о «компонентах» волновой функции. Выбор этих «компонент» подчинён условию, чтобы интеграл $\int |\psi(\sigma)|^2 dV$ определял вероятность частице иметь z-компоненту спина, равную σ. Вероятность же частицы находиться в элементе объёма пространства dV есть $dV \sum_{\sigma=\pm s} |\psi(\sigma)|^2$. Если частица находится в состоянии с определённым значением σ_0, то из всех компонент $\psi(\sigma)$ отлична от нуля только компонента с $\sigma=\sigma_0$, т. е. волновая функция имеет вид:

$$\psi(x, y, z; \sigma) = \psi(x, y, z) \delta_{\sigma \sigma_0}.$$

Ниже, в §§ 54—57, мы не будем интересоваться зависимостью волновых функций от координат. Говоря, например, о поведении функции $\psi(\sigma)$ при повороте системы координат, можно подразумевать, что частица находится в начале координат, так что её координаты при таком повороте останутся неизменными и полученные результаты будут характерны именно для поведения функции $\psi(\sigma)$ относительно спиновой переменной σ.

Произведём бесконечно малый поворот на угол $\delta \varphi$ вокруг оси z. Оператор такого поворота выражается с помощью оператора момента (в данном случае — спина) в виде $1 + i \delta \varphi \cdot \hat{s}_z$. Поэтому в результате поворота функции $\psi(\sigma)$ перейдут в $\psi(\sigma) + \delta \psi(\sigma)$, где $\delta \psi(\sigma) = i \delta \varphi \cdot \hat{s}_z \psi(\sigma)$. Но $\hat{s}_z \psi(\sigma) = \sigma \psi(\sigma)$, так что $\delta \psi(\sigma) = i \sigma \psi(\sigma) \delta \varphi$. При повороте на конечный угол φ функции $\psi(\sigma)$ перейдут, следовательно, в функции

$$\psi(\sigma)' = \psi(\sigma) e^{i \sigma \varphi}.$$

(54,1)

В частности, при повороте на угол 2π они умножаются на множитель $e^{-2i\sigma \varphi}$, одинаковый для всех σ и равный $(-1)^{2\sigma}$ (2σ всегда той же четности, что и $2s$). Таким образом мы видим, что при полном повороте системы координат вокруг оси волновые функции частицы с целым спином возвращаются к своему первоначальному значению, а волновые функции частицы с полуцелым спином меняют свой знак.

Переменная σ отличается от обычных переменных (координат) своей дискретностью. Наиболее общий вид линейного оператора,
действующего на функции от дискретной переменной \(\alpha \), есть, очевидно,

\[
\hat{f} \psi (\alpha) = \sum_{\alpha'} f_{\alpha\alpha'} \psi (\alpha'),
\]

где \(f_{\alpha\alpha'} \) — постоянные. Легко видеть, что величины \(f_{\alpha\alpha'} \) совпадают с матричными элементами оператора \(\hat{f} \), определёнными обычным образом. Действительно, «собственная функция» оператора \(\hat{s}_x \), соответствующая значению \(s_x = \alpha_0 \), есть \(\psi (\alpha) = \delta_{\alpha\alpha_0} \). Для этой функции имеем:

\[
\hat{f} \delta_{\alpha\alpha_0} = \sum_{\alpha'} f_{\alpha\alpha'} \delta_{\alpha'\alpha_0} = f_{\alpha\alpha_0}.
\]

Правую часть равенства можно переписать в виде: \(\sum_{\alpha'} f_{\alpha'\alpha_0} \delta_{\alpha'\alpha_0} \); тогда

\[
\hat{f} \delta_{\alpha\alpha_0} = \sum_{\alpha'} f_{\alpha'\alpha_0} \delta_{\alpha'\alpha_0}.
\]

Но это равенство соответствует обычному определению матрицы оператора \(\hat{f} \) по отношению к собственным функциям оператора \(\hat{s}_x \).

Таким образом операторы, действующие на функции от \(\alpha \), могут быть представлены в виде \(2s + 1 \)-рядных матриц. В частности, для операторов самих компонент спина имеем:

\[
\hat{s}_\alpha \psi (\alpha) = \sum_{\alpha'} (s_{\alpha\alpha'})_{\alpha\alpha'} \psi (\alpha'),
\]
(54,2) (и аналогично для \(\hat{s}_y, \hat{s}_z \)). Согласно сказанному выше, матрицы \(s_x, s_y, s_z \) совпадают с полученными в § 25 матрицами \(L_{x\alpha}, L_{y\alpha}, L_{z\alpha} \), в которых надо только заменить буквы \(L \) и \(M \) буквами \(s \) и \(\sigma \). Таким образом отличными от нуля элементами матриц операторов спина будут:

\[
(s_{\alpha\alpha})_{\alpha\alpha - 1} = (s_{\alpha\alpha})_{\alpha - 1\alpha} = \frac{1}{2} \sqrt{(s + \sigma)(s - \sigma + 1)},
\]

\[
(s_{\alpha\alpha})_{\alpha\alpha - 1} = -(s_{\alpha\alpha})_{\alpha - 1\alpha} = -\frac{i}{2} \sqrt{(s + \sigma)(s - \sigma + 1)},
\]

(54,2a)

В важном случае спина, равного \(1/2 \) \((s = 1/2, \sigma = \pm 1/2) \), эти матрицы двухрядные и имеют вид:

\[
(s_{\alpha\alpha}) = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad (s_{\alpha\alpha}) = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad (s_{\alpha\alpha}) = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]

(54,3)

Эти матрицы называют матрицами Паули.

1) Обратим внимание на то, что последовательность индексов у матричных элементов в правой стороне равенства (54,2) в известном смысле обратна обычной последовательности (в (11,11)).
Непосредственно перемножая матрицы Паули, легко проверить, что для них имеют место соотношения

$$2\hat{s}_y\hat{s}_z = \hat{i}\hat{s}_x, \quad 2\hat{s}_z\hat{s}_x = \hat{i}\hat{s}_y, \quad 2\hat{s}_x\hat{s}_y = \hat{i}\hat{s}_z.$$
(54.4)

Комбинируя их с общими правилами коммутации операторов \hat{s}_x, \hat{s}_y, \hat{s}_z, найдём, что

$$\hat{s}_x\hat{s}_y + \hat{s}_y\hat{s}_x = 0, \quad \hat{s}_x\hat{s}_z + \hat{s}_z\hat{s}_x = 0, \quad \hat{s}_y\hat{s}_z + \hat{s}_z\hat{s}_y = 0,$$
(54.4a)

t. е. матрицы Паули «антикоммутируют» друг с другом.

При повороте системы координат, совокупность функций $\psi(\sigma)$, соответствующих спину s, определённым образом преобразуется линейно друг через друга; для бесконечно малого поворота соответствующее преобразование определяется формулами (54.2). С чисто математической точки зрения, это означает, что мы нашли классификацию возможных типов преобразования величин при поворотах системы координат. Оказывается, что если имеется n различных величин, линейно преобразующихся друг через друга (причём число этих величин не может быть уменьшено никаким выбором их линейных комбинаций), то можно утверждать, что они преобразуются как «компоненты» волновой функции, соответствующей спину $s = (n - 1)/2$. Всякая совокупность произвольного числа величин, преобразующихся при поворотах системы координат друг через друга, может быть приведена (посредством надлежащего линейного преобразования) к одной или нескольким системам таких функций.

Перейдём к более подробному изучению «спиновых» свойств волновых функций. При равном нулю спине волновая функция имеет всего одну компоненту $\psi(0)$. При воздействии операторов спина она даёт нуль:

$$\hat{s}_x\psi = \hat{s}_y\psi = \hat{s}_z\psi = 0.$$

Поскольку операторы спина связаны с операторами поворота, то это значит, что волновая функция частицы со спином 0 не меняется при поворотах системы координат, т. е. является скаляром.

Волновые функции частиц со спином $1/2$ имеют две компоненты $\psi(1/2)$ и $\psi(-1/2)$. Для удобства дальнейших обобщений мы будем обозначать эти компоненты соответственно как ψ^1 и ψ^2 (с индексами 1 и 2, написанными сверху). При произвольном повороте системы координат ψ^1 и ψ^2 подвергаются линейному преобразованию:

$$\psi^1' = \alpha\psi^1 + \beta\psi^2, \quad \psi^2' = \gamma\psi^1 + \delta\psi^2.$$
(54.5)

Коэффициенты $\alpha, \beta, \gamma, \delta$ 1), вообще говоря, комплексны и являются функциями углов поворота. Они связаны друг с другом соотношением,

1) Их называют параметрами Кэйли-Клейна.
для вывода которого рассмотрим билинейную форму

$$\psi^1\varphi^2 - \psi^2\varphi^1,$$

(54,6)

где (ψ^1, ψ^2) и (φ^1, φ^2) — две волновые функции, преобразующиеся по (54,5). Простое вычисление даёт

$$\psi^{1'}\varphi^{2'} - \psi^{2'}\varphi^{1'} = (\alpha\delta - \beta\gamma) (\psi^1\varphi^2 - \psi^2\varphi^1),$$

t. е. величина (54,6) при повороте системы координат преобразуется сама через себя. Но если имеется всего одна преобразующаяся сама через себя функция, то она может рассматриваться, как соответствующая спину нуль и, следовательно, должна быть скаляром, т. е. должна вообще оставаться неизменной при поворотах системы координат. Отсюда получаем равенство

$$\alpha\delta - \beta\gamma = 1.$$

(54,7)

Это и есть искомое соотношение.

Линейные преобразования (54,5), оставляющие инвариантной билинейную форму (54,6), называются бинарными. Двухкомпонентную же величину (ψ^1, ψ^2), преобразующуюся при повороте системы координат по бинарному преобразованию, называют спинором. Таким образом волновая функция частицы со спином $\frac{1}{2}$ представляет собой спинор.

Удобно придать алгебре спиноров форму, аналогичную тензорной алгебре. Это достигается введением векторного пространства двух измерений, в котором метрика определяется антисимметрическим «метрическим тензором»:

$$
\begin{pmatrix}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{pmatrix}
=
\begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}.
$$

(54,8)

Векторы в этом пространстве и являются спинорами. Наряду с контравariantными компонентами ψ^1, ψ^2 спинора, можно ввести ковариантные компоненты по обычным в тензорной алгебре формулам

$$\psi_\lambda = \sum_{\mu=1}^{2} G_{\lambda\mu} \psi^\mu,$$

так что

$$\psi_1 = \psi^2, \quad \psi_2 = -\psi^1.$$

(54,9)

Бинарные преобразования для ковариантных компонент спинора имеют, очевидно, вид:

$$\psi'_1 = \delta \psi_1 - \gamma \psi_2, \quad \psi'_2 = -\beta \psi_1 + \alpha \psi_2.$$

(54,10)

Обратное преобразование от контравariantным компонентам может быть написано в виде:

$$\psi^\lambda = \sum_\mu G^{\lambda\mu} \psi_\mu.$$

(54,11)
где контравARIANTный "метрический тензор" $g^{\lambda\mu}$ имеет компоненты

$$(g^{11} g^{12}) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}. \quad (54,12)$$

Инвариантная комбинация (54,7) может быть написана в виде "скалярного произведения"

$$\psi^\lambda \varphi_\lambda = \psi_1^1 \varphi_1 + \psi_2^2 \varphi_2 = \psi_1^1 \varphi^2 - \psi_2^2 \varphi_1 = g_{\lambda\mu} \psi^\lambda \varphi^\mu \quad (54,13)$$

(здесь и ниже по дважды повторяющимся индексам подразумевается суммирование, подобно тому как это принято в тензорной алгебре, так называемое суммирование по "немым" индексам). Заметим следующее правило, которое надо иметь в виду в спинорной алгебре. Имеем:

$$\psi^\lambda \varphi_\lambda = \psi_1^1 \varphi_1 + \psi_2^2 \varphi_2 = \psi_2^2 \varphi_2 - \psi_1^1 \varphi_1 = - \psi_\lambda \varphi^\lambda.$$

Таким образом

$$\psi^\lambda \varphi_\lambda = - \psi_\lambda \varphi^\lambda. \quad (54,14)$$

Отсюда очевидно, что скалярное произведение любого спинора самого на себя равно нулю:

$$\psi^\lambda \psi_\lambda = 0. \quad (54,15)$$

Выражение

$$|\psi_1|^2 + |\psi_2|^2 = \psi_1^1 \psi_1^* + \psi_2^2 \psi_2^*,$$

определяющее вероятность нахождения частицы в данной точке пространства, должно, очевидно, быть скаляром. Сравнивая его со скаляром (54,13), мы видим, что компоненты ψ_1^1, ψ_2^2 комплексно сопряжённой с ψ_1, ψ_2 волновой функции преобразуются как ковариантные компоненты спинора, т. е. соответственно как ψ_2, $-\psi_1$:

$$\psi_1^1 = \delta \psi_1^1 \psi_2^2 = - \beta \psi_1^1 \alpha \psi_2^2.$$

Написав, с другой стороны, равенства, комплексно сопряжённые с (54,5),

$$\psi_1^1 = \alpha^* \psi_1^1 + \beta^* \psi_2^2, \quad \psi_2^2 = \gamma^* \psi_1^1 + \delta^* \psi_2^2,$$

и сравнивая их с предыдущими, найдём, что коэффициенты $\alpha, \beta, \gamma, \delta$ связаны друг с другом ещё и соотношениями

$$\alpha = \delta^*, \quad \beta = - \gamma^*. \quad (54,16)$$

В силу соотношений (54,7), (54,16) четыре комплексных величины $\alpha, \beta, \gamma, \delta$ содержат в действительности всего три независимых действительных параметра, что соответствует трём углам, определяющим поворот трёхмерной системы координат 1).

1) Отметим, что надлежащим выбором направления оси z можно всегда добиться обращения в нуль одной из двух компонент спинора. Действительно, приравнив, скажем, ψ_1^1 (54,5) нулю, мы получим одно комплексное, или,
§ 55. Спиноры высших рангов

Подобно переходу от векторов к тензорам в обычной тензорной алгебре, можно ввести понятие о спинорах высшего ранга. Так, спинором второго ранга называют четырехкомпонентную величину ψ^{μ}, компоненты которой преобразуются, как произведения ψ^{μ} компонент двух спиноров (спиноров первого ранга). Наряду с контравариантными компонентами, ψ^{μ}, можно рассматривать ковариантные, ψ_{μ}, и смешанные, ψ_{ν}^{μ}, компоненты, преобразующиеся соответственно как произведения $\phi_{\lambda \gamma}^{\nu}$ и $\phi_{\lambda \nu}^{\mu}$. Переход от одних компонент к другим осуществляется при помощи «метрического тензора» $g_{\mu \nu}$ по обычным формулам

$$\psi_{\mu} = g_{\gamma \mu} \psi^{\gamma}, \quad \psi^{\mu} = g_{\lambda \mu} g^{\nu \rho} \psi^{\nu \rho}.$$

Так, $\psi_2 = -\psi_1 = -\psi_{21}, \psi_{11} = \psi_{12} = \psi_{22}$ и т. д. Аналогичным образом определяются спиноры любого ранга. Сами величины $g_{\mu \nu}$ составляют антисимметрический спинор второго ранга. Легко убедиться, что при бинарных преобразованиях значения его компонент остаются неизменными.

Легко проверить, что произведение $g_{\lambda \gamma} g^{\nu \rho}$ есть, как и должно быть, «единичный спинор» второго ранга, т. е. спинор с компонентами $\delta_{1}^{1} = \delta_{2}^{2} = 1, \delta_{1}^{2} = \delta_{2}^{1} = 0$. Таким образом,

$$g_{\lambda \gamma} g^{\nu \rho} = \delta_{\lambda}^{\mu}. \quad (55,1)$$

Как и в обычной тензорной алгебре, в спинорной алгебре имеются две основные операции — умножение и упрощение (или свёртывание) по паре индексов. Умножение двух спиноров даёт спинор более высшего ранга; так, из двух спиноров второго и третьего рангов $\psi_{\lambda \mu}$ и $\psi_{\nu \rho}$ мы можем образовать спинор пятого ранга $\psi_{\lambda \mu \nu \rho \sigma}$. Упрощение

что то же, два действительных уравнения. Между тем в нашем распоряжении имеется два параметра (угла), определяющих направление оси z, которыми всегда можно удовлетворить эти уравнения. Физически это означает, что для частицы со спином $1/2$ всегда существует такое направление в пространстве, вдоль которого проекция спина имеет определённое значение.
по паре индексов (т. е. суммирование компонент по одинаковым значениям одного ко- и одного контравariantного индексов) пони- жает ранг спинора на две единицы. Так, упрощение спинора $\psi_{\rho \sigma}$ по индексам μ и ν даёт спинор третьего ранга $\psi_{\rho \sigma \mu \nu}$; упрощение спинора ψ_{λ} даёт скаляр ψ_{λ}. При этом имеет место правило, аналогичное выражаемому формулой (54,14): если переменить положения (верхнее и нижнее) индексов, по которым производится упрощение, то изменится знак величины (т. е. $\psi_{\lambda} = -\psi_{\lambda}$). Отсюда, в частности, следует, что если спинор симметричен по каким-либо двум своим индексам, то в результате упрощения по этим индексам получим нуль. Так, для симметричного спинора второго ранга $\phi_{\lambda \mu}$ имеем $\phi_{\lambda} = 0$.

Симметрическим спинором n-го ранга назовём спинор, симметричный по всем своим индексам. Из асимметрического спинора можно составить симметрический спинор путём симметризации — суммированием компонент, получающихся при всех возможных перестановках индексов. В силу сказанного выше, из компонент симметрического спинора невозможно составить (путём упрощения) спинора более низкого ранга.

Что касается антисимметрических (по всем своим индексам) спиноров, то таковым может быть только спинор второго ранга. Действительно, поскольку каждый индекс может пробегать всего два значения, то при трёх или большем числе индексов по крайней мере два индекса будут иметь одинаковые значения, а потому компоненты спинора тождественно обратятся в нуль. Всякий антисимметрический спинор второго ранга сводится к скалярному, умноженному на единичный спинор $g_{\lambda \mu}$. Отметим здесь следующее, вытекающее из сказанного, соотношение

$$g_{\lambda \mu} \psi_{\nu} + g_{\mu \nu} \psi_{\lambda} + g_{\nu \lambda} \psi_{\mu} = 0,$$ \hspace{1cm} (55,2)

где ψ_{λ} — произвольный спинор; это правило является следствием просто того, что стоящее в левой части равенства выражение представляет собой (как легко проверить) антисимметрический спинор третьего ранга.

Спинор, составленный как произведение спинора $\psi_{\lambda \mu}$ на самого себя, упрощённый по одной паре индексов, антисимметричен по другой; действительно:

$$\psi_{\lambda \gamma} \psi_{\mu \nu} = -\psi_{\lambda \gamma} \psi_{\mu \nu}.$$

Поэтому, в силу сказанного выше, этот спинор должен сводиться к спинору $g_{\lambda \mu}$, умноженному на скаляр. Определяя последний так, чтобы упрощение по второй паре индексов давало правильный результат, найдём:

$$\psi_{\lambda \gamma} \psi_{\mu \nu} = \frac{1}{2} \psi_{\rho \sigma} \psi_{\rho \sigma} g_{\lambda \mu},$$ \hspace{1cm} (55,3)

(напоминаем, что $g_{\lambda} = 2$).
Компоненты спинора ψ^* комплассно сопряжённого с ψ, преобразуются как компоненты контравариантного спинора $\phi^{\lambda\mu\ldots}$, и наоборот. В частности, сумма квадратов модулей компонента любого спинора является, следовательно, инвариантом.

§ 56. Волновые функции частиц с произвольным спином

Развив формуальную алгебру спиноров произвольного ранга, мы можем перейти к нашей непосредственной задаче — изучению свойств волновых функций частиц с произвольным спином.

К этому вопросу удобно подойти, рассматривая совокупность частиц со спином $1/2$. Максимальное возможное значение z-компоненты полного спина системы равно $n/2$, что получается тогда, когда для каждой из частиц $s_z = 1/2$ (все спины направлены в одну сторону — вдоль оси z). В этом случае, очевидно, можно утверждать, что и полный спин S системы равен $n/2$.

Все компоненты волновой функции $\psi(\sigma_1, \sigma_2, \ldots, \sigma_n)$ системы частиц равны при этом нулю, за исключением только одной — $\psi(1/2, 1/2, \ldots, 1/2)$. Если написать волновую функцию в виде произведения n спиноров $\psi^{\lambda\mu\ldots}$, из которых каждый относится к одной из частиц, то у каждого из них будет отлична от нуля только компонента с $\lambda, \mu, \ldots = 1$. Таким образом будет отличным от нуля только произведение $\psi^{1\ldots}$. Но совокупность всех этих произведений представляет собой некоторый спинор n-го ранга, симметричный по всем своим индексам. Если произвести преобразование системы координат (так, что спины окажутся направленными не по оси z), то мы получим некоторый спинор n-го ранга общего вида, но попрежнему симметричный.

«Спиновые» свойства волновых функций, будучи по существу их свойствами по отношению к поворотам системы координат, очевидно, тождественны для частиц со спином s для системы из $n = 2s$ частиц со спинами $1/2$, направленными так, что полный спин системы равен s. Отсюда заключаем, что волновая функция частицы со спином s представляет собой симметрический спинор ранга $n = 2s$.

Легко убедиться в том, что число независимых компонент симметрического спинора $2s$-го ранга равно, как и должно было быть, тоже $2s - 1$. Действительно, различными будут компоненты, среди индексов которых имеется $2s$ единиц и 0 двоек, $2s - 1$ единиц и одна двойка и т. д. до 0 единиц и $2s$ двоек.

Таким образом, мы можем сказать, что всякая совокупность функций, линейно преобразующихся друг через друга при поворотах системы координат, может быть сведена к одному или нескольким симметрическим спинорам.

1) Другими словами, симметрические спиноры осуществляют так называемые непроводимые представления группы вращений (см. § 95).
Так, произвольный спинор n-го ранга ψ_{\ldots} может быть сведён к симметрическим спинорам рангов n, $n - 2$, $n - 4$, ... Фактически такое приведение может быть произведено следующим образом. Симметризуя спинор ψ_{\ldots} по всем индексам, образуем симметрический спинор того же n-го ранга. Далее, упрощая исходный спинор ψ_{\ldots} по различным парам индексов, получим спиноры ($n - 2$)-го ранга видя ψ_{\ldots}, которые, в свою очередь, симметризуем, так что получаем симметрические спиноры ($n - 2$)-го ранга. Симметризуя спиноры, получающиеся после упрощения ψ_{\ldots}, по двум парам индексов, получим симметрические спиноры ($n - 4$)-го ранга, и т. д.

Рассмотрим, в частности, спинор ранга $2(s_1 + s_2)$, представляющий собой произведение двух симметрических спиноров рангов $2s_1$ и $2s_2$:

\[
\begin{array}{c}
\psi_{\ldots} \\
\frac{\psi_{\ldots}}{2s_1} \\
\frac{\psi_{\ldots}}{2s_2}
\end{array}
\]

(для определённости пусть $s_1 \geq s_2$). Такой спинор можно упрощать только по парам индексов, из которых один относится к ψ, а другой к φ (в противном случае получим тождественно нуль). Максимальное число пар индексов, по которым может быть одновременно произведено упрощение, равно, очевидно, $2s_2$. Поэтому ясно, что рассматриваемый спинор может быть разложен на симметрические спиноры рангов $2(s_1 + s_2)$, $2(s_1 + s_2 - 1)$, ..., $2(s_1 - s_2)$. Физически этот результат эквивалентен известному уже нам правилу сложения моментов (§ 30), гласящему, что система, состоящая из двух частиц со спинами s_1 и s_2, может обладать полным спином, равным $s_1 + s_2$, $s_1 + s_2 - 1$, ..., $s_1 - s_2$).

Нам остаётся ещё установить связь между компонентами симметрического спинора $2s$-го ранга и $2s - 1$ функциями $\psi(\sigma)$ (где $\sigma = s$, $s - 1$, ..., $-s$). Компонента

\[
\begin{array}{c}
s - s \\
\psi_{11 \ldots 1 \overline{22} \ldots 2}
\end{array}
\]

среди индексов которой 1 повторяется $s + \sigma$ раз, а 2 — встречаются $(s - \sigma)$ раз, соответствует равной σ проекции спина на ось z. Действительно, если опять рассматривать систему $n = 2s$ частиц со спином s

1) Во избежание недоразумений полезно сделать следующее замечание. Волновая функция системы из нескольких частиц есть всегда спинор ранга, равного удвоенной сумме Σs_α спинов, входящих в её состав частиц (вообще говоря, отличной от полного спина S системы). В некоторых случаях, однако, такой спинор может быть эквивалентным спинору более низкого ранга. Так, например, волновая функция системы из двух частиц со спином $1/2$ есть спинор второго ранга; если полный спин системы $S = 0$, то этот спинор антисимметричен и потому может быть сведён к скалярному. Вообще, полным спином системы определяются свойства симметрии спинора: если полный спин имеет определённое значение S, то спинор симметричен по 2S индексам и антисимметричен по парам остальных.
номером $1/2$ вместо одной частицы со спином s, то написанной компоненте будет соответствовать произведение $\psi^1 \varphi^1 \cdots \varphi^{2s} \cdots$; такое произведение отвечает состоянию, в котором $(s + s)$ частицы имеют проекцию спина, равную $+1/2$, и $(s - s)$ — проекцию, равную $-1/2$, так что суммарная проекция равна $1/2 (s + s) - 1/2 (s - s) = s$. Наконец, коэффициент пропорциональности между написанной компонентой спинора и $\psi(s)$ подберём так, чтобы имело место равенство

$$\sum_{s=+s}^{+s} |\psi(s)|^2 = \sum_{\lambda, \mu, \ldots = 1}^s |\psi^{\lambda \mu \cdots}|^2$$

(56.1)

(эта сумма является скаляром, как то и должно быть, поскольку она определяет вероятность нахождения частицы в данной точке пространства). В сумме в правой стороне равенства компоненты с $(s + s)$ индексами 1 встречаются

$$\frac{(2s)!}{(s + s)! (s - s)!}$$

раз. Поэтому ясно, что correspondence между функциями $\psi(s)$ и компонентами спинора устанавливается формулой

$$\psi(s) = \sqrt{\frac{(2s)!}{(s + s)! (s - s)!}} \varphi^{s+s} \cdots \psi^{s-s} \cdots (56.2)$$

Соотношением (56.2) обеспечивается соблюдение не только условия (56.1), но, как легко убедиться, также и более общего условия:

$$\psi^{\lambda \mu \cdots} \varphi^{\lambda \mu \cdots} = \sum_s (1)^{s-s} \psi(s) \varphi(-s),$$

(56.3)

где $\psi^{\lambda \mu \cdots}$ и $\varphi^{\lambda \mu \cdots}$ — два различных спиноров одинакового ранга, а $\psi(s)$, $\varphi(s)$ — функции, сопоставляемые с этими спинорами по формуле (56.2) (множитель $(-1)^{s-s}$ связан с тем, что при подсчёте всех индексов у компонент спинора знак меняется столько раз, сколько имеется двоек среди индексов).

Матрицами (54.2) определяется результат воздействия оператора спина на волновые функции $\psi(s)$. Не представляет труда установить, каким образом воздействуют эти операторы на волновую функцию, написанную в виде спинора $2s$-го ранга. В случае спина $1/2$ функции $\hat{s}_x \psi^1, \hat{s}_y \psi^1$ совпадают с компонентами ψ^1, ψ^2 спинора. Согласно (54.2) и (54.3) результатом воздействия на них операторов спина будет:

$$\hat{s}_x \psi^1 = \frac{1}{2} \psi^2, \quad \hat{s}_y \psi^1 = -\frac{i}{2} \psi^2, \quad \hat{s}_z \psi^1 = \frac{1}{2} \psi^1,$$

$$\hat{s}_x \psi^2 = \frac{1}{2} \psi^1, \quad \hat{s}_y \psi^2 = \frac{i}{2} \psi^1, \quad \hat{s}_z \psi^2 = -\frac{1}{2} \psi^2.$$

(56.4)
Для перехода к общему случаю произвольного спина снова рассматриваем систему из 2s частиц со спином 1/2 и пишем её волновую функцию в виде произведения 2s спиноров. Оператор спина системы частиц представляет собой сумму операторов спинов каждой из частиц, действующих только на соответствующий спинор, причём результат их взаимодействия определяется формулами (56,2). Переходя затем обратно к произвольным симметрическим спинорам, т. е. к волновым функциям частицы со спином s, получим следующие формулы:

\[
\begin{align*}
\hat{S}_x \psi_{11\ldots22\ldots} &= \frac{s-\sigma}{2} \psi_{11\ldots22\ldots} + \frac{s+\sigma+1}{2} \psi_{11\ldots22\ldots}, \\
\hat{S}_y \psi_{11\ldots22\ldots} &= -i \frac{s-\sigma}{2} \psi_{11\ldots22\ldots} - i \frac{s+\sigma+1}{2} \psi_{11\ldots22\ldots}, \\
\hat{S}_z \psi_{11\ldots22\ldots} &= \sigma \psi_{11\ldots22\ldots}.
\end{align*}
\] (56,5)

Заметим, что, исходя из этих формул и соотношений (56,2), можно было бы вывести выражения (54,2) для матричных элементов оператора спина, действующего на функции \(\psi(\sigma) \).

§ 57. Связь спиноров с векторами

В своё время мы описывали состояния частицы с целым орбитальным моментом \(l \) шаровыми функциями \(Y_{lm} (m = l, l-l, \ldots -l) \). Ясно, что должно существовать определённое соответствие между законами преобразования этих шаровых функций друг через друга при поворотах системы координат и законом преобразования компонент спинора целого чётного ранга 2l. Для установления этого соответствия напишем угловую часть волновой функции некоторой частицы в произвольном состоянии с моментом \(l \) в виде суммы:

\[\Psi = \sum_m a_m Y_{lm} (\theta, \varphi). \]

После поворота системы координат эта же функция напишется в виде

\[\Psi = \sum_{m} a_m' Y_{lm} (\theta', \varphi'); \]

\(\theta', \varphi' \) — углы в новой системе координат, а коэффициенты \(a_m \) определённым образом линейно выражаются через старые коэффициенты \(a_m \). С физической точки зрения, коэффициенты \(a_m \) представляют собой амплитуды вероятности для различных значений м \(z \)-компоненты момента. В этом смысле они соответствуют «компонентам» \(\psi(m) \) спиновой волновой функции (с \(s = l, \sigma = m \)); тем самым устанавливается закон их преобразования.
Значение Ψ в данной точке пространства не может, разумеется, измениться в результате преобразования координат; отсюда следует, что взаимное преобразование функций Ψ_{im} при повороте системы координат должно быть таким, чтобы сумма $\sum_m a_m Y_{lm}$ была скалярным.

Сравнивая со скаляром (56,3) и помня, что величины a_m преобразуются как некоторые $\psi(m)$, мы видим, что указанное требование будет выполнено, если функция Y_{lm} сводится, в смысле своего закона преобразования, к «компонентам» некоторой спиновой функции $\psi(m)$ по формуле

$$Y_{lm} = (-1)^{l-m} \varphi(-m).$$

Поскольку множитель $(-1)^l$ в правой стороне равенства общий для всех Y_{lm}, то его можно включить в $\varphi(-m)$; замечая также, что при целом m имеем $(-1)^{-m} = (-1)^m$, и меняя обозначения, напишем соответствие между шаровыми функциями целого порядка s и компонентами спиновой волновой функции $\psi(s)$ в виде

$$Y_{ss} = (-1)^s \psi(-s)$$

(s — целое, $s = s, s - 1, \ldots, -s$).

В особенности важен случай $s = 1$. Три шаровые функции Y_{1s} суть

$$Y_{10} = \sqrt{\frac{3}{2}} \cos \theta = \sqrt{\frac{3}{2}} n_z, \quad Y_{1, \pm 1} = \pm \sqrt{\frac{3}{4}} \sin \theta e^{\pm i\varphi} = \pm \sqrt{\frac{3}{4}} (n_x \pm in_y)$$

(n — единичный вектор в направлении радиуса—вектора). Сравнивая с (57,1), мы видим, что компонентам $\psi(s)$ можно привести в соответствие компоненты некоторого вектора а по формулам:

$$\psi(0) = a_x, \quad \psi(1) = a_x + ia_y, \quad \psi(-1) = a_x - ia_y. \quad (57,2)$$

Вводя вместо компонент $\psi(s)$ компоненты симметрического спинора $\psi^{\lambda\mu}$ второго ранга согласно формуле (56,2):

$$\psi(1) = \psi^{11}, \quad \psi(-1) = \psi^{22}, \quad \psi(0) = \psi^{12}\sqrt{2},$$

мы можем написать аналогичные формулы, устанавливающие соответствие между компонентами такого спинора и компонентами вектора:

$$\psi^{12}\sqrt{2} = a_z, \quad \psi^{11}\sqrt{2} = -a_x + ia_y, \quad \psi^{22}\sqrt{2} = a_x + ia_y,$$

$$a_z = \psi^{12}\sqrt{2}, \quad a_x = \frac{1}{\sqrt{2}} (\psi^{22} - \psi^{11}), \quad a_y = -\frac{i}{\sqrt{2}} (\psi^{11} + \psi^{22}). \quad (57,3)$$

Легко проверить, что при таком определении скаляр $\psi_{\lambda\mu} \psi^{\lambda\mu}$ совпадает, с точностью до знака, со скаляром a^2:

$$a^2 = -\psi_{\lambda\mu} \psi^{\lambda\mu}. \quad (57,4)$$
Вообще, всякому целому спину соответствует симметричный спинор чётного ранга. Такой спинор сводится к обычному симметрическому тензору вдвое меньшего ранга, в результате упрощения которого по любой паре индексов получается нуль. Это следует уже из того, что число независимых компонент у спинора и тензора одинаково, в чём легко непосредственно убедиться. Соответствие между компонентами спинора и тензора может быть найдено с помощью формулы (57,3), если рассматривать спинор данного ранга как произведение нескольких спиноров второго ранга, а тензор — как произведение векторов.

Наконец, определим связь между углами поворота системы координат и коэффициентами α, β, γ, δ бинарного преобразования. Это проще всего сделать, замечая, что, с одной стороны, косинусы углов между первоначальными и новыми осями координат представляют собой коэффициенты в формулах преобразования компонент вектора:

\[a'_s = \sum_{k=1}^{3} a_{ik} a_k, \]

а, с другой стороны, это же преобразование может быть произведено посредством бинарного преобразования с помощью формулы (57,3). Так, например, имеем:

\[a'_s = \psi_{12} = \alpha \gamma \psi_{11} + \beta \delta \psi_{22} + (\alpha \delta + \beta \gamma) \psi_{12} = \]

\[= (- \alpha \gamma + \beta \delta) a_x + i (\alpha \gamma + \beta \delta) a_y + (\alpha \delta + \beta \gamma) a_z, \]

так что

\[a_{xx} = -\alpha \gamma + \beta \delta, \quad a_{xy} = i(\alpha \gamma + \beta \delta), \quad a_{xz} = \alpha \delta + \beta \gamma. \]

Аналогичным образом определяем остальные \(a_{ik} \) и в результате получим следующую таблицу для коэффициентов преобразования:

\[
(a_{ik}) = \begin{pmatrix}
\frac{1}{2} (\alpha^2 - \beta^2 - \gamma^2 + \delta^2) & \frac{i}{2} (-\alpha^2 + \beta^2 + \gamma^2 + \delta^2) & -\alpha \beta + \gamma \delta \\
\frac{i}{2} (\alpha^2 - \beta^2 + \gamma^2 - \delta^2) & \frac{1}{2} (\alpha^2 + \beta^2 + \gamma^2 + \delta^2) & -i (\alpha \beta + \gamma \delta) \\
-\alpha \gamma + \beta \delta & i (\alpha \gamma + \beta \delta) & \alpha \delta + \beta \gamma
\end{pmatrix}
\]

(57,6)

Обратные выражения для коэффициентов α, β, γ, δ через углы поворота системы координат можно найти, воспользовавшись для определения поворота системы координат эйлеровыми углами. Матрица \(^1\) коэффициентов α, β, γ, δ при повороте на угол \(\psi \) вокруг оси \(z \) (обозначим её, как \(\omega (\psi) \)), согласно формуле (54,1) с

\(^1\) Термин «матрица» понимается здесь в смысле, известном из теории линейных преобразований.
\[\sigma = \pm 1/2 \] имеет вид:

\[
\begin{pmatrix}
\alpha & \beta \\
\gamma & \delta
\end{pmatrix} = \omega (\psi) =
\begin{pmatrix}
e^{\frac{i\psi}{2}} & 0 \\
0 & e^{-\frac{i\psi}{2}}
\end{pmatrix}.
\]

Матрица \(\Omega (\theta) \), выражающая вращение на угол \(\theta \) вокруг оси \(x \), легко вычисляется из формул (57,6), в которых из всех \(a_{ik} \) должны быть отличны от нуля только \(a_{xx} = 1 \),

\[
a_{yy} = a_{zz} = \cos \theta, \quad a_{yz} = -a_{zy} = \sin \theta:
\]

\[
\Omega (\theta) =
\begin{pmatrix}
\cos \frac{\theta}{2} & i \sin \frac{\theta}{2} \\
i \sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{pmatrix}.
\]

Вращение, определяемое углами Эйлера \(\varphi, \theta, \psi \) (рис. 22; \(ON \) — линия пересечения плоскостей \(xy \) и \(x'y' \)), производится в три приёма: поворот на угол \(\psi \) вокруг оси \(z \), затем поворот на угол \(\theta \) вокруг нового положения оси \(x \) и, наконец, поворот на угол \(\varphi \) вокруг получившегося окончательного направления оси \(z \). Соответственно этому матрица полного преобразования равна произведению \(\omega (\varphi) \Omega (\theta) \omega (\psi) \). Непосредственным перемножением матриц окончательно получаем:

\[
\begin{pmatrix}
\alpha & \beta \\
\gamma & \delta
\end{pmatrix} =
\begin{pmatrix}
\cos \frac{\varphi}{2} \cdot e^{\frac{i}{2} (\varphi + \psi)} & i \sin \frac{\varphi}{2} \cdot e^{\frac{i}{2} (\varphi - \psi)} \\
i \sin \frac{\varphi}{2} \cdot e^{-\frac{i}{2} (\varphi - \psi)} & \cos \frac{\varphi}{2} \cdot e^{-\frac{i}{2} (\varphi + \psi)}
\end{pmatrix}
\]

(57,7)

З а д а ч а

Определить соответствие между компонентами симметрического спинора четвёртого ранга и компонентами симметрического тензора второго ранга (дающего при упрощении нуль).

Р е ш е н и е. Имея в виду, что компоненты тензора преобразуются как произведения компонент вектора, найдём:

\[
a_{xx} = \frac{1}{2} (\psi^{1111} + \psi^{2222} - 2\psi^{1222}), \quad a_{xy} = \frac{i}{2} (\psi^{1111} - \psi^{2222}),
\]

\[
a_{yy} = -\frac{1}{2} (\psi^{1111} + \psi^{2222} + 2\psi^{1222}), \quad a_{zz} = (\psi^{1222} - \psi^{1111}),
\]

\[
a_{xz} = 2\psi^{1222}, \quad a_{yz} = -i (\psi^{1222} + \psi^{1111}).
\]
Соответствие между компонентами тензора и величинами, преобразующимися как и «компоненты» волновой функции $\psi(\sigma)$ (со спином $s = 2$), определяется следующими формулами (мы использовали (56,1) для установления связи между $\psi(\sigma)$ и компонентами спинора):

$$a_{xx} = \frac{1}{2} \left[\psi(2) + \psi(-2) - \sqrt{\frac{2}{3}} \psi(0) \right], \quad a_{xy} = \frac{i}{2} \left[\psi(2) - \psi(-2) \right],$$

$$a_{yy} = -\frac{1}{2} \left[\psi(2) + \psi(-2) + \sqrt{\frac{2}{3}} \psi(0) \right], \quad a_{xz} = \frac{1}{2} \left[\psi(-1) - \psi(1) \right],$$

$$a_{zz} = \sqrt{\frac{2}{3}} \psi(0), \quad a_{yz} = -\frac{i}{2} \left[\psi(-1) + \psi(1) \right].$$

§ 58. Теорема Крамерса

Рассмотрим систему произвольно взаимодействующих частиц (не обязательно одинаковых). Орбитальный и спиновый моменты такой системы каждый в отдельности при участве релятивистских взаимодействий, вообще говоря, не сохраняются. Сохраняется лишь полный момент J. Если никакого внешнего поля нет, то каждый уровень энергии системы $(2J+1)$-кратно выражен. При включении внешнего поля вырождение, вообще говоря, снимается. Возникает вопрос о том, может ли вырождение быть снятым полностью, т. е. так, чтобы система имела только простые уровни. Оказывается, что если поле электрическое, то это не всегда возможно.

В классической электродинамике показывается, что имеет место инвариантность уравнений по отношению к изменению знака времени, если оставить при этом неизменным электрическое поле и изменить знак магнитного поля¹). Это фундаментальное свойство движения должно сохраняться и в квантовой механике. Поэтому во всяком внешнем электрическом поле (при отсутствии магнитного), так же как и для замкнутой системы, имеет место симметрия по отношению к изменению знака времени. Эта симметрия выражается в том, что если ψ есть волновая функция некоторого стационарного состояния, то и комплексно сопряжённая функция ψ^* описывает некоторое возможное состояние с той же энергией (§ 16).

Волновые функции стационарных состояний системы представляют собой спиноры $\psi_{\mu_1\mu_2\ldots}$, ранг n которых равен удвоенной сумме спинов s_α всех частиц в системе ($n = 2\Sigma s_\alpha$); эта сумма может не совпадать с полным спином S системы.

Согласно сказанному выше, мы можем утверждать, что в произвольном электрическом поле спиноры $\psi_{\mu_1\mu_2\ldots}$ и $\psi_{\mu_1\mu_2\ldots}^*$ должны соответственно состояниям с одинаковой энергией. Для того чтобы уровень был невырожденным, во всяком случае необходимо, чтобы эти состояния были тождественными, т. е. спиноры $\psi_{\mu_1\mu_2\ldots}$ и $\psi_{\mu_1\mu_2\ldots}^*$ должны совпадать с точностью до постоянного множителя. Поскольку

¹) См., например, «Теорию поля», 1-е изд. § 24, 2-е изд. § 16.
комплексно сопряжённый спинор $\psi^{*\ldots\ldots\ldots}$ есть величина, преобразующаяся как ковариантный спинор $\varphi^{\lambda\mu\ldots\ldots}$, то мы можем написать необходимое условие отсутствия вырождения в виде:

$$\psi^{*\ldots\ldots\ldots} = C\varphi^{\lambda\mu\ldots\ldots},$$

где C — постоянная.

Взяв комплексно сопряжённое от обеих сторон этого равенства, получим:

$$\psi^{\lambda\mu\ldots\ldots} = C^*\varphi^{*\lambda\mu\ldots\ldots}.$$

Опустим индексы в левой стороне равенства, соответственно подняв их в правой. Это значит, что мы умножаем обе стороны равенства на $g^{\alpha\lambda} g^{\beta\mu\ldots\ldots}$ и суммируем по индексам λ, μ, \ldots; при этом в правой стороне надо воспользоваться тем, что

$$g^{\alpha\lambda} g^{\beta\mu\ldots\ldots} = (−1)^n g^{\alpha\lambda} g^{\beta\mu\ldots\ldots}$$

(напоминаем, что $g^{\lambda\mu} = −g^{\mu\lambda}$). В результате получим:

$$\psi^{\lambda\mu\ldots\ldots} = C^* (−1)^n \varphi^{*\lambda\mu\ldots\ldots}.$$

Подставляя $\psi^{*\lambda\mu\ldots\ldots}$ из (58,1), найдём:

$$\psi^{\lambda\mu\ldots\ldots} = (−1)^n CC^* \varphi^{\lambda\mu\ldots\ldots}.$$

Это равенство должно, очевидно, выполняться тождественно, т. е. должно быть $−1)^n CC^* = 1$. Но поскольку $|C|^2$ во всяком случае положительно, то ясно, что это возможно лишь при чётном n (т. е. при целочисленном значении суммы $\sum s_{ \alpha }$). При нечётном n (при полузелем значении $\sum s_{ \alpha }$) условие (58,1) не может выполняться.

Таким образом мы приходим к результату, что электрическое поле может полностью снять вырождение только у системы с целочисленным значением суммы спинов частиц. У системы с полузелем суммой спинов в произвольном электрическом поле все уровни должны быть двукратно вырождены, причём двум различным состояниям с одинаковой энергией соответствуют комплексно сопряжённые спиноры 2) (Крамерс, 1930).

1) При целой (полузелемой) сумме $\sum s_{ \alpha }$ целыми (полузелемыми) являются также и все возможные значения полного спина S системы.

2) Если электрическое поле обладает высокой симметрией (кубической), то может иметь место и четырёхкратное вырождение (см. § 96 и задачу к нему).
Глава IX

ТОЖДЕСТВЕННОСТЬ ЧАСТИЦ

§ 59. Принцип неразличимости одинаковых частиц

В классической механике одинаковые частицы (скажем, электроны), несмотря на тождественность их физических свойств, не теряют всё же своей «индивидуальности». Именно, можно представить себе частицы, входящие в состав данной физической системы, в некоторый момент времени «перенумерованными» и в дальнейшем следить за движением каждой из них по своей траектории; тогда в любой момент времени частицы можно будет идентифицировать.

В квантовой же механике положение совершенно меняется, как это следует непосредственно из принципа неопределенности. Уже неоднократно указывалось, что, в силу принципа неопределенности, понятие о траектории электрона полностью теряет смысл. Если положение электрона точно известно в настоящий момент времени, то уже в бесконечно близкий момент времени его координаты вообще не имеют никакого определённого значения. Поэтому, локализовав электроны и перенумеровав их в некоторый момент времени, мы этим ничего не добьемся для целей их идентификации в дальнейшие моменты времени; локализовав один из электронов в другой момент времени в некоторой точке пространства, мы не сможем указать, какой именно из электронов попал в эту точку.

Таким образом в квантовой механике принципиально не существует никакой возможности следить в отдельности за каждой из одинаковых частиц и тем самым различать их. Можно сказать, что в квантовой механике одинаковые частицы полностью теряют свою «индивидуальность». Одинаковость частиц по их физическим свойствам имеет здесь весьма глубокий характер — она приводит к полной неразличимости частиц.

Этот, как говорят, принцип неразличимости одинаковых частиц играет основную роль при квантовомеханическом исследовании систем, состоящих из одинаковых частиц. Начнём с рассмотрения системы, состоящей всего из двух частиц. В силу их тождественности, состояния системы, получающиеся друг из друга просто перестановкой обеих частиц, должны быть физически полностью эквивалентными. Это значит, что в результате такой перестановки волновая
функция системы может измениться только на несущественный фазовый множитель. Пусть $\psi(\xi_1, \xi_2)$ есть волновая функция системы, причём ξ_1, ξ_2 условно обозначают совокупности трёх координат и проекции спина каждой из частиц. Тогда должно быть:

$$\psi(\xi_1, \xi_2) = e^{i\alpha}\psi(\xi_2, \xi_1),$$

где α — некоторая действительная постоянная. В результате повторной перестановки мы вернёмся к исходному состоянию, между тем как функция ψ окажется умноженной на $e^{2i\alpha}$. Отсюда следует, что $e^{2i\alpha} = 1$ или $e^{i\alpha} = \pm 1$. Таким образом

$$\psi(\xi_1, \xi_2) = \pm \psi(\xi_2, \xi_1).$$

Мы приходим к результату, что имеется всего две возможности — волновая функция либо симметрична (т. е. совершенно не меняется в результате перестановки частиц), либо антисимметрична (т. е. при перестановке меняет знак). Очевидно, что волновые функции всех состояний одной и той же системы должны иметь одинаковую симметрию; в противном случае волновая функция состояния, представляющего собой суперпозицию состояний различной симметрии, была бы не симметрична, ни антисимметрична.

Этот результат непосредственно обобщается на системы, состоящие из произвольного числа одинаковых частиц. Действительно, в силу одинаковости частиц ясно, что если какая-либо их пара обладает свойством описываться, скажем, симметричными волновыми функциями, то и всякая другая пара таких же частиц будет обладать тем же свойством. Поэтому волновая функция одинаковых частиц должна либо совершенно не меняться при перестановке любой пары частиц (а потому и при всякой вообще взаимной перестановке частиц), либо менять знак при перестановке каждой пары. В первом случае говорят о симметричной, а во втором случае — об антисимметричной волновой функции.

Свойство описываться либо симметричными, либо антисимметричными волновыми функциями зависит от рода частиц. О частицах, описывающихся антисимметричными функциями, говорят, как о подчиняющихся статистике Ферми-Дирака (или, короче, статистике Ферми), а о частицах, описывающихся симметрическими функциями — как подчиняющихся статистике Бозе-Эйнштейна (или, короче, статистике Бозе)1). Большинство элементарных частиц — электроны, позитроны, протоны, нейтроны — подчиняется статистике Ферми.

1) Эта неудачная терминология связана с названием статистик, которыми описывается идеальный газ, состоящий из частиц, соответственно, с антисимметричными или симметричными волновыми функциями. В действительности мы имеем здесь дело не только с различными статистиками, но и по существу с различными механиками. Статистика Ферми была предложена Ферми для электронов в 1925 г., а её связь с квантовой механикой была выяснена Дираком (1926 г.). Статистика Бозе была предложена Бозе для световых квантов и обобщена А. Эйнштейном (1924).
Стастика сложных частиц определяется чётностью числа входящих в их состав элементарных Ферми-частиц. Действительно, перестановка двух одинаковых сложных частиц эквивалентна одновременной перестановке нескольких пар одинаковых элементарных частиц. Перестановка Бозе-частиц не изменяет волновой функции вообще, а перестановка Ферми-частиц меняет её знак. Поэтому сложные частицы, содержащие чётное число элементарных Ферми-частиц, подчиняются статистике Ферми, а содержащие чётное число их, — статистике Бозе. Так, атомные ядра с нечётным атомным весом (т. е. состоящие из нечётного числа нейтронов и протонов) подчиняются статистике Ферми, а с чётным весом — статистике Бозе.

Как показывает опыт, статистика, которой подчиняются частицы данного рода, однозначно связана со спином этих частиц. Именно имеет место общее правило, согласно которому частицы, обладающие полуцельным спином, подчиняются статистике Ферми, а частицы с целым спином — статистике Бозе. Сказанное выше о сложных частицах находит в согласии с этим общим правилом, поскольку сложная частица имеет целый или полуцельный спин в зависимости от того, чётно ли или нечётно число входящих в её состав частиц с полуцельным спином.

Рассмотрим систему, состоящую из N одинаковых частиц, взаимодействием которых друг с другом можно пренебречь. Пусть ψ_1, ψ_2, \ldots суть волновые функции различных стационарных состояний, в которых может находиться каждая из частиц в отдельности. Состояние системы в целом можно определять перечислением номеров состояний, в которых находятся отдельные частицы. Возникает вопрос о том, каким образом должна быть составлена из функций ψ_1, ψ_2, \ldots волновая функция Ψ всей системы в целом.

Пусть p_1, p_2, \ldots, p_N — номера состояний, в которых находятся отдельные частицы (среди этих номеров могут быть и одинаковые). Если частицы подчиняются статистике Бозе, то волновая функция $\Psi (\xi_1, \xi_2, \ldots, \xi_N)$ выражается суммой произведений вида:

$$\psi_{p_1}(\xi_1) \psi_{p_2}(\xi_2) \ldots \psi_{p_N}(\xi_N),$$

со всеми возможными перестановками различных индексов p_1, p_2, \ldots; такая сумма обладает, очевидно, требуемым свойством симметрии. Так, например, для системы из двух частиц

$$\Psi (\xi_1, \xi_2) = \frac{1}{\sqrt{2}} [\psi_{p_1}(\xi_1) \psi_{p_2}(\xi_2) + \psi_{p_1}(\xi_2) \psi_{p_2}(\xi_1)]$$

1) В дальнейшем, в релятивистской теории (часть 2 этого тома), будут указаны некоторые теоретические основания для этого правила.

2) При сильном взаимодействии между частицами говорить об этих состояниях, разумеется, было бы нельзя.
§ 60. Обменное взаимодействие

(предполагаем, что \(p_1 \neq p_2 \)). Множитель \(1/\sqrt{2} \) введён для нормировки (все функции \(\psi_1, \psi_2, \ldots \) взаимно ортогональны и предполагаются нормированными).

Если же частицы подчиняются статистике Ферми, то волновая функция \(\Psi \) есть антисимметричная комбинация указанных произведений. Она может быть написана в виде детерминанта

\[
\Psi = \frac{1}{\sqrt{N!}} \begin{vmatrix}
\psi_{p_1} (\xi_1) & \psi_{p_1} (\xi_2) & \ldots & \psi_{p_1} (\xi_N) \\
\psi_{p_2} (\xi_1) & \psi_{p_2} (\xi_2) & \ldots & \psi_{p_2} (\xi_N) \\
\vdots & \vdots & \ddots & \vdots \\
\psi_{p_N} (\xi_1) & \psi_{p_N} (\xi_2) & \ldots & \psi_{p_N} (\xi_N)
\end{vmatrix}. \tag{59,2}
\]

Перестановке двух частиц соответствует здесь перестановка двух столбцов детерминанта, в результате чего последний, как известно, меняет знак. Для системы, состоящей из двух частиц, имеем:

\[
\Psi = \frac{1}{\sqrt{2}} [\psi_{p_1} (\xi_1) \psi_{p_2} (\xi_2) - \psi_{p_2} (\xi_1) \psi_{p_1} (\xi_2)]. \tag{59,3}
\]

Из выражения (59,2) вытекает следующий весьма существенный результат. Если среди номеров \(p_1, p_2, \ldots \) есть какие-нибудь два одинаковых, то две строки детерминанта окажутся одинаковыми и весь детерминант обратится тождественно в нуль. Он будет отличным от нуля только в тех случаях, когда все номера \(p_1, p_2, \ldots \) различные. Таким образом в системе, состоящей из одинаковых частиц, подчиняющихся статистике Ферми, не могут одновременно находится в одном и том же состоянии две (или более) частицы. Это есть так называемый принцип Паули (1925).

\section*{§ 60. Обменное взаимодействие}

Тот факт, что в уравнении Шредингера не учитывается наличие у частиц спина, отнюдь не обесценивает это уравнение и все получающиеся с его помощью результаты. Дело в том, что электрическое взаимодействие частиц не зависит от их спинов\(^1\). Математически это означает, что гамильтониан системы электрически взаимодействующих частиц (в отсутствии магнитного поля) не содержит операторов спина, и потому при применении его к волновой функции никак не воздействует на спиновые переменные. Поэтому уравнению Шредингера удовлетворяет в действительности каждая из компонент волновой функции; другими словами, волновая функция \(\psi (r_1, \sigma_1; r_2, \sigma_2; \ldots) \) системы частиц может быть написана в виде произведения

\[
\chi (\sigma_1, \sigma_2 \ldots) \varphi (r_1, r_2, \ldots)
\]

\(^1\) Это справедливо лишь постольку, поскольку речь идёт о нерелятивистском приближении. При учёте релятивистских эффектов взаимодействие заряженных частиц оказывается зависящим от спина.
функции \(\varphi \) от одних только координат частиц на функцию \(\chi \) от спинов (о первой мы будем говорить, как о «координатной» или «орбитальной», а о второй — как о «спиновой» волновой функции). Уравнение Шрёдингера определяет по существу только координатную функцию \(\varphi \), оставляя функцию \(\chi \) произвольной. Во всех случаях, когда сам спин частиц нас не интересует, можно, следовательно, применять уравнение Шрёдингера, рассматривая в качестве волновой функции одну только координатную функцию, что и делалось во всём предыдущем изложении.

Однако оказывается, что, несмотря на указанную независимость электрического взаимодействий частиц от их спина, существует своеобразная зависимость энергии системы от её полного спина, проистекающая в конечном итоге из принципа неразличимости одинаковых частиц.

Рассмотрим систему, состоящую всего из двух одинаковых частиц. В результате решения уравнения Шрёдингера мы найдём ряд уровней энергии, каждому из которых соответствует определённая координатная волновая функция \(\varphi (r_1, r_2) \). Эти функции могут быть либо симметричными, либо антисимметричными. Действительно, в силу одинаковости частиц гамильтониан (а потому и уравнение Шрёдингера) системы инвариантен по отношению к их перестановке. Если уровни энергии не выражены, то при перестановке координат \(r_1 \) и \(r_2 \) функция \(\varphi (r_1, r_2) \) может измениться только на постоянный множитель; произведение же перестановку ещё раз, убедимся, что этот множитель может быть равен только \(\pm 1 \)). Надо, однако, иметь в виду, что функции \(\varphi \), отвечающие различным уровням энергии, вовсе не должны иметь одинаковую симметрию — среди них могут быть как симметричные, так и антисимметричные.

Предположим сначала, что частицы имеют спин нуль. Спиновый множитель для таких частиц вообще отсутствует, и волновая функция сводится к одной лишь координатной функции \(\varphi (r_1, r_2) \), которая должна быть симметричной (поскольку частицы со спином нуль подчиняются статистике Бозе). Таким образом не все из уровней энергии, получающихся при формальном решении уравнения Шрёдингера, могут в действительности осуществляться; те из них, которым соответствуют антисимметричные функции \(\varphi \), для рассматриваемой системы невозможны.

Перестановка двух одинаковых частиц эквивалентна операции инверсии системы координат (начало которой выбрано посредине прямой, соединяющей обе частицы). С другой стороны, в результате инверсии волновая функция \(\varphi \) должна умножиться на \((-1)^l \), где \(l \) есть орбитальный момент относительного движения обеих частиц (см. § 28). Сопоставляя эти соображения со сказанным выше, мы

1) При наличии же вырождения можно всегда выбрать такие линейные комбинации функций, относящихся к данному уровню, которые тоже удовлетворяют этому условию.
приходим к выводу, что система из двух одинаковых частиц со спином нуль может обладать только чётным орбитальным моментом.

Далее, предположим, что система состоит из двух частиц со спином 1/2 (скажем, электронов). Тогда полная волновая функция системы (т. е. произведение функции \(\varphi(r_1, r_2) \) и спиновой функции \(\chi(s_1, s_2) \)) должна быть непременно антисимметричной по отношению к перестановке обоих электронов. Поэтому при симметричной координатной функции спиновая функция должна быть антисимметричной, и наоборот. Будем писать спиновую функцию в спинорном виде, т. е. в виде спинора второго ранга \(\gamma^{\lambda \mu} \), каждый из индексов которого соответствует спину одного из электронов. Симметричной по спинам обеих частиц функция соответствует симметрический спинор \(\chi^{\lambda \mu} = \chi^{\mu \lambda} \), а антисимметричной — антисимметрический спинор \(\chi^{\lambda \mu} = -\chi^{\mu \lambda} \). Но мы знаем, что симметрический спинор второго ранга описывает систему с равным единице полным спином, а антисимметрический спинор сводится к скалярному, что соответствует равному нулю спину.

Таким образом мы приходим к следующему результату. Те уровни энергии, которым соответствуют симметричные решения \(\varphi(r_1, r_2) \) уравнения Шредингера, могут фактически осуществляться при равном нулю полном спине системы, т. е. когда спины обоих электронов направлены «антитрансплосно», давая в сумме нуль. Значения же энергий, связанные с антисимметрическими функциями \(\varphi(r_1, r_2) \), требуют равного единице полного спина, т. е. спины обоих электронов должны быть «параллельными». Обратно, мы видим, что при заданном значении полного спина системы оказываются возможными не все получающиеся в результате решения уравнения Шредингера значения энергии, а только часть из них.

Другими словами, возможные значения энергии системы электронов оказываются зависящими от её полного спина. На этом основании можно говорить о некотором своеобразном взаимодействии частиц, приводящем к этой зависимости. Это взаимодействие называют «обменным». Оно представляет собой чисто квантовый эффект, полностью исключающий (как и самый спин) при предельном переходе к классической механике.

Для разобранного нами случая системы двух электронов характерно следующее обстоятельство. Каждому уровню энергии соответствует одно определённое значение полного спина: 0 или 1. Такое однозначное соответствие значений спина уровнем энергии сохраняется, как мы увидим ниже (§ 61), и в системах из произвольного числа электронов. Оно, однако, не имеет места для систем, состоящих из частиц со спином, превышающим 1/2.

Рассмотрим систему из двух частиц с произвольным спином \(s \). Её спиновая волновая функция есть спинор ранга 4s: \(\chi^{\lambda \mu} \ldots \chi^{p \sigma} \ldots \).
половину (2s) индексов которого соответствует спину одной, а дру-
гая половина — спину другой частицы. По индексам каждой из этих
групп индексов спинор симметричен. Перестановка обеих частиц
соответствует перестановке всех индексов λ, μ, \ldots первой группы
с индексами ρ, σ, \ldots второй группы. Для того чтобы получить спи-
новую функцию состояния системы с полным спином S, надо упро-
стить этот спинор по $2s - S$ параметрам индексов (каждая пара содер-
жит один индекс из λ, μ, \ldots и один из ρ, σ, \ldots) и симметри-
зовать по оставальным; в результате получится симметрический спинор
ранга 2S. Но, как мы знаем, упрощение спинора по паре индексов
означает составление комбинации, антисимметричной по этим индексам.
Поэтому при перестановке частиц спиновая волновая функция умно-
жится на $(-1)^{2s - S}$.

С другой стороны, полная волновая функция системы двух
частиц при их перестановке должна умножаться на $(-1)^{2s}$ (т. е. на
± 1 при целом s и на -1 при полуцелом). Отсюда следует,
что симметрия координатной волновой функции по отношению
к перестановке частиц определяется множителем $(-1)^S$, завися-
щим только от S. Таким образом мы приходим к результату, что
координатная волновая функция системы двух одинаковых частиц
симметрична при чётном и антисимметрична при нечётном полном
спине.

Вспоминая сказанное выше о связи между перестановкой частиц и
инверсией системы координат, заключаем также, что при чётном
(нечётном) спине S система может обладать только чётным (нечёт-
ным) орбитальным моментом.

Мы видим, что и здесь обнаруживается некоторая зависимость
между возможными значениями энергии системы и полным спином,
но эта зависимость не вполне однозначна. Уровни энергии, которым
соответствуют симметричные (антисимметричные) координатные волн-
овые функции, могут осуществляться при всех чётных (нечётных)
значениях S.

Подсчитаем, сколько имеется всего различных состояний системы
с чётными и нечётными S. Величина S пробегает $2s + 1$ значений:
$2s, 2s - 1, \ldots, 0$. Для каждого данного S имеется $2S + 1$ состояний,
отличающихся значением z-компоненты спина (всего $(2s + 1)^2$ раз-
личных состояний). Пусть s — целое. Тогда среди $2s + 1$ значений S
есть $s + 1$ чётных и s — нечётных. Полное число состояний с чёт-
ными S равно сумме

$$\sum_{s = 0, 2, \ldots, 2s} (2S + 1) = (2s + 1) (s + 1);$$

остальные $s (2s + 1)$ состояний обладают нечётными S. Подобным же образом найдём, что при полуцелом s имеется $s (2s + 1)$ со-
стояний с чётными и $(s + 1) (2s + 1)$ с нечётными значениями S.
§ 61. Симметрия по отношению к перестановкам

Рассматривая систему, состоящую всего из двух частиц, мы могли утверждать, что её координатные волновые функции стационарных состояний $\varphi (r_1, r_2)$ должны быть либо симметричны, либо антисимметричны. В общем же случае системы из произвольного числа частиц решение уравнения Шредингера (координатные волновые функции) отнюдь не должны непременно быть симметричными или антисимметричными по отношению к перестановке любой пары частиц, как это имеет место для полных волновых функций (включающих спиновой множитель). Это связано с тем, что перестановка одних только координат двух частиц ещё не соответствует их физической перестановке. Физическая одинаковость частиц приводит здесь лишь к тому, что гамильтониан системы инвариантен по отношению к перестановке частиц, и потому если некоторая функция есть решение уравнения Шредингера, то решениями являются и функции, получающиеся из исходной посредством различных перестановок переменных.

Предварительно сделаем несколько замечаний о перестановках вообще. В системе из N частиц возможны всего $N!$ различных перестановок. Если представить себе все частицы перенумерованными, то каждую перестановку можно изобразить определённой последовательностью чисел 1, 2, 3, ..., N. Каждая такая последовательность может быть получена из натуральной последовательности 1, 2, 3, ... последовательными перестановками пар частиц. Перестановку называют чётной или нечётной в зависимости от того, осуществляется ли она чётным или нечётным числом парных перестановок. Обозначим посредством \hat{P} операторы перестановок N частич и введём величину δ_φ, равную $+1$, если \hat{P} есть чётная перестановка, и -1, если перестановка нечётная. Если φ есть симметричная по всем частицам функция, то

$$\hat{P}\varphi = \varphi,$$

а если функция антисимметрична по всем частицам, то

$$\hat{P}\varphi = \delta_\varphi \varphi.$$

Из произвольной функции $\varphi (r_1, r_2, \ldots, r_N)$ можно образовать симметричную функцию посредством операции симметризации, которую можно записать так:

$$\varphi_{симм} = \text{const.} \sum P \hat{P}\varphi,$$ \hspace{1cm} (61,1)

где суммирование производится по всем возможным перестановкам. Образование же антисимметричной функции (эту операцию иногда называют альтернированием) может быть записано в виде:

$$\varphi_{антн} = \text{const.} \sum P \delta_\varphi \hat{P}\varphi.$$ \hspace{1cm} (61,2)
Возвращаясь к вопросу о поведении волновых функций \(\varphi \) системы однаковых частиц по отношению к перестановкам \(^1\). Тот факт, что гамильтониан системы \(\hat{H} \) симметричен по всем частицам, означает, математически, что \(\hat{H} \) коммутирует со всеми операторами перестановок \(\hat{P} \). Однако эти операторы не коммутируют друг с другом и поэтому не могут быть приведены одновременно к диагональному виду. Это значит, что волновые функции \(\varphi \) не могут быть выбраны так, чтобы каждая из них была симметрична или антисимметрична по отношению ко всем отдельным парным перестановкам \(^2\).

Поставим задачу об определении возможных типов симметрии функций \(\varphi (r_1, r_2, \ldots, r_N) \) от \(N \) переменных (или совокупностей нескольких таких функций) по отношению к перестановкам переменных. Симметрия должна быть такой, чтобы она «не могла быть повышена», т. е. чтобы всякая дополнительная операция симметризации или альтернирования при применении к этим функциям обращала бы их либо в линейные комбинации их же самих, либо тождественно в нуль.

Мы знаем уже две операции, которые приводят к функциям максимальной симметрии: симметризация по всем переменным и альтернирование по всем переменным. Эти операции могут быть обобщены следующим образом.

Разобьём совокупность всех \(N \) переменных \(r_1, r_2, \ldots, r_N \) (или, что то же самое, индексов 1, 2, 3, \ldots, \(N \)) на несколько рядов, содержащих \(N_1, N_2, \ldots \) элементов (переменных); \(N_1 + N_2 + \ldots = N \). Такое разбиение можно изобразить наглядно схемой (так называемая «схема Юнга»), в которой каждое из чисел \(N_1, N_2, \ldots \) представлено строкой из нескольких клеток (так, на рис. 23 представлена схема разбиений \(6 + 4 + 4 + 3 + 3 + 1 + 1 \) и \(7 + 5 + 5 + 3 + 1 + 1 \) для \(N = 22 \)); в каждом из квадратов следует поместить одно из чисел 1, 2, 3, \ldots Если расположить строки в порядке их укорочения (как это и сделано на рис. 23), то схема будет содержать не только последовательные горизонтальные строки, но и вертикальные столбцы.

\(^1\) С математической точки зрения задача состоит в нахождении неприводимых представлений группы перестановок \(N \) элементов.

\(^2\) Лишь для системы из двух частиц имеется всего один оператор перестановки, который может быть приведён к диагональному виду одновременно с \(\hat{H} \).
Произведён симметризацию произвольной функции $\varphi (r_1, r_2, \ldots, r_N)$ по переменным, входящим в состав каждой из строк. После этого операция альтернирования может производиться только по отношению к переменным, входящим в различные строки; альтернирование по паре переменных, находящихся в одной строке, даст, очевидно, тождественно нуль.

Выбрав из каждой строки по одной переменной, мы можем, не ограничивая общности, считать их находящимися в первых клетках строк (после симметризации порядок расположения переменных по клеткам каждой строки несуществен); произведён альтернирование по этим переменным. Вычеркнув затем первый столбец, произведём альтернирование по переменным, выбранным по одному из каждой строки «укороченной», таким образом, схемы; при этом эти переменные можно снова считать находящимися в первых клетках «укороченных» строк. Продолжая этот процесс, мы придём, следовательно, к тому, что функция будет сначала симметризована по переменным каждой строки, а затем альтернирована по переменным каждого столбца 1).

Распределяя N переменных различным образом по строкам схемы Юнга (распределение по клеткам каждой строки несущественно), мы получим таким способом ряд функций, которые при произвольной перестановке переменных преобразуются друг через друга 2). Необходимо, однако, подчеркнуть, что не все эти функции линейно независимы; число независимых функций, вообще говоря, меньше числа возможных распределений переменных по строкам схемы; мы не станем останавливаться здесь на этом подробнее 3).

Таким образом каждая юнговская схема определяет некоторый тип симметрии функций по отношению к перестановкам. Составляя все возможные (для данного N) юнговские схемы, мы найдём все возможные типы симметрии. Это сводится к разбиению числа N всеми возможными способами на сумму нескольких меньших слагаемых, причём в число возможных разбиений включается также и само число N (так, для $N = 4$ возможны разбиения: $4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1$) 4).

1) После альтернирования функция, вообще говоря, перестанет быть симметричной по переменным каждой строки. Симметричность сохранится лишь по отношению к переменным, находящимся в клетках первой строки, выступающих за остальные строки.

2) Можно было бы производить симметризацию и альтернирование в обратном порядке — сначала альтернировать по переменным в каждой строке, а затем симметризовать по переменным в строках. Это, однако, не дало бы ничего нового, так как получающиеся обоями способами функции являются линейными комбинациями друг друга.

3) Математическую теорию представлений групп перестановок (в применении к квантовой механике) можно найти в книге H. Weyl, Gruppentheorie und Quantenmechanik, 2-e изд., 1931, глава V.

4) В теории групп перестановок эти разбиения иногда называют Partitio numerorum.
Каждому уровню энергии системы можно привести в соответствие некоторую юнговскую схему, определяющую перестановочную симметрию соответствующих решений уравнения Шредингера; при этом каждому значению энергии соответствует, вообще говоря, несколько различных функций, при перестановках преобразующихся друг через друга \(^1\). Необходимо, однако, подчеркнуть, что этот факт не означает наличия какого-либо дополнительного физического выражения уровней энергии. Все эти различные координатные волновые функции, умноженные на спиновые функции, входят в одну определённую комбинацию — полную волновую функцию, — удовлетворяющую (в зависимости от числа частиц) условию симметричности или антисимметричности.

Среди различных типов симметрии всегда существует (при данном \(N\)) два, которым соответствуют всего по одной функции. Одному из них отвечает функция, симметричная по всем переменным, а другому — антисимметричная (в первом случае юнговская схема состоит всего из одной строки из \(N\) клеток, а во втором — из одного столбца).

Перейдём теперь к спиновым волновым функциям \(\chi (\sigma_1, \sigma_2, \ldots, \sigma_N)\). Их типы симметрии по отношению к перестановкам частиц определяются теми же юнговскими схемами, причём роль переменных играют \(z\)-компоненты спинов частиц. Возникает вопрос о том, какая схема должна соответствовать спиновой функции при заданной схеме координатной функции. Предположим сначала, что частицы обладают целым спином. Тогда полная волновая функция \(\psi\) должна быть симметрична по всем частицам. Для этого симметрия спиновых и координатных функций должна определяться одной и той же юнговской схемой, а полная волновая функция \(\psi\) выражается в виде определённых билинейных комбинаций тех и других; мы не станем останавливаться здесь подробнее на вопросе о составлении этой комбинации.

Пусть теперь частицы обладают полуцелым спином. Тогда полная волновая функция должна быть антисимметричной по всем частицам. Можно показать, что для этого юнговские схемы координатной и спиновой функций должны получаться друг из друга заменой строк столбцами и обратно (таковы, например, две схемы, изображённые на рис. 23).

Остановимся подробнее на важном случае частиц со спином \(1/2\) (например, электронов). Каждая из спиновых переменных \(\sigma_1, \sigma_2, \ldots\) пробегает здесь всего два значения \(\pm 1/2\). Поскольку функция, антисимметричная по каким-либо двум переменным, обращается в нуль, когда эти переменные имеют одинаковые значения, то ясно, что функция \(\chi\) может быть альтерирована лишь по парам переменных; уже

\(^1\) Наличие этого «перестановочного выражения» связано с тем фактом, что коммутирующие с гамильтонианом операторы перестановок не коммутируют, вообще говоря, друг с другом (см. § 10, стр. 43).
при альтернировании по трём переменным две из них во всяком случае будут иметь одинаковые значения, так что получится тождественно нуль.

Таким образом для системы электронов юнговские схемы спиновых функций могут содержать столбцы длиной лишь в одну или две клетки (т. е. всего одну или две строки); в юнговских же схемах координатных функций то же самое относится к длине строк. Число возможных типов перестановочной симметрии для системы из N электронов равно, следовательно, числу возможных разбиений числа N на сумму единиц и двоек. При чётном N это число равно N/2 + 1 (разбиения с 0, 1, ..., N/2 двоек), а при нечётном оно равно (N + 1)/2 (разбиения с 0, 1, ..., (N + 1)/2 двоек). Так, например, на рис. 24 изображены возможные юнговские схемы (координатные и спиновые) для N = 4.

Легко видеть, что каждый из этих типов симметрии (т. е. каждая из юнговских схем) соответствует определённому полному спину S системы электронов. Будем рассматривать спиновые функции в спинорном виде, т. е. в виде спинора \(\chi^{\alpha_1 \ldots \alpha_N} \) N-го ранга, причём его индексы (каждый из которых соответствует спину отдельной частицы) будут теми переменными, которые располагаются в клетках юнговских схем. Рассмотрим спиновую юнговскую схему, состоящую из двух строк, имеющих по \(N_1 \) и \(N_2 \) клеток (\(N_1 + N_2 = N \), \(N_1 > N_2 \)). В первых \(N_2 \) столбцах имеется по две клетки, и по соответствующим параметрам индексов спинор должен быть антисимметричен. По индексам же, находящимся в последних \(n = N_1 - N_2 \) клетках первой строки, спинор должен быть симметричен. Но, как мы знаем, такой спинор N-го ранга сводится к симметрическому спинору n-го ранга, которому соответствует полный спин, равный \(S = n/2 \). Возвращаясь к юнговским схемам координатных функций, мы можем сказать, что схема с n строками, содержащими по одной клетке, соответствует состоянию с полным спином \(S = n/2 \). При чётном n полный спин может иметь целые значения от 0 до \(n/2 \), а при нечётном n — полуцелые значения от \(1/2 \) до \(n/2 \), как и должно было быть.

Подчеркнём, что такое однозначное соответствие юнговских схем полному спину имеет место только для систем частиц со спином \(1/2 \); для системы всего из двух частиц мы убедились в этом уже в предыдущем параграфе 1).

1) В примечании на стр. 74 было отмечено, что для системы из нескольких одинаковых частиц нельзя утверждать, что волновая функция её стационарного состояния с наименьшей энергией не имеет узлов.
З А Д А ЧА

Определить число уровней энергии с различными значениями полного спина S для системы из N частиц со спином $1/2$.

Решение. Заданное значение проекции полного спина системы $M_S = \sum \sigma$ можно осуществить

$$f(M_S) = \frac{N!}{\left(\frac{N}{2} + M_S\right)! \left(\frac{N}{2} - M_S\right)!}$$

способы (число сочетаний из N элементов по $\frac{N}{2} + M_S$, $\frac{N}{2} + M_S$ частицам приписываем $\sigma = 1/2$, а остальным $\sigma = -1/2$). Каждому уровню энергии с заданным значением S соответствует $2S + 1$ состояний со значениями $M_S = S, S - 1, \ldots, -S$ проекции спина. Поэтому легко сообразить, что число различных уровней энергии с заданным значением S равно

$$n(S) = f(S) - f(S + 1) = \frac{N!(2S + 1)}{\left(\frac{N}{2} + S + 1\right)!\left(\frac{N}{2} - S\right)!}.$$

Полное число $n = \sum_S n(S)$ различных уровней энергии равно

$$n = f(0) = \frac{N!}{\left(\frac{N}{2}\right)!}$$

при чётном N, или

$$n = f\left(\frac{1}{2}\right) = \frac{N!}{\left(\frac{N + 1}{2}\right)!\left(\frac{N - 1}{2}\right)!}$$

при нечётном N.

Теперь мы можем уточнить это замечание и выяснить его происхождение.

Волновая функция (речь идёт о координатной функции), не имеющая узлов, непременно должна быть симметрична по всем частицам; если бы она была антисимметрична по отношению к перестановке какой-либо пары частиц 1, 2, то она обратилась бы в нуль при $r_1 = r_2$. Но если система состоит из трёх или более электронов, то полностью симметрична координатная волновая функция вообще не допускается (юнговская схема координатной функции не может иметь строки с более чем двумя клетками).

Таким образом хотя решение уравнения Шредингера, соответствующее наименьшему собственному значению, и не имеет узлов (согласно теореме вариационного исчисления), но это решение может оказаться физически недопустимым; тогда нормальному состоянию системы будет соответствовать не наименьшее из собственных значений уравнения Шредингера, и волновая функция этого состояния будет, вообще говоря, иметь узлы.

Вообще, для частиц с полулым спином S такое положение имеет место в системах с более чем $2S + 1$ частицами. Для систем же, состоящих из частиц, подчиняющихся статистике Бозе, полностью симметричная координатная волновая функция всегда возможна.
§ 62. Вторичное квантование. Случай статистики Бозе

При квантовомеханическом исследовании систем, состоящих из очень большого числа произвольно взаимодействующих одинаковых частиц, бывает полезным особый метод рассмотрения, известный под названием вторичного квантования. Этот метод необходим также в релятивистской теории, где приходится иметь дело с системами, в которых самое число частиц является переменным. Мы рассмотрим сначала системы из частиц, подчиняющихся статистике Бозе.

Обозначим посредством \(\psi_1(\xi), \psi_2(\xi), \ldots \) некоторую полную систему ортогональных и нормированных волновых функций. Они могут, например, соответствовать стационарным состояниям одной частицы в некотором внешнем поле. Подчеркнём, что выбор этого поля произволен и не должен обязательно совпадать с реальным полем, в котором находятся частицы в исследуемой физической системе. \(\xi \) обозначает, как и в § 59, совокупность координат и проекций спина \(s \) частицы.

Рассмотрим чисто формальным образом систему из \(N \) невзаимодействующих частиц, находящихся в выбранном нами поле. Тогда каждая частица находится в каком-либо из состояний \(\psi_1, \psi_2, \ldots \). Пусть \(N_1 \) есть число частиц в состоянии \(\psi_1 \); оно, конечно, может быть равным нулю (очевидно, что \(\sum N_i = N \)). Задание чисел \(N_1, N_2, \ldots \) определяет состояние системы в целом; будем указывать их в виде индексов у волновой функции \(\Psi_{N_1N_2\ldots} \) системы. Поставим себе целью построить такой математический аппарат, в котором «числа заполнения» состояний \(N_1, N_2, \ldots \) (а не координаты частиц) играли бы роль независимых переменных.

Функция \(\Psi_{N_1N_2\ldots} \) представляет собой симметризованную (частицы подчиняются статистике Бозе) сумму произведений функций \(\psi_i \). Напишем её в виде:

\[
\Psi_{N_1N_2\ldots} = \left(\frac{N_1!N_2!\ldots}{N!} \right)^{1/2} \sum \psi_{p_1}(\xi_1) \psi_{p_2}(\xi_2)\ldots \psi_{p_N}(\xi_N) \tag{62.1}
\]

Здесь \(p_1, p_2, \ldots, p_N \) — номера состояний, в которых находятся отдельные частицы, а сумма берётся по всем перестановкам различных из индексов \(p_1, p_2, \ldots, p_N \). Числа \(N_i \) показывают, сколько из индексов \(p_1, p_2, \ldots, p_N \) имеют данные значения \(i \). Общее число членов в сумме (62.1), очевидно, равно

\[
\frac{N!}{N_1!N_2!\ldots}.
\]

1) Метод вторичного квантования был развит Дираком для частиц, подчиняющихся статистике Бозе (1927), и затем распространен на Ферми-частицы Вигнером и Иорданом (1928).
Постоянный множитель в (62,1) выбран так, чтобы функция была нормированной (в силу ортогональности функций ψ_i при интегрировании) квадрата $|\Psi_{N_1N_2...}|^2$ по $d\xi_1 d\xi_2 ... d\xi_N$ обращаются в нуль все члены, за исключением только квадратов модулей каждого из членов суммы).

Пусть, далее, $\hat{f}^{(1)}_a$ есть опператор какой-либо физической величины, относящейся к a-й частице, т. е. он действует только на функции от ξ_a. Введём симметричный по всем частицам оператор

$$\hat{F}^{(1)} = \sum_a \hat{f}^{(1)}_a$$

(суммирование по всем частицам) и определим его матричные элементы по отношению к волновым функциям (62,1). Прежде всего легко сообразить, что матричные элементы будут отличны от нуля только для переходов без изменения чисел $N_1, N_2, ...$ (диагональные элементы) и для переходов, при которых одно из этих чисел увеличивается, а другое уменьшается на единицу. Действительно, поскольку каждый из операторов $\hat{f}^{(1)}_a$ действует только на одну функцию в произведении $\psi_{p_1}^{(1)}(\xi_1) \psi_{p_2}^{(1)}(\xi_2) ... \psi_{p_N}^{(1)}(\xi_N)$, то его матричные элементы могут быть отличны от нуля только для переходов с изменением состояния одной частицы; но это означает, что число частиц, находящихся в одном состоянии, уменьшается, а в другом, соответственно, увеличивается на единицу. Вычисление этих матричных элементов по существу очень просто; его легче произвести самому, чем преследовать за его изложением. Поэтому мы приведём только результат вычисления. Недиагональные элементы равны

$$F_{N_{i+1}N_k}^{(1)} = \hat{f}^{(1)}_{ik}(\xi) \sqrt{N_{i}N_{k}}.$$

(62,3)

Мы указываем только те индексы, по которым матричный элемент не диагонален, опуская для краткости остальные. Здесь $f^{(1)}_{ik}$ — матричный элемент

$$f^{(1)}_{ik} = \int \psi^*_i(\xi) \hat{f}^{(1)}_k(\xi) d\xi.$$

(62,4)

Надо иметь в виду, что операторы $\hat{f}^{(1)}_a$ отличаются только обозначением переменных, на которые они действуют, поэтому интегралы $f^{(1)}_{ik}$ от индекса a не зависят. Диагональные матричные элементы от $F^{(1)}$ представляют собой средние значения величины $F^{(1)}$ в состояниях $\Psi_{N_1N_2...}$; обозначаем их, как $\overline{F^{(1)}}$. Вычисление даёт:

$$\overline{F^{(1)}} = \sum_i f^{(1)}_{ii} N_i.$$

(62,5)

1) Под интегрированием по $d\xi$ условно подразумеваем интегрирование по координатам вместе с суммированием по a.
Введём теперь основные в методе вторичного квантования операторы \hat{A}_i, действующие уже не на функции координат, а на переменные N_1, N_2, \ldots, определив их следующим образом. Действуя на функцию $\Psi_{N_1N_2 \ldots N_i \ldots}$ оператор \hat{A}_i уменьшает индекс N_i на единицу, одновременно умножая волновую функцию на $\sqrt{N_i}$:

$$\hat{A}_i \Psi_{N_1N_2 \ldots N_i \ldots} = \sqrt{N_i} \Psi_{N_1N_2 \ldots N_i - 1 \ldots} \quad (62,6)$$

Можно сказать, что оператор \hat{A}_i уменьшает на единицу число частиц, находящихся в i-м состоянии. Его можно представить в виде матрицы, единственной отличный от нуля элемент которой есть

$$(A_i)_{N_i - 1}^{N_i} = \sqrt{N_i} \quad (62,7)$$

Сопряжённый с \hat{A}_i оператор \hat{A}_i^+ изображается по определению (см. § 3) матрицей с элементами

$$(A_i^+)_{N_i - 1}^{N_i} = [(A_i)_{N_i - 1}^{N_i}]^*, \quad (62,8)$$

т. е.

$$\hat{A}_i^+ \Psi_{N_1N_2 \ldots N_i \ldots} = \sqrt{N_i + 1} \Psi_{N_1N_2 \ldots N_i + 1 \ldots} \quad (62,9)$$

Это значит, что, действуя на функцию $\Psi_{N_1N_2 \ldots}$, он увеличивает индекс N_i на единицу:

$$(\hat{A}_i^+ \Psi_{N_1N_2 \ldots N_i \ldots} = \sqrt{N_i + 1} \Psi_{N_1N_2 \ldots N_i + 1 \ldots} \quad (62,9)$$

Другими словами, оператор \hat{A}_i^+ увеличивает на единицу число частиц в i-м состоянии.

Произведение операторов $\hat{A}_i^+ \hat{A}_i$ при воздействии на волновую функцию, очевидно, лишь умножает её на постоянную, оставляя все переменные N_1, N_2, \ldots неизменными: оператор \hat{A}_i уменьшает N_i на единицу, а \hat{A}_i^+ возвращает его к исходному значению. Непосредственное перемножение матриц (62,7) и (62,8) показывает, что $\hat{A}_i^+ \hat{A}_i$ изображается, как и следовало, диагональной матрицей с диагональными элементами, равными N_i. Можно написать, что

$$\hat{A}_i^+ \hat{A}_i = N_i \quad (62,10)$$

Аналогично найдём, что

$$\hat{A}_i \hat{A}_i^+ = N_i + 1 \quad (62,11)$$

Поэтому правило коммутации для операторов \hat{A}_i и \hat{A}_i^+ будет следующим:

$$\hat{A}_i \hat{A}_i^+ - \hat{A}_i^+ \hat{A}_i = 1 \quad (62,12)$$

$$\hat{A}_i \hat{A}_i^+ - \hat{A}_i^+ \hat{A}_i = 1 \quad (62,12)$$
Что же касается операторов \hat{A}_i и \hat{A}_k (или \hat{A}_i и \hat{A}_k^+) с различными i и k, действующих на разные переменные (N_i и N_k), то они, разумеется, коммутативны:

$$\hat{A}_i \hat{A}_k - \hat{A}_k \hat{A}_i = 0 \quad (i \neq k).$$

(62.13)

Исходя из описанных свойств операторов \hat{A}_i, \hat{A}_i^+, легко видеть, что оператор

$$\hat{F}^{(1)} = \sum_{i,k} f^{(1)}_{ik} \hat{A}_i^+ \hat{A}_k$$

(62.14)

совпадает с оператором (62.2). Действительно, все матричные элементы, вычисленные с помощью (62.7) — (62.8), совпадают с элементами (62.3), (62.5). Этот результат очень существенен. В формуле (62.14) величины $f^{(1)}_{ik}$ суть просто числа. Таким образом нам удалось выразить обычный оператор (пока только вида (62.2)), действующий на функции координат, в виде оператора, действующего на функции новых переменных — чисел заполнения N_i.

Полученный результат легко обобщается и на операторы другого вида. Пусть

$$\hat{F}^{(2)} = \sum_{a,b} \hat{f}^{(2)}_{ab}$$

(62.15)

где $\hat{f}^{(2)}_{ab}$ — оператор физической величины, относящейся сразу к паре частиц и поэтому действующей на функции от ξ_a и ξ_b. Аналогичные вычисления покажут, что такой оператор может быть выражен через операторы \hat{A}_i, \hat{A}_i^+ посредством

$$\hat{F}^{(2)} = \sum_{i,k,i,m} (f^{(2)})_{ik}^i \hat{A}_i^+ \hat{A}_k \hat{A}_i \hat{A}_m,$$

(62.16)

где

$$(f^{(2)})_{ik}^i = \int \int \psi_i^* \psi_k^* \hat{f} \psi_i \psi_m \, d\xi_1 \, d\xi_2.$$ Матрицы, вычисленные для (62.15) и (62.16), совпадают. Обобщение этих формул на симметричные по всем частицам операторы любого другого вида (вида $\hat{F}^{(3)} = \sum_{a,b,c} \hat{f}^{(8)}_{abc}$ и т. д.) очевидно.

Наконец, нам осталось выразить через операторы \hat{A}_i гамильтонаин \hat{H} фактически исследуемой физической системы из N взаимодействующих одинаковых частиц. Оператор \hat{H}, разумеется, симметричный по всем частицам.

1) Формула (62.14) имеет сходство с выражением (11.1) $\hat{f} = \sum_{i,k} f_{ik} a_i^* a_k$

для среднего значения величины f, выраженного через коэффициенты a_i расположения волновой функции данного состояния по волновым функциям стационарных состояний. С этим связано название излагаемого метода вторичным квантованием.
треичен по всем частицам. В нерелятивистском приближении \(^1\) он не зависит от спинов частиц и может быть представлен в общем виде следующим образом:

\[
\hat{H} = \sum_a \hat{H}_a^{(1)} + \sum_{a, b} U^{(2)}(\mathbf{r}_a, \mathbf{r}_b) + \sum_{a, b, c} U^{(3)}(\mathbf{r}_a, \mathbf{r}_b, \mathbf{r}_c) + \ldots \quad (62,17)
\]

Здесь \(\hat{H}_a^{(1)}\) есть часть гамильтонаiana, зависящая от координат только одной \((a-й)\) частицы:

\[
\hat{H}_a = -\frac{\hbar^2}{2m} \Delta_a + U^{(1)}(\mathbf{r}_a), \quad (62,18)
\]

где \(U^{(1)}(\mathbf{r}_a)\) — потенциальная энергия одной частицы во внешнем поле. Остальные члены в \((62,17)\) отвечают энергии взаимодействия частиц друг с другом, причём для удобства отдельны друг от друга члены, зависящие соответственно от координат двух, трёх и т. д. частиц.

Представление гамильтонаiana в такой форме позволяет непосредственно применить формулы \((62,14), (62,16)\) и аналогичные им. Таким образом

\[
\hat{H} = \sum_{i, k} H_{ik}^{(1)} \hat{A}_i^+ \hat{A}_k + \sum_{i, k, l, m} (U^{(2)})_{ik} \hat{A}_i^+ \hat{A}_k \hat{A}_l \hat{A}_m + \ldots \quad (62,19)
\]

Этим осуществляется искомое выражение гамильтонаiana в виде оператора, действующего на функции от чисел заполнения.

Для системы невзаимодействующих частиц в выражении \((62,19)\) остаётся только первый член:

\[
\hat{H} = \sum_{i, k} H_{ik}^{(1)} \hat{A}_i^+ \hat{A}_k.
\]

Если в качестве функций \(\psi_i\) выбраны собственные функции гамильтонаiana \(\hat{H}^{(1)}\) отдельной частицы, то матрица \(H_{ik}^{(1)}\) диагональна и её диагональные элементы суть собственные значения энергии частицы \(\varepsilon_i\). Таким образом

\[
\hat{H} = \sum_i \varepsilon_i \hat{A}_i^+ \hat{A}_i;
\]

заменив оператор \(\hat{A}_i^+ \hat{A}_i\) его собственными значениями \((62,10)\), получим для уровней энергии системы выражение

\[
E = \sum_i \varepsilon_i N_i
\]

— тривиальный результат, который и должен был получиться.

\(^1\) В отсутствии магнитного поля.
Развитый здесь аппарат можно представить в несколько более компактном виде, введя операторы
\[\hat{\Phi} (\xi) = \sum_{i} \psi_{i} (\xi) \hat{A}_{i}, \quad \hat{\Phi}^{+} (\xi) = \sum_{i} \psi_{i}^{*} (\xi) \hat{A}_{i}^{+}, \]
где переменные ξ рассматриваются как параметры. В силу сказанного выше об операторах \hat{A}_{i}, \hat{A}_{i}^{+} ясно, что оператор $\hat{\Phi}$ уменьшает, а $\hat{\Phi}^{+}$ увеличивает полное число частиц в системе на единицу.

Легко видеть, что оператор $\hat{\Phi}^{+} (\xi_{0})$ создаёт частицу, находящуюся в точке ξ_{0}. Действительно, в результате действия оператора \hat{A}_{i}^{+} создаётся частица в состоянии с волновой функцией $\psi_{i} (\xi)$. Отсюда следует, что в результате действия оператора $\hat{\Phi}^{+} (\xi_{0})$ создаётся частица в состоянии с волновой функцией $\sum_{i} \psi_{i}^{*} (\xi) \psi_{i} (\xi_{0})$ или, согласно общей формуле (5,9), с волновой функцией $\delta (\xi - \xi_{0})$, что соответствует частице с определёнными значениями координат (и спина).

Правила коммутации для $\hat{\Phi}$ и $\hat{\Phi}^{+}$ получаются непосредственно из правил коммутации для \hat{A}_{i}, \hat{A}_{i}^{+}. Очевидно, что
\[\hat{\Phi} (\xi) \hat{\Phi} (\xi') - \hat{\Phi} (\xi') \hat{\Phi} (\xi) = 0; \]
кроме того, получим
\[\hat{\Phi} (\xi) \hat{\Phi}^{+} (\xi') - \hat{\Phi}^{+} (\xi') \hat{\Phi} (\xi) = \sum_{i} \psi_{i} (\xi) \psi_{i}^{*} (\xi') \]
или
\[\hat{\Phi} (\xi) \hat{\Phi}^{+} (\xi') - \hat{\Phi}^{+} (\xi') \hat{\Phi} (\xi) = \delta (\xi - \xi'). \]

Выражение (62,14) для оператора (62,2) напишется с помощью наших новых операторов в виде:
\[\hat{\Phi}^{(1)} = \int \hat{\Phi}^{+} (\xi) \hat{f}^{(1)} (\xi) \hat{\Phi} (\xi) d\xi. \]
Здесь подразумевается, что оператор \hat{f} действует в $\hat{\Phi} (\xi)$ на функции параметров ξ. Действительно, подставляя (62,20), имеем
\[\hat{\Phi}^{(1)} = \sum_{i, k} \int \psi_{i}^{*} (\xi) \hat{f}^{(1)} (\xi) \psi_{k} (\xi) d\xi \cdot \hat{A}_{i}^{+} \hat{A}_{k} = \sum_{i, k} f_{ik} \hat{A}_{i}^{+} \hat{A}_{k}, \]
что совпадает с (62,14). Аналогично, вместо (62,16) будем иметь:
\[\hat{\Phi}^{(2)} = \int \int \hat{\Phi}^{+} (\xi) \hat{\Phi}^{+} (\xi') \hat{f}^{(2)} (\xi) \hat{\Phi} (\xi') d\xi d\xi'. \]

1) Обращаем внимание на аналогию между этим выражением и разложением $\Psi = \sum \alpha_{i} \Psi_{i}$ волновой функции по собственным функциям некоторого оператора (ср. сноску на стр. 254).
2) $\delta (\xi - \xi_{0})$ обозначает условное произведение
\[\delta (x - x_{0}) \delta (y - y_{0}) \delta (z - z_{0}), \]
\[\delta_{2q_{0}}. \]
В частности, физической величине $f(\xi)$, являющейся просто функцией ξ, соответствует оператор (62,23), который можно в этом случае написать в виде:

$$\int f(\xi) \hat{\Phi}^+ (\xi) \hat{\Phi} (\xi) d\xi.$$

Отсюда видно, что $\hat{\Phi}^+ (\xi) \hat{\Phi} (\xi) d\xi$ есть оператор числа частиц, находящихся в интервале $d\xi$.

Будучи выражена с помощью операторов $\hat{\Phi}$, $\hat{\Phi}^+$, оператор \hat{H} напишется в виде:

$$\hat{H} = \int \left\{ \frac{\hbar^2}{2\mu} \nabla \hat{\Phi}^+ (\xi) \nabla \hat{\Phi} (\xi) + U^{(1)} (\xi) \hat{\Phi}^+ \hat{\Phi} \right\} dV +$$

$$+ \int \int \hat{\Phi}^+ (\xi) \hat{\Phi}^+ (\xi') U^{(2)} (\xi, \xi') \hat{\Phi} (\xi) \hat{\Phi} (\xi') dV dV' + \ldots$$

(62,25)

Мы воспользовались здесь выражением (62,18) для $\hat{H}^{(1)}$ и проинтегрировали по частям (по координатам) член, содержащий гамильтониан.

Формулу (62,25) можно сделать более наглядной, если заметить следующее. Пусть мы имеем систему частиц, каждая из которых описывается (в данный момент времени) одинаковой волновой функцией $\psi (\xi)$, которую будем предполагать нормированной так, что

$$\int |\psi|^2 d\xi = N.$$

Тогда, как непосредственно видно, если заменить в выражении (62,25) оператор $\hat{\Phi}$ на функцию ψ, то это выражение перейдёт в среднюю энергию системы в рассматриваемом состоянии. Это обстоятельство приводит к следующему правилу отыскания гамильтониана в аппарате вторичного квантования. Надо написать выражение для средней энергии, выразив её через волновую функцию отдельной частицы (нормированную указанным образом), после чего надо заменить последнюю оператором $\hat{\Phi}$, причём сопряжённые операторы $\hat{\Phi}^+$ должны быть написаны слева от операторов $\hat{\Phi}$.

§ 63. Вторичное квантование. Случай статистики Ферми

Вся принципиальная сторона метода вторичного квантования остаётся без изменений для систем, состоящих из одинаковых частиц, подчиняющихся статистике Ферми. Конкретные же формулы для матричных элементов величин и для операторов \hat{A}_i, конечно, меняются.

Волновая функция $\Psi_{N_1 N_2 \ldots}$ имеет теперь вид (59,2):

$$\Psi_{N_1 N_2 \ldots} = \frac{1}{\sqrt{N}} \begin{vmatrix} \psi_{P_1} (\xi_1) & \psi_{P_1} (\xi_2) & \ldots & \psi_{P_1} (\xi_N) \\ \psi_{P_2} (\xi_1) & \psi_{P_2} (\xi_2) & \ldots & \psi_{P_2} (\xi_N) \\ \ldots & \ldots & \ldots & \ldots \\ \psi_{P_N} (\xi_1) & \psi_{P_N} (\xi_2) & \ldots & \psi_{P_N} (\xi_N) \end{vmatrix}$$

(63,1)
В связи с антисимметричностью этой функции прежде всего возникает вопрос о выборе её знака. В случае статистики Бозе этого вопроса не было, так как ввиду симметричности волновой функции раз выбранный её знак сохранялся при всех перестановках частиц. Для того чтобы сделать знак функции (63,1) определённым, условимся устанавливать его следующим образом. Перенумеруем раз и навсегда все состояния \(\psi \) последовательными номерами. После этого будем заполнять строки детерминанта (63,1) всегда таким образом, чтобы было

\[
p_1 < p_2 < p_3 < \ldots < p_N,
\]

причём в столбцах стоят функции различных переменных в последовательности \(\xi_1, \xi_2, \ldots, \xi_N \). Среди чисел \(p_1, p_2, \ldots \) не может быть равных, так как в противном случае детерминант обратится в нуль. Другими словами, числа заполнения \(N_i \) могут иметь только значения 0 или 1.

Рассмотрим снова оператор вида (62,2) \(\hat{F}^{(1)} = \sum_a f^{(1)}_a \). По тем же причинам, что и в § 62, его матричные элементы будут отличны от нуля только для переходов без изменения всех чисел заполнения и для переходов, при которых одно из них \((N_i) \) уменьшается на единицу (ставясь равным нулю вместо единицы), а другое \((N_k) \) — увеличивается на единицу (переходит из нуля в единицу). Легко найти, что при \(i < k \)

\[
(F^{(1)})_{i_1,0_k}^{l_1,0_k} = f^{(1)}_{i_k} (-1)^{l_{=i+1}}
\]

(посредством 0, 1, обозначены значения \(N_i = 0, N_i = 1 \)). Множитель — 1 возводится здесь в степень, равную сумме чисел заполнения всех состояний, лежащих между \(i \)-м и \(k \)-м 1). Для диагональных же элементов получается прежняя формула (62,5)

\[
\overline{F}^{(1)} = \sum_i f^{(1)}_{i i} N_i.
\]

Для того чтобы оператор \(\hat{F}^{(1)} \) мог быть представлен в форме (62,14), операторы \(\hat{A} \) должны определяться как матрицы с элементами:

\[
(A_i)_{0_i}^{i_1} = (A_i^+)_{0_i}^{i_1} = (-1)^{l_{=i+1}}
\]

1) При \(i > k \) в показателе надо писать \(\sum_{l=k+1}^{i-1} N_l \).
(—1) возводится в степень, равную сумме чисел заполнения всех состояний до i-го исключительно. Перемножая эти матрицы, найдём (при $k > i$)

\[
(A_k^+A_k)_{0_i^k}^{1_i^k} = (A_k^+)_{0_i^k}^{1_i^k}(A_k)_{0_i^k}^{1_i^k} = (-1)^{\sum N_l^i + \sum N_l^{i-1} + \sum N_l^k} (-1)
\]

и

\[
(A_k^+A_k)_{0_i^k}^{1_i^k} = (-1)^{\sum N_l^i + \sum N_l^{k-1}}.
\]

Если же $i = k$, то матрица $\hat{A}_i^+ \hat{A}_i$ диагональна, причём её элементы равны единице при $N_i = 1$ и нулю при $N_i = 0$; это можно написать в виде:

\[
\hat{A}_i^+ \hat{A}_i = N_i.
\]

При подстановке этих выражений в (62,14), мы действительно получим (63,3–4).

Перемножая $\hat{A}_i^+ \hat{A}_k$ в обратном порядке, будем иметь

\[
(A_kA_k^+)_{0_i^k}^{1_i^k} = (A_k)_{0_i^k}^{1_i^k}(A_k^+)_{0_i^k}^{1_i^k} = (-1)^{\sum N_l^i + \sum N_l^{k-1} + \sum N_l^k}
\]

и

\[
(A_kA_k^+)_{0_i^k}^{1_i^k} = (-1)^{\sum N_l^i + \sum N_l^{k-1}}.
\]

Сравнивая (63,8) с (63,6), мы видим, что эти величины противоположны по знаку, т. е. можно написать:

\[
\hat{A}_i^+ \hat{A}_k + \hat{A}_k \hat{A}_i^+ = 0 \quad (i \neq k).
\]

Для диагональной матрицы $\hat{A}_i^+ \hat{A}_i$ найдём:

\[
\hat{A}_i^+ \hat{A}_i = 1 - N_i.
\]

Складывая с (63,7), получим:

\[
\hat{A}_i^+ \hat{A}_i + \hat{A}_i^+ \hat{A}_i = 1.
\]

Оба полученных равенства можно написать вместе в виде:

\[
\hat{A}_i^+ \hat{A}_k + \hat{A}_k \hat{A}_i^+ = \delta_{ik}.
\]
Таким образом мы видим, что операторы \hat{A}_i и \hat{A}_k (или \hat{A}_k^+) с $i \neq k$ оказываются «антикоммутативными», между тем как в случае статистики Бозе они коммутировали друг с другом. Это различие вполне естественно. В случае статистики Бозе операторы \hat{A}_i и \hat{A}_k были совершенно независимыми; каждый из операторов \hat{A}_i действовал только на одну переменную N_i, причём результат воздействия не зависел от значений остальных чисел заполнения. В случае же статистики Ферми результат воздействия оператора \hat{A}_i зависит не только от самого числа N_i, но и от чисел заполнения всех предыдущих состояний, как это видно из определения (63,5). Поэтому действие различных операторов \hat{A}_i, \hat{A}_k не может рассматриваться как независимое.

После того как свойства операторов \hat{A}_i, \hat{A}_k, \hat{A}_k^+ таким образом определены, все остальные формулы (62,14—19) остаются полностью в силе. Остаются также и формулы (62,23—25), выражающие операторы физических величин через операторы $\hat{\Phi}(\xi)$, $\hat{\Phi}^+(\xi)$, определяемые посредством (62,20). Правила же коммутации (62,21—22) заменяются теперь, очевидно, равенствами

$$\hat{\Phi}^+(\xi') \hat{\Phi}(\xi) + \hat{\Phi}(\xi) \hat{\Phi}^+(\xi') = \delta(\xi - \xi'),$$

$$\hat{\Phi}(\xi') \hat{\Phi}(\xi) + \hat{\Phi}(\xi) \hat{\Phi}(\xi') = 0.$$

(63,12)
ГЛАВА X
ATOM

§ 64. Атомные уровни энергии

В нерелятивистском приближении стационарные состояния атома определяются уравнением Шредингера для системы электронов, движущихся в кулоновом поле ядра и электрически взаимодействующих друг с другом; в это уравнение вовсе не входят операторы спина электронов. Как мы знаем, для системы частиц в центрально-симметрическом внешнем поле сохраняется полный орбитальный момент \(L \), а также чётность состояния. Поэтому каждое стационарное состояние атома будет характеризоваться определённым значением момента \(L \) и своей чётностью. Кроме того, координатные волновые функции стационарных состояний системы одинаковых частиц обладают определённой перестановочной симметрией. Мы видели в § 61, что для системы электронов каждому определённому типу перестановочной симметрии (т. е. определённой юнговской схеме) соответствует определённое значение полного спина системы. Поэтому каждое стационарное состояние атома будет характеризоваться также и полным спином \(S \) электронов.

Однако, разумеется, обратное не имеет места — задание \(L, S \) и чётности ещё не определяет однозначным образом энергию состояния.

Энергетический уровень с заданными значениями \(S \) и \(L \) выражен соответственно различным возможным направлениям векторов \(S \) и \(L \) в пространстве. Кратность выражения по направлениям \(L \) и \(S \) равна, соответственно, \(2L+1 \) и \(2S+1 \). Всего, следовательно, кратность выражения уровня с данными \(L \) и \(S \) равна произведению \((2L+1)(2S+1) \).

В действительности, однако, всегда существует некоторое релятивистское электромагнитное взаимодействие электронов, зависящее также и от их спинов. Оно приводит к тому, что энергия атома оказывается зависящей не только от абсолютных значений векторов орбитального момента и спина, но и от их взаимного расположения. Строго говоря, при учёте релятивистских членов в операторе Гамильтона последний уже не коммутирует с операторами \(\hat{L} \) и \(\hat{S} \), т. е.
орбитальный момент и спин каждый в отдельности не сохраняются. Сохраняется лишь полный момент \(J = L + S \). Сохранение полного момента есть точный закон, вытекающий непосредственно из изотропии пространства по отношению к замкнутой системе. В связи с этим уровни энергии должны характеризоваться значениями \(J \) полного момента.

Однако если релятивистские эффекты относительно малы (как это во многих случаях имеет место), то их можно учесть в качестве возмущения. Под влиянием этого возмущения \((2L+1)(2S+1)\)-кратно вырожденный уровень с заданными \(L \) и \(S \) «расщепляется» на ряд различных (ближних друг к другу) уровней, отличающихся значениями полного момента \(J \). Эти уровни определяются (в первом приближении) соответствующим секулярным уравнением (§ 39), а их волновые функции (нулевого приближения) представляют собой определённые линейные комбинации волновых функций исходного вырожденного уровня с данными \(L \) и \(S \). В этом приближении можно, следовательно, попеременно считать абсолютные величины орбитального момента и спина (но не их направления) сохраняющимися и характеризовать уровни также и значениями \(L \) и \(S \).

Таким образом в результате релятивистских эффектов уровень с данными значениями \(L \) и \(S \) расщепляется на ряд уровней с различными значениями \(J \). Об этом расщеплении говорят, как о тонкой структуре (или мультиплетном расщеплении) уровня. Как мы знаем, \(J \) пробегает значения от \(L + S \) до \(|L - S| \); поэтому уровень с данными \(L \) и \(S \) расщепляется на \(2S + 1 \) (если \(L > S \)) или \(2L + 1 \) (если \(L < S \)) различных уровнями. Каждый из этих уровней остаётся вырожденным по направлениям вектора \(J \); кратность этого вырождения равна \(2J + 1 \). Легко проверить, что сумма чисел \(2J + 1 \) со всеми возможными значениями \(J \) равна, как и должно было быть, \((2L+1)(2S+1) \).

Для обозначения атомных уровней энергии (или, как говорят, спектральных термов атомов) существует общепринятая символика. Состояния с различными значениями полного орбитального момента \(L \) обозначаются большими буквами латинского алфавита со следующим соответствием:

\[
L = 0, \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ldots
S \ P \ D \ F \ G \ H \ I \ K \ L \ M \ N \ldots
\]

Слева вверху от этого символа указывается число \(2S + 1 \), называемое мультиплетностью терма (нало, однако, иметь в виду, что это число определяет число компонент тонкой структуры уровня лишь при \(L \gg S \)). Справа внизу указывается значение полного момента \(J \). Так, символы \(^2P_{3/2}, \ ^2P_{1/2} \) обозначают уровни с \(L = 1, S = 1/2, J = 1/2, 3/2. \)
§ 65. Состояния электронов в атоме

Атом с более чем одним электроном представляет собой сложную систему взаимодействующих друг с другом электронов, движущихся в поле ядра. Для такой системы можно, строго говоря, рассматривать только состояния системы в целом. Тем не менее оказывается, что в атоме можно, с хорошей точностью, ввести понятие о состояниях каждого электрона в отдельности, как о стационарных состоянияях движения электрона в некотором эффективном центрально-симметрическом поле, созданном ядром вместе со всеми остальными электронами. Для различных электронов в атоме эти поля, вообще говоря, различные, причём определяться они должны одновременно все, поскольку каждое из них зависит от состояний всех остальных электронов. Такое поле называется самосогласованным (см. § 68).

Поскольку самосогласованное поле центрально-симметрично, то каждое состояние электрона характеризуется определённым значением его орбитального момента \(l \). Состояния отдельного электрона при заданном \(l \) нумеруются (в порядке возрастания их энергии) с помощью «главного квантового числа» \(n \), пробегающего значения \(n = l + 1, l + 2, \ldots \); такой выбор порядка нумерации устанавливают в соответствии с тем, который принят для атома водорода. Надо, однако, заметить, что последовательность возрастания уровней энергии с различными \(l \) в сложных атомах, вообще говоря, отличается от имеющей место у атома водорода. В последнем энергия вообще не зависит от \(l \), так что состояния с большими \(n \) всегда обладают большей энергией. В сложных же атомах уровень, например, с \(n = 5, l = 0 \) оказывается лежащим ниже уровня с \(n = 4, l = 2 \) (см. об этом подробнее в § 70).

Состояния отдельных электронов с различными \(l \) принято обозначать малыми буквами латинского алфавита, подобно тому как состояния атома в целом обозначаются большими буквами:

\[
\begin{align*}
&l = 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad \ldots \\
&s \quad p \quad d \quad f \quad g \quad h \quad i \quad k \quad \ldots
\end{align*}
\]

Значения главного квантового числа принято обозначать цифрой, поставленной перед буквой; так, \(4d \) обозначает состояние с \(n = 4, l = 2 \). Полное описание состояния атома требует, наряду с указанием значений полных \(L \), \(S \), \(J \), также и перечисления состояний всех электронов. Так, символ \(1s^2 \, 2p^3 \, 3p^0 \) обозначает состояние атома гелия, в котором \(L = 1, S = 1, J = 0 \), а два электрона находятся в состояниях \(1s \) и \(2p \). Если несколько электронов находится в состояниях с одинаковыми \(l \) и \(n \), то это принято обозначать для краткости в виде показателя степени; так, \(3p^2 \) обозначает два электрона в состояниях \(3p \). О распределении электронов в атоме по
состояниям с различными \(l \) и \(n \) говорят, как об электронной конфигурации.

При заданных значениях \(n \) и \(l \) электрон может обладать различными значениями проекций орбитального момента \((m)\) и спина \((s)\) на ось \(z \). При заданном \(l \) число \(m \) пробегает \(2l+1 \) значений; число же \(s \) ограничено всего двумя значениями \(\pm 1/2 \). Поэтому всего имеется \(2(2l+1) \) различных состояний с одинаковыми \(n \), \(l \); такие состояния называют эквивалентными. В каждом из них может находиться, согласно принципу Паули, по одному электрону. Таким образом в атоме может одновременно иметь одинаковые \(n \), \(l \) не более \(2(2l+1) \) электронов. О совокупности электронов, заполняющих все состояния с данными \(n \), \(l \), говорят, как о «замкнутой оболочке» данного типа.

Различие в энергии атомных уровней, обладающих различными \(L \), \(S \) при одинаковой электронной конфигурации \(^1\), связано с электростатическим взаимодействием электронов. Обычно разности этих энергий сравнительно малы — в несколько раз меньше расстояний между уровнями с различными конфигурациями. По поводу взаимного расположения уровней с одинаковой конфигурацией, но различными \(L \), \(S \) существует следующее эмпирически установленное правило (правило Гунда):

Наименьшей энергией обладает терм с наибольшим возможным при данной электронной конфигурации значением \(S \) и наибольшим (возможным при этом \(S \)) значением \(L \) \(^2\).

Покажем, каким образом можно найти возможные для данной электронной конфигурации атомные термы. Если электроны не эквивалентны, то определение возможных значений \(L \), \(S \) производится непосредственно по правилу сложения моментов. Так, например, при конфигурации \(np \), \(n'p \) (с различными \(n \), \(n' \)) суммарный момент \(L \) может иметь значения 2, 1, 0, а суммарный спин \(S = 0, 1 \); комбинируя их друг с другом, получим термы \(\text{1}S, \text{1}P, \text{1}D \).

Если же мы имеем дело с эквивалентными электронами, то появляются ограничения, налагаемые принципом Паули. Рассмотрим, например, конфигурацию из трёх эквивалентных \(p \)-электронов. При \(l = 1 \) (\(p \)-состояние) проекция \(m \) орбитального момента может

\(^1\) От тонкой структуры каждого мультиплетного уровня мы здесь отвлекаемся.
\(^2\) Требование максимальности \(S \) может быть обосновано следующим образом. Рассмотрим, например, систему из двух электронов. Здесь может быть \(S = 0 \) или \(S = 1 \), причём спину 1 соответствует антисимметрическая координатная волновая функция \(\varphi (r_1, r_2) \). При \(r_1 = r_2 \) такая функция обращается в нуль; другими словами, в состоянии с \(S = 1 \) вероятность нахождения обоих электронов близи друг от друга мала. Это приводит к сравнительно меньшему их электростатическому отталкиванию, а потому и к меньшей энергии. Аналогично, для системы из нескольких электронов наибольшему спину соответствует «наиболее антисимметричная» координатная волновая функция.
иметь значения \(m = 1, 0, -1 \), так что возможны шесть состояний со следующими параметрами чисел \(m, \sigma \):

- a) 1, 1/2,
- b) 0, 1/2,
- c) −1, 1/2,
- a') 1, −1/2,
- b') 0, −1/2,
- c') −1, −1/2.

Три электрона можно расположить по одному в трех любых из этих состояний. В результате получим состояния атома со следующими значениями проекций \(M_L = \sum m, M_S = \sum \sigma \) полного орбитального момента и спина:

\[
\begin{align*}
 &a + a' + b) \quad 2, 1/2 \quad a + a' + c) \quad 1, 1/2, \quad a + b + c) \quad 0, 3/2, \\
 &a + b + b') \quad 1, 1/2, \quad a + b + c') \quad 0, 1/2, \\
 &a + b' + c) \quad 0, 1/2, \quad a' + b' + c) \quad 0, 1/2,
\end{align*}
\]

(состояний с отрицательными значениями \(M_L, M_S \) можно не выписывать, так как они не дают ничего нового). Наличие состояния с \(M_L = 2, M_S = 1/2 \) показывает, что должен иметься \(^2D \) терм; этому терму должны соответствовать еще и по одному состоянию \((1, 1/2), (0, 1/2)\). Далее, остается еще одно состояние с \((1, 1/2)\), так что должен иметься терм \(^2P \); ему отвечает также и одно из состояний с \((0, 1/2)\). Наконец, остаются еще состояния \((0, 3/2)\) и \((0, 1/2)\), которые соответствуют терму \(^4S \). Таким образом для конфигурации из трех эквивалентных \(p \)-электронов возможны лишь по одному терму типов \(^2D, ^2P, ^4S \).

В таблице 1 перечислены возможные термы для различных конфигураций из эквивалентных \(p \)- и \(d \)-электронов. Числа под символами

Таблица 1

| Возможные термы для конфигураций из эквивалентных электронов |
|-------------------|--------|--------|
| \(p, p^5 \) | \(^2P \) | 3 \(P \) |
| \(p^2, p^4 \) | \(^1SD \) | \(^3P \) |
| \(p^3 \) | \(^2PD \) | \(^4S \) |
| \(d, d^9 \) | \(^2D \) | \(^1SDG \) |
| \(d^2, d^8 \) | \(^1SDG \) | \(^1PF \) |
| \(d^3, d^7 \) | \(^2PD \) | \(^1FGH \) |
| \(d^4, d^6 \) | \(^1SDFGI \) | \(^3PD \) |
| \(d^5 \) | \(^2SPDF \) | \(^4PD \) |
| | \(^3FGH \) | \(^6S \) |
термов указывают число термов данного типа, имеющихся для данной конфигурации, если это число превышает единицу. Для конфигурации из наибольшего возможного числа эквивалентных электронов \((s^2, p^6, d^{10}, \ldots)\) терм есть всегда \(1S.\)

§ 66. Водородоподобные уровни энергии

Единственным атомом, для которого уравнение Шредингера может быть решено точно, является простейший из всех атомов—атом водорода. Уровни энергии атома водорода, а также ионов \(\text{He}^+, \text{Li}^{++}, \ldots,\) содержащих всего по одному электрону, определяются формулой Бора (36,10):

\[
E = -\frac{\mu Z^2 e^4}{2\hbar^2 \left(1 + \frac{\mu}{M}\right)} \cdot \frac{1}{n^2}.
\]

(66,1)

Здесь \(Z\) — заряд ядра, \(M\) — масса ядра, \(\mu\) — электронная масса. Отметим, что зависимость от массы ядра очень слаба.

Формула (66,1) не учитывает никаких релятивистских эффектов \(^1\).

В этом приближении имеет место специфическое для атома водорода дополнительное («случайное») выражение, о котором уже шла речь в § 36: при заданном главном квантовом числе \(n\) энергия не зависит от орбитального момента \(l.\)

У других атомов существуют состояния, по своим свойствам напоминающие водородные. Речь идёт о сильно возбуждённых состояниях, в которых один из электронов обладает большим главным квантовым числом и потому находится в основном на больших расстояниях от ядра. Движение такого электрона можно рассматривать, в некотором приближении, как движение в кулоновом поле «атомного остатка» с эффективным зарядом, равным единице. Получающиеся, таким образом, значения уровней энергии оказываются, однако, слишком неточными, и в них надо ввести поправку, учитывающую отклонение поля на малых расстояниях от чисто кулонового. Характер этой поправки легко выяснить из следующих соображений.

Ввиду квазиклассичности состояний с большими квантовыми числами уровни энергии могут определяться из правила квантования Бора (52,3). Отклонение поля вблизи ядра от кулонового можно учесть формально, как изменение граничного условия при \(r = 0\), накладываемого на волновую функцию. Это приведёт к изменению постоянной \(\gamma\) в уравнении (52,3) по сравнению с тем значением, которое она имела бы в чисто кулоновом поле. Поскольку в остальном это уравнение остаётся неизменным, то мы можем заключить, что для уровней энергии получится выражение, отличающееся от водородного заменой главного квантового числа \(n\) на \(n + \Delta_l\), где \(\Delta_l—\)

\(^1\) О некоторых особенностях тонкой структуры уровней энергии атома водорода см. § 67.
некоторая постоянная (так называемая поправка Ридберга):

$$E = -\frac{\mu^2 e^4}{2\hbar^2} \frac{1}{(n + \Delta I)^3}.$$ \hspace{1cm} (66,2)

Поправка Ридберга не зависит (по самому своему определению) от \(n \), но является, конечно, функцией от азимутального квантового числа \(l \) возбуждённого электрона (которое мы приписываем к \(\Delta I \) в виде индекса), а также от моментов \(L \) и \(S \) атома в целом. При заданных \(L \) и \(S \) \(\Delta I \) убывает с увеличением \(l \). Чем больше \(l \), тем меньше времени электрон проводит вблизи ядра, а потому уровни энергии должны всё больше приближаться к водородным.

§ 67. Тонкая структура уровней

Подробное изучение релятивистских взаимодействий будет произведено в дальнейшем, во второй части этого тома. Но некоторые результаты этого исследования укажем уже здесь. Оказывается, что релятивистские члены в гамильтониане системы частиц распадаются на две категории — одни из них линейны относительно операторов спина частиц, а другие квадратичны по ним. Первые соответствуют взаимодействию орбитального движения частиц с их спином (об этом взаимодействии говорят, как о взаимодействии «спин-орбиты»), а вторые — взаимодействию между спинами частиц («спин-спин» взаимодействие). То и другое одного порядка (второго) по отношению скорости частиц к скорости света; фактически взаимодействие спин-орbita в тяжёлых атомах значительно превышает взаимодействие спин-спин.

Оператор взаимодействия спин-орbita имеет вид:

$$\hat{V}_{si} = \sum_a \hat{A}_a \hat{s}_a$$ \hspace{1cm} (67,1)

(суммирование по всем электронам атома), где \(\hat{s}_a \) — операторы спина электрона, а \(\hat{A}_a \) — некоторые «орбитальные» операторы, т. е. операторы, действующие на функции координат. Рассматривая это взаимодействие как возмущение, мы должны, для вычисления энергии, усреднить оператор, отвечающий этому взаимодействию по невозмущённому состоянию. Усреднение производим в два этапа. Прежде всего усредняем по электронным состояниям с заданными

1) Для иллюстрации приведём эмпирические значения поправки Ридберга для сильно возбуждённых состояний атома гелия. Полный спин атома гелия может иметь значения \(S = 0, 1 \), а полный орбитальный момент \(L \) совпадает в рассматриваемых состояниях с моментом \(l \) возбуждённого электрона (второй электрон находится в состоянии \(1s \)). Поправки Ридберга равны: при \(S = 0 \)

\[
\Delta_0 = -0.140, \quad \Delta_1 = +0.012, \quad \Delta_2 = +0.0012,
\]

а при \(S = 1 \)

\[
\Delta_0 = -0.393, \quad \Delta_1 = -0.063, \quad \Delta_2 = -0.0060.
\]
абсолютными значениями \(L \) и \(S \) полных орбитального момента и спина, но не их направлениями. После такого усреднения \(\hat{V}_{sl} \) остаётся ещё, разумеется, оператором, который мы обозначим, как \(\hat{V}_{SL} \). В силу соображений симметрии очевидно, что средние значения \(\hat{S}_a \) должны быть «направлены» по \(\hat{S} \) — единственному спиновому вектору, характеризующему атом в целом (следует помнить, что в нулевом приближении волновые функции распадаются на произведения спиновой и координатной частей). Аналогично, средние значения \(\hat{A}_a \) должны быть «направлены» по \(\hat{L} \). Таким образом оператор \(\hat{V}_{SL} \) имеет вид:

\[
\hat{V}_{SL} = \hat{A}\hat{S}\hat{L},
\]

где \(A \) — постоянная, характерная для данного (нерасщеплённого) терма, т. е. зависящая от \(S \) и \(L \), но не от полного момента \(J \) атома.

Для вычисления энергии расщепления выраженного уровня (с данными \(S \) и \(L \)) надо решить секулярное уравнение, составленное из матричных элементов оператора \(\hat{V}_{SL} \). В данном случае, однако, мы заранее знаем правильные функции нулевого приближения, в которых матрица \(V_{SL} \) диагональна. Именно, это есть волновые функции состояний с определёнными значениями полного момента \(J \). Усреднение по такому состоянию означает замену оператора \(\hat{S}\hat{L} \) его собственным значением, равным, согласно общей формуле (30,2):

\[
LS = \frac{1}{2} [J(J+1) - L(L + 1) - S(S+1)].
\]

Поскольку у всех компонент мультиплета значения \(L \) и \(S \) одинаковы, а мы интересуемся лишь их относительным расположением, то можно написать энергию мультиплетного расщепления в виде:

\[
\frac{1}{2} AJ (J+1).
\]

(67,3)

Интервалы между соседними компонентами (характеризуемыми числами \(J \) и \(J - 1 \)) равны, следовательно,

\[
\Delta E_{J, J-1} = AJ.
\]

(67,4)

Эта формула выражает так называемое правило интервалов Ланде (1923).

Постоянная \(A \) может быть как положительной, так и отрицательной. При \(A > 0 \) наиболее низкой из компонент мультиплетного уровня

1) Такое усреднение означает, по существу, составление матрицы из элементов \(\int \psi^{*}_{nM_L'M_S} \hat{V}_{sl} \psi_{nM_L'M_S} dq \) со всеми возможными \(M_L, M'L \) и \(M_S, M'S \) и диагональных по всем остальным квантовым числам (совокупность которых обозначаем посредством \(n \)).
является уровень с наименьшим возможным \(J \), т. е. \(J = |L - S| \); о таких мультиплетах говорят, как о нормальных. Если же \(A < 0 \), то нижний уровень мультиплета есть уровень с \(J = L + S \); такие мультиплеты называют обращёнными. Для нормальных состояний атомов справедливо следующее эмпирическое правило, определяющее значение \(J \). Если электронная конфигурация такова, что в не вполне заполненной оболочке находится не более половины максимально возможного для неё числа электронов, то \(J = |L - S| \). Если же оболочка заполнена более чем наполовину, то \(J = L + S \).

Для усреднённого оператора взаимодействия спин-спин должен получиться, аналогично формуле (67,2), выражение, квадратичное по \(\hat{S} \). Квадратичными по \(\hat{S} \) выражениями являются \(\hat{S}^2 \) и \((\hat{S} \hat{L})^2 \). Из них первое имеет собственные значения, не зависящие от \(J \), и потому не приводит к расщеплению терм. Поэтому его можно опустить и написать

\[
\hat{V}_{ss} = B (\hat{S} \hat{L})^2, \tag{67,5}
\]

где \(B \) — постоянная. Собственные значения этого оператора содержат члены, не зависящие от \(J \), члены, пропорциональные \(J (J + 1) \), и, наконец, член пропорциональный \(J^2 (J + 1)^2 \). Из них первые не дают расщепления и потому не интересны, вторые же могут быть включены в выражение (67,3), что эквивалентно просто некоторому изменению постоянной \(A \). Наконец, третьи дают в энергии терма выражение

\[
\frac{B}{4} J^2 (J + 1)^2. \tag{67,6}
\]

Изложенная в §§ 64—65 схема построения атомных уровней основана на представлении, что орбитальные моменты электронов складываются в полный орбитальный момент \(L \) атома, а их спины — в полный спин \(S \). Как уже указывалось, такое рассмотрение возможно лишь при условии малости релятивистских эффектов; точнее, интервалы тонкой структуры должны быть малы по сравнению с разностями уровней с различными \(L, S \). Такое приближение называют рассель-саундеровским случаем; говорят также об «LS-типе связи».

Фактически, однако, область применимости этого приближения ограничена. По LS-типу построены уровни лёгких атомов, а по мере увеличения атомного номера релятивистские взаимодействия в атоме усиливаются и рассель-саундеровское приближение становится неприменимым \(^1\). Надо также отметить, что это приближение

\(^1\) Надо, впрочем, оговориться, что хотя количественные формулы, описывающие этот тип связи, и становятся неприменимыми, но самый способ классификации уровней по этой схеме может иметь смысл и для более тяжёлых атомов, в особенностях для наиболее низких состояний (в том числе для нормального состояния).
неприимимо. В частности, к сильно возбуждённым уровням, в которы́х атом содержит один электрон в состоянии с большим \(n \) и потому находящийся в основном на больших расстояниях от ядра (см. § 66). Электростатическое взаимодействие этого электрона с движением остальных сравнительно слабо; релятивистское же взаимодействие в «атомном остатке» не уменьшается.

В противоположном предельном случае релятивистское взаимодействие велико по сравнению с электростатическим (точнее по сравнению с той частью последнего, с которой связана зависимость энергии от \(L \) и \(S \)). В этом случае нельзя говорить об орбитальном моменте и спине в отдельности, поскольку они не сохраняются. Отдельные электрона характеризуются своими полными моментами \(j \), складывающимися в общий полный момент атома \(J \) о такой схеме построения атомных уровней говорят, как о «\(jj \)-типе связи». Фактически в чистом виде этот тип связи не встречается; среди уровней очень тяжёлых атомов наблюдаются различные промежуточные между \(LS \)- и \(jj \)-типами виды связи 1).

Своебразный тип связи наблюдается в некоторых сильно возбуждённых состояниях. «Атомный остаток» может находиться здесь в расселль-саундерсовском состоянии, т. е. характеризоваться значениями \(L, S \); связь же его с сильно возбуждённым электроном происходит по \(jj \)-типу (это снова связано со слабостью электростатического взаимодействия для этого электрона).

Некоторыми специфическими особенностями обладает тонкая структура уровней энергии атома водорода. Она может быть вычислена точно; это будет сделано во второй части этого тома. Здесь мы только укажем, что в результате расчёта оказывается, что при данном главном квантовом числе \(n \) энергия зависит только от полного момента \(j \) электрона. Таким образом вырождение уровней снимается не полностью; уровни с данными \(n \) и \(j \) соответствуют два состояния с орбитальными моментами \(l = j \pm 1/2 \) (если только \(j \) не имеет наибольшего возможного при данном \(n \) значения \(j = n - 1/2 \)). Так, уровень с \(n = 3 \) расщепляется на три уровня, из которых одному соответствуют состояния \(^2S_{1/2} \), \(^2P_{1/2} \), другому—\(^2P_{3/2} \), \(^2D_{5/2} \) и третьему—\(^2D_{3/2} \).

Наконец, остановимся коротко на так называемой сверхтонкой структуре уровней. Она обусловливается тем фактом, что ядро атома тоже обладает своим спином (который обозначают посредством \(I \). Однако взаимодействие этого спина с электронами чрезвычайно слабо, а потому и вызываемое им расщепление уровней (сверхтонкая структура) очень мало. В результате этого расщепления уровень с данным моментом \(J \) расщепляется на ряд уровней, отличающихся значениями

1) Подробнее о типах связи и о количественной стороне вопроса см., например, книгу E. C o n d o n, G. S h o r t l e y, The theory of Atomic Spectra, C a m b r i d g e U n i v. Press, 1935.
полного момента атома (вместе с ядром) \(F \), который пробегает значения

\[
F = J - i, \quad J - i = 1, \ldots, |J - i|.
\]

Всё сказанное о взаимодействии спин-орбит в применимо и к взаимодействию ядерного спина с орбитальным моментом электронов, причём в формулах надо только заменить \(L, S, J \) соответственно на \(J, i, F \).

§ 68. Самосогласованное поле

Уравнение Шредингера для атомов, содержащих более одного электрона, практически не может быть непосредственно решено даже численным образом. В связи с этим приобретают значение приближённые методы вычисления энергий и волновых функций стационарных состояний атомов. Наиболее существенным из таких методов является так называемый метод самосогласованного поля. Идея этого метода заключается в том, что каждый электрон в атоме рассматривается как движущийся в «самосогласованном поле», создаваемом ядром вместе со всеми остальными электронами.

Рассмотрим в качестве примера атом гелия, причём ограничимся теми его термами, в которых оба электрона находятся в \(s \)-состояниях (с одинаковыми или различными \(n \)); тогда и состояния всего атома будут \(s \)-состояниями. Пусть \(\psi_1 (r_1) \) и \(\psi_2 (r_2) \) есть волновые функции электронов; в \(s \)-состояниях они являются функциями только от расстояний \(r_1 \), \(r_2 \) электронов от ядер. Волновая функция \(\psi (r_1, r_2) \) атома в целом изображается симметрированным

\[
\psi = \psi_1 (r_1) \psi_2 (r_2) + \psi_1 (r_2) \psi_2 (r_1)
\]

или антисимметрированным

\[
\psi = \psi_1 (r_1) \psi_2 (r_2) - \psi_1 (r_2) \psi_2 (r_1)
\]

произведением обеих функций в зависимости от того, имеем ли мы дело с состояниями с полным спином \(S = 0 \) или \(S = 1 \). Будем рассматривать вторые из них; тогда функции \(\psi_1 \) и \(\psi_2 \) можно считать взаимно ортогональными 2).

Поставим себе целью определить такую функцию вида (68,2), которая бы являлась наилучшим приближением к истинной волновой

1) Состояния атома гелия с \(S = 0 \) принято называть состояниями пара-гелия, а состояния с \(S = 1 \) — состояниями ортогелия.
2) Волновые функции \(\psi_1, \psi_2, \ldots \) различных состояний электрона, получающиеся методом самосогласованного поля, вообще говоря, не ортогональны друг другу, поскольку они являются решениями не одного и того же, а различных уравнений. Однако в (68,2) можно, не изменяя функции \(\psi \) всего атома, заменить \(\psi_2 \) на \(\psi_2' = \psi_2 + \text{const} \cdot \psi_1 \), подбирая соответствующим образом постоянную, всегда можно добраться того, чтобы \(\psi_1 \) и \(\psi_2' \) были взаимно ортогональны.
функции атома. Для этого естественно исходить из вариационного принципа, допуская в нём конкурировать лишь функции вида (68.2) (излагаемый метод был предложен и разработан В. А. Фоком, 1930). Как мы знаем, уравнение Шредингера может быть получено из вариационного принципа

\[\int \int \psi^* \hat{H} \psi dV_1 dV_2 = \min \]

при дополнительном условии

\[\int \int |\psi|^2 dV_1 dV_2 = 1 \]

(интегрирование производится по координатам обоих электронов в атоме гелия). Варьирование приводит к уравнению

\[\int \int \delta \psi^* (\hat{H} - E) \psi dV_1 dV_2 = 0, \quad (68,3)\]

откуда, при произвольной вариации волновой функции \(\psi \), получается обычное уравнение Шредингера. В методе же самосогласованного поля в (68,3) подставляется выражение (68,2) для \(\psi \) и варьирование производится по функциям \(\psi_1 \) и \(\psi_2 \) в отдельности. Другими словами, ищется экстремум интеграла по отношению к функциям \(\psi \) вида (68,2); в результате получается, конечно, неточное собственное значение энергии и неточная волновая функция, но лучшая из всех функций, которые могут быть представлены в таком виде.

Гамильтониан для атома гелия имеет вид:

\[\hat{H} = \hat{H}_1 + \hat{H}_2 + \frac{e^2}{r_{12}}, \quad \hat{H}_1 = -\frac{\hbar^2}{2\mu} \Delta - \frac{2e^2}{r_1} \quad (68,4) \]

(\(r_{12} \) — взаимное расстояние электронов). Подставляя (68,2) в (68,3), производя варьирование и приравнивая нуль коэффициенты при \(\delta \psi_1 \) и \(\delta \psi_2 \) в подинтегральном выражении, легко получим следующие уравнения:

\[\left[\frac{\hbar^2}{2\mu} \Delta + \frac{2e^2}{r} + E - H_{23} - G_{23}(r) \right] \psi_1 (r) + \]

\[+ [H_{12} + G_{12}(r)] \psi_2 (r) = 0, \quad (68,5) \]

\[\left[\frac{\hbar^2}{2\mu} \Delta + \frac{2e^2}{r} + E - H_{11} - G_{11}(r) \right] \psi_2 (r) + \]

\[+ [H_{12} + G_{12}(r)] \psi_1 (r) = 0; \]

где

\[G_{ab}(r_1) = \int \frac{\psi_a(r_2) \psi_b(r_2)}{r_{12}} dV_2, \]

\[H_{ab} = \int \psi_a \left(-\frac{\hbar^2}{2\mu} \Delta - \frac{2e^2}{r} \right) \psi_b dV \quad (a, b = 1, 2). \quad (68,6) \]
Это и есть те окончательные уравнения, к которым приводит метод самосогласованного поля; их решение возможно, разумеется, лишь в численном виде 1)

Аналогичным образом должен производиться вывод уравнений в более сложных случаях. Волновая функция атома, которая должна быть подставлена в интеграл вариационного принципа, составляет в виде линейной комбинации произведений волновых функций отдельных электронов. Эта комбинация должна быть выбрана так, чтобы, во-первых, её перестановочная симметрия соответствовала полному спину S рассматриваемого состояния атома и, во-вторых, она должна соответствовать данному значению полного орбитального момента L атома 2).

Пользуясь в вариационном принципе волновой функцией, обладающей перестановочной симметрией, мы тем самым производим учёт обменного взаимодействия электронов в атоме. Более простые (но приводящие к менее точным результатам) уравнения получаются, если пренебречь обменным взаимодействием, а также и зависимостью энергии атома от L при данной электронной конфигурации. Рассматривая снова, в качестве примера, атом гелия, мы можем тогда написать уравнения для волновых функций электронов непосредственно в виде обычных уравнений Шредингера

$$
\left[\frac{\hbar^2}{2m_0} \Delta_a + E_a - V_a(r_a) \right] \psi_a(r_a) = 0, \quad a = 1, 2, \quad (68,7)
$$

в которых V_a есть потенциальная энергия одного электрона, движущегося в поле ядра и в поле распределённого заряда второго электрона:

$$
V_1(r_1) = -\frac{2e^2}{r_1} + \int \frac{e^2}{r_{12}} \psi_2^2(r_2) dV_2 \quad (68,8)
$$

(и аналогично для V_2). Для того чтобы найти энергию E всего атома, надо заметить, что в сумме $E_1 + E_2$ электростатическое взаимодействие обоих электронов друг с другом учитывается дважды, поскольку оно входит в потенциальную энергию как первого электрона, $V_1(r_1)$, так и второго $V_2(r_2)$. Поэтому E получится из суммы $E_1 + E_2$ однократным вычитанием среднего значения этого взаимодействия, т. е.

$$
E = E_1 + E_2 - \int \int \frac{e^2}{r_{12}} \psi_1^2(r_1) \psi_2^2(r_2) dV_1 dV_2. \quad (68,9)
$$

1) Сравнение вычисленных методом самосогласованного поля уровней энергии лёгких атомов со спектроскопическими данными позволяет оценить точность метода примерно в 50%.
2) Первое требование означает, что произведение функций ψ_a должно быть симметрировано по соответствующей юнговской схеме (§ 61). О том, как производится выбор линейной комбинации, соответствующей данному значению L, см. § 97.
Для уточнения результатов, получаемых с помощью такого упрощённого метода (Д. Хартри, 1928), обменное взаимодействие и зависимость энергии от L могут быть учтены затем в качестве возмущения.

Задача

Определить приближённо энергию основного уровня атома гелия, аппроксимируя волновую функцию в виде произведения двух водородных функций с некоторым эффективным зарядом ядра.

Решение. В основном состоянии атома гелия оба электрона находятся в s-состояниях. Соответственно этому ищем волновую функцию в виде произведения двух водородных функций с $l = 0$:

$$
\psi = \frac{\pi}{Z_{\text{эфф}}} e^{-Z_{\text{эфф}}(r_1 + r_2)}
$$

(все величины измеряем в атомных единицах). С помощью этого выражения вычисляем интеграл

$$
\int \int \psi \hat{H} \psi \, dV_1 \, dV_2 = 2^2 Z_{\text{эфф}}^2 - Z_{\text{эфф}} \frac{27}{8}
$$

$$
(\hat{H} = -\frac{1}{2} \Delta_1 - \frac{1}{2} \Delta_2 - \frac{2}{r_1} - \frac{2}{r_2} + \frac{1}{r_{12}}).
$$

Согласно вариационному принципу, требуем минимума этого интеграла (как функции от параметра $Z_{\text{эфф}}$), причём минимальное значение и есть искомая энергия основного состояния. Находим:

$$
Z_{\text{эфф}} = \frac{27}{16} , \quad -E = \left(\frac{27}{16}\right)^2 = 1,695
$$

(экспериментально найденное же значение есть 1,810).

Заметим, что полученная волновая функция оказывается наилучшей не только из всех функций вида (1), но и из всех вообще функций, зависящих только от суммы ($r_1 + r_2$).

§ 69. Уравнение Томаса-Ферми

Численные расчёты распределения заряда и поля в атоме методом самосогласованного поля чрезвычайно громоздки, в особенности для сложных атомов. Но как раз для сложных атомов существует другой приближённый метод, ценность которого заключается в его простоте; правда, он приводит к значительно менее точным результатам, чем метод самосогласованного поля.

В основе этого метода (Э. Ферми и Л. Томас, 1927) лежит тот факт, что в сложных атомах с большим числом электронов большинство электронов обладает сравнительно большими главными квантовыми числами. В этих условиях применимо квазиклассическое приближение. Поэтому мы можем применить к состояниям отдельных электронов в атоме понятие о «клетках в фазовом пространстве» (§ 52).
Объём фазового пространства, соответствующий электронам, обла-дающим импульсом, меньшим чем p, и находящимся в элементе объёма dV физического пространства, равен $\frac{4}{3} \pi p^3 dV$. Этому объёму соответствует $\frac{4\pi p^3 dV}{3(2\pi)^3}$ «клеток» 1), т.е. возможных состояний, в которых может одновременно находиться не более

$$2 \frac{4\pi p^3}{3(2\pi)^3} dV = \frac{p^3}{3\pi^2} dV$$

электронов (в каждой «клетке» по два электрона со взаимно противоположными спинами). В нормальном состоянии атома электроны, находящиеся в каждом элементе объёма dV, должны заполнять (в фазовом пространстве) клетки, соответствующие импульсу от нуля до некоторого максимального значения p_0. Тогда кинетическая энергия электронов будет иметь в каждой точке по возможности меньшее значение. Если написать число электронов в объёме dV, как $n \, dV$ (где n — число электронов, отнесённое к единице объёма), то мы можем утверждать, что максимальное значение p_0 импульса электронов в каждой точке связано с n посредством соотношения

$$\frac{p_0^3}{3\pi^2} = n.\tag{69,1}$$

Максимальное же значение кинетической энергии электрона в месте, где электронная плотность есть n, равно, следовательно:

$$\frac{p_0^3}{2} = \frac{1}{2} (3\pi^2 n)^{2/3}.\tag{69,1}$$

Пусть, далее, $\varphi(r)$ есть электростатический потенциал, который мы принимаем равным нулю на бесконечности. Полная энергия электрона есть $\frac{p^2}{2} - \varphi$. Очевидно, что полная энергия каждого электрона должна быть отрицательной; в противном случае электрон упадёт на бесконечность. Обозначим максимальное значение полной энергии электрона в каждой точке посредством $-\varphi_0$, где φ_0 — положительная постоянная (если бы эта величина была не постоянной, то электроны переходили бы из точек с меньшим φ_0 в точки с большим φ_0). Таким образом мы можем написать:

$$\frac{p_0^2}{2} = \varphi - \varphi_0.\tag{69,2}$$

Приравнивая выражения (69,1) и (69,2), получим

$$n = \left[2(\varphi - \varphi_0)\right]^{3/2} \frac{1}{3\pi^2}$$

$$\tag{69,3}$$

1) В этом параграфе мы пользуемся атомными единицами, соответственно чему полагаем $\varepsilon = 1$, $\hbar = 1$, $\mu = 1$ (см. сноску на стр.147).
— соотношение, связывающее электронную плотность и потенциал в каждой точке атома.

При $\varphi = \varphi_0$ плотность n обращается в нуль; n должно быть, очевидно, положено равным нулю и во всей области, где $\varphi < \varphi_0$, и соотношение (69,2) привело бы к отрицательной максимальной кинетической энергии. Таким образом уравнением $\varphi = \varphi_0$ определяется граница атома. Но вне центрально-симметричного распределения зарядов с равным нулем полным зарядом поле отсутствует. Поэтому на границе нейтрального атома должно быть $\varphi = 0$. Отсюда следует, что для нейтрального атома постоянная φ_0 должна быть положена равной нулю. Напротив, для иона постоянная φ_0 отлична от нуля.

Ниже мы рассматриваем нейтральный атом и соответственно этому полагаем $\varphi_0 = 0$. Согласно электростатическому уравнению Пуассона, имеем $\Delta \varphi = -4\pi n$; подставляя сюда (69,3), получим основное уравнение метода Томаса-Ферми

$$\Delta \varphi = \frac{8\sqrt{2}}{3\pi} \varphi^{3/2}. \quad (69,4)$$

Распределение поля в нормальном состоянии атома определяется центрально-симметричным решением этого уравнения, удовлетворяющим следующим граничным условиям: при $r \to 0$ поле должно переходить в кулоново поле ядра, т. е. должно быть $\varphi r \to Z$; при $r \to \infty$ должно быть $\varphi r \to 0$. Вводя вместо переменной r новую переменную x, согласно определениям

$$r = x b Z^{-1/3}, \quad b = \frac{1}{2} \left(\frac{3\pi}{4}\right)^{2/3} = 0,885, \quad (69,5)$$

а вместо φ новую неизвестную функцию χ

$$\varphi(r) = \frac{Z}{r} \chi \left(\frac{rZ^{1/3}}{b}\right) = \frac{Z^{4/3}}{b} \frac{\chi(x)}{x}, \quad (69,6)$$

получим уравнение

$$x^{3/2} \frac{d^2\chi}{dx^2} = \chi^{3/2} \quad (69,7)$$

с граничными условиями $\chi = 1$ при $x = 0$ и $\chi = 0$ при $x = \infty$. Это уравнение не содержит уже никаких параметров и определяет, таким образом, универсальную функцию $\chi(x)$. В таблице 2 приведена эта функция, полученная путём численного интегрирования

1) В обычных единицах:

$$\varphi(r) = \frac{Ze}{r} \chi \left(\frac{rZ^{1/3}}{0,885} \frac{\mu e^2}{h^2}\right).$$
уравнения (69,7). Функция $\chi (x)$ обращается в нуль только на бесконечности. Другими словами, в модели Томаса-Ферми атом не имеет границы, а формально простирается до бесконечности.

Значение производной $\chi'(r)$ при $r = 0$ равно $\chi'(0) = -1.59$. Поэтому при $x \rightarrow 0$ функция $\chi(x)$ имеет вид $\chi \equiv 1 - 1.59x$ и, соответственно, потенциал $\varphi (r)$:

$$\varphi (r) \equiv \frac{Z}{r} - 1.80 \cdot Z^{4/3}.$$ (69,8)

Первый член есть потенциал поля ядра, а второй $\left(-1.80 \frac{\mu e^3}{\hbar^2} Z^{4/3}\right)$ в обычных единицах есть потенциал, создаваемый электронами в начале координат.

Подставляя (69,6) в (69,3), найдём для электронной плотности выражение вида

$$n = Z^2 f \left(\frac{rZ^{4/3}}{b_0} \right).$$ (69,9)

Таблица 2

<table>
<thead>
<tr>
<th>x</th>
<th>$\chi(x)$</th>
<th>x</th>
<th>$\chi(x)$</th>
<th>x</th>
<th>$\chi(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1.000</td>
<td>0.534</td>
<td>0.569</td>
<td>3.960</td>
<td>0.110</td>
</tr>
<tr>
<td>0.010</td>
<td>0.985</td>
<td>0.625</td>
<td>0.522</td>
<td>4.375</td>
<td>0.0956</td>
</tr>
<tr>
<td>0.030</td>
<td>0.959</td>
<td>0.667</td>
<td>0.435</td>
<td>5.000</td>
<td>0.0788</td>
</tr>
<tr>
<td>0.060</td>
<td>0.924</td>
<td>0.750</td>
<td>0.518</td>
<td>6.042</td>
<td>0.0587</td>
</tr>
<tr>
<td>0.080</td>
<td>0.902</td>
<td>0.792</td>
<td>0.502</td>
<td>7.083</td>
<td>0.0450</td>
</tr>
<tr>
<td>0.100</td>
<td>0.882</td>
<td>0.833</td>
<td>0.488</td>
<td>8.125</td>
<td>0.0355</td>
</tr>
<tr>
<td>0.150</td>
<td>0.833</td>
<td>0.875</td>
<td>0.475</td>
<td>9.167</td>
<td>0.0287</td>
</tr>
<tr>
<td>0.200</td>
<td>0.755</td>
<td>0.917</td>
<td>0.461</td>
<td>10.000</td>
<td>0.0244</td>
</tr>
<tr>
<td>0.250</td>
<td>0.727</td>
<td>0.958</td>
<td>0.449</td>
<td>11.16</td>
<td>0.0198</td>
</tr>
<tr>
<td>0.333</td>
<td>0.700</td>
<td>1.000</td>
<td>0.436</td>
<td>12.01</td>
<td>0.0171</td>
</tr>
<tr>
<td>0.375</td>
<td>0.675</td>
<td>1.250</td>
<td>0.425</td>
<td>13.33</td>
<td>0.0139</td>
</tr>
<tr>
<td>0.417</td>
<td>0.651</td>
<td>1.667</td>
<td>0.364</td>
<td>15.01</td>
<td>0.0109</td>
</tr>
<tr>
<td>0.458</td>
<td>0.627</td>
<td>2.083</td>
<td>0.287</td>
<td>20.00</td>
<td>0.0038</td>
</tr>
<tr>
<td>0.500</td>
<td>0.617</td>
<td>2.500</td>
<td>0.234</td>
<td>24.00</td>
<td>0.0022</td>
</tr>
<tr>
<td>0.542</td>
<td>0.532</td>
<td>3.125</td>
<td>0.193</td>
<td>30.00</td>
<td>0.0011</td>
</tr>
</tbody>
</table>

1) Более подробную таблицу можно найти в статье V. Bush, S. C a l d w e l l, Phys. Rev. 38, 1898, 1931.

2) Уравнение (69,7) имеет точное решение $\chi(x) = 144x^{-3}$, обращающееся на бесконечности в нуль, но не удовлетворяющее граничному условию при $x = 0$. Им можно пользоваться в качестве асимптотического выражения функции $\chi'(x)$ при больших x. Надо, однако, иметь в виду, что более или менее точные значения это выражение даёт лишь при очень больших x, между тем как на больших расстояниях уравнение Томаса-Ферми вообще становится неприменимым (см. ниже).
где функция \(f(x) = \frac{32}{9\pi^3} \left(\frac{\gamma}{x} \right)^{3/2} \). Мы видим, что в модели Томаса-Ферми распределение плотности заряда в различных атомах оказывается подобным, причём роль характеристического параметра длины играет \(Z^{-1/3} \) (в обычных единицах: \(\hbar^2/\mu e^2 Z^{1/3} \), т. е. делённый на \(Z^{1/3} \) боровский радиус). Если измерять расстояния в атомных единицах, то, в частности, расстояния, на которых электронная плотность максимальна, будут одинаковыми для всех \(Z \). Поэтому можно утверждать, что большая часть электронов в атоме с номером \(Z \) находится на расстояниях от ядра порядка величины \(Z^{-1/3} \). Численный расчёт показывает, что половина полного электронного заряда атома находится внутри сферы радиуса 1,33 \(Z^{-1/3} \).

Аналогичные рассуждения показывают, что средняя скорость электронов в атоме (рассматриваемая, по порядку величины, как корень квадратный из энергии) порядка \(Z^{2/3} \).

Уравнение Томаса-Ферми становится неприменимым как на слишком малых, так и на слишком больших расстояниях от ядра. Область его применимости при малых \(r \) ограничивается неравенством \(49,11 \); при меньших расстояниях в кулоновом поле ядра становится непригодным квазиклассическое приближение. Полагая в \(49,11 \) \(\alpha = Z \), находим в качестве нижней границы расстояний величину \(1/Z \). Квазиклассическое приближение становится непригодным в сложном атоме также и при больших \(r \). Именно, легко видеть, что \(r \approx 1 \) деэйрелевская длина волны электрона становится порядка величины самого этого расстояния, так что условие квазиклассичности полностью нарушается. В этом можно убедиться оценкой членов в уравнениях \(69,2 \), \(69,4 \); впрочем, результат очевиден и заранее, без вычислений, поскольку уравнение \(69,4 \) не содержит \(Z \). Таким образом применимость уравнения Томаса-Ферми ограничена областью расстояний, больших по сравнению с \(1/Z \) и малых по сравнению с 1. Однако в сложных атомах в этой области находится большая часть электронов.

С помощью метода Томаса-Ферми можно вычислить полную энергию ионизации \(E \), т. е. энергию, необходимую для удаления всех электронов из нейтрального атома. Для этого надо вычислить электростатическую энергию распределения Томаса-Ферми для замедлённых в атоме; искомая полная энергия будет равна половине этой электростатической энергии, поскольку в системе частиц, взаимодействующих по закону Кулона, средняя кинетическая энергия равна (по теореме вириала) минус половине средней потенциальной энергии. Зависимость \(E \) от \(Z \) можно определить заранее из простых соображений: электростатическая энергия \(Z \) электронов в поле ядра с зарядом \(Z \), находящихся на среднем расстоянии \(Z^{-1/3} \) от ядра, пропорциональна \(\frac{Z \cdot Z}{Z^{1/3}} = Z^{7/3} \). Численное вычисление приводит к резуль-
тату: \(E = 20,8 \cdot Z^{7/3} \) эл.-вольт. Зависимость от \(Z \) оказывается в хорошем согласии с экспериментальными данными; эмпирическое же значение коэффициента близко к 16.

Мы уже упоминали, что отличные от нуля положительные значения постоянной \(\varphi_0 \) соответствуют ионизированным атомам. Если определить функцию \(\chi \) посредством \(\varphi = \varphi_0 = \frac{Z}{r} \chi \), то для \(\chi \) получим прежнее уравнение (69,7). Нас должны, однако, интересовать теперь решения, обращающиеся в нуль не на бесконечности, как для нейтрального атома, а при конечных значениях \(x = x_0 \); такие решения существуют для любого \(x_0 \). В точке \(x = x_0 \) плотность заряда обращается вместе с \(\chi \) в нуль, а потенциал остаётся конечным. Значение \(x_0 \) связано со степенью ионизации следующим образом.

Полный заряд внутри сферы радиуса \(r \), по теореме Гаусса, равен

\[- r^2 \frac{\partial \varphi}{\partial r} = Z [\chi(x) - x \chi'(x)]. \]

Полный заряд иона \(z \) получится, если положить здесь \(x = x_0 \); поскольку \(\chi(x_0) = 0 \), то

\[z = -Z x_0 \chi'(x_0). \]
(69,10)

На рис. 25 жирной линией изображена кривая \(\chi = \chi(x) \) для нейтрального атома, а под нею — две кривые для ионов с различными степенями ионизации. Графически \(z/Z \) изображается линией отрезка, отсекаемого от оси ординат касательной к кривой в точке \(x = x_0 \).

Уравнение (69,7) имеет также решения, не обращающиеся нигде в нуль; на бесконечности эти решения расходятся. Их можно рассматривать как соответствующие отрицательным значениям постоянной \(\varphi_0 \). На том же рис. 25 изображены две такие кривые \(\chi = \chi(x) \); они проходят над кривой для нейтрального атома. В точке \(x = x_1 \), в которой

\[\chi(x_1) - x_1 \chi'(x_1) = 0, \]
(69,11)

полный заряд, заключённый внутри сферы \(x < x_1 \), обращается в нуль (графически эта точка есть, очевидно, та, в которой касательная к кривой проходит через начало координат). Оборвав кривую в этой точке, мы можем сказать, что она определяет \(\chi(x) \) для нейтрального атома, на границе которого плотность заряда остаётся отличной от нуля. Физически это соответствует как бы «скатому» атому, «заключённому» в некоторый заданный конечный объём.

1) Такое рассмотрение может быть полезным при изучении уравнения состояния вещества при больших степенях сжатия.
§ 70. Периодическая система элементов

Выяснение природы периодичности изменения свойств, обнаруженной в ряде элементов, расположенных в порядке увеличения атомного номера, требует рассмотрения особенностей в последовательном заполнении электронной оболочки атомов (Н. Бор, 1922).

При переходе от одного атома к следующему увеличивается на единицу заряд и к оболочке добавляется один электрон. На первый взгляд, можно было бы ожидать, что энергии связи каждого из последовательно добавляемых электронов обнаружат мононтонное изменение с увеличением атомного номера. Однако действительный ход оказывается совсем другим.

В атоме водорода имеется всего один электрон в состоянии 1s (резь идёт о нормальных состояниях атомов). В атоме следующего элемента — гелия — добавляется ещё один 1s-электрон; энергия связи 1s-электронов в атоме гелия больше, чем в атоме водорода. При переходе к ядру с Z = 3 (атом лития) третий электрон попадает в 2s-состояние, поскольку в состояниях 1s не может находиться одновременно более двух электронов. Энергия связи этого электрона оказывается значительно меньшей, чем энергия связи электронов в атоме гелия. Далее, в ряду от Be (Z = 4) до Ne (Z = 10) последовательно прибавляются сначала ещё один 2s-электрон, а затем шесть 2p-электронов. Энергии связи добавляемых в этом ряду электронов в общем растут. Следующий же добавляемый при переходе к атому Na (Z = 11) электрон попадает в состояние 3s, и энергия связи сильно падает.

Такая картина заполнения электронной оболочки оказывается характерной для всей последовательности элементов. Все электронные состояния можно разделить на последовательно заполняющиеся группы, такие, что по мере заполнения в ряду элементов состояний каждой

1) Упомянем, что некоторые атомы обладают способностью образовывать отрицательные ионы, присоединяя к себе электрон. Соответствующую энергию связи дополнительного электрона называют сродством электрона к атому. Надо, однако, иметь в виду, что этим свойством обладают далеко не все атомы. Дело в том, что избыточный электрон на далеких расстояниях притягивается к атому не по закону Кулона (энергия \(\sim 1/r \)), а гораздо медленнее (\(\sim 1/r^4 \)). Поэтому, в то время как закон Кулона приводит всегда к бесконечному множеству уровней, здесь число уровней во всяком случае конечно. В частных случаях таких уровней может не окаиться вовсе; именно такое положение имеет место у большинства атомов. Исключение представляют атомы галогенов атомы элементов группы кислорода (энергии сродства электрона порядка от 2 до 4 эл.-вольт), и атом водорода (энергия сродства 0,7 эл.-вольт).

2) Увеличение энергии связи при переходе от водорода к гелию вполне естественно, если учесть различие между полем, в котором находится электрон в атоме водорода, и полем, в которое попадает второй электрон, добавляемый к иону He+. На больших расстояниях эти поля примерно совпадают, но на близких расстояниях поле иона He+ сильнее, чем поле ядра атома водорода в связи с вдвое большим зарядом ядра атома гелия.
Рис. 26.
группы энергии связи в общем растет, но в момент начала заполнения состояний следующей группы энергия связи сильно падает. Рост энергии связи обусловлен увеличением заряда ядра; если же рассматривать электроны в одном и том же атome, то окажется, что уровни энергии электронов в состояниях каждой группы близки друг к другу и значительно удалены от энергий других групп. На рис. 26 нанесены известные из спектроскопических данных ионизационные потенциалы элементов; они определяют энергию связи электронов, добавляемых при переходе от каждого элемента к следующему.

Различные состояния распределяются на последовательно заполняющиеся группы следующим образом:

\[
\begin{align*}
1s & \quad \ldots \quad \ldots \quad \ldots \quad 2 \text{ электрона} \\
2s, 2p & \quad \ldots \quad \ldots \quad 8 \quad » \\
3s, 3p & \quad \ldots \quad \ldots \quad 8 \quad » \\
4s, 3d, 4p & \quad \ldots \quad 18 \quad » \\
5s, 4d, 5p & \quad \ldots \quad 18 \quad » \\
6s, 4f, 5d, 6p & \quad \ldots \quad 32 \quad » \\
7s, 6d & \quad \ldots \\
\end{align*}
\]

(70,1)

Первая группа заполняется в H и He; заполнение второй и третьей соответствует двум первым (малым) периодам периодической системы, содержащим по 8 элементов. Далее следуют два больших периода по 18 элементов и большой период, включающий редкоземельные элементы и содержащий всего 32 элемента. Последняя группа состояний только начинает заполняться в существующих элементах.

Для понимания хода изменения свойств элементов при заполнении состояний каждой группы существенна следующая особенность s- и p-состояний, отличающая их от состояний d и f. Кривые эффективной потенциальной энергии центрально-симметричного поля (складывающегося из электростатического поля и центробежного поля) для электрона в тяжелом атоме после быстрого, почти вертикального, спадания вблизи начала координат имеют глубокий минимум, вслед за чем начинают подниматься, асимптотически приближаясь к нулю. Для s- и p-состояний эти кривые идут в своей возрастающей части очень близко друг к другу. Это значит, что в этих состояниях электрон находится примерно на одинаковых расстояниях от ядра. Кривые же для d- и, в особенности, для f-состояний проходят значительно левее; ограничиваемая ими «классически достижимая» область заканчивается значительно ближе, чем в s- и p-состояниях при той же полной энергии электрона. Другими словами, в d- и f-состояниях электрон находится в основном значительно ближе к ядру, чем в s- и p-состояниях.
Ряд свойств атомов (в том числе химические свойства элементов — см. § 78) зависит, главным образом, от внешних областей электронных оболочек. В этой связи весьма существенна описанная особенность d- и f-состояний. Так, например, при заполнении состояний $4f$ (у редкоземельных элементов — см. ниже) добавляемые электроны располагаются значительно ближе к ядру, чем электроны в ранее заполнившихся состояниях. В результате эти электроны почти не связаны на химических свойствах, и все редкоземельные элементы оказываются химически очень сходными.

Элементы, содержащие заполненные d- и f-оболочки (или не содержащие их вовсе), называют элементами главных групп; элементы же, в которых как раз происходит заполнение этих состояний, называют элементами промежуточных групп. Элементы этих групп удобно рассматривать раздельно.

Начнем с элементов главных групп. Водород и гелий обладают нормальными состояниями:

$$
\text{H}^1 : 1s^2 S_{1/2}, \quad \text{He}^3 : 1s^2 S_0
$$

(индекс у химического символа обозначает всегда атомный номер). Электронные конфигурации остальных элементов главных групп представлены в таблице 3.

Таблица 3

<table>
<thead>
<tr>
<th>Электронные конфигурации элементов главных групп</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 2$</td>
</tr>
<tr>
<td>Li3</td>
</tr>
<tr>
<td>Na11</td>
</tr>
<tr>
<td>K19</td>
</tr>
<tr>
<td>Cu19</td>
</tr>
<tr>
<td>Rb37</td>
</tr>
<tr>
<td>Cs55</td>
</tr>
<tr>
<td>Au79</td>
</tr>
<tr>
<td>Fr87</td>
</tr>
</tbody>
</table>

В каждом атоме полностью заполнены оболочки, указанные справа от таблицы в той же и во всех более высоких строках. Электронная конфигурация в заполняющихся оболочках указана сверху,
принчём главное квантовое число электронов в этих состояниях указа- но цифрой, стоящей сверху от таблицы в той же строчке. Снизу указаны нормальные состояния атома в целом. Так, атом Al имеет электронную конфигурацию 1s² 2s² 2p⁶ 3s² 3p² ³P₁/₂.

Значения L и S в нормальном состоянии атома могут быть определены (при известной электронной конфигурации) с помощью правила Гунда (§ 65). При этом всегда надо рассматривать только не- заполненную оболочку, так как моменты электронов в заполненных оболочках взаимно компенсируются. Рассмотрим, например, атом кислорода. Магнитное квантовое число p-электрона может принимать три значения: 0, ±1. Поэтому совокупность четырёх p-электронов атома кислорода может иметь полный спин, не превышающий 1 (проекции σ спина отдельных электронов равны 1/2, 1/2, 1/2, −1/2). Три электрона с σ = 1/2 должны иметь различные m, t. e. = −1, 0, +1. Четвёртому приписываём наибольшее значение m, t. e. 1. Тогда \(M_L = \sum m = 1 \); это значит, что и наибольшее возможное при \(S = 1 \) значение L есть 1.

Значение J определяется правилом, указанным в § 67. Так, при- меняя его к заполняющейся p-оболочке, мы можем утверждать, что при конфигурациях \(p, p², p³ \) имеем \(J = |L − S| \), а для конфигураций \(p⁴, p⁵, p⁶ : J = L + S \).

Атомы благородных газов (He, Ne, A, Kr, Xe, Rn) занимают в таблице особое положение — в каждом из них заканчивается заполнение перечисленных в (70,1) групп состояний. Их электронные конфигурации обладают особой устойчивостью (потенциалы ионизации — наибольшие в соответствующих рядах). С этим связана и химическая инертность этих элементов.

Мы видим, что заполнение различных состояний происходит в ряду элементов главных групп очень закономерно — заполняются сначала s-, а затем p-состояния каждого главного квантового числа n. Также закономерны и электронные конфигурации ионов этих элементов (до тех пор, пока при ионизации не затрагиваются электроны d- и f-оболочек), — каждый ион имеет конфигурацию, соответствующую предыдущему атому. Так, ион Mg⁺ имеет конфигурацию атома Na, ион Mg⁺⁺ — конфигурацию Ne.

Далее, перейдём к элементам промежуточных групп. Заполнение оболочек 3d, 4d, 5d происходит в группах элементов, называемых соответственно группами железа, палладия и платины. В таблице 4 приведены электронные конфигурации и термы атомов этих групп, известные из экспериментальных спектроскопических данных; чёрточки стоят в тех местах, где таких данных пока нет. Как видно из этих таблиц, заполнение d-оболочек происходит значительно менее закономерно, чем заполнение s- и p-оболочек в атомах элементов главных групп. Характерной чертой является здесь «соревнование» между s- и d-состояниями. Оно проявляется в том, что вместо закономерной последовательности конфигураций типа \(d^p s^2 \) с возрастающими p часто
Таблица 4

Электронные конфигурации атомов элементов групп железа, палладия и платины

<table>
<thead>
<tr>
<th>Группа железа</th>
<th>Sc<sup>21</sup></th>
<th>Ti<sup>22</sup></th>
<th>V<sup>23</sup></th>
<th>Cr<sup>24</sup></th>
<th>Mn<sup>25</sup></th>
<th>Fe<sup>26</sup></th>
<th>Co<sup>27</sup></th>
<th>Ni<sup>28</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Оболочка A<sup>+</sup></td>
<td>3d<sup>4</sup>4s<sup>2</sup></td>
<td>3d<sup>2</sup>4s<sup>2</sup></td>
<td>3d<sup>5</sup>4s<sup>2</sup></td>
<td>3d<sup>6</sup>4s<sup>2</sup></td>
<td>3d<sup>5</sup>4s<sup>2</sup></td>
<td>3d<sup>6</sup>4s<sup>2</sup></td>
<td>3d<sup>6</sup>4s<sup>2</sup></td>
<td>3d<sup>9</sup>4s<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>2D<sub>3/2</sub></td>
<td>5F<sub>2</sub></td>
<td>4F<sub>5/2</sub></td>
<td>7S<sub>3</sub></td>
<td>6S<sub>1/2</sub></td>
<td>2D<sub>4</sub></td>
<td>4F<sub>5/2</sub></td>
<td>3F<sub>4</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Группа палладия</th>
<th>Y<sup>89</sup></th>
<th>Zr<sup>40</sup></th>
<th>Nb<sup>41</sup></th>
<th>Mo<sup>42</sup></th>
<th>Tc<sup>43</sup></th>
<th>Ru<sup>44</sup></th>
<th>Rh<sup>45</sup></th>
<th>Pd<sup>46</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Оболочка Kr<sup>+</sup></td>
<td>4d<sup>5</sup>5s<sup>2</sup></td>
<td>4d<sup>2</sup>5s<sup>2</sup></td>
<td>4d<sup>4</sup>5s<sup>2</sup></td>
<td>4d<sup>5</sup>5s<sup>2</sup></td>
<td>—</td>
<td>4d<sup>7</sup>5s<sup>2</sup></td>
<td>4d<sup>8</sup>5s<sup>2</sup></td>
<td>4d<sup>10</sup></td>
</tr>
<tr>
<td></td>
<td>2D<sub>3/2</sub></td>
<td>8F<sub>2</sub></td>
<td>6D<sub>1/2</sub></td>
<td>7S<sub>3</sub></td>
<td>—</td>
<td>5F<sub>5</sub></td>
<td>4F<sub>5/2</sub></td>
<td>1S<sub>0</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Группа платины</th>
<th>La<sup>87</sup></th>
<th>Lu<sup>71</sup></th>
<th>Hf<sup>72</sup></th>
<th>Ta<sup>73</sup></th>
<th>W<sup>74</sup></th>
<th>Re<sup>75</sup></th>
<th>Os<sup>76</sup></th>
<th>Ir<sup>77</sup></th>
<th>Pt<sup>78</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Оболочка Xe<sup>+</sup></td>
<td>5d<sup>6</sup>6s<sup>2</sup></td>
<td>5d<sup>6</sup>6s<sup>2</sup></td>
<td>5d<sup>4</sup>6s<sup>2</sup></td>
<td>5d<sup>5</sup>6s<sup>2</sup></td>
<td>—</td>
<td>5d<sup>9</sup></td>
<td>5d<sup>9</sup>6s<sup>2</sup></td>
<td>2D<sub>5/2</sub></td>
<td>3D<sub>3</sub></td>
</tr>
<tr>
<td>Оболочка Xe<sup>+</sup></td>
<td>2D<sub>5/2</sub></td>
<td>8F<sub>2</sub></td>
<td>—</td>
<td>5D<sub>0</sub></td>
<td>6S<sub>1/2</sub></td>
<td>—</td>
<td>2D<sub>5/2</sub></td>
<td>3D<sub>3</sub></td>
<td></td>
</tr>
</tbody>
</table>

более выгодными оказываются конфигурации типа dp+1s или dp+2. Так, в группе железа атом Cr имеет конфигурацию 3d⁵4s², а не 3d⁴4s²; после Ni с 8 d-электронами следует сразу атом Cu с полностью заполненной d-оболочкой (и потому отнесенный нами к главным группам). Такое же отсутствие закономерности наблюдается и в отношении термов ионов — электронные конфигурации ионов обычно не
совпадают с конфигурацией предыдущих атомов. Например, ион V$^+$ имеет конфигурацию 3d4 (а не 3d2 4s2, как Ti), ион Fe$^+$ — конфигурацию 3d5 4s2 (вместо конфигурации 3d6 4s2 атома Mn). Отметим, что все ионы, встречающиеся в естественном виде в кристаллах и растворах, содержат в незаполненных оболочках только d- или f- (но не s- и p-) электроны. Так, железо встречается в кристаллах или растворах только в виде ионов Fe$^{3+}$ и Fe$^{4+}$, с конфигурациями соответственно 3d6 и 3d5.

Аналогичное положение имеет место и при заполнении 4f-оболочки, происходящем в ряду элементов, известных под названием редкоземельных (таблица 5). Заполнение 4f-оболочки тоже происходит не

Таблица 5

<table>
<thead>
<tr>
<th>Электронные конфигурации атомов редкоземельных элементов</th>
</tr>
</thead>
<tbody>
<tr>
<td>Оболочка Xe +</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>—</td>
</tr>
<tr>
<td>—</td>
</tr>
</tbody>
</table>

вполне закономерным образом, характеризуясь «соревнованием» между 4f-, 5d- и 6s-состояниями.

Последняя группа промежуточных элементов начинается с актина. Из всех элементов этой группы (Ac39, Th, Pa, U, Np, Pu, Am, Cm99) электронная конфигурация известна только у тория и урана.

Obolочка Rn \rightarrow Th90 U92

Ввиду наличия здесь f-электронов, а также ввиду химических свойств этих элементов (см. § 78), можно думать, что в группе урана происходит заполнение электронной оболочки, аналогичное заполнению в ряду редкоземельных элементов.

В заключение этого параграфа остановимся на одном интересном применении метода Томаса-Ферми. Мы видели, что электроны в p-оболочке появляются впервые в пятом элементе (B), d-электроны появляются при $Z = 21$ (Sc), а f-электроны — при $Z = 58$ (Ce). Эти значения Z могут быть предсказаны с помощью метода Томаса-Ферми следующим образом.

1) В курсах химии Lu обычно тоже причисляется к редкоземельным элементам. Это, однако, неправильно, так как в нём оболочка 4f уже заполнена; Lu должен быть отнесен к группе платины, что и сделано в таблице 4.
Электрон с орбитальным моментом \(l \) в сложном атоме движется, имея «эффективную потенциальную энергию» \(^1\), равную

\[
U_{l}(r) = -\varphi(r) + \frac{(l + 1/2)^2}{2r^2}.
\]

Первый член есть потенциальная энергия в электрическом поле, описываемом потенциалом Томаса-Ферми \(\varphi(r) \). Второй же член есть центробежная энергия, в которой мы пишем \((l + 1/2)^2\) вместо \(l(l + 1)\) ввиду квазиклассичности движения. Поскольку полная энергия электрона в атоме отрицательна, то ясно, что если (для данных значений \(Z \) и \(l \) \(U_{l}(r) > 0 \) при всех \(r \), то в данном атоме вообще не может быть электронов с рассматриваемым значением момента \(l \). Если рассматривать какое-либо определённое значение \(l \) и менять \(Z \), то оказывается, что при слишком малых \(Z \) действительно будет всегда \(U_{l}(r) > 0 \). При увеличении \(Z \) наступает момент, когда кривая \(U_{l} = U_{l}(r) \) касается оси абсцисс, а при больших \(Z \) имеется уже область, в которой \(U_{l}(r) < 0 \). Таким образом момент появления в атоме электронов с данным \(l \) определяется условием касания кривой \(U_{l}(r) \) оси абсцисс, т. е. уравнениями

\[
U_{l}(r) = -\varphi + \frac{(l + 1/2)^2}{2r^2} = 0, \quad U_{l}'(r) = -\varphi'(r) - \frac{(l + 1/2)^2}{r^3} = 0.
\]

Подставляя сюда выражение (69,6) для потенциала, получим уравнения

\[
Z^{3/2} \frac{\chi(x)}{x} = \left(\frac{4}{3\pi}\right)^{3/2} \frac{(l + 1/2)^2}{x^2},
\]

\[
Z^{3/2} \frac{x\chi'(x) - \chi(x)}{x^2} = -2 \left(\frac{4}{3\pi}\right)^{3/2} \frac{(l + 1/2)^2}{x^2}. \tag{70,2}
\]

Разделив второе из этих уравнений почленно на первое, найдём для \(x \) уравнение

\[
\frac{\chi'(x)}{\chi(x)} = -\frac{1}{x},
\]

после чего по первому из уравнений (70,2) вычисляем \(Z \). Численное вычисление даёт:

\[
Z = 0,155 (2l + 1)^3.
\]

Эта формула определяет значения \(Z \), при которых в атоме впервые появляются электроны с данным \(l \) (с погрешностью около 10\(^0/0\)).

Совсем точные значения получаются, если вместо коэффициента 0,155 выбрать 0,17:

\[
Z = 0,17 (2l + 1)^3. \tag{70,3}
\]

\(^1\) Мы пользуемся, как и в § 69, атомными единицами.
Для $l = 1, 2, 3$ эта формула даёт соответственно $Z = 4, 6; 21, 25; 58, 3$. Округляя эти числа до ближайших целых, найдём как раз правильные значения 5, 21, 58. Для $l = 4$ формула $(70,3)$ даёт $Z = 124$; это значит, что g-электроны должны были бы впервые появиться лишь в 124-м элементе.

§ 71. Рентгеновские термы

Энергия связи внутренних электронов 1) в ароме настолько велика, что если такой электрон переходит во внешнюю незаполненную оболочку, то возбуждённый атом оказывается механически неустойчивым по отношению к ионизации, сопровождающейся перестройкой электронной оболочки и образованием устойчивого иона. Однако ввиду сравнительной слабости электронных взаимодействий в ароме вероятность такого перехода сравнительно мала, так что продолжительность жизни т возбуждённого состояния велика. Поэтому «ширина» уровня h/r (см. § 44) оказывается достаточно малой для того, чтобы имел смысл рассматривать энергию атома с возбуждённым внутренним электроном как дискретные уровни энергии «квартистационных» состояний атома. Эти уровни называются рентгеновскими термами 2).

Рентгеновские термы классифицируются прежде всего указанием оболочки, из которой удалён электрон, или, как говорят, в которой образовалась «дырка». В какую именно внешнюю оболочку попал электрон — почти не отражается на энергии атома, и потому несущественно.

Полный момент совокупности электронов, заполняющих некото- рую оболочку, равен нулю. После удаления из неё одного электрона оболочка приобретёт некоторый момент j. Для оболочки (n, l) момент j может, очевидно, принимать значения $l \pm 1/2$. Таким образом мы получим уровни, которые можно было бы обозначать посредством $1s_{1/2}, 2s_{1/2}, 2p_{1/2}, 2p_{3/2}, \ldots$, где значение j приписывается в виде индекса к символу, указывающему местонахождение «дырки». Обычно принимают, однако, специальные символы со следующим соответствием:

$$1s_{1/2}, 2s_{1/2}, 2p_{1/2}, 2p_{3/2}, 3s_{1/2}, 3p_{1/2}, 3p_{3/2}, 3d_{5/2}, 3d_{3/2}, \ldots$$

$K \ L_1 \ L_2 \ L_3 \ M_1 \ M_2 \ M_3 \ M_4 \ M_5 \ldots$

Уровни с $n = 4, 5, 6$ обозначаются аналогичным образом буквами N, O, P.

Уровни с одинаковыми n (обозначаемые одинаковой большей буквой) расположены близко друг от друга и далеко от уровней с другими n. Причина этого заключается в том, что благодаря

1) Под внутренними мы имеем в виду электроны в заполненных оболочках.
2) Название связано с тем, что переходы между этими уровнями приводят к испусканию атомом рентгеновских лучей.
относительной близости внутренних электронов к ядру они находятся в основном в поле последнего, и потому их состояния «втородоподобны». Ввиду известных свойств уровней энергии водорода, рентгеновские термы зависят поэтому в первом приближении только от \(n \). Учёт релятивистских эффектов приводит к отделению друг от друга термов с различными \(j \) (ср. сказанное в § 67 о тонкой структуре водородных уровней), как, например, \(L_1 \) и \(L_\Pi \) от \(L_{\Pi \Pi} \); \(M_1 \) и \(M_{\Pi} \) от \(M_{\Pi \Pi} \) и \(M_{\Pi \Pi \Pi} \). Такие пары уровней называются правильными (или релятивистскими) дублетами. Разделение же термов с различными \(l \) при одинаковом \(j \) (например, \(L_1 \) от \(L_{\Pi} \), \(M_1 \) от \(M_{\Pi} \)) связано с отклонением поля, в котором находятся внутренние электроны, от кулоновского. Такие дублеты называются неправильными (или экранировочными).

§ 72. Эффект Штарка

Если поместить атом во внешнее электрическое поле, то его уровни энергии изменяются; это явление называют эффектом Штарка.

В атоме, помещённом в однородное внешнее электрическое поле, мы имеем дело с системой электронов, находящихся в аксиально-симметрическом поле (поле ядра вместе с внешним полем). В связи с этим полный момент количества движения атома, строго говоря, перестаёт сохраняться; сохраняется лишь проекция \(M_J \) полного момента \(J \) на направление этого поля. Состояния с различными значениями \(M_J \) будут обладать различными энергиями, т. е. электрическое поле снимает выражение по направлениям момента. Это снятье, однако, неполное — состояния, отличающиеся лишь знаком \(M_J \), попрежнему остаются выраженнымими между собой. Действительно, атом в однородном внешнем электрическом поле симметричен по отношению к отражению в любой плоскости, проходящей через ось симметрии (ось, проходящая через ядро в направлении поля; ниже мы выбераем её в качестве оси \(z \)). Поэтому состояния, получающиеся друг из друга посредством такого отражения, должны обладать одинаковой энергией. Но при отражении в плоскости, проходящей через некоторую ось, момент количества движения относительно этой оси меняет свой знак (направление положительного обхода вокруг оси переходит в отрицательное).

Мы будем предполагать, что электрическое поле достаточно слабо — настолько, что обусловленная им дополнительная энергия мала по сравнению с расстояниями между соседними уровнями энергии атома, в том числе по сравнению с интервалами тонкой структуры. Тогда для вычисления смещения уровней в электрическом поле можно воспользоваться теорией возмущений, развитой в §§ 38, 39. Оператором возмущения является при этом энергия системы электронов в однородном поле \(\mathcal{E} \), равная, как известно, \(-d\mathcal{E} = -\mathcal{E}_d\), где \(d \) — дипольный момент системы. В нулевом приближении уровни энергии выражены (по направлениям полного момента); однако
в данном случае это вырождение несущественно, и при применении теории возмущений можно поступать так, как если бы мы имели дело с невырожденными уровнями. Это следует из того, что в матрице величины d_σ (как и z-компоненты всякого другого вектора) отличны от нуля только элементы для переходов без изменения M_j (см. § 27), а потому состояния, отличающиеся значениями M_j, ведут себя при применении теории возмущений независимо друг от друга.

Смещение уровней энергии в первом приближении определяется соответствующими диагональными матричными элементами возмущения. Однако легко видеть, что все диагональные матричные элементы дипольного момента тождественно обращаются в нуль. В § 28 было показано, что матрица всякого полярного вектора (каковым является также и вектор d) имеет отличные от нуля элементы лишь для переходов между состояниями различной чётности; поэтому диагональные элементы во всяком случае равны нулю.

Таким образом расщепление уровней в электрическом поле оценивается эффектом второго порядка и пропорционально квадрату поля 1. Легко определить зависимость величины смещения уровней от M_j. Поправка к собственным значениям энергии во втором приближении определяется формулой (38,9); это есть сумма выражений, каждое из которых пропорционально квадрату какого-либо из матричных элементов возмущения. В данном случае мы имеем дело с матричными элементами z-компоненты вектора (d_σ), зависимость которых от M полностью определяется формулами (27,13) (в которых надо писать J, M_j вместо l, m). Согласно этим формулам квадраты матричных элементов являются линейными функциями от M_j. То же самое, следовательно, имеет место и для смещений уровней энергии. Нумеруя индексом n невозмущённые уровни энергии, мы можем написать для величины смещения $\Delta E_n (M_j)$ уровней, на которые расщепляется данный невозмущённый уровень:

$$ \Delta E_n = -\frac{e^2}{2} (a_n + b_n M_j^2), \quad (72,1) $$

где a_n, b_n — постоянные.

Через эти же постоянные может быть выражена также и поляризуемость атома в электрическом поле. Для этого воспользуемся следующей общей формулой. Пусть гамильтониан \hat{H} системы зависит от некоторого параметра λ; тогда и его собственные значения E_n являются функциями λ. Составим производную $\frac{\partial \hat{H}}{\partial \lambda}$; можно пока-

1) Исключение составляет атом водорода, у которого Штarkin-эффект линеен по полю (см. следующий параграф). Подобно водороду ведут себя в достаточно сильных полях также и атомы других атомов, находящихся в сильно возбуждённых (и потому водородоподобных, см. § 66) состояниях.
сказать, что среднее значение представляющей этим оператором величины в состоянии \(n \) (т. е. диагональный матричный элемент \(\frac{\partial H}{\partial \lambda} n_n \)) равно производной по \(\lambda \) от соответствующего собственного значения \(E_n \):
\[
\left(\frac{\partial H}{\partial \lambda} \right)_{nn} = \frac{\partial E_n}{\partial \lambda}.
\]
(72.2)

В данном случае параметром \(\lambda \) является электрическое поле \(E \), а производная по нему от гамильтониана \(\hat{H} = H_0 - E d_z \) есть \(-d_s \). Таким образом, для среднего значения дипольного момента атома получим:
\[
\bar{d}_s = (a_n + b_n M^2_J) E.
\]
(72.3)
Коэффициент при \(E \) есть поляризуемость атома.

ЗАДАЧА

Определить зависимость штарковского расщепления различных компонент мультиплетного уровня от \(J \).

РЕШЕНИЕ. Задачу удобно решать, переставляя порядок наложения возмущений: начиная рассматриваем штарковское расщепление уровня без тонкой структуры, а затем вводим взаимодействие спин-орбита. Поскольку спин атома не взаимодействует с внешним электрическим полем, то штарковское расщепление уровня с данным орбитальным моментом \(L \) определяется формулой
\[
\Delta E = (a + \beta M^2_L) E^2,
\]
t. е. того же вида, что и (72.2), но с \(M_L \), стоящим вместо \(M_J \) (индексы \(n \) у постоянных опускаем). Эту величину можно рассматривать как собственное значение оператора \(a + \beta \hat{L}^2_n \) или
\[
\left\{ a \delta_{ik} + \frac{\beta}{2} (\hat{L}_i \hat{L}_k + \hat{L}_k \hat{L}_i) \right\} \psi_i \psi_k
\]
(1)
(по индексам \(i, k \) подразумевается суммирование по значениям \(i, k = x, y, z \)).

После введения взаимодействия спин-орбита состояние атома должны характеризоваться полным моментом \(J \). У средним оператор (1) по электронным

1) Для доказательства дифференцируем уравнение \((\hat{H} - E) \psi_n = 0 \) по \(\lambda \) и умножаем затем слева на \(\psi_n^* \):
\[
\psi_n^* (\hat{H} - E_n) \frac{\partial \psi_n}{\partial \lambda} = \psi_n^* \left(\frac{\partial E_n}{\partial \lambda} - \frac{\partial \hat{H}}{\partial \lambda} \right) \psi_n.
\]
Интегрируя теперь по \(dq \), получаем в левой стороне уравнения нуль; так как в силу эрмитовости оператора \(\hat{H} \) имеем:
\[
\int \psi_n^* (\hat{H} - E_n) \frac{\partial \psi_n}{\partial \lambda} dq = \int \frac{\partial \psi_n}{\partial \lambda} (\hat{H} - E_n) \psi_n dq.
\]
Правая же сторона уравнения даёт искомое равенство (72.2).
состояниям с заданным значением J момента (но не его проекции M_J). После этого $\hat{L}_i \hat{L}_k + \hat{L}_k \hat{L}_i$ останется еще оператором вида:

$$\frac{\hat{L}_i \hat{L}_k + \hat{L}_k \hat{L}_i}{\hat{L}_i \hat{L}_k + \hat{L}_k \hat{L}_i} = c_1 \left(\hat{J}_i \hat{J}_k + \hat{J}_k \hat{J}_i \right) + c_2 \delta_{ik},$$

(2)

Это есть наиболее общий вид симметричного по i, k оператора, который можно составить с помощью «вектора» \hat{J} — единственного, которым характеризуется атом в целом. Собственные значения оператора

$$\left\{ \left(a + \frac{\beta c_2}{2} \right) \delta_{ik} + \frac{\beta c_1}{2} \left(J_i J_k + J_k J_i \right) \right\} \mathbf{g}_i \mathbf{g}_k = \left\{ \left(a + \frac{\beta c_2}{2} \right) + \beta c_1 J^2 \right\} \mathbf{g}_i \mathbf{g}_k$$

равны

$$\Delta E = \left[a + \frac{\beta c_2}{2} + \beta c_1 M_J^2 \right] \mathbf{g}^2.$$

(3)

Для определения постоянных c_1, c_2 умножаем равенство (2) слева на J_i и справа на J_k. Воспользовавшись правилами коммутации для компонент векторов \hat{J} и \hat{L} (и имея в виду, что компоненты \hat{S} и \hat{L} коммутативны), получим после вычисления уравнение

$$2 \left(J^2 \right) - \left(J \right) = c_1 \left[2 J^2 \left(J + 1 \right)^2 - J \left(J + 1 \right) \right] + c_2 J \left(J + 1 \right),$$

в котором мы заменили операторы их собственными значениями, причём собственное значение J_L, согласно формуле (30,3), равно:

$$J_L = \frac{1}{2} \left[J \left(J + 1 \right) + L \left(L + 1 \right) - S \left(S + 1 \right) \right].$$

Другое уравнение получим, положив в (2) $i = k$ и просуммировав по i; это даёт:

$$2L \left(L + 1 \right) = 2c_1 J \left(J + 1 \right) + 3c_2.$$

Из этих двух уравнений определяем c_1 и c_2:

$$c_1 = \frac{3 \left(J_L \right) \left[2 \left(J_L \right) - 1 \right] - 2J \left(J + 1 \right) L \left(L + 1 \right)}{J \left(J + 1 \right) (2J - 1) (2J + 3)},$$

$$c_2 = 2 \frac{L \left(L + 1 \right) \left[2J \left(J + 1 \right) - 1 \right] - \left(J_L \right) \left[2 \left(J_L \right) - 1 \right]}{\left(2J - 1 \right) (2J + 3)}.$$

(4)

Формулы (3), (4) решают поставленную задачу, определяя зависимость расщепления от J (но, разумеется, не от L и S, от которых зависит также и постоянные α, β).

§ 73. Эффект Штарка у водорода

Уровни атома водорода, в отличие от уровней других атомов, в однородном электрическом поле испытывают расщепление, пропорциональное первой степени поля (линейный эффект Штарка). Это связано с наличием у водородных термов случайного выражения, в силу которого состояния с различными значениями l (при заданном главном квантовом числе n) обладают одинаковыми энер-

1) Подробнее о подобного рода усреднениях см. §§ 67, 74.
§ 73] ЭФФЕКТ ШТАРКА У ВОДОРОДА 293

гиями. Матричные элементы дипольного момента для переходов между этими состояниями отнюдь не равны нулю, а потому секулярное уравнение даёт уже в первом приближении отличное от нуля смещение уровней.

Для вычисления 1) удобно выбрать невозмущённые волновые функции таким образом, чтобы матрица возмущения была диагональна по отношению к каждой группе взаимно вырожденных состояний. Оказывается, что это осуществляется путём квантования атома водорода в параболических координатах. Волновые функции \(\psi_{n_1 n_2 m} \) стационарных состояний атома водорода в параболических координатах определяются формулами (37, 15—16).

Оператор возмущения 3) (энергия электрона в поле \(\mathcal{E} \)) есть

\[
\mathcal{E} = \frac{1}{2} \mathcal{E} (\xi - \eta)
\]

(поле направлено в положительном, а действующая на электрон сила — в отрицательном направлении оси \(z \)). Нас интересуют матричные элементы для переходов \(n_1 n_2 m \rightarrow n_1' n_2 m' \), при которых энергия (т. е. главное квантовое число \(n \)) не меняется. Легко видеть, что из них оказывается отличными от нуля только диагональные матричные элементы:

\[
\int |\psi_{n_1 n_2 m}|^2 \mathcal{E} z dV = \frac{\mathcal{E}}{2} \int \int \int (\xi^2 - \eta^2) |\psi_{n_1 n_2 m}|^2 d\varphi d\xi d\eta = \frac{\mathcal{E} \hbar^2}{4} \int \int f_{n_1 m}^2 (\rho_1) f_{n_2 m}^2 (\rho_2) (\rho_1^2 - \rho_2^2) d\rho_1 d\rho_2\ (73,1)
\]

(мы произвели подстановку \(\xi = n \rho_1, \eta = n \rho_2 \)). В отношении числа \(m \) диагональность рассматриваемой матрицы очевидна; что касается чисел \(n_1, n_2 \), то диагональность по отношению к ним следует из взаимной ортогональности функций \(f_{n_1 m} \) с различными \(n_1 \) и одинаковыми \(n \) (см. ниже). Интегрирования по \(d\rho_1 \) и по \(d\rho_2 \) в (73,1) разделяются; получающиеся интегралы вычислены в § f математического дополнения (интеграл \(f, 6 \)). После простого вычисления получим в результате для поправки первого приближения к уровням энергии

\[
E^{(1)} = \frac{3}{2} \mathcal{E} n (n_1 - n_2)\ (73,2)
\]

или в абсолютных единицах:

\[
E^{(1)} = \frac{3}{2} n (n_1 - n_2) \mathcal{E} \frac{\hbar^2}{\mu e^2}.
\]

1) В нижеследующих вычислениях мы не учитываем тонкой структуры водородных уровней. Поэтому поле должно быть хотя и не сильным (условие применимости теории возмущений), но в то же время таким, чтобы штарковское расщепление было велико по сравнению с тонкой структурой.

3) В этом параграфе мы пользуемся атомными единицами.
Две крайние компоненты расщепившегося уровня соответствуют $n_1 = n - 1$, $n_2 = 0$ и $n_1 = 0$, $n_2 = n - 1$. Расстояние между этими двумя крайними уровнями есть, согласно (73,2),

$$3\mathfrak{n}(n - 1),$$

т. е. общее расщепление уровня при эффекте Штарка примерно пропорционально n^2. Увеличение расщепления с главным квантовым числом естественно: чем дальше от ядра находятся электроны, тем больше дипольный момент атома.

Наличие линейного эффекта означает, что в невозмущённом состоянии атом обладает дипольным моментом со средним значением

$$d_x = -\frac{3}{2} n (n_1 - n_2).$$

Это находится в согласии с тем, что в состоянии, определяемом параболическими квантовыми числами, распределение зарядов в атоме не симметрично относительно плоскости $x = 0$ (см. § 37). Так, при $n_1 > n_2$ электрон находится преимущественно на стороне положительных z, а потому атом обладает отрицательным (заряд электрона отрицателен!) дипольным моментом.

В предыдущем параграфе было указано, что снятие вырождения однородным электрическим полем не может быть полным — остаётся во всяком случае двукратное вырождение состояний, отличающихся знаком проекции момента на направление поля (в данном случае — состояний с проекциями момента, равными $\pm m$). Однако из формулы (73,2) видно, что в линейном Штарк-эффекте у водорода такое снятие вырождения не достигается, — смещение уровней (при данных n и $n_1 - n_2$) вообще не зависит от m и n_2. Дальнейшее снятие вырождения происходит в эффекте второго приближения; вычисление этого эффекта представляет интерес тем более, что в состояниях с $n_1 = n_2$ линейный эффект Штарка вообще отсутствует.

Для вычисления квадратичного эффекта неудобно пользоваться обычной теорией возмущений, так как при этом пришлось бы иметь дело с бесконечными суммами сложного вида. Вместо этого воспользуемся следующим несколько видоизменённым методом.

Уравнение Шредингера для атома водорода в однородном электрическом поле имеет вид:

$$\left(\frac{1}{2} \Delta + E + \frac{1}{r} - 3z\right)\psi = 0.$$

Как и уравнение с $\mathfrak{z} = 0$, оно допускает разделение переменных в параболических координатах. Та же подстановка (37,7), что и в § 37, приводит к двум уравнениям:

$$\frac{d}{d\xi} \left(\xi \frac{df_1}{d\xi}\right) + \left(\frac{E}{2} - \frac{m^2}{2\xi^2} - \frac{3}{4} \xi^2\right)f_1 = -\beta_1 f_1, \quad \beta_1 + \beta_2 = 1,$$

$$\frac{d}{d\eta} \left(\eta \frac{df_2}{d\eta}\right) + \left(\frac{E}{2} - \frac{m^2}{4\eta} + \frac{3}{4} \eta^2\right)f_2 = -\beta_2 f_2,$$

(73,4)
отличающимся от (37.8) наличием членов с \(\xi \). Будем рассматривать в этих уравнениях энергию \(E \) как параметр, имеющий данное определённое значение, а величины \(\beta_1, \beta_2 \) — как собственные значения соответствующих операторов (легко убедиться в том, что эти операторы самосопряжённые). Эти величины определяются при решении уравнений как функции от \(E \) и \(\xi \), после чего условие \(\beta_1 + \beta_2 = 1 \) даёт требуемое соотношение между \(E \) и \(\xi \), т. е., другими словами, энергию как функцию внешнего поля.

При приближённом решении уравнений (73.4) рассматриваем члены, содержащие поле \(\xi \), как малое возмущение. В нулевом приближении (\(\xi = 0 \)) уравнение имеет известные уже нам решения

\[
\begin{align*}
 f_1 &= \sqrt{\xi} f_{n,m}(\xi), \\
 f_2 &= \sqrt{\xi} f_{n,m}(\eta),
\end{align*}
\]
(73.5)

где функции \(f_{n,m} \) те же, что в (37.6), а вместо энергии введён параметр

\[\varepsilon = \sqrt{\frac{1}{2E}}. \]
(73.6)

Соответствующими значениями величин \(\beta_1, \beta_2 \) (согласно равенствам (37.12), в которых надо заменить \(n \) на \(\frac{1}{\varepsilon} \)) будут:

\[\beta_1^{(0)} = \left(n_1 + \frac{1}{2} \right) \varepsilon, \quad \beta_2^{(0)} = \left(n_2 + \frac{1}{2} \right) \varepsilon. \]
(73.7)

Функции \(f \) с различными значениями \(n \) при заданном \(\varepsilon \) взаимно ортогональны, как собственные функции всякого самосопряжённого оператора (мы пользовались уже этим фактом выше при рассмотрении линейного эффекта); в (73.5) они нормированы условиями

\[
\int_0^\infty f_1^2 d\xi = 1, \quad \int_0^\infty f_2^2 d\eta = 1.
\]

Поправки первого приближения для \(\beta_1 \) и \(\beta_2 \) определяются диагональными матричными элементами возмущения:

\[\beta_1^{(1)} = \frac{\varepsilon}{4} \int_0^\infty \xi^2 f_1^2 d\xi, \quad \beta_2^{(0)} = -\frac{\varepsilon}{4} \int_0^\infty \eta^2 f_2^2 d\eta. \]

Вычисление даёт:

\[\beta_1^{(1)} = \frac{\varepsilon}{4\varepsilon^2} \left(6n_1^2 + 6n_2 \left| m \right| + m^2 + 6n_1 + 3 \left| m \right| + 2 \right). \]

Выражение для \(\beta_2^{(1)} \) отличается заменой \(n_1 \) на \(n_2 \) и переменой знака,
Во втором приближении имеем, согласно общим формулам теории возмущений:

$$\beta^{(2)}_1 = \frac{\xi^2}{16} \sum_{n'_1 \neq n_1} \frac{|(\xi^2)_{n_1 n'_1}|^2}{\beta^{(0)}_1 (n_1) - \beta^{(0)}_1 (n'_1)}.$$

Интегралы, входящие в матричные элементы $$(\xi^2)_{n_1 n'_1}$$, вычислены в § f математического дополнения. Отличны от нуля только элементы

$$(\xi^2)_{n_1, n_1 - 1} = (\xi^2)_{n_1 - 1, n_1} = -\frac{2}{\varepsilon^2} (2 n_1 + |m|) \sqrt{n_1 (n_1 + |m|)},$$

$$(\xi^2)_{n_1, n_1 - 2} = (\xi^2)_{n_1 - 2, n_1} = \frac{1}{\varepsilon^2} \sqrt{n_1 (n_1 - 1) (n_1 + |m|) (n_1 + |m| + 1)}.$$

Стоящие в знаменателях разности равны:

$$\beta^{(0)}_1 (n_1) - \beta^{(0)}_1 (n'_1) = \varepsilon (n_1 - n'_1).$$

В результате вычисления получается:

$$\beta^{(2)}_1 = -\frac{\xi^2}{16 \varepsilon^5} \left(|m| + 2 n_1 + 1 \right) \left[4 m^2 + 17 \left(2 |m| n_1 + 2 n_2 + |m| + 2 n_1 \right) + 18 \right]$$

(выражение для $\beta^{(2)}_2$ отличается заменой n_1 на n_2). Собирая полученные выражения и подставляя в соотношение $\beta_1 + \beta_2 = 1$, получим уравнение

$$\varepsilon n = \frac{\xi^2 n}{16 \varepsilon^5} \left[17 n^2 + 15 (n_1 - n_2)^2 - 9 m^2 + 19 \right] + \frac{3}{2} \xi^2 \varepsilon^2 (n_1 - n_2) = 1.$$

Решая его последовательными приближениями, получим во втором приближении для энергии $E = -\frac{\varepsilon^2}{2}$ выращение

$$E = -\frac{1}{2 n^2} + \frac{3}{2} \xi n (n_1 - n_2) - \frac{\xi^2}{16} n^4 \left[17 n^2 - 3 (n_1 - n_2)^2 - 9 m^2 + 19 \right].$$

(73,8)

Второй член представляет собой известный уже нам линейный эффект Штарка, а третий — искомый квадратичный эффект. Отметим, что эта величина всегда отрицательна, т. е. благодаря квадратичному эффекту термы всегда смешаются вниз. Среднее значение дипольного момента получается дифференцированием (73,8) по полю; в состояниях с $n_1 = n_2$ оно равно:

$$\overline{d_n} = \frac{n^4}{8} (17 n^2 - 9 m^2 + 19) \xi.$$

(73,9)
Так, поляризуемость атома водорода в нормальном состоянии \((n = 1, m = 0)\) равна \(\frac{9}{2}\) [в абсолютных единицах: \(\frac{9}{2} \left(\frac{\hbar^2}{\mu e^2}\right)^3\)].

Абсолютное значение энергии водородных термов быстро падает с увеличением главного квантового числа \(n\), а штарковское рассеяние возрастает. В связи с этим представляет интерес рассмотрение Штарк-эффекта сильно возбуждённых уровней в полях настолько сильных, что произведённое ими рассеяние сравнимо по величине с энергией самого уровня и потому теория возмущений неприменима\(^1\). Это можно сделать, воспользовавшись квазиклассической схемой состояний с большими значениями \(n\).

Подстановкой

\[
\begin{aligned}
f_1 &= \frac{\chi_1}{\sqrt{\xi}}, \\
f_2 &= \frac{\chi_2}{\sqrt{\eta}}
\end{aligned}
\] \(73.10\)

уравнения (73.4) приводятся к виду:

\[
\begin{aligned}
d^2\chi_1 + \left(\frac{E}{2} + \frac{\beta_1}{\xi} - \frac{m^2 - 1}{4\xi^2} - \frac{G}{4} \xi\right) \chi_1 &= 0, \\
d^2\chi_2 + \left(\frac{E}{2} + \frac{\beta_2}{\eta} - \frac{m^2 - 1}{4\eta^2} + \frac{G}{4} \eta\right) \chi_2 &= 0.
\end{aligned}
\] \(73.11\)

Но каждое из этих уравнений имеет вид одномерного уравнения Шредингера, причём роль полной энергии частицы играет \(\frac{G}{4}\), а роль потенциальной энергии — соответственно функции

\[
\begin{aligned}
U_1 (\xi) &= - \frac{\beta_1}{2\xi} + \frac{m^2 - 1}{8\xi^2} + \frac{G}{8} \xi, \\
U_2 (\eta) &= - \frac{\beta_2}{2\eta} + \frac{m^2 - 1}{8\eta^2} - \frac{G}{8} \eta.
\end{aligned}
\] \(73.12\)

На рис. 27, 28 изображён примерный вид этих функций (для \(m > 1\)). Согласно правилу квантования Бора (48.1), пишем:

\[
\begin{aligned}
\int_{\xi_1}^{\xi_2} \sqrt{2\left[\frac{E}{4} - U_1 (\xi)\right]} d\xi &= \left(n_1 + \frac{1}{2}\right) \pi, \\
\int_{\eta_1}^{\eta_2} \sqrt{2\left[\frac{E}{4} - U_2 (\eta)\right]} d\eta &= \left(n_2 + \frac{1}{2}\right) \pi.
\end{aligned}
\] \(73.13\)

\(^1\) Применимость теории возмущений к высоким уровням требует малости возмущений лишь по сравнению с энергией самого уровня (энергией связи электрона), а не с интервалами между уровнями. Действительно, в квазиклассическом случае (который как раз представляет сильно возбуждённые состояния) возмущение может считаться малым, если вызываемая им сила мала по сравнению с силами, действующими на частицу в невозмущённой системе; но это условие эквивалентно указанному выше,
(\(n_1, n_2\) — целые числа)\(^1\)). Эти уравнения определяют в неявном виде зависимость параметров \(\beta_1, \beta_2\) от \(E\). Вместе с равенством \(\beta_1 + \beta_2 = 1\) они определяют, следовательно, энергии смещённых электрическим полем уровней. Интегралы в уравнениях (73,13) могут быть приведены к эллиптическим; решение этих уравнений возможно лишь в численном виде.

Штарк-эффект в сильных полях осложняется ещё и другим явлением — ионизацией атома электрическим полем. Потенциальная энергия электрона во внешнем поле \(\varepsilon z\) принимает при \(z \to \infty\) сколь-

Рис. 27. Рис. 28.

угдоно большие отрицательные значения. Накладываясь на потенциальную энергию электрона внутри атома, она приводит к тому, что область возможного движения электрона (полная энергия \(E\) которого отрицательна) становится, наряду с областью внутри атома, также и область больших расстояний от ядра по направлению к аноду. Эти две области разделены потенциальным барьером, ширина которого уменьшается с увеличением поля. Но мы знаем, что в квантовой механике всегда существует некоторая отличная от нуля вероятность частице пройти через потенциальный барьер. В данном случае выход электрона из области внутри атома через барьер наружу представляет собой не что иное, как ионизацию атома. В слабых полях вероятность такой ионизации исчезающе мала. Она, однако, экспоненциально растёт с полем и в достаточно сильных полях становится значительной\(^2\).

\(^1\) Подробное исследование показывает, что более точный результат получается, если писать \(m^2\) вместо \(m^2 - 1\) в выражениях для \(U_1, U_2\). Целые числа \(n_1, n_2\) совпадают тогда с параболическими квантовыми числами.

\(^2\) Описываемое явление может служить иллюстрацией того, как малое возмущение может изменить характер энергетического спектра. Уже слабое поле \(\varepsilon\) достаточно для того, чтобы создать потенциальный барьер и сделать область вдаль от ядра принципиально достижимой для электрона. В результате движение электрона становится, строго говоря, инфинитным, и потому энергетический спектр из дискретного превращается в непрерывный. Тем не менее формальное решение, получаемое по методу теории возмущений, имеет физический смысл. Именно, оно определяет уровни энергии состояний, которые если не вполне, то «почти стационарны». Атом, находящийся в таком состоянии в некоторый начальный момент времени, останется в нём в течение весьма длительного промежутка времени.
ЗАДАЧА

Определить вероятность ионизации атома водорода (в основном состоянии) в сильноном электрическом поле.

Решение. В параболических координатах потенциальный барьер имеется «вдоль координаты η» (рис. 25); «вытягиванию» электрона из атома в направлении к z → −∞ соответствует его переход в область больших η. Для определения вероятности ионизации надо исследовать вид волновой функции при больших η (и небольших ξ; мы увидим ниже, что в интеграле, определяющем полный поток вероятности выходящего электрона, играют роль малые ξ). Волновая функция электрона в нормальном состоянии (в отсутствии поля) есть

$$\psi = \frac{1}{\sqrt{\pi}} e^{-\frac{\xi + \eta}{2}}.$$

(1)

При наличии поля зависимость ψ от ξ в интересующей нас области можно считать той же, что в (1), а для определения зависимости от η имеем уравнение

$$\frac{\partial^2 \chi}{\partial \eta^2} + \left[-\frac{1}{4} + \frac{1}{2\eta} + \frac{1}{4\eta^2} + \frac{\xi}{4} \right] \chi = 0,$$

(2)

где $\chi = \sqrt{\eta} \psi$ (уравнение (73,11) с $E = -1/2, m = 0, \beta = 1/2$). Пусть η_0 есть некоторое значение η (расположенное «внутри» барьера), такое, что $1 < \eta_0 \leq 1/8$. При $\eta \geq \eta_0$ волновая функция квазилинейна. Поскольку, с другой стороны, уравнение (2) имеет вид одномерного уравнения Шредингера, то мы можем воспользоваться формулами (50,4). Пользуясь в точке $\eta = \eta_0$ точным выражением (1) волновой функции, получим в области вне барьера выражение

$$\chi = \frac{1}{\sqrt{\pi}} e^{-\frac{\xi + \eta_0}{2}} \sqrt{\eta_0} \sqrt{\frac{|P_0|}{p}} e^{- \int \frac{\eta}{p} d\eta} - \frac{3\pi}{4},$$

где

$$p(\eta) = \sqrt{-\frac{1}{4} + \frac{1}{2\eta} + \frac{1}{4\eta^2} + \frac{\xi}{4}}.$$

Нас интересует ниже только квадрат $|\chi|^2$. Поэтому нимная часть экспоненты несущественна. Обозначая посредством η_1 корень уравнения $p(\eta) = 0$, имеем:

$$|\chi|^2 = \frac{|\eta_0}{\pi} e^{-\xi} \frac{|P_0|}{p} \int_{\eta_0}^{\eta_1} \left| \frac{\eta}{p} d\eta - \eta_0 \right|.$$

В предэкспоненциальном множителе полагаем $|P_0| \equiv 1/2, p \equiv 1/2 \sqrt{8\xi - 1};$ в экспоненте же надо сохранить также и следующий член разложения:

$$|\chi|^2 = \frac{\eta_0}{\pi \sqrt{8\xi - 1}} e^{-\xi} \int_{\eta_0}^{\eta_1} \left| \frac{1}{V \xi - 8\xi \cdot d\eta} \right| e^{-\eta_0} \int_{\eta_0}^{\eta_1} \frac{d\eta}{\sqrt{V \xi - 8\xi}} - \eta_0.$$

(причём $\eta_1 \equiv 1/8$). Производя интегрирование и прецедергая везде, где это возможно, η_0 по сравнению с 1, получим:

$$|\chi|^2 = \frac{4}{\pi_8} e^{-\frac{1}{8\xi}} e^{-\xi} \frac{\sqrt{V \xi - 1}}{\sqrt{8\xi - 1}}.$$

(3)
Полный поток вероятности через плоскость, перпендикулярную к оси z (т. е. искомая вероятность ионизации ω), есть

$$w = \int_0^\infty |\psi|^2 v_z 2\pi r \, dr.$$

При больших η (и малых ξ) можно положить $dr = d\sqrt{\frac{m\eta}{2}} \approx \frac{1}{2} \sqrt{\frac{\eta}{\xi}} \, d\xi$.

Подставляя также для скорости электрона $v_z \approx \sqrt{2 \left(-\frac{1}{2} + \frac{\xi\eta}{2} \right)} = \sqrt{\xi\eta - 1}$, получим

$$w = \int_0^\infty |\gamma|^2 \pi \sqrt{\xi\eta - 1} \, d\xi = \frac{4}{3} e^{-\frac{1}{4\xi}} \int_0^\infty e^{-\xi} \, d\xi,$$

т. е. окончательно:

$$w = \frac{4}{3} e^{-\frac{1}{4\xi}}.$$

§ 74. Квадрупольный момент атома

Как известно из электродинамики, энергия системы во внешнем неоднородном электрическом поле (мало меняющемся на протяжении размеров системы) может быть представлена в виде суммы так называемых дипольной, квадрупольной и т. д. энергий. В квантовой механике эти энергии должны рассматриваться как операторы. Мы видели, что эффект первого приближения от дипольной энергии для всех атомов (кроме атома водорода) в возбуждённых состояниях исчезает. В неоднородном поле, однако, может существовать линейное по полю квадрупольное расщепление.

Квадрупольная энергия имеет вид:

$$\frac{1}{6} \sum_{i,k=1}^3 \frac{\partial^2 \varphi}{\partial x_i \partial x_k} D_{ik},$$

gде φ — потенциал электрического поля (подразумевается значение производных в месте нахождения атома), а

$$D_{ik} = \sum e \left(3x_i x_k - \delta_{ik} r^2 \right)$$

есть так называемый тензор квадрупольного момента (суммирование производится по всем частицам системы; индекс, нумерующий частицы, опускаем). Тензор D_{ik} определён так, что сумма его диагональных членов равна нулю.

В квантовой механике тензору квадрупольного момента соответствует некоторый оператор, и определение энергии расщепления требует усреднения этого оператора по невозмущённому состоянию.

1) См., например, «Теория поля», 2-е изд., § 41.
Расщепление предполагается попрежнему малым по сравнению с интервалами тонкой структуры, так что невозмущёнными являются состояния с заданными значениями полного момента \(J \). Усреднение производится в два приёма (подобно тому как это было сделано в § 67 для взаимодействия спин-орбиты). Обозначим посредством \(\hat{D}_{4k} \) оператор квадрупольного момента, усреднённый по электронным состояниям с заданным значением момента \(J \) (но не его проекции \(M_J \)). Единственным вектором, характеризующим атом в целом, является «вектор» \(\hat{J} \). Поэтому единственным симметричным по \(i, k \) тензорным оператором с равной нулем суммой \(\hat{D}_{ii} \) является тензор вида:

\[
\hat{D}_{kk} = \frac{3D_0}{2J(2J-1)} \left(\hat{j}_k \hat{j}_k + \frac{2}{3} \delta_{4k} \hat{j}^2 \right),
\]

где \(D_0 \) — постоянная, которую называют просто квадрупольным моментом атома \(^1\)). Операторы \(\hat{j}_k \) надо понимать, как известные нам матрицы момента с заданным значением \(J \), не диагональные по \(M_J \); оператор \(\hat{j}^2 \) можно, конечно, заменить просто его собственным значением \(J(J+1) \).

При \(J = 0 \) (так что и \(M_J = 0 \)) все элементы этих матриц равны нулю, так что операторы тождественно исчезают. Они тождественно обращаются в нуль также и при \(J = 1/2 \). В этом легко убедиться, непосредственно перемножая матрицы Паули (54,3), представляющие собой матрицы компонент всякого момента, равного 1/2.

Окончательное усреднение квадрупольной энергии зависит от конкретного вида неоднородного поля (см. задачу).

З А Д А Ч А

Определить квадрупольное расщепление уровней в аксиально-симметрическом электрическом поле.

Решение. В поле, симметричном относительно оси \(z \), имеем

\[
\frac{\partial^2 \varphi}{\partial x^2} = \frac{\partial^2 \varphi}{\partial y^2} = a, \quad \frac{\partial^2 \varphi}{\partial z^2} = -\left(\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} \right) = -2a,
\]

а остальные вторые производные равны нулю. Оператор квадрупольной энергии имеет вид:

\[
\frac{a}{2} (\hat{D}_{xx} + \hat{D}_{yy} + \hat{D}_{zz}) = \frac{3D_0 a}{J(2J-1)} \left(\hat{j}_x^2 + \hat{j}_y^2 - 2\hat{j}_z^2 \right) = \frac{3D_0 a}{J(2J-1)} (\hat{j}^2 - 3\hat{j}_z^2).
\]

Заменяя операторы \(\hat{j}^2 \) и \(\hat{j}_z^2 \) их собственными значениями, получаем для смещения уровней:

\[
\Delta E = a \frac{3D_0}{J(2J-1)} [J(J+1) - 3M_J^2].
\]

1) Постоянная \(D_0 \) выбирается так, чтобы в состоянии с \(J_z = J \) было \(D_{zz} = D_0 \).
ГЛАВА XI
ДВУХАТОМНАЯ МОЛЕКУЛА

§ 75. Электронные термы двухатомной молекулы

В теории молекул основную роль играет тот факт, что массы ядер атомов очень велики по сравнению с массой электронов. Благодаря такой разнице в массах скорости движения ядер в молекуле малы по сравнению со скоростями электронов. Это даёт возможность рассматривать электронное движение при неподвижных ядрах, расположенных на заданных расстояниях друг от друга. Определяя уровни энергии U_n такой системы, мы найдем, как говорят, электронные термы молекулы. В противоположность атомам, где энергетические уровни представляли собой определённые числа, здесь электронные термы являются не числами, а функциями от параметров — расстояний между ядрами в молекуле. В энергию U_n включается также и электростатическая энергия взаимодействия ядер друг с другом, так что U_n представляет собой по существу полную энергию молекулы при заданном расположении неподвижных ядер.

Мы начнём изучение молекул с наиболее простого типа молекул — двухатомных, допускающего наиболее полное теоретическое исследование.

Одним из основных принципов классификации атомных термов была классификация по значениям полного орбитального момента L. В молекулах же вообще не имеет места закон сохранения полного орбитального момента электронов, поскольку электрическое поле нескольких ядер не обладает центральной симметрией.

В двухатомных молекулах, однако, поле обладает аксиальной симметрией относительно оси, проходящей через оба ядра. Поэтому здесь сохраняется проекция орбитального момента на эту ось, и мы можем классифицировать электронные термы молекул по значениям этой проекции. Абсолютную величину проекции орбитального момента на ось молекулы принято обозначать буквой Δ; она пробегает значения $0, 1, 2, \ldots$. Термы с различными значениями Δ обозначают большими греческими буквами, соответствующими латинским символам атомных термов с различными L. Так, при $\Delta = 0, 1, 2$ говорят,
соответственно, о Σ-, Π-, Δ-термах; больших Δ обычно не приходится рассматривать.

Далее, каждое электронное состояние молекулы характеризуется полным спином S всех электронов в молекуле. При отличном от нуля S имеет место вырождение по направлениям полного спина кратности 2S + 1. Число 2S + 1, как и в атомах, называется мультиплетностью терма и пишется в виде индекса у символа терма; так, 3Π обозначает терм с Δ = 1, S = 1.

Наряду с поворотами на произвольный угол вокруг оси, симметрия молекулы допускает также и отражение в любой плоскости, проходящей через эту ось. Если произвести такое отражение, то энергия молекулы останется, очевидно, неизменной. Получающееся же в результате состояние не будет, однако, вполне тождественным с исходным. Именно, при отражении в плоскости, проходящей через ось молекулы, изменится знак момента количества движения относительно этой оси. Таким образом мы приходим к результату, что все электронные термы с отличным от нуля значением Δ двукратно вырождены—каждому значению энергии соответствуют два состояния, относящиеся направлением проекции орбитального момента на ось молекулы. Что же касается случая Δ = 0, то здесь при отражении состояние молекулы вообще не меняется, так что Σ-термы не вырождены. Волновая функция Σ-терма в результате отражения может лишь умножиться на постоянную. Поскольку двукратное отражение в одной и той же плоскости сводится к тождественному преобразованию, то эта постоянная равна ±1. Таким образом надо различать Σ-термы, волновая функция которых не меняется вовсе при отражении, и термы, волновая функция которых меняет знак. Первые обозначаются посредством Σ+, а вторые — как Σ−.

Если молекула состоит из двух одинаковых атомов, то появляется новая симметрия, а с нею и дополнительная характеристика электронных термов. Именно, двухатомная молекула с одинаковыми ядрами обладает еще и центром симметрии относительно точки, делящей пополам линию, соединяющую ядра. (Начало координат выбираем в этой точке.) Поэтому гамильтониан инвариантен относительно одновременного изменения знака координат всех электронов в молекуле (при неизменных координатах ядер). Поскольку оператор инверсии коммутирует также и с оператором орбитального момента (§ 28), то мы получаем возможность классифицировать термы с определёнными значениями Δ еще и по их чётности: волновая функция чётных (g)

1) От тонкой структуры, связанной с релятивистскими взаимодействиями, мы здесь отвлекаемся (см. ниже §§ 80, 81).

2) Она обладает также и плоскостью симметрии, перпендикулярной к оси молекулы и делищей её пополам. Однако нет необходимости рассматривать этот элемент симметрии особо, так как наличие такой плоскости автоматически следует из факта наличия центра симметрии и плоскостей симметрии, проходящих через ось.
сочетаний не меняется при изменении знака координат электронов, а нечётных \((u)\) — меняет знак. Индексы \(u, g\), указывающие чётность, принято писать внизу при символе терма: \(\Pi_u\), \(\Pi_g\) и т. п.

Наконец, укажем эмпирическое правило, согласно которому у подавляющего большинства химически устойчивых двухатомных молекул нормальное электронное состояние обладает полной симметрией — электронная волновая функция инвариантна по отношению ко всем преобразованиям симметрии молекулы. Как будет указано в § 78, в подавляющем большинстве случаев в нормальном состоянии также равен нулю полный спин \(S\). Другими словами, основной терм молекулы есть \(1\Sigma^+\), а если молекула состоит из одинаковых атомов — то \(1\Sigma^+_g\).

§ 76. Пересечение электронных термов

Электронные термы двухатомной молекулы являются функциями одного параметра — расстояния \(r\) между ядрами. Их можно изображать графически, откладывая энергию как функцию от \(r\). Существенный интерес представляет вопрос о пересечении кривых, изображающих различные термы.

Пусть \(U_1(r), U_2(r)\) — два различных электронных терма. Если они пересекаются в некоторой точке, то вблизи этой точки функции \(U_1, U_2\) имеют близкие значения. Для решения вопроса о возможности такого пересечения удобно поставить задачу следующим образом. Рассмотрим точку \(r_0\), в которой функции \(U_1(r), U_2(r)\) имеют очень близкие, но не совпадающие значения (обозначим их как \(E_1\) и \(E_2\)) и посмотрим, нельзя ли сделать \(U_1\) и \(U_2\) равными, сместив точку на малую величину \(\delta r\). Энергии \(E_1\) и \(E_2\) представляют собой собственные значения гамильтона \(\hat{H}_0\) — системы электронов в поле ядер, находящихся на расстоянии \(r_0\) друг от друга. Если дать расстоянию \(r_0\) приращение \(\delta r_1\), то гамильтона перейдёт в \(\hat{H}_0 + \hat{V}\), где \(\hat{V} = \delta r \frac{\partial \hat{H}_0}{\partial r}\) есть малая поправка; значения функций \(U_1, U_2\) в точке \(r_0 + \delta r\) можно рассматривать как собственные значения нового гамильтона. Таким способом рассмотрения позволяет определить значения термов \(U_1(r), U_2(r)\) в точке \(r_0 + \delta r\) посредством теории возмущений, причём \(\hat{V}\) рассматривается как возмущение к оператору \(\hat{H}_0\).

Обычный метод теории возмущений здесь, однако, неприменим, так как собственные значения энергии \(E_1, E_2\) невозмущённой задачи очень близки друг к другу и их разность, вообще говоря, невелика по сравнению с величиной возмущения (условие \((38,8)\) не выполнено). Поскольку в пределе равной нулю разности \(E_2 - E_1\) мы придём

1) Исключение из этих правил представляют молекулы \(O_2\) (нормальный терм \(^3\Sigma^+\)) и NO (нормальный терм \(^2\Pi\)).
§ 761 ПЕРЕСЕЧЕНИЕ ЭЛЕКТРОННЫХ ТЕРМОВ 305

c к случаю вырожденных собственных значений, то естественно попытаться применить к случаю близких собственных значений метод, аналогичный развитому в § 39.

Пусть ψ_1, ψ_2 — собственные функции невозмущённого оператора \hat{H}_0, соответствующие энергиям E_1, E_2. В качестве исходного нулевого приближения возьмём вместо самих ψ_1 и ψ_2 их линейные комбинации вида

$$\psi = c_1\psi_1 + c_2\psi_2.$$

(76,1)

Подставляя это выражение в возмущённое уравнение

$$\left(\hat{H}_0 + \hat{V}\right)\psi = E\psi,$$

(76,2)

получим:

$$c_1 \left(E_1 + \hat{V} - E \right) \psi_1 + c_2 \left(E_2 + \hat{V} - E \right) \psi_2 = 0.$$

Умножая это уравнение слева поочерёдно на ψ^*_1 и ψ^*_2 и интегрируя, получим два алгебраических уравнения:

$$\begin{cases} c_1 \left(E_1 + V_{11} - E \right) + c_2 V_{12} = 0, \\ c_1 V_{21} + c_1 \left(E_2 + V_{22} - E \right) = 0, \end{cases}$$

(76,3)

где $V_{ik} = \int \psi^*_i V \psi_k dq$. В силу эрмитовости оператора \hat{V} величины V_{11} и V_{22} действительны, а $V_{12} = V_{21}^*$. Условие совместности этих уравнений гласит

$$\begin{vmatrix} E_1 + V_{11} - E & V_{21} \\ V_{12} & E_2 + V_{22} - E \end{vmatrix} = 0,$$

откуда получаем после вычисления:

$$E = \frac{1}{2} \left(E_1 + E_2 + V_{11} + V_{22} \right) - \sqrt{\frac{1}{4} \left(E_1 - E_2 + V_{11} - V_{22} \right)^2 + \left| V_{12} \right|^2}.$$

(76,4)

Этой формулой и определяются искомые собственные значения энергии в первом приближении.

Если значения энергии обоих термов в точке $r_0 + \delta r$ становятся равными (термы пересекаются), то это значит, что оба значения E, определяемые формулой (76,4), совпадают. Для этого необходимо, чтобы подкоренное выражение в (76, 4) обратилось в нуль. Поскольку оно является суммой двух квадратов, то мы получаем в качестве условия наличия точек пересечения термов уравнения

$$E_1 - E_2 + V_{11} - V_{22} = 0, \quad V_{12} = 0.$$

(76,5)

Между тем, в нашем распоряжении имеется всего один произвольный параметр, определяющий возмущение \hat{V}—величина δr смещения. Поэтому два (предполагаем, что функции ψ_1, ψ_2 выбраны действительными;
тогда V_{12} тоже действительно) уравнения (76,5) не могут быть, вообще говоря, удовлетворены одновременно.

Может, однако, случиться, что матричный элемент V_{12} обращается в нуль тождественно; тогда остаётся всего одно уравнение (76,5), которое может быть удовлетворено надлежащим подбором δr. Это имеет место во всех случаях, когда два рассматриваемых терма обладают различной симметрией. Под симметрией мы подразумеваем здесь все возможные виды симметрии — по отношению к вращениям вокруг оси, отражениям в плоскостях, инверсии, а также по отношению к перестановкам электронов. У двухатомной молекулы это значит, что речь может идти о термах с различными Λ, различной чётности или мультиплиятности, а для Σ-термов — ещё и Σ^+ и Σ^-.

Для доказательства этого утверждения существенно, что оператор \hat{V} (как и самый гамильтониан) коммутирует со всеми операторами симметрии молекулы — оператором момента относительно оси, операторами отражений и инверсии, операторами перестановок электронов. В §§ 27, 28 было показано, что для скалярной величины, оператор которой коммутирует с оператором момента и инверсии, отличны от нуля матричные элементы только для переходов между состояниями одинакового момента и чётности. Это доказательство по существу в том же виде сохраняется и в общем случае произвольного оператора симметрии. Мы не станем повторять его здесь, тем более, что в § 94 будет дано ещё и другое общее доказательство, основанное на теории групп.

Таким образом мы приходим к результату, что у двухатомной молекулы могут пересекаться лишь термы различной симметрии, пересечение же термов одинаковой симметрии невозможно (Вигнер и Неиман, 1929). Если в результате какого-либо приближённого расчёта мы получили бы два пересекающихся терма одинаковой симметрии, то при вычислении следующего приближения они окажутся раздвинутыми, как это показано на рис. 29 сплошными линиями.

Подчёркнём, что этот результат относится не только к двухатомной молекуле, но является в действительности общей квантово-механической теоремой, справедливой в любом случае, когда гамильтониан содержит некоторый параметр, в результате чего и его собственные значения являются функциями этого параметра.

В многоатомной молекуле электронные термы являются функциями не от одного, а от нескольких параметров — расстояний между различными ядрами. Пусть s есть число независимых расстояний между ядрами; в N-атомной ($N > 2$) молекуле при произвольном расположении ядер это число равно $s = 3N - 6$. Каждый терм $U_n (r_1, \ldots, r_s)$
§ 77] Связь молекулярных термов с атомными

представляет собой, с геометрической точки зрения, поверхность в пространстве \(s + 1 \) измерений, и можно говорить о пересечениях этих поверхностей по многообразиям различного числа измерений — от 0 (пересечение в точке) до \(s - 1 \). Весь произведённый выше вывод полностью сохраняет силу с той лишь разницей, что возмущение \(\dot{V} \) определяется теперь не одним, а \(s \) параметрами — смещениями \(\delta r_1, \ldots, \delta r_s \). Но уже при двух параметрах два уравнения (76,5) могут, вообще говоря, быть удовлетворены. Таким образом мы приходим к результату, что в многоатомных молекулах всякие два терма могут пересечься друг с другом. Если термы имеют одинаковую симметрию, то пересечение определяется двумя условиями (76,5), откуда следует, что число измерений многообразия, по которому происходит пересечение, равно \(s - 2 \). Если же термы — различной симметрии, остаётся всего одно условие, и пересечение происходит по многообразию \(s - 1 \) измерений.

Так, при \(s = 2 \) термы изображаются поверхностями в трёхмерной системе координат. Пересечение этих поверхностей происходит, при различной симметрии термов, по линиям \((s - 1 = 1) \), а при одинаковой симметрии — в точках \((s - 2 = 0) \). Нетрудно выяснить, какой формой обла- дают в последнем случае поверхности вблизи точки пересечения. Значения энергии вблизи точек пересечения термов определяются формулой (76,4). В этом выражении матричные элементы \(V_{11}, V_{22}, V_{19} \) представляют собой линейные функции смещений \(\delta r_1, \delta r_2 \), а потому и линейные функции самих расстояний \(r_1, r_2 \). Но такое уравнение определяет, как известно из аналитической геометрии, эллиптический конус. Таким образом вблизи точек пересечения термы изображаются поверхностью произвольно расположенного двуполого эллиптического конуса (рис. 30).

§ 77. Связь молекулярных термов с атомными

Увеличивая расстояние между ядрами в двухатомной молекуле, мы получим в пределе два изолированных атома (или иона). В связи с этим возникает вопрос о соответствии между электронным термом молекулы и состояниями атомов, получающимися при их разведении. Эта связь неоднозначна: если сближать два атома, находящихся в определённых состояниях, то может получиться молекула в различных электронных состояниях.

Предположим сначала, что молекула состоит из двух различных атомов. Пусть изолированные атомы находятся в состояниях с
орбитальными моментами \(L_1, L_2 \) и спинами \(S_1, S_2 \) и пусть \(L_1 \geq L_2 \). Проекции моментов на соединяющую ядро прямую пробегают значения \(M_1 = L_1, -L_1 + 1, \ldots, L_1 \) и \(M_2 = -L_2, -L_2 + 1, \ldots, L_2 \). Абсолютное значение суммы \(M_1 + M_2 \) определяет момент \(\Delta \), получающийся при сближении атомов. Комбинируя все возможные значения \(M_1 \) и \(M_2 \), найдём, что различные значения \(\Delta = |M_1 + M_2| \) получаются следующее числом раз:

\[
\begin{align*}
\Delta = L_1 + L_2 & \quad \text{2 раза} \\
L_1 + L_2 - 1 & \quad \text{4 раза} \\
L_1 - L_2 & \quad \text{2 \((2L_2 + 1)\) раз} \\
L_1 - L_2 - 1 & \quad \text{2 \((2L_2 + 1)\) раз} \\
1 & \quad \text{2 \((2L_2 + 1)\) раз} \\
0 & \quad \text{2L_2 + 1 раз}
\end{align*}
\]

Помня, что все термы с \(\Delta \neq 0 \) двукратно выражены, а с \(\Delta = 0 \) — не выражены, находим, что могут получиться:

1 терм с \(\Delta = L_1 + L_2 \),
2 терма с \(\Delta = L_1 + L_2 - 1 \),

\(2L_2 + 1 \) термов с \(\Delta = L_1 - L_2 \),
\(2L_2 + 1 \) термов с \(\Delta = L_1 - L_2 - 1 \),

всего \((2L_2 + 1) \(L_1 + 1\) \) термов со значениями \(\Delta \) от 0 до \(L_1 + L_2 \).

Спины \(S_1, S_2 \) обоих атомов складываются в полный спин молекулы по общему правилу сложения моментов, давая следующие возможные значения \(S \):

\[
S = S_1 + S_2, \quad S_1 + S_2 - 1, \ldots, |S_1 - S_2|.
\]

Комбинируя каждое из этих значений со всеми значениями \(\Delta \) (77,1), мы получим полный список всех возможных термов образующейся молекулы.

Для \(\Sigma \)-термов возникает ещё вопрос об их знаке. Его легко решить, замечая, что волновые функции молекулы при \(r \to \infty \) могут быть написаны в виде произведений (или суммы произведений) волновых функций обоих атомов. Момент \(\Delta = 0 \) может получиться либо в результате сложения отличных от нуля моментов атомов \(M_1 = -M_2 \), либо при \(M_1 = M_2 = 0 \). Волновые функции первого и второго атомов обозначим посредством \(\psi_{M_1}^{(1)}, \psi_{M_2}^{(2)} \). При \(M = |M_1| = \ldots \)
связь молекулярных термов с атомными

\[|M_2| \neq 0 \] составляем симметризованные и антисимметризованные произведения

\[\psi^+ = \psi_M^{(1)} \psi_M^{(2)} + \psi_M^{(1)} \psi_M^{(2)} , \]

\[\psi^- = \psi_M^{(1)} \psi_M^{(2)} - \psi_M^{(1)} \psi_M^{(2)} . \]

Отражение в вертикальной (проходящей через ось молекулы) плоскости меняет знак проекции момента на ось, так что \(\psi_M^{(1)} \), \(\psi_M^{(2)} \) перехходят, соответственно, в \(\psi_M^{(-1)} \), \(\psi_M^{(-1)} \) и наоборот. При этом функция \(\psi^+ \) остаётся неизменной, а \(\psi^- \) — меняет знак; первая соответствует, следовательно, терму \(\Sigma^+ \), а вторая — терму \(\Sigma^- \). Таким образом для каждого значения \(M \) получается по одному \(\Sigma^+ \)- и \(\Sigma^- \)-терму. Поскольку \(M \) может иметь \(L_2 \) различных значений \((M = 1, \ldots, L_2) \), то мы получаем всего по \(L_2 \) термов \(\Sigma \) и \(\Sigma^- \).

Если же \(M_1 = M_2 = 0 \), то волновая функция молекулы составляет в виде \(\psi = \psi_0^{(1)} \psi_0^{(2)} \). Чтобы выяснить поведение функции \(\psi_0 \) при отражении в вертикальной плоскости, выбираем систему координат с началом в центре первого атома и осью \(z \) вдоль оси молекулы и замечаем, что отражение в вертикальной плоскости \(xz \) эквивалентно последовательно произведённой инверсии относительно начала координат и повороту на \(180^\circ \) вокруг оси \(y \). При инверсии функция \(\psi_0^{(1)} \) умножается на \(I_1 \), где \(I_1 = \pm 1 \) — чётность данного состояния первого атома. Далее, результат применения к волновой функции операции бесконечно малого (а потому и всякого конечного) поворота полностью определяется полным орбитальным моментом атома. Поэтому достаточно рассмотреть частный случай атома с одним электроном с орбитальным моментом \(l \) (и её-компонентой момента \(m = 0 \); написав в результате \(L \) вместо \(l \), мы получим искомый ответ для произвольного атома. Угловая часть волновой функции электрона с \(m = 0 \) есть, с точностью до постоянного коэффициента, \(P_l (\cos \theta) \) (см. (26.7)). Поворот на \(180^\circ \) вокруг оси \(y \) есть преобразование \(x \rightarrow -x \), \(y \rightarrow y \), \(z \rightarrow -z \) или, в сферических координатах, \(r \rightarrow r \), \(\theta \rightarrow \pi - \theta \), \(\phi \rightarrow \pi - \phi \). При этом \(\cos \theta \rightarrow - \cos \theta \), а функция \(P_l (\cos \theta) \) умножается на \((-1)^l\).

Таким образом заключаем, что в результате отражения в вертикальной плоскости функция \(\psi_0^{(1)} \) умножается на \((-1)^{L_1} I_1 \). Аналогично \(\psi_0^{(2)} \) умножается на \((-1)^{L_2} I_2 \), так что волновая функция \(\psi = \psi_0^{(1)} \psi_0^{(2)} \) умножается всего на \((-1)^{L_1 + L_2} I_1 I_2 \). Терм будет \(\Sigma^+ \) или \(\Sigma^- \), смотря по тому, равен ли этот множитель \(+1 \) или \(-1 \).

Сводя полученные результаты, мы находим, что из общего числа \(2L_2 + 1 \) \(\Sigma \)-термов (каждый из возможных мультиплетностей) \(L_2 + 1 \) термов будет \(\Sigma^+ \)-термами, а \(L_2 \) будет \(\Sigma^- \)-термами (если \((-1)^{L_1 + L_2} I_1 I_2 = +1 \)), или наоборот (если \((-1)^{L_1 + L_2} I_1 I_2 = -1 \)).

Перейдём теперь к молекуле, состоящей из одинаковых атомов. Правила сложения спинов и орбитальных моментов атомов в полные
Двухатомная молекула

С и А для молекулы останутся здесь теми же, что и у молекулы, состоящей из различных атомов. Новое состоит в том, что термы могут быть чётными и нечётными. При этом надо различать два случая: соединение атомов, находящихся в одинаковых или различных состояниях.

Если атомы находятся в различных состояниях, то общее число возможных термов удаляется (по сравнению с тем, которое было бы для различных атомов). Действительно, отражение в начале координат (находящемся в точке, делящей пополам ось молекулы) приводит к перестановке состояний обоих атомов. Симметризация или антисимметризация волновой функции молекулы по перестановке состояний атомов, мы получим два терма (с одинаковыми А и С), из которых один будет чётным, а другой нечётным. Таким образом мы получаем всего по одинаковому числу чётных и нечётных термов.

Если же оба атома находятся в одинаковых состояниях, то общее число состояний остаётся тем же, что и у молекулы с различными атомами. Что касается чётности этих состояний, то исследован оно (которое мы здесь не приводим ввиду его громоздкости) приводит к следующим результатам:

Пусть \(N_g, N_u \) суть числа чётных и нечётных термов с данными значениями \(\Lambda \) и \(S \). Тогда:

если \(\Lambda \) чётно, то \(N_g = N_u \),

если \(\Lambda \) чётно и \(S \) чётно \((S = 0, 2, 4, \ldots)\), то \(N_g = N_u + 1 \),

если \(\Lambda \) чётно, а \(S \) нечётно \((S = 1, 3, \ldots)\), то \(N_u = N_g + 1 \).

Наконец, среди \(\Sigma \)-термов надо различать еще \(\Sigma^+ \) и \(\Sigma^- \). Здесь имеет место:

если \(S \) чётно, то \(N_g^+ = N_u^- + 1 = L + 1 \),

если \(S \) нечётно, то \(N_u^+ = N_g^- + 1 = \bar{L} + 1 \)

(где \(L_1 = L_2 = L \)). Все термы \(\Sigma^+ \) имеют чётность \((-1)^g\), а все термы \(\Sigma^- \) чётность \((-1)^{g+1}\).

Наряду с разобраным нами вопросом о связи между молекулярными термами и термами атомов, получающихся при \(r \to \infty \), можно поставить также вопрос о связи молекулярных термов с термами «составного атома», который получился бы при \(r \to 0 \), т. е. при сведении обоих ядер в одну точку (например, связь между термами молекулы \(N_2 \) и атома \(He \)). По этому поводу могут быть без труда получены следующие правила. Из терма «составного» атома со спином \(S \), орбитальным моментом \(L \) и чётностью \(I \) могут получиться при «разведении составляющих атомов» молекулярные термы со спином, равным \(S \), и моментом относительно оси, равным

1) В частности, речь может идти о соединении нейтрального атома с ионизированным.
2) Его можно найти в оригинальной статье Вигнера и Витмера (E. Wigner, E. Witmer, ZS. f. Physik 51, 859, 1928).
§ 78] ВАЛЕНТНОСТЬ

\(\Lambda = 0, 1, \ldots, L \), причём для каждого из этих значений \(\Lambda \) получается по одному терму. Чётность молекулярного терма совпадает с чётностью \(I \) атомного терма (\(g \) при \(I = +1 \) и \(u \) при \(I = -1 \)). Молекулярный терм с \(\Lambda = 0 \) будет \(\Sigma^+ \)-термом, если \((-1)^L I = +1 \), или \(\Sigma^- \)-термом, если \((-1)^L I = -1 \).

ЗАДАЧИ

1. Определить возможные термы молекул \(\text{H}_2, \text{N}_2, \text{O}_2, \text{Cl}_2 \), которые могут получиться при соединении атомов в нормальных состояниях.

Решение. Согласно изложенным в тексте правилам, находим следующие возможные термы:

молекула \(\text{H}_2 \) (атомы в состояниях \(^2S \)): \(1\Sigma^+_g, 3\Sigma^+_u, 3\Sigma^-_u \);

« \(\text{N}_2 \) (» » ») \(^4S \): \(1\Sigma^+_g, 3\Sigma^-_u, 5\Sigma^-_g, 7\Sigma^+_u \);

« \(\text{Cl}_2 \) (» » ») \(^2P \): \(2\Sigma^+_g, 1\Sigma^-_g, 1\Pi^-_g, 1\Pi^+_u, 1\Delta^-_g, 2\Sigma^+_u, 3\Sigma^-_g, 3\Pi^-_g, 3\Pi^-_u, 1\Delta^-_u \);

молекула \(\text{O}_2 \) (» » ») \(^3P \): \(2\Sigma^+_g, 1\Sigma^-_g, 1\Pi^-_g, 1\Pi^-_u, 1\Delta^-_g, 2\Sigma^-_u, 3\Sigma^-_g, 3\Pi^-_g, 3\Pi^-_u, 5\Delta^-_u, 2\Sigma^+_g, 5\Sigma^-_u, 5\Pi^-_g, 5\Pi^-_u, 5\Delta^-_g \);

(цифры перед символом терма указывают число термов данного типа, если это число превышает единицу).

2. То же для молекул \(\text{HCl}, \text{CO} \).

Решение. При соединении различных атомов существенна также и чётность состояний последних. Согласно формуле (30.5), находим, что нормальные состояния атомов \(\text{H}, \text{O}, \) чётны, а атомов \(\text{Cl}, \) — нечётны (электронные конфигурации атомов — см. табл. 3). По изложенным в тексте правилам находим:

молекула \(\text{HCl} \) (атомы в состояниях \(^2S_g, ^2P_u \)): \(1,3\Sigma^+, 1,3\Pi^- \);

« \(\text{CO} \) (» » ») \(^3P_g, ^3P_g \): \(21,3,5\Sigma^+, 1,3,5\Sigma^- \);

\(21,3,5\Pi^-, 1,3,5\Delta \).

§ 78. Валентность

Свойство атомов соединяться друг с другом, образуя молекулу, описывается в химии с помощью понятия о валентности. Каждому атому приписывается определённая валентность и при соединении атомов их валентности должны взаимно насыщаться, т. е. каждой валентной связи атома должна соответствовать валентная связь другого атома. Например, в молекуле метана \(\text{CH}_4 \) четыре валентных связи четырёхвалентного атома углерода насыщаются валентными связями четырёх одновалентных атомов водорода. Приступая к физическому истолкованию валентности, мы начнём с простейшего примера — соединения двух атомов водорода в молекулу \(\text{H}_2 \).
Рассмотрим два атома водорода, находящихся в основном состоянии \(^3\Sigma \). При их сближении может получитьсь система, находящаяся в молекулярном состоянии \(^1\Sigma_g^+ \) или \(^3\Sigma_u^+ \). Синглетный терм соответствует антисимметричной спиновой волновой функции, а трiplетный терм — симметричной функции. Координатная же волновая функция, напротив, у терма \(^1\Sigma \) симметрична, а у терма \(^3\Sigma \) — антисимметрична. Очевидно, что основным термом молекулы \(\text{H}_2 \) может быть только терм \(^1\Sigma \). Действительно, антисимметричная волновая функция \(\varphi (r_1, r_2) \) \((r_1, r_2 — радиусы-векторы обоих электронов)\) во всяком случае обладает узлами (она обращается в нуль при \(r_1 = r_2 \)), а потому не может относиться к наиболее низкому состоянию системы.

Численный расчёт показывает, что электронный терм \(^1\Sigma \) действительно имеет глубокий минимум, соответствующий образованию устойчивой молекулы \(\text{H}_2 \). В состоянии же \(^3\Sigma \) энергия \(U(r) \) монотонно падает с увеличением расстояния между ядрами, что соответствует взаимному отталкиванию обоих атомов \(\text{H}^1 \) (рис. 31).

Таким образом в основном состоянии полный спин молекулы водорода равен нулю, \(S = 0 \). Оказывается, что этим свойством обладают молекулы практически всех химически устойчивых соединений элементов главных групп. Среди неорганических молекул исключение представляют двухатомные молекулы \(\text{O}_2 \) (основное состояние \(^3\Sigma \)) и \(\text{NO} \) (основное состояние \(^2\Pi \)) и трёхатомные молекулы \(\text{NO}_2, \text{ClO}_2 \) (полный спин \(S = 1/2 \)). Что касается элементов промежуточных групп, то они обладают особыми свойствами, о которых речь будет идти ниже, после того как мы изучим валентные свойства элементов главных групп.

Способность атомов соединяться друг с другом связана, таким образом, с их спином (В. Гайтлер и Г. Лондон, 1927). Соединение происходит так, чтобы спины атомов взаимно скомпенсировались. В качестве количественной характеристики способности атомов к взаимному соединению удобно пользоваться целым числом — удвоенным спином атома. Это число совпадает с химической валентностью атома. При этом надо иметь в виду, что один и тот же атом может обладать различной валентностью в зависимости от того, в каком состоянии он находится.

1) Следует оговориться, что на больших расстояниях функция \(U(r) \) начинает возрастать, соответственно ван-дер-ваальсовскому притяжению атомов. В результате появляется минимум и на верхней кривой. Однако этот минимум расположен при больших значениях \(r \) и очень неглубок, а потому не приводит к образованию устойчивых молекул.
Рассмотрим с этой точки зрения элементы главных групп периодической системы. Элементы первой группы (первый столбец в табл. 3, группа щелочных металлов) обладают в нормальном состоянии спином \(S = \frac{1}{2} \), соответственно, их валентность равна единице. Возбуждённое состояние с большим спином может быть получено только за счёт возбуждения электрона из заполненной оболочки. Соответственно этому, эти состояния находятся настолько высоко, что возбуждённый атом не может образовать устойчивую молекулу. \(^1\)

Атомы элементов второй группы (второй столбец в табл. 3, группа щелочноzemельных металлов) обладают в нормальном состоянии спином \(S = 0 \). Поэтому в нормальном состоянии эти атомы не могут вступать в химические соединения. Однако сравнительно близко к основному состоянию расположено возбуждённое, имеющее в незаполненной оболочке конфигурацию \(sp \) вместо \(s^2 \) и полный спин \(S = 1 \). Валентность атома в этом состоянии равна 2; это и есть основная валентность вторых групп.

Элементы третьей группы обладают в нормальном состоянии электронной конфигурацией \(s^2p^2 \) со спином \(S = \frac{1}{2} \). Однако путём возбуждения электрона из заполненной \(s \)-оболочки получается возбуждённое состояние с конфигурацией \(sp^3 \) и спином \(S = \frac{3}{2} \), расположенное близко к нормальному. Соответственно этому, элементы этой группы ведут себя как одновалентные, и как трёхвалентные. При этом первые элементы этой группы (B, Al) ведут себя только как трёхвалентные. Наклонность к проявлению валентности 1 растёт с увеличением атомного номера и Ti ведёт себя уже в равной степени как одновалентный и трёхвалентный элемент (например, в соединениях TiCl и TiCl₄). Это связано с тем, что в первых элементах группы энергетическое преимущество большей энергии связи в соединениях трёхвалентного элемента (по сравнению с соединениями одновалентного элемента) преобладает над энергией возбуждения атома.

В элементах четвёртой группы основное состояние имеет конфигурацию \(s^2p^2 \) со спином 1, а близкое к нему возбуждённое состояние — конфигурацию \(sp^3 \) со спином 2. Этим состояниям соответствуют валентности 2 и 4. Как и в третьей группе, первые элементы четвертой группы (C, Si) проявляют в основном высшую валентность (исключение представляет, например, соединение CO), а склонность к проявлению низшей валентности возрастает с увеличением атомного номера.

В атомах элементов пятой группы основное состояние обладает конфигурацией \(s^2p^3 \) и спином \(S = \frac{3}{2} \), так что соответствующая валентность равна трём. Возбуждённое состояние с большим спином может получиться только путём перехода одного из электронов в оболочку со следующим значением главного квантового числа.

\(^1\) Об элементах Cu, Ag, Au — см. в конце этого параграфа.
Ближайшее такое состояние имеет конфигурацию sp^2s' и спин $S = \frac{5}{2}$ (посредством s' мы условно обозначаем здесь s-состояние электрона с главным квантовым числом, на единицу большим, чем в состоянии s). Хотя энергия возбуждения этого состояния сравнительно велика, но всё же возбуждённый атом может вступить в устойчивое соединение. Соответственно этому элементы пятой группы ведут себя как трёх- и пятивалентные (так, азот в NH_3 трёхвалентен, а в HNO_3 — пятивалентен).

В шестой группе элементов в основном состоянии (конфигурация s^2p^4) спин равен 1, так что атом двухвалентен. Возбуждение одного из p-электронов приводит к состоянию s^2p^6s' со спином 2, а возбуждение ещё одного s-электрона приводит к состоянию $sp^3s'p'$ со спином 3. В обоих возбуждённых состояниях атом может вступать в устойчивые молекулы, проявляя соответственно валентности 4 и 6. При этом первый элемент шестой группы (кислород) проявляет только валентность 2, а следующие элементы группы проявляют также и высшие валентности (так, сера в H_2S, SO_2, SO_3, соответственно, двух-, четырёх- и шестивалентна).

В седьмой группе (группа галоидов) в основном состоянии (конфигурация s^2p^6, спин $S = \frac{1}{2}$) атомы одновалентны. Они могут, однако, вступать в устойчивые соединения и в возбуждённых состояниях с конфигурациями s^2p^4s', $s^2p^6s'p'$, $sp^3s'p'^2$ со спицами, соответственно равными $\frac{3}{2}$, $\frac{5}{2}$, $\frac{1}{2}$, что соответствует валентностям 3, 5, 7. При этом первый элемент группы (F) всегда одновалентен, а следующие элементы проявляют также и высшие валентности (так, хлор в HCl, HClO_2, HClO_3, HClO_4, соответственно, одно-, трёх-, пяти- и семивалентен).

Наконец, атомы элементов группы благородных газов обладают в основном состоянии полностью заполненными оболочками (так что спин $S = 0$), а их энергии возбуждения очень велики. Соответственно этому, валентность равна нулю и эти элементы химически инертны.

Поводу всех этих рассуждений необходимо сделать следующее общее замечание. Утверждение о том, что атом входит в молекулу с валентностью, свойственной его возбуждённому состоянию, отнюдь не означает, что при разведении атомов на большие расстояния мы

1) Это значит, что взаимодействие атома благородного газа в нормальном состоянии с любым другим атомом имеет характер отталкивания. Единственное исключение составляет взаимодействие атома благородного газа с возбуждённым атомом того же газа. Это связано с удвоением числа возможных состояний, получающихся при сведении двух атомов, если эти атомы есть атомы одного и того же элемента, но находятся в различных состояниях (см. § 77). Переход возбуждения от одного атома к другому заменяет в этом случае обменное взаимодействие, приводящее к обычной валентности. Примером такой молекулы является молекула He_2. Такого же типа связь имеет место в молекулярных ионах, состоящих из двух одинарных атомов (например, H_2^+).
непременно получим возбуждённый атом. Оно означает лишь, что распределение электронной плотности в молекуле таково, что вокруг ядра данного атома оно близко к электронному распределению в изолированном возбуждённом атоме. Предел же, к которому стремится электронное распределение при увеличении расстояния между ядрами, может при этом соответствовать невозбуждённым атомам.

При соединении атомов в моолекулу заполненные электронные оболочки атомов мало меняются. Распределение же электронной плотности в незаполненных оболочках может существенно измениться. В наиболее резко выраженных случаях так называемой гетерополярной связи все валентные электроны переходят от одних атомов к другим, так что можно сказать, что молекула состоит из ионов с зарядами, равными (в единицах e) их валентности. Элементы первой группы электроположительны — в гетерополярных соединениях они отдают электроны, образуя положительные ионы. При переходе к следующим группам электроположительность постепенно падает, переходя в электротрицательность, в наименьшей степени присущей элементам седьмой группы. По поводу гетерополярности надо сделать такое же замечание, которое было сделано выше о возбуждённых атомах в молекуле. Если молекула гетерополярна, то это отнюдь не означает, что при разведении атомов мы непременно получим два иона. Так, из молекулы KCl мы действительно получили бы ионы K⁺ и Cl⁻, но молекула NaCl даёт в пределе нейтральные атомы Na и Cl (поскольку сродство хлора к электрону больше ионизационного потенциала калия, но меньше ионизационного потенциала натрия).

В противоположном предельном случае так называемой гомополярной связи атомы в молекуле остаются в среднем нейтральными. Гомополярные молекулы, в противоположность гетерополярным, не обладают значительным дипольным моментом. Разница между гетерополярными и гомополярными типами связи чисто количественная, и могут существовать все переходные случаи.

Перейдём теперь к элементам промежуточных групп. Элементы групп палладия и платины по характеру своих валентных свойств мало отличаются от элементов главных групп. Разница заключается в том, что благодаря сравнительно глубокому расположению d-электронов в атоме они слабее взаимодействуют с другими атомами в молекуле. В результате этого среди соединений этих элементов относительно часто встречаются «ненасыщенные» соединения с молекулами, обладающими отличным от нуля спином (фактически не превышающим 1/2). Каждый из элементов может проявлять различные валентности, причём они могут отличаться здесь и на единицу, а не только на два, как у элементов главных групп (где изменение валентности связано с возбуждением какого-либо электрона с компенсированным спином, в результате чего освобождаются сразу спины пары электронов).
Элементы группы редких земель характеризуются наличием незаполненной \(f \)-оболочки. \(f \)-электроны расположены гораздо глубже \(d \)-электронов и в связи с этим вовсе не принимают участия в валентности. Таким образом, валентность редкоземельных элементов определяется только \(s \)- и \(p \)-электронами незаполненных оболочек\(^1\). Надо, однако, иметь в виду, что при возбуждении атома \(f \)-электроны могут переходить в \(s \)- и \(p \)-состояния, увеличивая тем самым валентность на единицу. Поэтому редкоземельные элементы проявляют валентности, отличающиеся на единицу (фактически все они трёх- и четырёхвалентны).

Своевременное положение занимают элементы группы урана. Хотя в нормальном состоянии атом урана и содержит \(f \)-электроны, но в соединениях он (как и торий) ведёт себя не аналогично редкоземельным элементам, а подобно элементам групп палладия и платины. Это показывает, что при образовании химического соединения в атоме урана \(f \)-электроны переходят в другие состояния. Элементы же нептуний и плутоний (и, повидимому, америций и кюри) по своим химическим свойствам являются гомологами урана, что указывает на то, что в их атомах избыточные по сравнению с ураном электроны находятся в \(f \)-состояниях.

Элементы группы железа занимают по своим валентным свойствам промежуточное положение между редкоземельными элементами и элементами групп палладия и платины. В их атомах \(d \)-электроны расположены сравнительно глубоко и в целом ряде соединений вовсе не принимают участия в валентной связи. В этих соединениях, следовательно, элементы группы железа ведут себя подобно редкоземельным элементам. Сюда относятся соединения ионного типа (например, \(\text{FeCl}_3 \), \(\text{FeCl}_3 \)), в которые атом металла входит в виде простого катиона. Подобно редкоземельным элементам, элементы группы железа в этих соединениях могут проявлять самые различные валентности.

Другим типом соединений элементов группы железа являются так называемые комплексные соединения. Они характеризуются тем, что атом промежуточного элемента входит в молекулу не в виде простого иона, а составляет часть сложного, комплексного, иона (например, ион \(\text{MnO}^- \) в \(\text{KMnO}_4 \), ион \(\text{Fe(CN)}_6^{3-} \) в \(\text{K}_4\text{Fe(CN)}_6 \)). В таких комплексных ионах атомы расположены ближе друг к другу, чем в простых ионных соединениях, и в них \(d \)-электроны принимают участие в валентной связи. Соответственно этому, в комплексных соединениях элементы группы железа ведут себя подобно элементам групп палладия и платины.

Наконец, необходимо оговорить, что элементы Cu, Ag, Au, отнесённые нами в § 70 к главным группам, в ряде соединений ведут

\(^1\) \(d \)-электроны, имеющиеся в незаполненных оболочках атомов некоторых из редкоземельных элементов, несущественны, так как фактически эти атомы всегда вступают в соединение в таких возбуждённых состояниях, в которых \(d \)-электронов нет.
себя как промежуточные. Эти элементы способны проявлять валентность, превышающую единицу, за счет перехода электронов из d-оболочки в близкую по энергии p-оболочку (например, у Cu из 3d в 4p). В таких соединениях атомы имеют незаполненную d-оболочку и поэтому ведут себя как промежуточные (Cu — как элементы группы железа, а Ag, Au — как элементы группы Pd и Pt).

ЗАДАЧА

Определить электронные термы молекулярного иона H_2^+, получающиеся при соединении атома водорода в нормальном состоянии с ионом H^+, в приближении, исходящем из невозмущенных волновых функций атома водорода.

Решение. Электронная волновая функция иона H_2^+ получается симметризацией (или антисимметризацией) по обоим ядрам волновой функции нормального состояния атома водорода $\psi = \frac{1}{\sqrt{\pi}} e^{-r}$:

$$
\psi_g = \psi(r_1) + \psi(r_2), \quad \psi_u = \psi(r_1) - \psi(r_2)
$$

(ψ_g и ψ_u не нормированы), где r_1, r_2 — расстояния электрона от обоих ядер. Функция ψ_g соответствует терму Σ_g^+, а ψ_u — терму Σ_u^+.

Гамильтонаian молекулы имеет вид:

$$
\hat{H} = -\frac{1}{2} \Delta + \frac{1}{r} - \frac{1}{r_1} - \frac{1}{r_2}
$$

(r — заданное расстояние между ядрами). В первом приближении теории возмущений энергия термов дается формулой

$$
U_g(r) = \int \psi_g \hat{H} \psi_g \, dV \div \int \psi_g^2 \, dV
$$

(и аналогично для $U_u(r)$). При вычислении надо иметь в виду, что волновая функция нормального состояния атома водорода удовлетворяет уравнению Шредингера

$$
\frac{1}{2} \Delta \psi (r_1) + \left(-\frac{1}{2} + \frac{1}{r_1} \right) \psi (r_1) = 0
$$

(и аналогично для $\psi (r_2)$). Поэтому находим:

$$
U_{g,u}(r) = -\frac{1}{2} + \frac{1}{r} - \frac{\int \psi_g^2 (r_1) \, dV \pm \int \psi (r_1) \psi (r_2) \, dV}{1 \pm \int \psi (r_1) \psi (r_2) \, dV}
$$

(верхний знак отвечает U_g, нижний — U_u). Вычисление первого интеграла в числителе элементарно, а остальные легко вычисляются в эллиптических координатах. В результате получается:

$$
U_{g,u} = -\frac{1}{2} + \frac{(1 + \frac{1}{r}) e^{-2r} \pm \left(\frac{1}{r} - \frac{2r}{3} \right) e^{-r}}{1 \pm \left(1 + r + \frac{r^2}{3} \right) e^{-r}}.
$$

Терм $U_g(r)$ соответствует устойчивой молекуле, а терм $U_u(r)$ имеет характер чистого отталкивания.

1) Мы пользуемся атомными единицами.
§ 79. Колебательная и вращательная структура синглетных термов двухатомной молекулы

Как уже указывалось в начале этой главы, большая разница в массах ядер и электронов даёт возможность разделить задачу об определении энергетических уровней молекулы на две части. Сначала определяются уровни энергии системы электронов при неподвижных ядрах как функции расстояния между последними (электронные термы). Вслед за тем можно рассмотреть движение ядер при заданном электронном состоянии; это сводится к тому, что ядра рассматриваются как частицы, взаимодействующие друг с другом по закону $U_n(r)$, где U_n — соответствующий электронный терм. Движение молекулы складывается из её поступательного перемещения как целого и из движения ядер относительно их центра инерции. Поступательное движение не представляет, разумеется, интереса, и мы можем считать центр инерции неподвижным.

Для удобства изложения рассмотрим сначала электронные термы, в которых полный спин S молекулы равен нулю (синглетные термы). Задача об относительном движении двух частиц (ядер), взаимодействующих по закону $U(r)$, сводится, как мы знаем, к задаче о движении одной частицы с массой M (приведённая масса обеих частиц) в центрально-симметрическом поле $U(r)$. Посредством $U(r)$ мы обозначаем энергию рассматриваемого электронного терма. Задача же о движении в центрально-симметрическом поле $U(r)$ сводится, в свою очередь, к задаче об одномерном движении в поле с эффективной энергией, равной сумме $U(r)$ и центробежной энергии.

Обозначим посредством K полный момент количества движения молекулы, складывающийся из орбитального момента электронов L и момента вращения ядер. Тогда оператор центробежной энергии ядер будет

$$ B(r)(\hat{K} - \hat{L})^2, $$

где мы ввели обозначение

$$ B(r) = \frac{\hbar^2}{2Mr^2}, \quad (79,1) $$

удобное для упрощения формул теории двухатомных молекул. Усредните эту величину (при заданном r), мы получим центробежную энергию как функцию r, которая и должна войти в эффективную потенциальную энергию $U_K(r)$. Таким образом

$$ U_K(r) = U(r) + B(r)(\hat{K} - \hat{L})^2, $$

где черта обозначает указанное усреднение. Раскрывая скобки и помня, что квадрат K^2 сохраняющегося полного момента имеет определённое значение, равное $K(K+1)(K — целое число), переписываем это
выражение в виде:

$$U_K(r) = U(r) + B(r) K(K + 1) + B(r)(\vec{L}^2 - 2\Lambda K) \quad (79,2)$$

(черты над сохраняющей величиной K не пишем).

В состоянии с определённым значением $L_x = \Lambda$ средние значения двух других компонент орбитального момента равны нулю: $L_x = L_y = 0$; это следует непосредственно из того, что в представлении, в котором \hat{L}_z диагонально, диагональные матричные элементы операторов \hat{L}_x, \hat{L}_y равны нулю (см. § 25). Поэтому среднее значение вектора \vec{L} направлено по оси r, и мы можем написать

$$\vec{L} = n\Lambda,$$

где n есть единичный вектор в направлении оси молекулы. Далее, в классической механике момент количества движения системы из двух частиц (ядер) направлен перпендикулярно к соединяющей частицы прямой; в квантовой механике то же самое будет иметь место для оператора момента. Поэтому мы можем записать $(\hat{K} - \hat{L}) n = 0$ или $\hat{K} n = \hat{L} n$. Отсюда для собственных значений

$$K n = L n = \Lambda. \quad (79,3)$$

Таким образом проекция полного момента K на ось молекулы тоже равна Λ. Отсюда следует, что в состоянии с данным значением Λ квантовое число K может пробегать значения, только начиная от Λ:

$$K \geq \Lambda. \quad (79,4)$$

Наконец, подставляя в (79,2) $\vec{L} K = \Lambda n K = \Lambda^2$, получим:

$$U_K(r) = U(r) + B(r) K(K + 1) + B(r)(\vec{L}^2 - 2\Lambda^2). \quad (79,5)$$

Последний член в правой стороне представляет собой некоторую функцию r, зависящую только от электронного состояния и не содержащую вовсе квантового числа K. Эту функцию можно включить в энергию $U(r)$, после чего (79,5) приобретёт вид:

$$U_K(r) = U(r) + B(r) K(K + 1). \quad (79,6)$$

Решая одномерное уравнение Шредингера с этой потенциальной энергией, мы получим ряд энергетических уровней. Условимся нумеровать эти уровни (при каждом данном K) в порядке их возрастания номером v, пробегающим значения $v = 0, 1, 2, \ldots; v = 0$ соответствует наиболее низкому уровню. Таким образом движение ядера приводит к расщеплению каждого электронного терма на ряд уровней, характеризующихся значениями двух квантовых чисел K и v.

Число этих уровней (для данного электронного терма) может быть как конечным, так и бесконечным. Если электронное состояние
таково, что в пределе $r \to \infty$ молекула превращается в два изолированных нейтральных атома, то потенциальная энергия $U(r)$ (а с нею и $U_K(r)$) стремится при $r \to \infty$ к постоянному предельному значению $U(\infty)$ (сумма энергий двух изолированных атомов) быстрее, чем $1/r$ (см. § 86). Число уровней в таком поле конечно (см. § 16); фактически оно, правда, оказывается у молекул очень большим. Уровни распределены при этом таким образом, что для каждого данного значения K имеется определённое число уровней (отличающихся значениями σ), причём число уровней с одинаковыми K уменьшается с увеличением K, пока не достигается такое значение K, при котором вообще больше нет уровней.

Если же при $r \to \infty$ молекула распадается на два иона, то на больших расстояниях $U(r) \to U(\infty)$ переходит в энергию притяжения ионов по закону Кулона ($\sim 1/r$). В таком поле имеется бесконечное число уровней, сгущающихся по мере приближения к предельному значению $U(\infty)$. Отметим, что для большинства молекул в нормальном состоянии имеет место первый случай; лишь сравнительно небольшое число молекул даёт при разведении ядер ионы.

Зависимость энергетических уровней от квантовых чисел не может быть полностью вычислена в общем виде. Такое вычисление возможно лишь для сравнительно слабо возбуждённых уровней, лежащих не слишком высоко над основным уровнем1). Этим уровням соответствуют небольшие значения квантовых чисел K и σ. Как раз с такими уровнями чаще всего приходится иметь дело при изучении молекулярных спектров и потому они представляют особый интерес.

Движение ядер в слабо возбуждённых состояниях можно характеризовать как малые колебания относительно положения равновесия. Соответственно этому, мы можем разложить $U(r)$ в ряд по степеням разности $\xi = r - r_e$, где r_e — значение r, при котором $U(r)$ имеет минимум. Поскольку $U'(r_e) = 0$, то, с точностью до членов второго порядка, имеем

$$U(r) = U_e + \frac{M\omega^2}{2} \xi^2,$$

где $U_e = U(r_e)$, а ω есть частота колебаний2). Во втором члене в (79,6) — центробежной энергии — достаточно положить $r = r_e$, так как он уже содержит малую величину $K(K + 1)$. Таким образом имеем:

$$U_K(r) = U_e + B_e K(K + 1) + \frac{M\omega^2}{2} \xi^2,$$ \hspace{1cm} (79,7)

где $B_e = \hbar^2/2 M r^2_e = \hbar^2/2 I$ есть так называемая ротационная постоянная ($I = Mr^2_e$ — момент инерции молекулы).

1) Речь идёт везде об уровнях, получающихся из одного и того же заданного электронного терма.

2) В теории двухатомных молекул приняты интернациональные обозначения, которых мы здесь придерживаемся.
Первые два члена в (79,7) суть просто постоянные, а третий соответствует одномерному гармоническому осциллятору. Поэтому мы можем сразу написать для искомых уровней энергии:

\[E = U_e + B_e K (K + 1) + h \omega_e \left(\nu + \frac{1}{2} \right). \]

(79,8)

Таким образом в рассматриваемом приближении энергетические уровни складываются из трёх независимых частей:

\[E = E^e + E^\nu + E^r. \]

(79,9)

Здесь \(E^e = U_e \) — электронная энергия (включая энергию кулоновского взаимодействия ядер при \(r = r_e \));

\[E^r = B_e K (K + 1) \]

(79,10)

— вращательная, или ротационная, энергия, связанная с вращением молекулы;

\[E^\nu = h \omega_e \left(\nu + \frac{1}{2} \right) \]

(79,11)

— энергия колебаний ядер внутри молекулы. Число \(\nu \) нумерует, в соответствии с принятым определением, уровни с данным \(K \) в порядке их возрастания; это число называют колебательным (или вибрационным) квантовым числом.

При данной форме кривой потенциальной энергии \(U(r) \) частота \(\omega_e \) обратно пропорциональна \(\sqrt{M} \). Поэтому и интервалы \(\Delta E^\nu \) между колебательными уровнями пропорциональны \(1/\sqrt{M} \). Интервалы \(\Delta E^r \) между вращательными уровнями содержат в знаменателе момент инерции \(I \), т. е. пропорциональны \(1/M \). Интервалы же \(\Delta E^e \) между электронными уровнями, как и сами эти уровни, не содержат \(M \) вовсе. Поскольку \(\frac{\mu}{M} \) (\(\mu \) — масса электрона) есть малый параметр теории двухатомных молекул, то мы видим, что \(\Delta E^e \gg \Delta E^\nu \gg \Delta E^r \).

Таким образом распределение энергетических уровней молекулы имеет своеобразный характер. Колебательное движение ядер расщепляет электронные термы на сравнительно близко расположенные друг от друга уровни. Эти уровни испытывают, в свою очередь, ещё более тонкое расщепление под влиянием вращательного движения молекулы.

В следующих приближениях разделение энергии на независимые колебательную и вращательную части оказывается уже невозможным;

1) Вращающуюся систему из двух жёстко связанных друг с другом частиц часто называют ротатором. Формула (79,10) определяет квантово-механические уровни энергии ротатора. Болюнные функции стационарных состояний ротатора соответствуют, очевидно, случаю \(\Lambda = 0 \) и представляют собой обычные сферические функции (см. задачу к этому параграфу).
появляются вращательно-колебательные члены, содержащие одно-
временно K и ν. Вычисляя последовательные приближения, мы
получили бы уровни E в виде разложения в ряд по степеням кван-
товых чисел K и ν.

Вычислим здесь следующее после (79,8) приближение. Для этого
надо продолжить разложение $U(r)$ по степеням ξ до членов четвёр-
того порядка (ср. задачу об ангармоничном осцилляторе в § 38).
Соответственно, разложение центробежной энергии производим до
членов с ξ^3. Тогда получаем:

$$U_K(r) = U_e + \frac{M_0 e^2}{2} \xi^2 + \frac{h^2}{2 M r_e^2} K(K + 1) \alpha^3 + b \xi^4 - \frac{h^2}{M r_e^2} K(K + 1) \xi + \frac{3 h^2}{2 M r_e^4} K(K + 1) \xi^3. \tag{79,12}$$

Вычисляем теперь поправку к собственным значениям (79,8) с
помощью теории возмущений, рассматривая четыре последние
члены в (79,12) как оператор возмущения. При этом для членов с ξ^2
и ξ^4 достаточно ограничиться первым приближением теории возмущений,
а для членов с ξ и ξ^3 надо вычислить второе приближение,
так как диагональные матричные элементы от ξ и ξ^3 тождественно
исчезают. Все нужные для вычисления матричные элементы вычис-
лены в § 21 и в задаче 1 § 38. В результате вычисления получается
выражение, которое принято записывать в виде:

$$E = E^el + h_0 \left(\nu + \frac{1}{2} \right) - x_e h_0 \left(\nu + \frac{1}{2} \right)^2 +$$

$$+ B_v K(K + 1) - D_e K^2 (K + 1)^2, \tag{79,13}$$

где

$$B_v = B_e - \alpha \left(\nu + \frac{1}{2} \right), B_0 = \alpha \nu. \tag{79,14}$$

Постоянные x_e, B_e, α, D_e связаны с постоянными, входящими в (79,12) посредством

$$B_e = \frac{h^2}{2l}, \quad D_e = \frac{4 B_e^3}{h^2 \omega_0^2}, \quad \alpha = \frac{6 B_e^2}{h \omega_0} \left(\frac{a h}{M \omega_0^2} \sqrt{\frac{2}{MB_e}} - 1 \right), \quad x_e = \frac{3}{2h \omega_0} \left(\frac{h}{M \omega_0^2} \right)^2 \left[\frac{5}{2} \frac{a^2}{M \omega_0^2} - b \right]. \tag{79,15}$$

Не зависящие от ν и K члены включены в E^el.

ЗАДАЧА

Определить угловую часть волновой функции двухатомной молекулы
с равными нулями спином (Ф. Райхе, 1926).

Решение. Исхождные функции есть не что иное, как собственные
функции полного момента количества движения молекулы K. Оператор
полного момента есть сумма

\[\hat{K} = [r \hat{p}] + \sum_a [\vec{r}_a \hat{p}_a], \]

где \(r \) — импульс относительного движения ядер, \(\vec{r} \) — радиус-вектор между ними, а \(\vec{r}_a, \hat{p}_a \) — радиусы-векторы и импульсы электронов (относительно центра инерции молекулы). Вводя полярный угол \(\theta \) и азимут \(\varphi \) оси молекулы относительно неподвижной системы координат \(x, y, z \), имеем для компонент оператора \(\hat{K} \) выражения, подобные (24,12), так что

\[
\begin{align*}
\hat{K}_x + i\hat{K}_y &= e^{i\varphi} \left(\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \varphi} \right) + (\hat{L}_x + i\hat{L}_y), \\
\hat{K}_x - i\hat{K}_y &= e^{-i\varphi} \left(-\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \varphi} \right) + (\hat{L}_x - i\hat{L}_y), \\
\hat{K}_z &= -i \frac{\partial}{\partial \varphi} + \hat{L}_z,
\end{align*}
\]

где

\[\hat{L}_x = -i \sum_a \left(y_a \frac{\partial}{\partial z_a} - z_a \frac{\partial}{\partial y_a} \right), \ldots \]

суть операторы момента количества движения электронов; штрихи \(\frac{\partial}{\partial \theta} \) и \(\frac{\partial}{\partial \varphi} \) указывают, что дифференцирование должно производиться при постоянных \(x_a, y_a, z_a \).

Введём, наряду с неподвижной системой координат \(x, y, z \), подвижную систему \(\xi, \eta, \zeta \) с тем же началом, осью \(\zeta \), направленной вдоль оси молекулы, и осью \(\xi \), лежащей в плоскости \(x, y \). Координаты \(\xi_a, \eta_a, \zeta_a \) электронов в этой системе связаны с координатами \(x_a, y_a, z_a \) посредством

\[
\begin{align*}
\xi_a &= -x_a \sin \varphi + y_a \cos \varphi, \\
\eta_a &= -x_a \cos \theta \cos \varphi - y_a \cos \theta \sin \varphi + z_a \sin \theta, \\
\zeta_a &= x_a \sin \theta \cos \varphi + y_a \sin \theta \sin \varphi + z_a \cos \theta.
\end{align*}
\]

С помощью этих формул преобразуем производные:

\[
\frac{\partial}{\partial z_a} = \sin \theta \frac{\partial}{\partial \eta_a} + \cos \theta \frac{\partial}{\partial \zeta_a} \quad \text{и т. д.}
\]

\[
\frac{\partial'}{\partial \theta} = \frac{\partial}{\partial \theta} + \sum_a \left(\frac{\partial' \xi_a}{\partial \theta} \frac{\partial}{\partial \xi_a} + \frac{\partial' \eta_a}{\partial \theta} \frac{\partial}{\partial \eta_a} + \frac{\partial' \zeta_a}{\partial \theta} \frac{\partial}{\partial \zeta_a} \right) =
\]

\[
\frac{\partial}{\partial \varphi} + \sum_a \left(\xi_a \frac{\partial}{\partial \eta_a} - \eta_a \frac{\partial}{\partial \zeta_a} \right) \quad \text{и т. д.,}
\]

где \(\frac{\partial}{\partial \theta} \), \(\frac{\partial}{\partial \varphi} \) (без штриха) означают дифференцирование при постоянных \(\xi_a, \eta_a, \zeta_a \). В результате получим для операторов компонент полного момента...
относительно неподвижной системы выражения

\[K_x + i K_y = e^{i \varphi} \left(\frac{\partial}{\partial \vartheta} + i \cot \theta \frac{\partial}{\partial \varphi} \right) + \frac{e^{i \varphi}}{\sin \theta} \hat{L}_z, \]

\[K_x - i K_y = e^{-i \varphi} \left(-\frac{\partial}{\partial \vartheta} + i \cot \theta \frac{\partial}{\partial \varphi} \right) + \frac{e^{-i \varphi}}{\sin \theta} \hat{L}_z, \]
(2)

\[\hat{K}_z = -i \frac{\partial}{\partial \varphi}, \]

где

\[\hat{L}_z = -i \sum_a \left(\xi_a \frac{\partial}{\partial \eta_a} - \eta_a \frac{\partial}{\partial \xi_a} \right) \]

есть оператор момента электронов относительно оси молекулы.

Пусть

\[\psi_{n\Lambda KM_K} = \psi_{n\Lambda K} (\xi_a, \eta_a, \zeta_a; r) \rho_{n\Lambda K} (r) \Theta_{\Lambda KM_K} (\theta) e^{iM_K \varphi} \]
(3)

есть волновая функция состояния с определёнными значениями абсолютной величины \(M \) и \(z \)-компоненты \(M_K \) полного момента молекулы и значением \(\Lambda \) \(\zeta \)-компоненты электронного момента (\(n \) обозначает совокупность остальных квантовых чисел, определяющих состояние молекулы). \(\psi_{n\Lambda K} \) есть электронная волновая функция, зависящая от \(r \) как от параметра, \(\rho_{n\Lambda K} \) — «радиальная часть» ядерной волновой функции, \(\Theta_{\Lambda KM_K} \) — искомая функция угла \(\theta \); зависимость \(\psi \) от угла \(\varphi \) очевидна. При воздействии на функцию (3) операторы \(\hat{K}_z, \hat{L}_z \) можно заменить их собственными значениями \(M_K, \Lambda \), так что

\[K_x + i K_y = e^{i \varphi} \left(\frac{\partial}{\partial \vartheta} - M_K \cot \theta \right) + \frac{e^{i \varphi}}{\sin \theta} \Lambda, \]

\[K_x - i K_y = e^{-i \varphi} \left(-\frac{\partial}{\partial \vartheta} - M_K \cot \theta \right) + \frac{e^{-i \varphi}}{\sin \theta} \Lambda. \]

Дальнейший вывод в точности соответствует выводу, произведённому в конце § 26. При воздействии оператора \(\hat{K}_x + i \hat{K}_y \) на функцию \(\psi_{n\Lambda KK} \) (с \(M_K = K \)) получается нуль; отсюда имеем уравнение

\[\left(\frac{\partial}{\partial \vartheta} - K \cot \theta + \frac{\Lambda}{\sin \theta} \right) \Theta_{\Lambda KK} = 0, \]

решение которого есть

\[\Theta_{\Lambda KK} = \text{const.} \frac{K - \Lambda}{2} \frac{1 - \cos \theta}{2} \frac{K + \Lambda}{2} \]

(нормировочный множитель не будем определять). Остальные функции вычисляются затем с помощью формулы

\[\sqrt{\frac{2^K K! (K - M_K)!}{(K + M_K)!}} \Theta_{\Lambda KM_K} = (\hat{K}_x - i \hat{K}_y)^{K-M_K} \Theta_{\Lambda KK}. \]
и в результате получается:

$$\Theta_{\Lambda KM_K} = \text{const.} \left(\frac{\Lambda - M_K}{\Lambda + M_K} \right)^{\frac{1}{2}} \left(1 + \frac{1}{\cos \theta} \right)^{\frac{1}{2}} \times \left(\frac{\partial}{\partial \cos \theta} \right)^{K-M_K} (1 - \cos \theta)^{K-\Lambda} (1 + \cos \theta)^{K+\Lambda} \right).$$

При $\Lambda = 0$ эти функции переходят, как то и следовало, в обычные сферические функции

$$\Theta_{0 KM_K} = \text{const.} P^M_K (\cos \theta)$$

и представляют собой волновые функции ротатора (собственные функции свободного момента K).

§ 80. Мультиплетные термы. Случай a.

Перейдём теперь к вопросу о классификации молекулярных уровней с отличным от нуля спином S. В нулевом приближении, при полном пренебрежении релятивистскими эффектами, энергия молекулы, как и всей вообще системы частиц, не зависит от направления спина (спин «свободен»), что приводит к $(2S + 1)$-кратному вырождению уровней. При учёте же релятивистских взаимодействий вырожденные уровни расщепляются, в результате чего энергия становится зависящей от величины проекции спина на ось молекулы. О релятивистских взаимодействиях в молекулах мы будем говорить как о взаимодействии спин-оси. Основную роль в нём играет (как и у атомов) взаимодействие спинов с орбитальным движением электронов.

Характер классификации молекулярных уровней существенно зависит от относительной роли, которую играют взаимодействие спина с орбитальным движением, с одной стороны, и вращение молекулы — с другой. Роль последнего характеризуется расстояниями между соседними вращательными уровнями. Соответственно этому надо рассмотреть два предельных случая. В одном из них энергия взаимодействия спин-оси велика по сравнению с разностями вращательных уровней, а в другом — мала. Первый случай принято называть, согласно Гунду, случаем (или типом связи) a, а второй — случаем b.

Чаще всего встречается случай a. Исключение представляют Σ-термы, у которых в основном имеет место случай b, поскольку

1) Помимо взаимодействий спин-орбита и спин-спин, существует ещё взаимодействие спина и орбитального движения электронов с вращением молекулы. Однако эта часть взаимодействия очень мала, и её рассмотрение обычно не представляет интереса.
эффект взаимодействия спин-ось для них очень мал (см. ниже) \(^1\). Для других термов случай \(b\) иногда встречается у самых лёгких молекул, соответственно тому, что взаимодействие спин-ось здесь сравнительно слабо, а расстояния между вращательными уровнями велики (момент инерции мал).

Разумеется, возможны также и промежуточные между \(a\) и \(b\) случаи. Надо также иметь в виду, что одно и то же электронное состояние может при изменении вращательного квантового числа непрерывным образом перейти из случая \(a\) в случай \(b\).

Это связано с тем, что расстояния между соседними вращательными уровнями возрастают при увеличении вращательного квантового числа и потому при больших его значениях могут стать большими по сравнению с энергией связи спин-ось (случай \(b\)), даже если для низких вращательных уровней имел место случай \(a\).

В случае \(a\) классификация уровней принципиально мало отличается от классификации термов с равным нулю спином. Сначала рассматриваем электронные термы при неподвижных ядрах, т.e. непрерывная зависимость от вращения; наряду с проекцией \(\Delta\) орбитального момента электронов, надо теперь рассматривать проекцию полного спина на ось молекулы; эту проекцию обозначают посредством \(\Sigma\); она пробегает значения \(S, \ S - 1, \ldots, -S\). Мы условимся считать \(\Sigma\) положительной, когда направление проекции спина совпадает с направлением орбитального момента относительно оси (напомним, что \(\Delta\) обозначает абсолютную величину последнего). Величины \(\Delta\) и \(\Sigma\) складываются в полный момент количества движения электронов относительно оси молекулы:

\[
\Omega = \Delta + \Sigma; \quad (80,1)
\]

он пробегает значения \(\Delta + S, \Delta + S - 1, \ldots, \Delta - S\). Таким образом электронный терм с орбитальным моментом \(\Delta\) расщепляется на \(2\Delta + 1\) термов, отличающихся значениями \(\Omega\) (об этом расщеплении говорят, как и в случае атомных термов, как о тонкой структуре или мультиплетом расщеплении электронных уровней). Значение \(\Omega\) принято указывать в виде нижнего индекса у символа терма; так, при \(\Delta = 1\), \(S = 1/2\) получаем термы \(^3\Pi_{1/2}, \ ^3\Pi_{3/2}\).

Учёт движения ядер приводит для каждого из этих термов к возникновению колебательной и вращательной структур. Различные вращательные уровни характеризуются значениями квантового числа \(J\) — полного момента молекулы, включающего в себя орби-

1) Особым случаем представляет нормальный электронный терм молекулы \(O_2\) (терм \(^3\Sigma\)). Для него имеет место тип связи, промежуточный между \(a\) и \(b\) (см. задачу 3 к § 81).

2) Не смешивать с символом термов с \(\Delta = 0\)!
§ 80] МУЛЬТИПЛЕТНЫЕ ТЕРМЫ. СЛУЧАЙ a 327

tальный и спиновый моменты электронов и момент вращения ядер1). Это число пробегает целые значения, начиная от $|\Omega|$:

$$J \gg |\Omega|$$ \hspace{1cm} (80,2)

(очевидное обобщение правила (79,4)).

Выведем количественные формулы, определяющие молекулярные уровни в случае a. Прежде всего рассмотрим тонкую структуру электронного терма. При изучении тонкой структуры атомных термов в § 67 мы пользовались формулой (67,2), согласно которой среднее \langleзначение взаимодействия спин-орбита пропорционально проекции полного спина атома на вектор орбитального момента. Совершенно аналогично, взаимодействие спин-ось в двухатомной молекуле (усреднённое по электронному состоянии при данном расстоянии r между ядрами) пропорционально проекции Σ полного спина молекулы на её ось, так что мы можем написать расщеплённый электронный терм в виде:

$$U(r) + A(r)\Sigma,$$

где $U(r)$ есть энергия исходного (нерасщеплённого) терма, а $A(r)$ — некоторая функция от r; эта функция зависит от исходного терма (в частности, от значения Δ), но не зависит от Σ. Поскольку обычно пользуются квантовым числом Ω, а не Σ, то вместо $A\Sigma$ удобнее писать $A\Omega$; эти выражения отличаются на величину $A\Delta$, которую можно включить в $U(r)$. Таким образом имеем для электронного терма выражение

$$U(r) + A(r)\Omega.$$ \hspace{1cm} (80,3)

Отметим, что компоненты расщеплённого терма оказываются равноудалёнными друг от друга — расстояние между соседними компонентами (со значениями Ω, отличающимися на единицу) равно $A(r)$ и не зависит от Ω.

Легко видеть из общих соображений, что для Σ-термов величина A равна нулю. Для этого произведён операцию изменения знака времени. При этом энергия должна оставаться неизменной, состояние же молекулы изменится в том отношении, что направление орбитального и спин-момента относительно оси переместится на противоположное. В энергии $A(r)\Sigma$ изменяется знак Σ, и для того, чтобы она осталась неизменной, необходимо, чтобы $A(r)$ изменило знак. Если $\Delta \neq 0$, то отсюда нельзя сделать никаких заключений относительно значения величины $A(r)$, поскольку последняя зависит от орбитального момента, который сам меняет знак. Если же $\Delta = 0$, то можно во всём случае утверждать, что $A(r)$ не изменяется.

1 Обозначение K остаётся, как это принято, за полным моментом молекулы без учёта её спина. В случае a квантового числа K не существует, так как момент K не сохраняется даже приближённо.
а следовательно, должно тождественно обращаться в нуль. Таким образом для Σ-термов взаимодействие спин-орбита в рассматриваемом приближении не приводит к расщеплению; расщепление появилось бы лишь при учёте взаимодействия спин-спин и очень мало. С этим связан упоминавшийся уже факт, что для Σ-термов обычно имеет место случай b.

После того как определено мультиплетное расщепление, можно учесть вращение молекулы как возмущение совершенно аналогично выводу, произведённому в начале предыдущего параграфа. Момент вращения ядер получается из полного момента вычитанием орбитального момента и спина электронов. Поэтому оператор центробежной энергии теперь имеет вид:

\[B(r) (\hat{J} - \hat{L} - \hat{\Sigma})^2. \]

Усредняя эту величину по электронному состоянию и складывая с (80,3), получим искомую эффективную потенциальную энергию \(U_J(r) \):

\[U_J(r) = U(r) + A(r) \Omega + B(r) (\bar{J} - \bar{L} - \bar{\Sigma})^2 = U(r) + A(r) \Omega + B(r) [J^2 - 2J(\bar{L} + \bar{S}) + \bar{L}^2 + 2\bar{L}\bar{S} + \bar{S}^2]. \]

Собственное значение \(J^2 \) есть \(J(J + 1) \). Далее, по тем же соображениям, что и в § 79, имеем:

\[\bar{L} = n\Lambda, \quad \bar{S} = n\Sigma, \quad (80,4) \]

а также \[(\hat{J} - \hat{L} - \hat{\Sigma}) n = 0, \] откуда для собственных значений получим:

\[Jn = (L + S) n = \Lambda + \Sigma = \Omega. \quad (80,5) \]

Подставляя эти значения, находим:

\[U_J(r) = U(r) + A(r) \Omega + B(r) [J(J + 1) - 2\Omega^2 + \bar{L}^2 + 2\bar{L}\bar{S} + \bar{S}^2]. \]

Усреднение по электронному состоянию производится с помощью волновых функций нулевого \(^1\) приближения. Но в этом приближении величина спина сохраняется; поэтому \(S^2 = S(S + 1) \). Волновая же функция есть произведение спиновой функции на координатную; поэтому усреднение моментов \(L \) и \(S \) производится независимо друг от друга, и мы получаем:

\[\bar{L}\bar{S} = \Lambda nS = \Lambda\Sigma. \]

Наконец, среднее значение квадрата орбитального момента \(L^2 \) не зависит от спина и представляет собой некоторую характерную для данного (нерасщеплённого) электронного терма функцию от \(r \). Все

\(^1\) Нулевого как по эффекту вращения молекулы, так и по взаимодействию спин-ось.
члены, представляющие собой функции от \(r \), не зависящие от \(J \) и \(\Sigma \), могут быть включены в \(U(r) \), а член, пропорциональный \(\Sigma \) (или, что то же, \(\Omega \)), можно включить в выражение \(A(r)\Omega \). Таким образом получаем для эффективной потенциальной энергии формулу

\[
U_J(r) = U(r) + A(r)\Omega + B(r) [J(J+1) - 2\Omega^2].
\]
(80,6)

Уровни энергии молекулы могут быть получены отсюда тем же способом, как и в § 79 из формулы (79,6). Разлагая \(U(r) \) и \(A(r) \) в ряд по степеням \(\xi \) и сохраняя в разложении \(U(r) \) члены до второго порядка включительно, а в разложении второго и третьего членов — только члены нулевого порядка, получим уровни энергии в виде:

\[
E = U_o + A_e\Omega + \hbar \omega_e \left(\nu + \frac{1}{2} \right) + B_e [J(J+1) - 2\Omega^2],
\]
(80,7)

где \(A_e = A(r_e) \), \(B_e \) суть постоянные, характерные для данного (нерасщеплённого) электронного терма. Продолжая разложение дальше, мы получили бы ещё ряд членов более высоких степеней по квантовым числам; мы не станем выписывать их здесь.

§ 81. Мультиплетные термы. Случай \(b \)

Перейдём теперь к случаю \(b \). Здесь эффект вращения молекулы преобладает над мультиплетным расщеплением. Поэтому в первую очередь мы должны рассмотреть эффект вращения, пренебрегая взаимодействием спин-ось, а уже затем последнее должно быть учтено как возмущение.

У молекулы со «свободным» спином сохраняется не только полный момент количества движения \(J \), но и сумма \(K \) орбитального момента электронов и момента вращения ядер, связанная с \(J \) посредством

\[
J = K + S.
\]
(81,1)

Квантовое число \(K \) отличает различные состояния вращающейся молекулы со свободным спином, получающиеся из данного электронного терма. Эффективная потенциальная энергия \(U_K(r) \) в состоянии с данным значением \(K \) определяется, очевидно, той же формулью (79,6), что и для термов с \(S = 0 \):

\[
U_K(r) = U(r) + B(r) K(K+1),
\]
(81,2)

где \(K \) пробегает значения \(\Delta, \Delta + 1, \ldots \).

Включение взаимодействия спин-ось приводит к расщеплению каждого терма, вообще говоря, на \(2S + 1 \) термов (или на \(2K+1 \), если \(K < S \), отличающихся значениями полного момента \(J^{(1)} \)). Согласно общему правилу сложения моментов, число \(J \) пробегает (при

1) В случае \(b \) проекция \(nS \) спина на ось молекулы не имеет определённого значения, так что квантового числа \(\Sigma \) (и \(\Omega \)) не существует.
данным K) значения от $K + S$ до $|K - S|$:

$$|K - S| \leq J \leq K + S.$$

(81,3)

Для вычисления энергии расщепления (в первом приближении теории возмущений) надо определить среднее значение оператора энергии взаимодействия спин-ось по состоянию нулевого (по этому взаимодействию) приближения. В рассматриваемом случае это означает усреднение как по электронному состоянию, так и по вращению молекулы (при заданном r). В результате первого усреднения получается, как мы знаем, оператор вида $A(r) \mathbf{n} \hat{S}$, пропорциональный проекции $\mathbf{n} \hat{S}$ оператора спина на ось молекулы. Далее, усреднением этот оператор по вращению молекулы, причем считаем направление вектора спина произвольным; тогда $\mathbf{n} \hat{S} = \mathbf{\bar{n}} \hat{S}$. Среднее значение $\mathbf{\bar{n}}$ есть вектор, который, в силу соображений симметрии, должен иметь то же направление, что и «вектор» \hat{K} — единственный вектор, характеризующий вращение молекулы. Таким образом можно написать:

$$\mathbf{\bar{n}} = \text{const.} \hat{K}.$$

Коэффициент пропорциональности легко определить, умножая обе стороны этого равенства на \hat{K}; замечая, что собственные значения $\mathbf{n} \hat{K} = \Lambda$ (см. (79,3)), $\mathbf{K}^2 = K(K+1)$, находим:

$$\text{const.} = \frac{\Lambda}{K(K+1)}.$$

Таким образом

$$\mathbf{n} \hat{S} = \frac{\Lambda}{K(K+1)} \mathbf{\hat{K}} \hat{S}.$$

Наконец, собственное значение произведения $\mathbf{K} \mathbf{S}$, согласно общей формуле (30,2), равно:

$$\mathbf{K} \mathbf{S} = \frac{1}{2} [J(J + 1) - K(K + 1) - S(S + 1)].$$

(81,4)

В результате мы приходим к следующему выражению для искового среднего значения энергии взаимодействия спин-ось:

$$A(r) \frac{\Lambda}{2K(K+1)} [J(J + 1) - S(S + 1) - K(K + 1)] =$$

$$= A(r) \frac{\Lambda}{2K(K+1)} [(J - S)(J + S + 1) - K(K + 1)] - \frac{1}{2} A(r) \Lambda.$$

Это выражение должно быть прибавлено к энергии (81,2). При этом член $\frac{1}{2} A(r) \Lambda$, как не зависящий от K и J, может быть включён в $U(r)$, так что мы получаем окончательно для
эффективной потенциальной энергии выражение

$$U_K(r) = U(r) + B(r)K(K+1) + A(r)\Lambda \frac{(J-S)(J+S+1)}{2K(K+1)}. \quad (81,5)$$

Разложение по степеням $\xi = r - r_e$ приводит обычным образом к выражению для уровней энергии молекулы в случае b:

$$E = U_e + \hbar \omega_e \left(v + \frac{1}{2} \right) + B_e K(K+1) + A_e\Lambda \frac{(J-S)(J+S+1)}{K(K+1)}. \quad (81,6)$$

Как уже указывалось в предыдущем параграфе, у Σ-термов взаимодействие спин-орбита не приводит в первом приближении к мультиплетному расщеплению и для определения тонкой структуры надо учесть взаимодействие спин-спин, оператор которого квадратичен по спинам электронов. Нас интересует сейчас не самой этот оператор, а результат его усреднения по электронному состоянию молекулы, подобно тому как это было сделано для оператора взаимодействия спин-орбита. Из соображений симметрии очевидно, что искомый усреднённый оператор должен быть пропорционален квадрату проекции полного спина молекулы на ось, т. е. может быть написан в виде:

$$\alpha(r)\left(\hat{S}^2\right)^a, \quad (81,7)$$

где $\alpha(r)$ — опять некоторая характеристная для данного электронного терма функция расстояния r (симметрия допускает также член, пропорциональный \hat{S}^2; он не представляет, однако, интереса, так как абсолютная величина спина есть просто постоянная). Мы не станем здесь останавливаться на выводе громоздкой общей формулы для расщепления, обусловливаемого оператором (81,7); в задаче 1 к этому параграфу приведён вывод формулы для триплетных Σ-термов.

Особый случай представляют дублетные Σ-термы. Согласно теореме Крамерса (§ 58), у системы частиц с полным спином $S = 1/2$ двукратное выражение непременно остаётся даже при полном учёте внутренних релятивистских взаимодействий в системе. Поэтому $^2\Sigma$-термы остаются нерасщеплёнными даже при учёте (в любом приближении) взаимодействий как спин-орбита, так и спин-спин.

Расщепление получилось бы здесь лишь при учёте релятивистского взаимодействия спина с вращением молекулы; этот эффект очень мал. Усреднённый оператор этого взаимодействия должен, очевидно, иметь вид $\gamma \hat{K}\hat{S}$, и его собственные значения определяются формулой (81,4), в которой надо положить $S = 1/2$, $J = K = 1/2$. В результате получим для $^2\Sigma$-термов формулу

$$E = U_e + \hbar \omega_e \left(v + \frac{1}{2} \right) + B_e K(K+1) \pm \gamma \left(K + \frac{1}{2} \right) \quad (81,8)$$

(в U_e мы включили постоянную $-\gamma/2$).
З а д а ч и

1. Определить мультиплетное расщепление $^8\Sigma$-терма в случае b (Кра́мерс, 1929).

Решение. Искомое расщепление определяется оператором (81,7), который должен быть усреднён по вращению молекулы. Пишем его в виде

$$a_0n_i^n_kS_i^S_k$$

(где индексы i, k пробегают значения x, y, z; по дважды повторяющимся индексам подразумевается суммирование, и $a_0 = a(r_0)$. Покольку S — сохраняющийся вектор, то усредняться должны только произведения n_in_k. Из соображений симметрии ясно, что должно быть

$$n_in_k = a(\hat{K}_i\hat{K}_k + \hat{K}_k\hat{K}_i) + b\delta_{ik}$$

(a, b — некоторые постоянные); это есть наиболее общий вид симметричного тензора второго ранга, который может зависеть только от вектора \hat{K}.

Для определения постоянных a, b пользуемся равенствами $n_in_k = 1$, $\hat{K}_in_in_k = 0$ (поскольку $K = \Lambda = 0$). Первое даёт:

$$2a\mathbf{K}(K+1) + 3b = 1$$

(квадрат \mathbf{K}^2 заменяем его собственным значением $K(K+1)$). Из второго находим:

$$a\mathbf{K}^2\hat{K}_k + a\hat{K}_k\hat{K}_k + b\hat{K}_k = 0.$$

Во втором члене переставляем операторы \hat{K}_i и \hat{K}_k с помощью правила коммутации для компонент момента количества движения; это пропадёт с его всего сделать, взяв для индекса k какое-нибудь определённое значение и переписав равенство в компонентах. Произведя эту операцию и сокрашая затем на \hat{K}_k, получим:

$$2aK(K+1) - 2a + b = 0.$$

Из полученных двух уравнений находим:

$$a = -\frac{1}{(2K+3)(2K-1)}$$

(постоянной b не интересуемся, так как соответствующий член в энергии расщепления есть $a_0b\delta_i^S_i = a_0bS(S+1)$, т. е. он является не зависящей от J постоянной величиной). Таким образом искомое расщепление определяется оператором

$$a_0\alpha_0\delta_i^S_i\delta_k^S_k(\hat{K}_i\hat{K}_k + \hat{K}_k\hat{K}_i).$$

В произведениях $\hat{K}_i\hat{K}_k$ переставляем порядок множителей с помощью правила коммутации, после чего заменяем $\delta_i^S_i\hat{K}_i$ собственным значением KS (81,4); в результате получаем энергию расщепления в виде:

$$a_0\alpha_0 [2(\mathbf{K}S)^2 + \mathbf{KS}].$$

Трёх компонентам триплета $^8\Sigma$ ($S = 1$) соответствуют $J = K + 1, K, K - 1$. Выбирая энергию E_K компоненты с $J = K$ в качестве нуля, получим для энергии уровней с $J = K \pm 1$ значения

$$E_{K+1} = -a_0\frac{K+1}{2K+3}, \quad E_{K-1} = -a_0\frac{K}{2K-1}, \quad E_K = 0.$$

2. Определить энергию двублётного терма для случаев, промежуточных между a и b (Хилл и ваш Флек, 1928).
При

\[\hat{V} = B_0 \hat{K}^2 + A_0 n\hat{S}. \]

В качестве волновых функций нулевого приближения удобно пользоваться волновыми функциями состояний, в которых имеют определённое значение момента \(K \) и \(J \) (т. е. функции случая \(b \)). Поскольку для дублетного терма \(S = 1/2 \), то при данном \(J \) квантовое число \(K \) может иметь значения \(K = J \pm 1/2 \). Для составления сечьального уравнения надо вычислить матричные элементы \(V_{nSKJ}^nS_{K'J'} \) (н обозначает совокупность квантовых чисел, определяющих электронный терм), где \(K, K' \) принимают указанные значения.

Матрица оператора \(\hat{K}^2 \) диагональна (диагональные элементы равны \(K(K+1) \)). Матричные же элементы от \(n\hat{S} \) вычисляются по общим формулам (31,6), в которых надо положить \(A = n, B = S, I_1 = S = 1/2, I_2 = K, \ell = 1 \). Так, по первой из этих формул имеем:

\[\langle nS | nSJ + i\lambda J \rangle_nS_{J + 1/2}^nS = -\frac{1}{2} \left(J + \frac{3}{2} \right) \frac{\Lambda}{2J + 1} \]

(величины \(n_{SK}^K \) определяются формулами (84,1); величины же \(S_{nSJ}^nS \) равны, очевидно, просто единице). Вычисляя подобным же образом остальные матричные элементы, получим сечьальное уравнение

\[
\begin{bmatrix}
B(J + 1/2)(J + 3/2) - A \frac{\Lambda}{2J + 1} - E(1)
& A \frac{\Lambda}{2J + 1} \end{bmatrix}
\begin{bmatrix}
V(J + 1/2)^2 - \Lambda^2
\frac{A}{2J + 1} \end{bmatrix} = 0.
\]

Решая это уравнение и складывая \(E^{(1)} \) с невозмущённой энергией, получим:

\[E = U_e + h\omega_n(v + 1/2) + B_e(J + 1) \pm \sqrt{B_e^2(J + 1/2)^2 - A_eB_e\Lambda + 1}\frac{A_e}{A_e + 1/4} A_e^2 \]

(в \(U_e \) мы включили постоянную \(B_e/4 \)). Случаю \(a \) соответствует \(A_e \gg B_eJ \), а случаю \(b \) — обратное неравенство.

3. Определить интервалы между компонентами триплетного уровня \(3\Sigma \) в случае, промежуточном между \(a \) и \(b \).

При

\[\hat{V} = B_0 \hat{K}^2 + a_0 (n\hat{S})^2. \]

В качестве волновых функций нулевого приближения польяем функциями случая \(b \). Матричные элементы (nS)KJ (все индексы, по которым матрица диагональна, опускаем) вычисляем снова по формулам (31,6) и (84,1), на этот раз с \(\Lambda = 0, S = 1 \). Отличными от нуля будут элементы вида:

\[\langle nS | J - 1 \rangle = \sqrt{\frac{J + 1}{2J + 1}}, \quad \langle nS | J + 1 \rangle = \sqrt{\frac{J}{2J + 1}}. \]

1) Усреднение по колебаниям должно быть произведено до усреднения по вращению. Поэтому мы заменили (ограничиваясь первыми членами разложения по \(\xi \)) функции \(B(r) \) и \(A(r) \) значениями \(B_e, A_e \), а невозмущённые уровни энергии суть \(E^{(0)} = U_e + h\omega_n(v + 1/2) \).
При данном J число K может иметь значения $K = J, J \pm 1$. Для матричных элементов V^K_J, находим:

$$V^J_J = B_e(J+1) + a_e, \quad V^{J-1}_{J-1} = B_e(J-1) + a_e \frac{J+1}{2J+1},$$

$$V^{J+1}_{J+1} = B_e(J+1)(J+2) + a_e \frac{J}{2J+1},$$

$$V^{J-1}_{J-1} = V^{J+1}_{J-1} = a_e \frac{\sqrt{J (J+1)}}{2J+1}.$$

Мы видим, что между состояниями с $K = J$ и состояниями с $K = J \pm 1$ нет переходов. Поэтому один из уровней есть просто $E_1 = V^J_J$. Два других (E_2, E_3) получаются в результате решения квадратного уравнения, составленного из матричных элементов $V^{J-1}_{J-1}, V^{J+1}_{J+1}, V^{J-1}_{J+1}$. Интересуясь лишь относительным расположением компонент триплета, вычитем из всех трёх энергий $E_1, 2, 3$ постоянную a_e. В результате получим:

$$E_1 = B_e(J+1),$$

$$E_{2,3} = B_e(J^2 + J + 1) - \frac{a_e}{2} \pm \sqrt{B_e^2(2J+1)^2 - a_e B_e + \frac{a^2_e}{4}}.$$

В случае b (a мало), рассматривая три уровня с одинаковыми K и различными $J (J = K, K \pm 1)$, получим снова формулы, найденные в задаче 1.

§ 82. Мультиплилетные термы. Случаи c и d

Кроме случаев связей a и b и промежуточных между ними, существуют также и другие типы связи. Происхождение этих типов заключается в следующем. Возникновение квантового числа Λ связано, в конечном итоге, с электрическим взаимодействием обоих атомов в молекуле, приводящим к аксиальной симметрии задачи об определении электронных термов (об этом взаимодействии в молекуле говорят, как о связи орбитального момента с осью). Мерой величины этого взаимодействия являются расстояния между тремя различными значениями Λ. Во всём предыдущем это взаимодействие молчающим предполагалось настолько сильным, что эти расстояния велики как по сравнению с интервалами в мультиплилетном расщеплении, так и по сравнению с интервалами вращательной структуры термов. Существуют, однако, и обратные случаи, когда взаимодействие орбитального момента с осью становится или даже мало по сравнению с другими эффектами; в таких случаях, разумеется, нельзя говорить, ни в каком приближении, о сохранении прокеции орбитального момента на ось, так что число Λ теряет смысл.

Если связь орбитального момента с осью мала по сравнению со связью спин-осью, то говорят о случае c. Он осуществляется в молекулах, содержащих атом редкоземельного элемента. Эти атомы
характеризуются наличием f-электронов с некомпенсированными моментами; их взаимодействие с осью молекулы ослаблено в связи с глубоким расположением f-электронов в атome. Промежуточные между a и c типы связи встречаются в тяжёлых молекулах.

Если связь орбитального момента с осью мала по сравнению с интервалами вращательной структуры, то говорят о случае d. Этот случай встречается для высоких (с большими J) вращательных уровней некоторых электронных термов самых лёгких молекул (H_2, He_9). Эти термы характеризуются наличием в молекуле сильно возбуждённого электрона, взаимодействие которого с остальными электронами (или, как говорят, с «остовым» молекулы) настолько слабо, что его орбитальный момент не квантуется вдоль оси молекулы (между тем как «остов» обладает определённым моментом $\Delta_{	ext{ост}}$ относительно оси).

При увеличении расстояния r между ядрами взаимодействие атомов ослабляется и в конце концов становится малым по сравнению с взаимодействием спин-орбита в атомах. Поэтому рассматриваемые электронные термы при достаточно больших r, мы будем иметь дело со случаем c. Это обстоятельство надо иметь в виду при выяснении соответствия между электронными термами молекулы и состояниями атомов, получающимися при $r \to \infty$. В § 77 мы рассматривали это соответствие, пренебрегая взаимодействием спин-орбита. При учёте же тонкой структуры термов вновь возникает дополнительный вопрос о соответствии между значениями J_1 и J_2 полных моментов изолированных атомов и значениями квантового числа Ω молекулы. Мы приведём здесь результаты, не повторяя рассуждений, вполне аналогичных применявшимся в § 77.

Если молекула состоит из различных атомов, то возможные значения $|\Omega|^1$, полученные при соединении атомов с моментами J_1 и J_2 ($J_1 \geq J_2$), определяются той же таблицей (77,1), в которой надо вместо L_1, L_2 писать J_1, J_2, а вместо Λ подставить $|\Omega|$. Разница имеется только в том, что при полном $J_1 + J_2$ наименьшее значение $|\Omega|$ будет не нулём, как указано в таблице, а $1/2$. При целом же $J_1 + J_2$ имеется $2J_2 + 1$ термов с $\Omega = 0$, для которых (и для Σ-термов при пренебрежении тонкой структурой) возникает вопрос об их знаке. Если J_1 и J_2 — оба полуцелые, то число $(2J_2 + 1)$ чётно, и имеется равное количество термов, которые мы обозначаем условно как 0^+ и 0^-. Если же J_1 и J_2 — оба целые, то $J_2 + 1$ термов будут 0^+, а J_2 будут 0^- (если $(-1)^{J_1 + J_2}$ $I_1 I_2 = 1$), или наоборот (если $(-1)^{J_1 + J_2}$ $I_1 I_2 = -1$).

Если молекула состоит из одинаковых атомов, находящихся в различных состояниях, то результирующие молекулярные состояния те

1) При сложении двух полных моментов атомов J_1 и J_2 в результирующий момент Ω, знак Ω, очевидно, не существенен.
ДВУХАТОМНАЯ МОЛЕКУЛА

жел, что и в случае различных атомов, с той лишь разницей, что общее число термов удваивается, причем каждый терм входит один раз как чётный, а другой раз — как нечётный.

Наконец, если молекула состоит из одинаковых атомов, находящихся в одинаковых состояниях (с моментами $J_1 = J_2 = J$), общее число состояний остаётся тем же, что и в случае различных атомов, а их распределение по чётности таково, что

если J — целое, Q чётно: $N_g = N_u + 1,$

J — Q нечётно: $N_g = N_u,$

J — полуцелое, Q чётно: $N_u = N_g,$

J — Q нечётно: $N_u = N_g + 1.$

При этом все 0+ -термы чётные, а все 0- -термы нечётные.

По мере сближения ядер связь типа c переходит обычно в связь типа a 1). При этом может иметь место следующее интересное обстоятельство. Те из термов с $Q = 0$, которые переходят при сближении ядер в молекулярный терм с $\Delta \neq 0$ (и соответственно $\Sigma = \Delta$), получаются двукратно вырожденными, поскольку термам 0+ и 0- в случае a соответствует одинаковая энергия 2). Таким образом может оказаться, что двум различным параметрам атомных состояний токной структуры соответствует один и тот же молекулярный терм.

§ 83. Симметрия молекулярных термов

В § 75 мы уже рассмотрели некоторые свойства симметрии термов двухатомной молекулы. Эти свойства характеризовали поведение волновых функций при преобразованиях, не затрагивающих координат ядер. Так, симметрия молекулы по отношению к отражению в плоскости, проходящей через её ось, приводит к различию между Σ^+- и Σ^--термами; симметрия по отношению к изменению знака координат 3) всех электронов (для молекулы из одинаковых атомов) приводит к классификации термов на чётные и нечётные. Эти свойства симметрии характеризуют электронные термы и одинаковы у всех вращательных уровней, относящихся к одному и тому же электронному терму.

1) Соответствие между классификацией термов типа a и типа c не может быть произведено в общем виде. Оно требует конкретного рассмотрения кривых потенциальной энергии с учётом правила непересекаемости уровней одинаковой симметрии (§ 76).

2) Мы пренебрегаем здесь так называемым Δ-удвоением (см. § 85).

3) Начало координат предполагается выбранным на оси молекулы; если молекула состоит из одинаковых атомов, — то посредине между обоими ядрами.
Вращательные уровни характеризуются ещё и другими свойствами симметрии, связанными с преобразованиями координат как электронов, так и ядер.

Гамильтониан молекулы (как и всякой вообще системы частиц — см. § 28) инвариантен по отношению к одновременному изменению знака координат всех электронов и ядер. В связи с этим все термы молекулы делятся на положительные — волновые функции которых не меняются при изменении знака координат электронов и ядер, и отрицательные — волновые функции которых меняют знак при этом преобразовании. 1)

При \(\Delta \neq 0 \) каждый терм двукратно вырожден соответственно двум возможным направлениям момента относительно оси молекулы. В результате операции инверсии момент сам по себе не меняет знака, но зато меняется на обратное направление оси молекулы (атомы меняются местами!), а потому меняется на обратное и направление момента \(\Delta \) относительно молекулы. Поэтому две волновые функции, относящиеся к данному уровню энергии, преобразуются друг через друга, и из них можно всегда составить линейную комбинацию, инвариантную по отношению к инверсии, и комбинацию, меняющую при этом преобразовании знак. Таким образом мы получим для каждого терма два состояния, из которых одно будет положительным, а другое отрицательным. Фактически каждый терм с \(\Delta \neq 0 \) всё же расщепляется (см. § 85), так что эти два состояния будут соответствовать различным значениям энергии.

\(\Sigma \)-термы требуют особого рассмотрения для определения их знака. Прежде всего ясно, что спин не имеет отношения к знаку терма; операция инверсии затрагивает только координаты частиц, оставляя спиновую часть волновой функции неизменной. Поэтому все компоненты мультиплетной структуры каждого данного терма имеют одинаковый знак. Другими словами, знак терма будет зависеть только от \(K \), но не от \(J \). 2)

Волновая функция молекулы представляет собой произведение электронной и ядерной волновых функций. В § 79 было показано, что в \(\Sigma \)-состоянии движение ядер эквивалентно движению одной частицы с орбитальным моментом \(K \) в центрально-симметрическом поле \(U(r) \). Поэтому можно утверждать, что при изменении знака координат ядерная волновая функция умножается на \((-1)^{K} \) (см. (28,7)).

Электронная волновая функция характеризует электронный терм, и для выяснения его поведения при инверсии надо рассмотреть её

1) Мы придерживаемся общепринятой терминологии. Она неудобна, так как в случае атома о поведении термов по отношению к операции инверсии говорят как об их чётности, а не знаке.

Для \(\Sigma \)-термов не смешивать знак, о котором здесь идёт речь, со знаками + и —, указываемыми в виде индекса сверху!

2) Напоминаем, что для \(\Sigma \)-термов обычно имеет место случай \(b \), и потому надо пользоваться квантовыми числами \(K \) и \(J \).
в системе координат, жёстко связанной с ядрами и врашающейся вместе с ними. Пусть \(x, y, z \) есть неподвижная в пространстве система координат, а \(\xi, \eta, \zeta \) — врашающаяся система координат, в которой молекула как целое неподвижна. Направление осей \(\xi, \eta, \zeta \) зададим таким образом, чтобы ось \(\zeta \) совпадала с осью молекулы, будучи направлена, скажем, от ядра 1 к ядру 2, а взаимное расположение положительных направлений осей \(\xi, \eta, \zeta \) должно быть таким же, как и в системе \(x, y, z \) (т. е. если система \(x, y, z \) — левая, то левой должна быть и система \(\xi, \eta, \zeta \)). В результате операции инверсии направление осей \(x, y, z \) меняется на обратное, и она становится из левой — правой. При этом и система \(\xi, \eta, \zeta \) должна стать правой, но ось \(\zeta \), будучи жёстко связана с ядрами, сохраняет прежнее направление. Для этого надо изменить на обратное направление какой-либо одной из осей \(\xi \) или \(\eta \). Таким образом операция инверсии в неподвижной системе координат эквивалентна в движущейся системе отражению в плоскости, проходящей через ось молекулы. Но при таком отражении электронная волновая функция \(\Sigma^+ \)-терма не меняется, а \(\Sigma^- \)-терма меняет знак.

Таким образом знак вращательных компонент \(\Sigma^+ \)-терма определяется множителем \((-1)^K\); все уровни с чётным \(K \) положительны, а с нечётным — отрицательны. Для \(\Sigma^- \)-терма знак вращательных уровней определяется множителем \((-1)^{K+1}\) и все уровни с чётными \(K \) отрицательны, а с нечётными — положительны.

Если молекула состоит из одинаковых атомов\(^1\), то её гамильтониан инвариантен также и по отношению ко взаимной перестановке координат обоих ядер. Терм называется симметричным относительно ядер, если его волновая функция не меняется при перестановке ядер, и антисимметричным — если волновая функция меняет знак. Симметрия относительно ядер тесно связана с чётностью и знаком терма. Перестановка координат ядер эквивалентна изменению знака координат всех частиц (электронов и ядер) и последующему изменению знака координат только у электронов. Отсюда следует, что если терм чётен (нечётен) и в то же время положителен (отрицателен), то он симметричен относительно ядер. Если же терм чётен (нечётен) и в то же время отрицателен (положителен), то он антисимметричен относительно ядер.

В конце § 60 была установлена общая теорема о том, что координатная волновая функция системы из двух одинаковых частиц симметрична при чётном и антисимметрична при нечётном полном спине системы. Если применить этот результат к двум ядрам молекулы из одинаковых атомов, то мы найдём, что симметрия терма связана с чётностью суммарного спина \(I \), получающегося в результате сложения спинов \(i \) обоих ядер. Терм симметричен при чётном и анти-

1) Необходимо, чтобы оба атома относились не только к одному и тому же элементу, но и к одному его изотопу.
§ 83] СИММЕТРИЯ МОЛЕКУЛЯРНЫХ ТЕРМОВ 339

симметричен при нечётном \(I \). В частности, если ядра не обладают спином \(i = 0 \), то равно нулю и \(I \); поэтому молекула не будет вовсе иметь антисимметричных термов. Мы видим, что ядерный спин оказывает существенное косвенное влияние на молекулярные термы, хотя его непосредственное влияние (сверхтонкая структура термов) совершенно ничтожно и им можно вовсе пренебречь.

Учёт спина ядер приводит к дополнительному выражению уровней. В том же § 60 было подсчитано число состояний с чётными и нечётными значениями \(I \), получающихся при сложении двух спинов \(i \). Так, при поле \(m \) число состояний с чётными \(I \) равно \(\binom{i + 1}{2} + 1 \), а с нечётными: \(\binom{i - 1}{2} + 1 \). В связи со сказанным выше заключаем, что отношение кратностей \(g_a \) и \(g_a \) выражения \(g \) симметричного и антисимметричного термов при поле \(i \) равно:

\[
\frac{g_a}{g_a} = \frac{i}{i + 1}.
\]

(83,1)

При поле же \(i \) аналогично найдём, что это отношение равно:

\[
\frac{g_a}{g_a} = \frac{i + 1}{i}.
\]

(83,2)

Мы видели, что знак вращательного компонента терма \(\Sigma^+ \) определяется числом \((-1)^K \). Поэтому, например, вращательные компоненты терма \(\Sigma^+ \) при чётном \(K \) положительны и потому симметричны, а при нечётном \(K \) — отрицательны и, следовательно, антисимметричны. Имея в виду полученные выше результаты, заключаем, что ядерные статистические веса вращательных компонент уровня \(\Sigma^+ \) с последовательными значениями \(K \) попеременно меняются в отношении \((83,1) \) или \((83,2) \). Совершенно аналогичное положение имеет место для уровней \(\Sigma^+ \), а также \(\Sigma^-, \Sigma^- \). В частности, при \(i = 0 \) равны нулю статистические веса уровней с чётными \(K \) и термов \(\Sigma^+ \), \(\Sigma^- \) и уровней с нечётными \(K \) у термов \(\Sigma^+ \), \(\Sigma^- \). Другими словами, в электронных состояниях \(\Sigma^+ \), \(\Sigma^- \) не существует вращательных состояний с чётными \(K \), а в состояниях \(\Sigma^+ \), \(\Sigma^- \) не существует вращательных состояний с нечётными \(K \).

Ввиду чрезвычайной слабости взаимодействия ядерных спинов с электронами вероятность изменения \(I \) очень мала даже при столкновениях молекул. Поэтому молекулы, отличающиеся чётностью \(I \) и соответственно обладающие только симметричными или только

1) Имея в виду связь между чётностью, знаком и симметричностью термов, заключаем, что при чётном суммарном спине ядер \(I \) положительные уровни чётны, а отрицательные — нечётны; при нечётном \(I \) — наоборот.

2) О кратности выражения уровня в этой связи часто говорят, как о его статистическом весе. Формулы (83,1—2) определяют отношения ядерных статистических весов симметрических и антисимметрических уровней.
антисимметричными термами, ведут себя практически как различные модификации вещества. Таковы, например, орто- и параводород; в молекуле первого спина \(i = 1/2 \) обоих ядер параллельны \((I = 1) \), а во втором — антипараллельны \((I = 0) \).

§ 84. Матричные элементы для двухатомной молекулы

Вычисление матриц различных величин в двухатомной молекуле мы начнём с матричных элементов для переходов между состояниями с равным нулю спином.

Пусть \(\pi \) есть единичный вектор в направлении оси молекулы. Вектор \(\pi \), рассматриваемый как оператор, коммутирует с операторами энергии электронов и колебательной энергии, но не с моментом \(\mathbf{K} \) молекулы. Поэтому матрица \(\pi \) диагональна по всем квантовым числам, за исключением только чисел \(K \) и \(M_K \) (посредством \(M_K \) мы обозначаем величину проекции момента \(\mathbf{K} \) на неподвижную в про странстве ось \(z \)). Опуская все индексы, кроме этих двух, будем писать матричные элементы в виде \((\pi)_{\mathbf{K}'}_{\mathbf{K}}^{K M K} \). Их зависимость от \(M_K \) определяется непосредственно общими формулами (27,11), (27,13), в которых под \(L \) и \(M \) надо подразумевать теперь \(K \) и \(M_K \) (а индекс \(n \) можно опустить). Коэффициенты \(A_{n'n''}^{n''} \) в этих формулах обозначаем для данного случая как \(n_K^{K'} \), так что, например,

\[
(n_{x})_{\mathbf{K}}^{K M K} = M_K n_{K}^{K}.
\]

Для вычисления величин \(n_K^{K'} \), исходя из равенств \(n_{\mathbf{K}} = \Delta, n^2 = 1 \), написанных в виде:

\[
\frac{1}{2} (n_{x} + i n_{y}) (\hat{n}_{x} - i \hat{n}_{y}) + \frac{1}{2} (n_{x} - i n_{y}) (\hat{n}_{x} + i \hat{n}_{y}) + n_{z} \hat{n}_{z} = \Delta, \\
(n_{x} + i n_{y}) (n_{x} - i n_{y}) + n_{z} = 1,
\]

и из соотношения коммутации

\[n_x(n_x + i n_y) - (n_x + i n_y) n_x = 0. \]

Взяв диагональные матричные элементы от этих равенств (матричные элементы \(K \) определяются общими формулами (25,13) с \(K, M_K \) вместо \(L, M \)), получим после вычисления, которое мы здесь опускаем, следующие формулы для искомых величин (Г. Генль, Ф. Лондон, 1925):

\[
n_K^{K} = \frac{\Delta}{K(K + 1)}, \quad n_{K-1}^{K} = n_{K}^{K-1} = \frac{1}{K} \sqrt{\frac{(K-\Delta)(K+\Delta)}{(2K-1)(2K+1)}}. \tag{84,1}
\]

При \(\Delta = 0 \) эти формулы дают

\[n_K^{K} = 0, \quad n_{K-1}^{K} = n_{K}^{K-1} = 1/\sqrt{4K^2 - 1}, \]
что как раз соответствует, как и следовало ожидать, матричным элементам единичного вектора для движения в поле с центральной симметрией (см. (29,2)).

Далее, пусть A есть некоторая векторная физическая величина, характеристическая состояние молекулы при неподвижных ядрах 1). Рассмотрим сначала эту величину в системе координат ξ, η, ζ, вращающейся вместе с молекулой (причём ось ζ совпадает с осью молекулы). Приконтенсия сюда полностью результаты § 27 нельзя, так как момент количества движения молекулы относительно системы координат ξ, η, ζ (т.е. электронный момент L) не сохраняется; сохраняется лишь его ζ-компонент Λ. Результаты же, касающиеся правила отбора по квантовому числу Δ (M в § 27), остаются, очевидно, полностью в силе. Таким образом отличными от нуля матричными элементами вектора A будут:

$$(A_{\xi})^{\zeta}_{\eta} A, \quad (A_{\xi} + iA_{\eta})^{\zeta}_{n_M^K}, \quad (A_{\xi} - iA_{\eta})^{\zeta}_{n_M^K - 1} \quad (84,2)$$

(посредством n обозначаем совокупность квантовых чисел электронного терма, исключая Λ).

Если оба терма являются Σ-термами, то надо иметь в виду также и правило отбора, связанное с симметрией по отношению к отражению в плоскости, проходящей через ось молекулы (ось ζ). При таком отражении ζ-компоненты обычного (полярного) вектора не меняются, а у аксиального вектора меняет знак. Отсюда заключаем, что у полярного вектора A_{ξ} имеет отличные от нуля матричные элементы только для переходов $\Sigma^+ \to \Sigma^+$ и $\Sigma^- \to \Sigma^-$, а у аксиального вектора — для переходов $\Sigma^+ \to \Sigma^-$. О компонентах A_{ξ}, A_{η} мы не говорим, так как для них переходы без изменения Δ вообще невозможны.

Если молекула состоит из одинаковых атомов, то имеется ещё правило отбора по отношению к чётности. Компоненты вектора (полярного) меняют знак при инверсии. Поэтому их матричные элементы отличны от нуля только для переходов между состояниями различной чётности (для аксиального вектора — наоборот). В частности, тождественно исчезают все диагональные матричные элементы компонент полярного вектора.

Возникает вопрос о том, как связаны матричные элементы (84,2) с матричными элементами компонента того же вектора A в неподвижной системе координат. В этой системе можно воспользоваться снова общими формулами (27,11), (27,13), которыми определяется зависимость матричных элементов $(A)^{n_K}_{n_K} A^{M_K}_{M_K}$ от квантового числа M_K. Коэффициенты в этих формулах обозначаем естественным образом как $A^{n_K}_{n_K};$ мы должны связать их с величинами (84,2).

1) Это может быть, например, дипольный или магнитный момент молекулы.
Из (84,2) видно, что диагональные по Δ матричные элементы имеются только для компоненты вдоль оси молекулы. Поэтому можно написать следующее равенство:

$$(A)_{n'\Delta K' M'}^{n \Delta K M} = (A_{\xi})_{n'\Delta K' M'}^{n \Delta K M}.$$

В частности,

$$(A_{z})_{n'\Delta K' M'}^{n \Delta K M} = (A_{\xi})_{n'\Delta}^{n \Delta} (n_{z})_{K' M}^{K M}.$$

Отделяя зависимость от $M_{K}^{' }$, получаем отсюда

$$A_{n' \Delta K'}^{n \Delta} = n_{K}^{K} (A_{\xi})_{n' \Delta}^{n \Delta},$$

где n_{K}^{K} определяются формулами (84,1). Таким образом мы нашли часть интересующих нас соотношений.

Для нахождения остальных соотношений (для недиагональных по Δ компонент) замечаем, что поскольку величина A относится к молекуле при неподвижных ядрах, то операторы $\hat{A}_{\xi}, \hat{A}_{\eta}, \hat{A}_{\zeta}$, очевидно, коммутируют с вектором n. Но компоненты вектора A в системе x, y, z выражаются линейно через компоненты в системе ξ, η, ζ, причём коэффициенты в этих линейных соотношениях выражаются через n_{x}, n_{y}, n_{z}. Поэтому и $\hat{A}_{x}, \hat{A}_{y}, \hat{A}_{z}$ коммутируют с вектором n. В частности,

$$\hat{A}_{z} n_{z} - n_{z} \hat{A}_{z} = 0.$$

Взяв от этого равенства матричные элементы для переходов $\Delta, K \rightarrow \Delta - 1, K'$ с $K' = K, K \pm 1$, получим три уравнения, из которых определяется зависимость искомых величин $A_{n' \Delta - 1 K'}^{n \Delta K}$ от K. Коэффициенты в получающихся формулах могут быть связаны с величинами (84,2) сравнением матричных элементов от скаляра A, вычисленных один раз в системе координат x, y, z, а другой раз — в системе ξ, η, ζ. В результате получим следующие окончательные формулы:

$$A_{n' \Delta - 1 K - 1}^{n \Delta K} = (A_{\xi} + i A_{\eta})_{n' \Delta - 1}^{n \Delta - 1} \sqrt{(K + \Delta)(K - 1)(K + 1)} / 2K,$$

$$A_{n' \Delta - 1 K - 1}^{n \Delta K} = - (A_{\xi} + i A_{\eta})_{n' \Delta - 1}^{n \Delta - 1} 1 / 2K \sqrt{(K + \Delta)(K + 1)(K - 1)(K + 1)} / 2K,$$

$$A_{n' \Delta - 1 K - 1}^{n \Delta K - 1} = (A_{\xi} + i A_{\eta})_{n' \Delta - 1}^{n \Delta - 1} 1 / 2K \sqrt{(K - \Delta)(K + 1)(K - 1)} / 2K,$$

Компоненты с $\Delta - 1 \rightarrow \Delta$ равны комплексно сопряжённым от написанных.

1) Вычисление удобно производить непосредственно по общей формуле (27,15), в которой надо положить $B = A$, заменить L на K, а под n подразумевать n, Δ.
Наконец, надо выяснить, каким образом должны быть видаизменены полученные формулы для переходов между состояниями с отличным от нуля спином. Здесь существенно, относятся ли состояния к случаю a или же к случаю b.

Пусть сначала оба состояния относятся к случаю a. Единичный вектор n коммутирует с вектором спина S, поэтому его матрица диагональна по квантовым числам S и Σ (или, что то же, по S и Ω, поскольку Ω = Λ ± Σ, а по Λ эта матрица тоже диагональна). Квантовых чисел K и M_K не существует, а вместо них имеются полный момент J и его проекция М на ось z. Вместо соотношения nK = Δ', которым мы пользовались при выводе (84.1), имеем теперь nJ = Ω. Соответственно этому, мы получим снова те же формулы (84.1), в которых надо лишь заменить K и Δ соответственно на J и Ω (диагональный индекс S опускаем).

То же самое справедливо и для любого орбитального (т. е. не зависящего от спина) вектора A. Такой вектор тоже коммутирует с S, и потому его матрица диагональна по S и Σ; если же пользоваться вместо Σ квантовым числом Ω, то в отличных от нуля матричных элементах оно изменяется вместе с Δ (т. е. если Δ' = Δ ± 1, то и Ω' = Ω ± 1). Формулы (84.3), (84.4) меняются лишь в том отношении, что надо приписать индексы Ω, Ω' и заменить везде (кроме индексов) K и Δ на J и Ω. Так, например:

\[A_{n'}^{n \Omega J} = (A_{\xi})_{n'}^{n \Omega J} = \frac{\Omega}{J(J+1)} \cdot \]

Если же вектор A зависит от спина, то правила отбора меняются. Вектор S коммутирует с орбитальным моментом, а также с гамильтонианом, и потому его матрица диагональна по n и Λ (эти индексы опускаем). Она, однако, не диагональна по Σ (или по Ω). Матричные элементы компонент S в системе ξ, η, ζ определяются формулами (25.13) с S, Σ вместо L, M, после чего переход в систему x, y, z осуществляется по формулам (84.3—4), в которых надо везде (в том числе в индексах) заменить K, Δ на J, Ω. Так, например:

\[S_{n-1J}^{2J} = \frac{\sqrt{(J+\Omega)(J-\Omega+1)}}{2J(J+1)} \cdot \]

Пусть теперь оба состояния относятся к случаю b. Вычисление матричных элементов производится в этом случае в два приёма. Сначала рассматриваем вращающуюся молекулу без учёта сложения спина с моментом K; матричные элементы определяются тогда теми же формулами (84.1—4). Вектор A предполагается орбитальным, так что он, как и n, коммутирует с S, и потому матрицы диаго-
нальны по квантовому числу S, которое мы опускаем из числа индексов. Вслед за тем момент K складывается с S в суммарный момент J, и переход к новым матричным элементам производится по общим формулам (31,5) (роль L_1, L_2, L в этих формулах играют в данном случае соответственно S, K, J, а вместо n_2 писем n, Λ; взаимодействие спин-оси при вычислении матричных элементов предположим, как условие применимости формул § 31 соблюдаются). Так, например, для диагональных по Λ, K, J элементов получаем:

$$A_{n\Lambda KJ}^{n'\Lambda K} = \frac{A_{n\Lambda K}^{n'\Lambda K} J(J+1) - S(S+1) + K(K+1)}{2J(J+1)} =$$

$$= (A_{0\Lambda}^{n\Lambda} \Lambda J(J+1) - S(S+1) + K(K+1)) \frac{2J(J+1)K(K+1)}{2J(J+1)K(K+1)}.$$

Если одно из состояний относится к случаю a, а другое — к случаю b, то вычисление матричных элементов для переходов между ними более сложно; мы не станем останавливаться здесь на этом вопросе 1).

Задачи

1. Определить штарковское расщепление термов для двухатомной молекулы, обладающей постоянным дипольным моментом; терм относится к случаю a.

Решение. Энергия диполя d в электрическом поле \mathcal{E} равна $-d\mathcal{E}$. В силу симметрии симметричное, что дипольный момент двухатомной молекулы направлен по её оси: $d = dn$ (d — постоянная). Выбирая направление поля в качестве оси z, получим оператор возмущения в виде $-dn_2\mathcal{E}$.

Определяя диагональные матричные элементы от n_2 согласно выведенному в тексте формулам, находим, что в случае a расщепление уровней определяется формулой 2):

$$\Delta E_{MJ} = -\mathcal{E} dM_{J} \frac{\Omega}{J(J+1)}.$$

2. То же, но для терма, относящегося к случаю b (принято $\Lambda \neq 0$).

Решение. Тем же способом находим:

$$\Delta E_{MJ} = -\mathcal{E} dM_{J} \Lambda J(J+1) - S(S+1) + K(K+1)) \frac{2K(K+1)J(J+1)}{2J(J+1)K(K+1)}.$$

3. То же для терма 1Σ.

Решение. При $\Lambda = 0$ линейный эффект отсутствует, и надо обратиться к второму приближению теории возмущений. При суммировании в общей формуле (38,9) достаточно оставить лишь члены, соответствующие переходам между вращательными компонентами данного электронного терма (в других

1) См. статью E. Hillel, J. van Vleck, Phys. Rev. 32, 250, 1928.

2) Может показаться, что здесь имеется противоречие с общим утверждением (§ 72) об отсутствии линейного эффекта Штарка. В действительности, разумеется, такого противоречия нет, так как наличие линейного эффекта связано в данном случае с двукратным выражением уровней с $\Omega \neq 0$; полученная формула применима поэтому при условии, что энергия штарковского расщепления велика по сравнению с энергией так называемого Λ-удвоения (§ 85).
где \(E_K = BK(K+1) \). Простое вычисление приводит к результату
\[
\Delta E_{MK} = \frac{d^2 g^2}{B} \frac{[K(K+1) - 3M_K^2]}{2K(K+1)(2K-1)(2K+3)}.
\]

§ 85. \(\Lambda \)-удвоение

Двукратное выражение термов с \(\Lambda \neq 0 \) (§ 75) является в действительности приближенным. Оно имеет место лишь поскольку мы пренебрегаем влиянием вращения молекулы на электронное состояние (а также высшими приближениями по взаимодействию спин-орбиты), как это делалось во всей предыдущей теории. Учёт взаимодействия между электронным состоянием и вращением приводит к расщеплению терма с \(\Lambda \neq 0 \) на два близких уровня. Это явление называют \(\Lambda \)-удвоением (Хилл и ван-Флек, Крониг, 1928).

Количественное рассмотрение этого эффекта мы начнём снова с синглетных термов (\(S=0 \)). Вычисление энергии вращательных уровней мы провели (в § 79) в первом приближении теории возмущений, определяя диагональные матричные элементы (среднее значение) оператора
\[
B (r) (\hat{K} - \hat{L})^2.
\]

Для вычисления следующих приближений надо рассмотреть недиагональные по \(\Lambda \) элементы этого оператора. Операторы \(\hat{K}^2 \) и \(\hat{L}^2 \) диагональны по \(\Lambda \), так что надо рассматривать только оператор — \(2B\hat{K}\hat{L} \).

Вычисление матричных элементов от \(\hat{K} \hat{L} \) удобно производить с помощью общей формулы (27,15), в которой надо положить \(\Lambda = K, B = L; \) роль \(L, M \) играют \(K, M_K, \) а вместо \(n \) надо писать \(n, \Lambda \), где \(n \) обозначает совокупность квантовых чисел (исключая \(\Lambda \)), определяющих электронный терм. Поскольку матрица сохраняющегося вектора \(K \) диагональна по \(n, \Lambda \), а матрица вектора \(L \) содержит недиагональные элементы только для переходов с изменением \(\Delta \) на единицу (ср. сказанное в § 84 о произвольном векторе \(\Lambda \)), то имеем:
\[
(KL)^{n\Lambda}_{n'\Lambda - 1K M_K} = K(K+1) (K_{n\Lambda}^n)^K (L_{n'\Lambda}^{n\Lambda}) =
\frac{1}{2} (L_{\xi} + iL_{\eta})^{n\Lambda}_{n'\Lambda - 1} \sqrt{(K+\Lambda)(K+1-\Lambda)}
\]
(величины \(L_{n'\Lambda - 1K}^{n\Lambda} \) определяются формулами (84,4), а величины \(K_{n\Lambda}^{n\Lambda} \), очевидно, равны единице). Матричных элементов, отвечающих большему изменению \(\Delta \), нет.
Возмущающее действие матричных элементов с $\Delta \rightarrow \Delta - 1$ может сказаться на появлении разности энергий между состояниями с $\pm \Delta$ только в 2Δ-м приближении теории возмущений. Соответственно этому, эффект будет пропорционален $B^{2\Delta}$, т. е. $(\mu/M)^{2\Delta}$ (M — масса молекулы, μ — масса электрона). При $\Delta \geq 1$ эта величина настолько мала, что не представляет никакого интереса. Таким образом эффект Δ-удвоения существенен только для Π-термов ($\Delta = 1$), которые и рассматриваются ниже.

При $\Delta = 1$ надо обратиться ко второму приближению. Поправки к собственным значениям энергий могут быть определены согласно общей формуле (38,9). В знаменателях слагаемых сумм в этом уравнении стоят разности энергий вида $E_{n,\Delta,K} - E_{n',\Delta - 1,K}$. В этих разностях члены, содержащие K, взаимно сокращаются, так как при заданном расстоянии r между ядрами вращательная энергия есть одна и та же величина $B(r)K(K+1)$ для всех термов. Поэтому зависимость искомого расщепления ΔE от K целиком определяется стоящими в чисительных квадратах матричных элементов. Среди них будут квадраты элементов для переходов с изменением Δ от 1 к 0 и от 0 к -1; те и другие дают, согласно (85,1), одинаковую зависимость от K, и мы найдём, что расщепление $^1\Pi$-терма имеет вид:

$$\Delta E = \text{const.} \ K(K+1), \quad (85,2)$$

причём (по порядку величины) $\text{const.} \sim B^2/\varepsilon$, где ε есть порядок величины разностей между соседними электронными термами.

Переход к термам с отличным от нуля спином ($^3\Pi$- и $^5\Pi$-термы; более высокие значения S практически не встречаются). Если терм относится к случаю b, то мультиплетное расщепление вообще не сказываеться на Δ-удвоении вращательных уровней, которое попрежнему определяется формулой (85,2).

В случае же a влияние спина, напротив, существенно. Каждый электронный терм характеризуется здесь, кроме числа Δ, ещё и числом Ω. Если просто заменить Δ на $-\Delta$, то изменится $\Omega = \Delta + \Sigma$, так что мы получим совсем другой терм. Взаимно выражёнными являются состояния с Δ, Ω и $-\Delta, -\Omega$. Снятие этого выражения может произойти здесь не только под влиянием рассмотренного выше эффекта взаимодействия орбитального момента с вращением молекулы, но и под влиянием взаимодействия спин-орбита. Дело в том, что сохранение проекции Ω полного момента на ось молекулы есть (при неподвижных ядрах) точный закон сохранения и потому не может быть нарушено взаимодействием спин-орбита; последнее может, однако, изменить (т. е. имеет матричные элементы для соответствующих переходов) одновременно Δ и Σ так, чтобы Ω оставалось неизменным. Этот эффект может, сам или в комбинации с взаимодействием орбита-вращение (изменяющим Δ без изменения Σ), привести к Δ-удвоению.
Рассмотрим сначала термы $^2\Pi$. Для терма $^2\Pi_{1/2}$ ($\Delta = 1$, $\Sigma = -1/2$, $\Omega = 1/2$) расщепление получается при учёте одновременно взаимодействий спин-орбита и орбита-вращение (каждое — в первом приближении). Действительно, первое даёт переход $\Delta = 1$, $\Sigma = -1/2 \rightarrow \Delta = 0$, $\Sigma = 1/2$, после чего второе переводит состояние $\Delta = 0$, $\Sigma = 1/2$ в состояние с $\Delta = -1$, $\Sigma = 1/2$, отличающееся от исходного изменением знака у Δ и Ω. Матричные элементы взаимодействия спин-орбита не зависят от вращательного квантового числа J, а для взаимодействия орбита-вращение их зависимость определяется формулой (85,1), в которой надо заменить (под корнем) K и Δ на J и Ω. Таким образом получим для Δ-удвоения терма $^2\Pi_{1/2}$ выражение

$$ \Delta E_{1/2} = \text{const.} \left(J + \frac{1}{2} \right), \quad (85,3) $$

где const. $\sim \frac{AB}{e}$. Для терма же $^2\Pi_{3/2}$ расщепление может получиться только в высших приближениях, так что практически $\Delta E_{3/2} = 0$.

Наконец, рассмотрим $^3\Pi$-термы. У терма $^3\Pi_0$ ($\Delta = 1$, $\Sigma = -1$) расщепление получается при учёте во втором приближении взаимодействия спин-орбита (за счёт переходов $\Delta = 1$, $\Sigma = -1 \rightarrow \Delta = 0$, $\Sigma = 0 \rightarrow \Delta = -1$, $\Sigma = 1$). Соответственно, Δ-удвоение в этом случае совершенно не зависит от J:

$$ \Delta E_0 = \text{const.}, \quad (85,4) $$

где const. $\sim A^2/e$. Для $^3\Pi_1$-терма $\Sigma = 0$, и потому спин вообще не влияет на расщепление, соответственно чему получается снова формула вида (85,2) с K, заменённым на J:

$$ \Delta E_1 = \text{const.} \cdot J(J+1). \quad (85,5) $$

Для терма же $^3\Pi_2$ требуется более высокие приближения, так что можно считать $\Delta E_2 = 0$.

Один из уровней дублета, возникшего в результате Δ-удвоения, всегда является положительным, а другой отрицательным; об этом говорилось уже в § 83. Исследование волновых функций молекулы позволяет установить закономерности чередования положительных и отрицательных уровней. Мы укажем здесь лишь результаты этого исследования 1). Оказывается, что если при некотором значении J положительный уровень ниже отрицательного, то в дублете с $J+1$ порядок будет обратным — положительный уровень выше отрицательного и т. д.; порядок расположения поочерёдно меняется с последовательными значениями полного момента (речь идёт о термах случая a; в случае b то же самое имеет место для последовательных значений момента K).

1) Его можно найти в статье Вигнера и Вятмера (см. сноску на стр. 310).
Задача

Определить Λ-расщепление для терма $^1\Lambda$.

Решение. Здесь эффект появляется в четвёртом приближении теории возмущений. Его зависимость от K определяется произведениями по чатырем матричным элементам (85.1) для переходов с изменением $\Lambda: 2 \rightarrow 1, 1 \rightarrow 0, 0 \rightarrow -1, -1 \rightarrow -2$. Это даёт

$$\Delta E = \text{const.} (K-1) K(K+1) (K+2),$$

где $\text{const.} \sim (B^4/s^3)$.

§ 86. Взаимодействие атомов на далёких расстояниях

Рассмотрим два атома в S-состояниях, находящихся на большом расстоянии друг от друга, и определим энергию их взаимодействия. Другими словами, речь идёт об определении вида электронных термов $U_n(r)$ при больших расстояниях между ядрами.

Для решения этой задачи применим теорию возмущений, рассматривая два изолированных атома как невозмущённую систему, а потенциальную энергию их электрического взаимодействия как оператор возмущения. Как известно из электростатики, электрическое взаимодействие двух систем зарядов, находящихся на большом расстоянии r друг от друга, можно разложить по степеням $1/r$, причём последовательные члены этого разложения соответствуют взаимодействию полных зарядов, дипольных, квадрупольных и т. д. моментов обеих систем. У нейтральных атомов полные заряды равны нулю. Разложение начинается здесь с диполь-дипольного взаимодействия ($\sim 1/r^3$); за ним следуют диполь-квадрупольные члены ($\sim 1/r^4$), квадруполь-квадрупольные (и диполь-октупольные) члены ($\sim 1/r^6$) и т. д.

В первом приближении теории возмущений искомая энергия взаимодействия атомов определяется как диагональный матричный элемент оператора возмущения, вычисленный с помощью невозмущённых волновых функций системы (выражающихся в виде произведений невозмущённых функций атомов). Но в S-состояниях диагональные матричные элементы, т. е. средние значения дипольного, квадрупольного и т. д. моментов равны нулю; это следует непосредственно из соображений симметрии ввиду того, что распределение зарядов в атоме в S-состоянии в среднем сферически симметрично. Поэтому каждый из членов разложения оператора возмущения по степеням $1/r$ даёт в первом приближении теории возмущений нуль 1).

Во втором приближении достаточно ограничиться дипольным взаимодействием в операторе возмущения, как наиболее медленно

1) Это, разумеется, не означает, что среднее значение энергии взаимодействия атомов равно в точности нулю. Оно убывает с расстоянием экспоненционально, т. е. быстрее всякой конечной степени $1/r$, с чем и связано обращение в нуль каждого из членов разложения.
§ 86] ВЗАИМОДЕЙСТВИЕ АТОМОВ НА ДАЛЕКИХ РАССТОЯНИЯХ 349

убывающим с увеличением \(r \), т. е. членом

\[V = \frac{-d_1d_2 + 3(d_1n)(d_2n)}{r^3} \]

(\(n \)—единичный вектор в направлении между обоими атомами). Поскольку ненадиagonalьные матричные элементы дипольного момента, вообще говоря, отличны от нуля, то во втором приближении теории возмущений мы получаем отличный от нуля результат, который, будучи квадратичным по \(V \), пропорционален \(1/r^6 \). Поправка второго приближения к наиболее низкому собственному значению, как мы знаем, всегда отрицательна (§ 38). Поэтому мы получим для энергии взаимодействия атомов, находящихся в нормальных состояниях, выражение вида 1):

\[U(r) = -\frac{\text{const.}}{r^6}, \quad (86.1) \]

где const. есть положительная постоянная.

Таким образом два атома в нормальных \(S \)-состояниях, находящиеся на большом расстоянии друг от друга, притягиваются с силой \((-dU/dr)\), обратно пропорциональной седьмой степени расстояния. Силы притяжения между атомами называют обычно ван-дер-ваальсовыми.

Если в \(S \)-состоянии находится только один из атомов, то для энергии их взаимодействия получается тот же результат (86.1), так как для обращения в нуль первого приближения достаточно исчезновения дипольного и т. д. моментов уже одного атома. Постоянная в числителе (86.1) зависит при этом не только от состояний обоих атомов, но и от их взаимной ориентации, т. е. от величины \(\Omega \) проекции момента на соединяющую атомы ось.

Если же оба атома обладают отличными от нуля орбитальными и полными моментами, то положение меняется. Что касается дипольного момента, то его среднее значение равно нулю во всём состоянии атома 2). Средние же значения квадрупольного момента в состояниях с \(L \neq 0, J \neq 0 \) отличны от нуля. Поэтому квадрупольный член в операторе возмущения даст отличный от нуля результат уже в первом приближении, и мы найдём, что энергия взаимодействия атомов убывает не с шестой, а с пятой степенью.

1) Для краткости мы опускаем здесь и ниже не интересующий нас постоянный член в \(U(r) \) (значение \(U(\infty) \), равное сумме энергий двух изолированных атомов).
2) \(U \) дипольного момента, как и всякого полярного вектора, могут быть отличными от нуля только матричные элементы для переходов между состояниями различной чётности. Матричные же элементы для переходов между состояниями одинаковой чётности, в том числе диагональные, тождественно обращаются в нуль (см. § 23).
расстояния:

\[U(r) = \frac{\text{const.}}{r^5}. \]

Постоянная здесь может быть как положительной, так и отрицательной, т. е. может иметь место как притяжение, так и отталкивание. Как и в предыдущем случае, эта постоянная зависит не только от состояний атомов, но и от состояния образуемой обоими атомами молекулы.

Особый случай представляет взаимодействие двух одинаковых атомов, находящихся в различных состояниях. Невозмущённая система (два изолированных атома) обладает здесь дополнительным выражением, связанном с возможностью перестановки состояний между атомами. Соответственно этому поправка первого приближения будет определяться секулярным уравнением, в которое входят не только диагональные, но и недиагональные матричные элементы возмущения. Если состояния обоих атомов обладают различной чётностью и моментами \(L \), отличающимися на \(\pm 1 \) или 0, но не равными оба нулю (и то же самое требуется для \(J \)), то недиагональные матричные элементы дипольного момента для переходов между этими состояниями, вообще говоря, отличны от нуля. Эффект первого приближения получится поэтому уже от дипольного члена в операторе возмущения. Таким образом энергия взаимодействия атомов будет здесь пропорциональна \(1/r^8 \):

\[U(r) = \frac{\text{const.}}{r^8}; \]

постоянная может иметь оба знака.

\section*{§ 87. Предиссоциация}

Основным предположением изложенной в этой главе теории двухатомных молекул является допущение, что волновая функция молекулы разбивается на произведение электронной волновой функции (зависящей от расстояния между ядрами, как от параметра) и волновой функции движения ядер. Такое предположение эквивалентно пренебрежению в точном гамильтониане молекулы некоторыми малыми членами, соответствующими взаимодействию ядерного движения с электронным.

Учёт этих членов приводит, при применении теории возмущений, к появлению переходов между различными электронными состояниями\(^1\). Физически в особенности существенны переходы между состояниями, из которых по крайней мере одно относится к непрерывному спектру.

\(^{1}\) А также к расщеплению уровней, \(\Lambda \)-удвоению (§ 85).
На рис. 32 изображены кривые потенциальной энергии для двух электронных термов. Энергия \(E' \) (нижняя пунктирная прямая на рис. 32) есть энергия некоторого колебательного уровня устойчивой молекулы в электронном состоянии 2. В состоянии 1 эта энергия попадает в область непервыйного спектра. Другими словами, при переходе из состояния 2 в состояние 1 произойдёт самопроизвольный распад молекулы; это явление называют предиссоциацией 2). В результате предиссоциации состояние дискретного спектра, соответствующего кривой 2, обладает в действительности конечной продолжительностью жизни. Это значит, что дискретный уровень энергии «размывается», т. е. приобретает некоторую ширину (см. конец § 44).

Если же полная энергия \(E \) лежит выше предела диссоциации в обоих состояниях (верхняя пунктирная прямая на рис. 32), то переход из одного состояния в другое соответствует так называемому столкновению второго рода. Так, переход \(I \rightarrow 2 \) означает столкновение двух атомов, в результате которого атомы переходят в возбуждённые состояния и расходятся с уменьшенной кинетической энергией (при \(r \rightarrow \infty \) кривая 1 проходит ниже кривой 2; разность \(U_2(\infty) - U_1(\infty) \) есть энергия возбуждения атомов).

Вероятность перехода определяется соответствующим матричным элементом от пренебрежённых в гамильтониане членов. После интегрирования по электронным координатам и по углам вращения молекулы остаётся интеграл вида:

\[
\int_0^{\infty} \chi_{\text{яд}2}^* V \chi_{\text{яд}1} \, dr,
\]

где \(V(r) \) — матричный элемент возмущающей энергии по отношению к электронным волновым функциям 3). Ядерные волновые функции \(\chi_{\text{яд}1} = r \phi_{\text{яд}1} \) и \(\chi_{\text{яд}2} = r \phi_{\text{яд}2} \) представляют собой решения уравнения

1) Строго говоря, эти кривые должны изображать эффективную потенциальную энергию \(U_j \) в данных вращательных состояниях молекулы.
2) Кривая 1 может и не иметь минимума вовсе, если она отвечает только чисто отталкивающим силам между атомами.
3) Строго говоря, \(V(r) \) есть оператор, действующий на функцию межядерного расстояния \(r \). Однако ввиду квазиклассичности движения ядер его можно считать просто некоторой функцией от \(r \).
Шредингера для одномерного движения в полях \(U_{J1}(r) \) и \(U_{J2}(r) \). Ввиду большой величины массы ядер их движение является квазиклассическим везде, за исключением только окрестности точек, в которых \(E = U_{J}(r) \). Поэтому к интегралу (87,1) применимы результаты, полученные в § 51. Из этих результатов следует, что вероятность перехода будет сколько-нибудь заметна в случае, если уравнение (51,7) имеет действительный корень в области, где \(E > U_{J1}, U_{J2} \). Тогда действительная часть экспоненты в (51,8) обращается в нуль, так что матричный элемент, а с ним и вероятность перехода вообще не будут содержать малого (спадающего по экспоненциальному закону) множителя.

Поскольку переход происходит при неизменной энергии молекулы, то уравнение (51,7) сводится к

\[
U_{J1}(r) = U_{J2}(r).
\]

(87,2)

Другими словами, кривые эффективной потенциальной энергии должны пересекаться, причём точка пересечения должна лежать в области классического движения (как это и изображено на рис. 32). Следует иметь в виду, что поскольку полный момент количества движения молекулы сохраняется, то центробежная энергия в обоих состояниях \(l = 1 \) и \(l = 2 \) совпадает. Поэтому вместо (87,2) можно написать также и равенство для потенциальных энергий, не включающих центробежной энергии:

\[
U_{1}(r) = U_{2}(r),
\]

t. e. положение точки пересечения не зависит от величины момента.

Тот факт, что точка, определяемая уравнением (87,2), играет основную роль в интеграле (87,1), можно истолковать наглядно следующим образом. При одинаковой потенциальной (и полной) энергии одинаковы также и импульсы. Поэтому условие (87,2) можно написать также и в виде:

\[
r_{1} = r_{2}, \quad p_{1} = p_{2},
\]

(87,3)

где \(p \) — импульс относительного радикального движения ядер, а индексы 1 и 2 относятся к двум электронным состояниям. Таким образом можно сказать, что в момент перехода взаимное расстояние и импульс ядер остаются неизменными (так называемый принцип Франка-Кондона). Физически это связано с тем, что электронные скорости велики по сравнению с ядерными и «в течение электронного перехода» ядра не успевают заметно изменить своего положения и скорости.

Не представляет труда установить правила отбора для рассма-триваемых переходов. Прежде всего имеют место два очевидных точных правила. При переходе не должны меняться полный момент \(J \) и знак (положительность или отрицательность, см. § 83) терма. Это следует непосредственно из того, что сохранение полного момента и сохранение характера волновой функции по отношению к инверсии
системы координат суть точные законы для любой (замкнутой) системы частиц.

Далее, с большой точностью имеет место правило, запрещающее (у молекулы из одинаковых атомов) переходы между состояниями одинаковой чётности. Действительно, чётность состояния одно- значно определяется ядерным спином и знаком терма. Но сохранение знака терма есть точный закон, а ядерный спин сохраняется с большей точностью ввиду слабости его взаимодействия с электронами.

Требование наличия точки пересечения кривых потенциальной энергии означает, что термы должны обладать различной симметрией (см. § 76). Рассмотрим переходы, возникающие уже в первом приближении теории возмущений (вероятность переходов, возникающих в высших приближениях, слишком мала, чтобы имел смысл их рассматривать). Предварительно замечаем, что члены в гамильто- ниане, приводящие к рассматриваемым переходам, суть как раз те, которые обусловливают \(\Delta \)-удвоение уровней. Среди них имеются прежде всего члены, изображающие взаимодействие спин-орбита. Они представляют собой произведение двух аксиальных векторов, из которых один имеет спиновый характер (т. е. составляет из операторов спинов электронов), а другой — координатный; подчеркнём, однако, что эти векторы отнюдь не являются просто векторами \(\hat{S} \) и \(\hat{L} \). Поэтому они имеют отличные от нуля матричные элементы для переходов, при которых \(S \) и \(\Delta \) меняются на \(\Delta S = 0, \pm 1; \Delta \Delta = 0, \pm 1 \). Случай, когда одновременно \(\Delta S = \Delta \Delta = 0 \) (причём \(\Delta \neq 0 \)), должен быть отброшен, так как в таком случае симметрия терма при переходе вообще не менялась бы. Переход между двумя \(\Sigma \)-термами возможен, если один из них есть \(\Sigma^+ \)-терм, а другой — \(\Sigma^- \)-терм (аксиальный вектор имеет матричные элементы только для переходов между \(\Sigma^+ \) и \(\Sigma^- \), см. § 84).

Член в гамильтоинане, соответствующий взаимодействию вра- щения молекулы с орбитальным момента, пропорционален \(\hat{J} \hat{L} \). Его матричные элементы отличны от нуля для переходов с \(\Delta \Delta = \pm 1 \) без изменения спина (что касается элементов с \(\Delta \Delta = 0 \), то такие имеют только \(\zeta \)-компоненту вектора, т. е. \(L_\zeta \); но \(L_\zeta \) диагонально по электронным состояниям).

Наряду с рассмотренными членами существует ещё возмущение, обязанное тому, что оператор кинетической энергии ядер (т. е. оператор дифференцирования по координатам ядер) действует не только на волновую функцию ядер, но и на электронную функцию, зависящую от \(r \), как от параметра. Соответствующие члены в гамильтоинане имеют ту же симметрию, что и невозмущённый гамильтоинан. Поэтому они могут привести лишь к переходам между электронными термами одинаковой симметрии, вероятность которых ничтожна ввиду отсутствия пересечения термов.
Перейдём к конкретному вычислению вероятности перехода. Для определённости будем говорить о столкновении второго рода. Соответственно общей формуле (43,1) искомая вероятность определяется выражением

$$w = \frac{2\pi}{\nu} \left| \int \chi_{\nu}^* V(r) \chi_{\eta} dr \right|^2,$$

(87,4)

где $V(r)$ — возмущающая энергия (в качестве величины v в (43,1) выбираем энергию E и производим интегрирование по ней). Конечная волновая функция χ_{ν} должна быть нормирована на δ-функцию от энергии. Нормированная таким образом квазипараболическая функция (47,5) имеет вид:

$$\chi_{\nu} = \sqrt{\frac{2}{\pi \hbar v_2}} \cos \left\{ \frac{1}{\hbar} \int_{a_2}^r p_2 dr - \frac{\pi}{4} \right\}$$

(87,5)

(нормировочный множитель определяется по правилу, указанному в конце § 19). Волновую же функцию начального состояния пишем в виде:

$$\chi_{\eta} = \frac{2}{V} \cos \left\{ \frac{1}{\hbar} \int_{a_1}^r p_1 dr - \frac{\pi}{4} \right\}.$$

(87,6)

Она нормирована таким образом, чтобы была равна единице плотность потока в каждой из двух бегущих волн, на которые распадается стоячая волна (87,6), v_1 и v_2 — скорости радиального относительного движения ядер. При подстановке этих функций в (87,4) получается безразмерная вероятность перехода w. Её можно рассматривать как вероятность перехода при двукратном прохождении ядрами точки $r = r_0$ (точки пересечения уровней); надо иметь в виду, что волновая функция (87,6) в некотором смысле соответствует двукратному прохождению этой точки, так как она содержит как падающую, так и отражённую бегущие волны.

Матричный элемент от $V(r)$, вычисляемый с помощью функций (87,5 — 6), содержит в подинтегральном выражении произведение косинусов, которое можно разложить на косинусы суммы и разности аргументов. При интегрировании вокруг точки $r = r_0$ пересечения термов существенен только второй косинус, так что получается:

$$w = \frac{4}{\hbar^2} \left| \int \cos \left[\frac{1}{\hbar} \int_{a_1}^r p_1 dr - \frac{1}{\hbar} \int_{a_2}^r p_2 dr \right] \frac{V(r) d\xi}{\sqrt{v_1 v_2}} \right|^2.$$

Интеграл быстро сходится при удалении от точки пересечения. Поэтому можно разложить аргумент косинуса по степеням $\xi = r - r_0$ и производить интегрирование по $d\xi$ в пределах от $-\infty$ до $+\infty$ (заменив при этом медленно меняющийся множитель при косинусе его значением при $r = r_0$). Имея в виду, что в точке пересечения
$p_1 = p_2$, находим

$$\int_{a_1}^{r} p_1 \, dr - \int_{a_2}^{r} p_2 \, dr \cong S_0 + \frac{1}{2} \left(\frac{dp_1}{dr_0} - \frac{dp_2}{dr_0} \right) \xi^2,$$

где S_0 — значение разности интегралов в точке $r = r_0$. Производную от импульса можно выразить через силу $F = -\frac{dU}{dr}$; дифференцируя равенство $\frac{p_1^2}{2\mu} + U_1 = \frac{p_2^2}{2\mu} + U_2$ (μ — приведённая масса ядер), получим $\nu_1 \frac{dp_1}{dr} - \nu_2 \frac{dp_2}{dr} = F_1 - F_2$. Таким образом,

$$\int_{a_1}^{r} p_1 \, dr - \int_{a_2}^{r} p_2 \, dr \cong S_0 + \frac{F_1 - F_2}{2\nu} \xi^2,$$

(ν — общее значение ν_1 и ν_2 в точке пересечения). Интегрирование производится с помощью известной формулы

$$\int_{-\infty}^{+\infty} \cos (\alpha + 2\xi^2) \, d\xi = \sqrt{\frac{\pi}{\beta}} \cos \left(\frac{\alpha + \pi}{4} \right),$$

и в результате получаем:

$$w = \frac{8\pi V^2}{h\nu |F_2 - F_1|} \cos^2 \left(\frac{S_0}{\hbar} + \frac{\pi}{4} \right).$$

(87,7)

Величина S_0/\hbar велика и быстро меняется при изменении энергии E. Поэтому при усреднении уже по небольшому интервалу энергий квадрат косинуса можно заменить его средним значением. В результате получается формула 1)

$$w = \frac{4\pi V^2}{h\nu |F_2 - F_1|}.\quad (87,8)$$

Все величины в правой стороне равенства берутся в точке пересечения кривых потенциальной энергии.

В применении к предиссоциации нас интересует вероятность распада молекулы в течение единицы времени. В единицу времени ядра при своих колебаниях $2 \frac{\omega}{2\pi}$ раз проходят через точку $r = r_0$ (ω — циклическая частота колебаний). Поэтому искомая вероятность предиссоциации получится умножением w (вероятность при двухкратном прохождении) на $\frac{\omega}{2\pi}$, т. е. она равна:

$$\frac{2V^2\omega}{h\nu |F_2 - F_1|}.\quad (87,9)$$

1) Эти формулы были получены Л. Ландау (1932).
По поводу произведённых вычислений необходимо сделать следующее замечание. Говоря о пересечении термов, мы имели в виду собственные значения «невозмущённого» гамильтонаiana электронного движения в молекуле (\hat{H}_0), в котором не учитываются члены \hat{V}, приводящие к рассматриваемым переходам. Если же включить эти члены в гамильтонаин, то пересечение термов будет невозможно, и кривые несколько разошьдутся (как это показано на рис. 33). Это следует из результатов § 76, рассматриваемых с несколькими иной точки зрения.

Пусть $U_{J_1}(r)$ и $U_{J_2}(r)$ — два собственных значения оператора \hat{H}_0 (в котором r рассматривается как параметр). В области, близкой к точке r_0 пересечения кривых $U_{J_1}(r)$ и $U_{J_2}(r)$, для определения собственных значений $U(r)$ возмущённого оператора $\hat{H}_0 + \hat{V}$ надо воспользоваться изложенным в § 76 методом, в результате чего получится формула

$$U(r) = \frac{1}{2} (U_{J_1} + U_{J_2} + V_{11} + V_{22}) \pm \sqrt{\frac{1}{4} (U_{J_1} - U_{J_2} + V_{11} - V_{22})^2 + |V_{12}|^2}$$ \hspace{1cm} (87.10)

(матричные элементы V_{11}, V_{22}, V_{12}, как и сами U_{J_1}, U_{J_2}, являются функциями от r). Интервал между двумя уровнями теперь равен:

$$\Delta U = \sqrt{(U_{J_1} - U_{J_2} + V_{11} - V_{22})^2 + 4 |V_{12}|^2}.$$ \hspace{1cm} (87.11)

Отсюда видно, что если между обоими состояниями есть переходы (матричный элемент V_{12} отличен от нуля), то пересечение уровней исчезнет. Минимальное расстояние между кривыми будет теперь равно:

$$\Delta = 2 |V_{12}|.$$

Полученные выше формулы для вероятности перехода применимы лишь до тех пор, пока «расхождение» кривых достаточно мало. Если же оно становится значительным, то вероятность перехода не может вычисляться с помощью обычной теории возмущений.

Для исследования этого вопроса применим следующий метод. Пусть ψ_1, ψ_2 — волновые функции электронных состояний, соответствующих «невозмущённым» термам U_{J_1} и U_{J_2}, т. е. эти функции
являются решениями уравнений
\[\hat{H}_0 \psi_1 = U_{J_1} \psi_1, \quad \hat{H}_0 \psi_2 = U_{J_2} \psi_2. \]

Решение возмущённого волнового уравнения
\[i \hbar \frac{\partial \Psi}{\partial t} = (\hat{H}_0 + \hat{V}) \Psi \]
iщем в виде:
\[\Psi = b_1(t) \psi_1 + b_2(t) \psi_2. \]
(87,12)

Подставляя это выражение в волновое уравнение, умножая последнее один раз на \(\psi_1 \), а другой раз — на \(\psi_2 \) и интегрируя, получим два уравнения для функций \(b_1(t) \) и \(b_2(t) \):
\[i \hbar \frac{db_1}{dt} = U_{J_1} b_1 + V b_2, \quad i \hbar \frac{db_2}{dt} = U_{J_2} b_2 + V b_1 \]
(87,13)

(\(V_{11}, V_{22} \) мы включили здесь в \(U_{J_1}, U_{J_2} \), а \(V_{12} \) обозначили просто как \(V(r) \), в соответствии с обозначениями в предыдущих формулах). Движение ядер мы рассматриваем квазиклассическим образом. В соответствии с этим, переменные \(r \) и \(t \) связаны друг с другом соотношением \(\frac{dr}{dt} = v \), где \(v \) — классическая скорость ядер.

Вблизи точки \(r_0 \) пересечения кривых \(U_{J_1}(r) \) и \(U_{J_2}(r) \) (показанных на рис. 33 пунктиром) можно разложить \(U_{J_1} \) и \(U_{J_2} \) в ряд по степеням \(\xi = r - r_0 \), написав
\[U_{J_1} = U_J - F_{J_1} \xi, \quad U_{J_2} = U_J - F_{J_2} \xi, \]
(87,14)
где \(U_J \) — общее значение \(U_{J_1} \) и \(U_{J_2} \) в точке \(r = r_0 \), и мы ввели обозначение \(F_J = \left(\frac{\partial U_J}{\partial r} \right)_{r_0} \). Вводя также вместо величин \(b_1, b_2 \) новые неизвестные \(a_1, a_2 \) согласно
\[b_1 = a_1 e^{-\frac{t}{\hbar} U_J t}, \quad b_2 = a_2 e^{-\frac{t}{\hbar} U_J t} \]
(87,15)
и заменяя дифференцирование по \(t \) дифференцированием по \(\xi \)
\[\left(\frac{d}{dt} = v \frac{d}{d\xi} \right), \]
получим уравнения (87,13) в виде:
\[i \hbar v \frac{da_1}{d\xi} = -F_{J_1} \xi a_1 + V a_2, \quad i \hbar v \frac{da_2}{d\xi} = -F_{J_2} \xi a_2 + V a_1 \]
(87,16)
(под \(v \) и \(V \) можно понимать с достаточной точностью их значения в точке пересечения)

Если решить уравнения (87,16) с граничным условием \(a_1 = 1, a_2 = 0 \) при \(\xi \to \pm \infty \), то \(|a_1(-\infty)|^2 \) определит вероятность того, что при прохождении ядер через точку \(\xi = 0 \) молекула останется в электронном состоянии \(\psi_1 \), что означает переход с кривой 12' на кривую 21' (см. рис. 33). Аналогично, \(|a_2(-\infty)|^2 = 1 - |a_1(-\infty)|^2 \)
есть вероятность перехода в электронное состояние ϕ_2, т. е. вероятность того, что молекула останется на кривой 12'. Переход же с кривой 1 на кривую 2 (при $\xi \to \pm \infty$) при двукратном прохождении через точку пересечения может быть осуществлен двумя способами: либо путём $1 \to 1' \to 2$ (при сближении ядер происходит переход с кривой 12' на кривую 21'), а при рассхождении ядер молекула остаётся на кривой 21'), либо путём $1 \to 2' \to 2$. Поэтому искомая вероятность такого перехода есть

$$w = 2 \left| a_1(-\infty) \right|^2 \left(1 - \left| a_1(-\infty) \right|^2 \right).$$

Мы не станем останавливаться здесь на изложении хода решения уравнений (87,16) (они приводятся к одному уравнению второго порядка, которое можно решать методом Лапласа) и укажем лишь окончательный результат¹:

$$\left| a_1(-\infty) \right|^2 = e^{-\frac{2\pi v^2}{\hbar \nu |F_2-F_1|}}$$

(разность $F_{J_2} - F_{J_1}$ заменена равной ей разностью $F_2 - F_1$). Таким образом

$$w = 2e^{-\frac{2\pi v^2}{\hbar \nu |F_2-F_1|}} \left(1 - e^{-\frac{2\pi v^2}{\hbar \nu |F_2-F_1|}} \right). \quad (87,17)$$

Мы видим, что вероятность рассматриваемого перехода становится малой в обоих предельных случаях — достаточно малых и достаточно больших V. При $V^2 \ll \hbar \nu |F_2 - F_1|$ формула (87,17) переходит в (87,8).

Наконец, остановимся на ростовом предсказании явления так называемых возмущений в спектре двухатомных молекул. Если два дискретных молекулярных уровня E_1 и E_2, соответствующих двум пересекающимся электронным термам, близки друг к другу, то возможность перехода между обоими электронными состояниями приводит к смещению уровней. Согласно общей формуле теории возмущений (76,4) имеем для смещённых уровней выражение

$$\frac{E_1 + E_2}{2} = \pm \sqrt{\frac{(E_1 - E_2)^2}{2} + |V_{12\text{ад}}|^2}, \quad (87,18)$$

gде $V_{12\text{ад}}$ — матричный элемент (87,1) возмущения для перехода между молекулярными состояниями 1 и 2 (матричные же элементы $V_{11\text{ад}}$ и $V_{22\text{ад}}$ должны, очевидно, быть включены в E_1 и E_2). Из этой формулы видно, что оба уровня раздваиваются, смещаясь в противоположные стороны (больший уровень увеличивается, а меньший — уменьшается). Величина раздвоения тем больше, чем меньше разность $|E_1 - E_2|$

Матричный элемент $V_{12\text{ад}}$ вычисляется в точности так, как он вычислялся при определении вероятности столкновения второго рода. Разница заключается лишь в том, что волновые функции $\chi_{1\text{ад}}$ и $\chi_{2\text{ад}}$ относятся к дискретному спектру и поэтому должны быть нормиро-

ваны на единицу. Согласно (48,2), для этих функций имеем:

\[
\chi_{\alpha 1} = \sqrt{\frac{2\omega_1}{\pi v_1}} \cos \left\{ \frac{1}{\hbar} \int_{a_1}^r p_1 \, dr - \frac{\pi}{4} \right\},
\]
\[
\chi_{\alpha 2} = \sqrt{\frac{2\omega_2}{\pi v_2}} \cos \left\{ \frac{1}{\hbar} \int_{a_2}^r p_2 \, dr - \frac{\pi}{4} \right\}.
\]

Сравнение с формулами (87,4—6) показывает, что рассматриваемый теперь матричный элемент \(V_{12\alpha} \) связан с вероятностью \(\omega \) перехода, при двукратном прохождении через точку пересечения, посредством соотношения

\[
|V_{12\alpha}|^2 = \omega \frac{h\omega_1}{2\pi} \frac{h\omega_2}{2\pi}.
\]
(87,19)

Задачи

1. Определить полное эффективное сечение столкновений второго рода в виде функции от кинетической энергии \(E \) сталкивающихся атомов для переходов, связанных со взаимодействием спин-орбита.

Решение. Ввиду квазиклассичности движения ядер можно ввести понятие о «прицельном расстоянии» \(\rho \) (расстояние, на котором ядра прошли бы друг мимо друга при отсутствии взаимодействия между ними) и определить эффективное сечение \(d\sigma \) как произведение «прицельной площади» \(2\pi \rho \, d\rho \) на вероятность перехода \(\omega(\rho) \) при одном столкновении. Полное эффективное сечение \(\sigma \) получается интегрированием по \(\rho \).

Для взаимодействия спин-орбита матричный элемент \(V(r) \) не зависит от момента количества движения \(M \) сталкивающихся атомов. Пишем скорость \(v \) в точке \(r = r_0 \) пересечения кривых в виде:

\[
v = \sqrt{\frac{2}{\mu} \left[\frac{E - U - \frac{M^2}{2\mu r_0^2}}{2\mu r_0^2} \right]}. \]

Здесь \(U \) есть общее значение \(U_1 \) и \(U_2 \) в точке пересечения, \(\mu \) — приведённая масса атомов, а момент \(M = \mu v_\infty (v_\infty — относительная скорость атомов на бесконечности). Начало отсчёта энергии выбираем так, чтобы энергия взаимодействия атомов в исходном состоянии была равна нулю на бесконечности; тогда \(E = \mu v_\infty^2 /2 \). Поэтому можно написать:

\[
v = \sqrt{\frac{2}{\mu} \left[E - U - \frac{\rho^2 E}{r_0^2} \right]}. \]

Подставляя это выражение в (87,8), находим:

\[
d\sigma = 2\pi \rho \, d\rho \cdot \omega = \frac{8\pi^2 \nu^2}{h |F_2 - F_1|} \frac{\rho \, d\rho}{\sqrt{\frac{2}{\mu} \left[E - U - \frac{\rho^2 E}{r_0^2} \right]}}. \]

Интегрирование по \(d\rho \) надо производить в пределах от нуля до значения, при котором скорость \(v \) обращается в нуль. В результате получим:

\[
\sigma = \frac{4 \sqrt{2\nu \pi^2 \nu^2 r_0^2}}{h |F_2 - F_1|} \frac{\sqrt{E - U}}{E}. \]

1) Ср. «Механика», § 21.
2. То же для переходов, связанных со взаимодействием вращения молекулы с орбитальным моментом.

Решение. Матричный элемент \(V \) имеет вид \(V(r) = \frac{MD}{\mu r^2} \), где \(D(r) \) — матричный элемент электронного орбитального момента. Тем же способом, что и в задаче 1, получим:

\[
\sigma = \frac{16\pi^2 D^2}{3\hbar \mu^{1/2} |F_2 - F_1|} \frac{(E - U)^{3/2}}{E}.
\]

3. Определить вероятность перехода для энергий \(E \), близких к значению \(U_J \) потенциальной энергии в точке пересечения.

Решение. При малых значениях \(E = U_J \) формула (87,8) неприменима, так как скорость ядер \(\nu \) нельзя считать постоянной вблизи точки пересечения и поэтому нельзя выносить её из-под знака интеграла, как это было сделано при выводе (87,8).

Вблизи точки пересечения заменяем кривые \(U_{J1}, U_{J2} \) прямыми (87,14). Волновые функции \(\chi_{xJ1} \) и \(\chi_{xJ2} \) в этой области суть волновые функции одномерного движения в однородном поле (§ 22). Вычисления удобно произвести с помощью волновых функций в импульсном представлении. Волновая функция, нормированная на \(\delta \)-функцию от энергии, имеет вид (см. задачу к § 22):

\[
a_2 = \frac{1}{\sqrt{2\pi \hbar |F_{J2}|}} \exp \left\{ -\frac{i}{\hbar F_{J2}} \left[(E - U_J) p - \frac{p^3}{6\mu} \right] \right\},
\]

а нормированная на равную единице плотность потока в падающей и отражённой волнах получается умножением на \(\sqrt{2\pi \hbar} \):

\[
a_1 = \frac{1}{\sqrt{|F_{J1}|}} \exp \left\{ -\frac{1}{\hbar F_{J1}} \left[(E - U_J) p - \frac{p^3}{6\mu} \right] \right\}.
\]

При интегрировании возмущающую энергию (матричный элемент) \(V \) можно снова вынести из-под знака интеграла, заменив её значением в точке пересечения:

\[
w = \frac{2\pi}{\hbar} \left| V \int_{-\infty}^{+\infty} a_1 a_2^* dp \right|^2.
\]

В результате получим

\[
w = \frac{4\pi V^2 (2\mu)^{2/3}}{\hbar^{4/3} (F_{J1} \cdot F_{J2})^{1/3} (F_{J2} - F_{J1})^{2/3}} \Phi \left[-(E - U_J) \left(\frac{2\mu}{\hbar^2} \right)^{1/3} \left(\frac{1}{F_{J2}} - \frac{1}{F_{J1}} \right)^{2/3} \right],
\]

где \(\Phi (\xi) \) есть функция Эйри (см. § 6 математических дополнений). При больших \(E - U_J \) эта формула переходит в (87,8).
ГЛАВА XII
ТЕОРИЯ СИММЕТРИИ

§ 88. Преобразования симметрии

Классификация термов многоатомной молекулы существенно связана, как и у двухатомной молекулы, с её симметрией. Поэтому мы начинаем с изучения типов симметрии, которыми может обладать молекула.

Симметрия тела определяется совокупностью тех перемещений, которые совмещают тело с самим собой; об этих перемещениях говорят, как о преобразованиях симметрии. Каждое из возможных преобразований симметрии можно представить в виде комбинации одного или нескольких из трёх основных типов преобразований. Этими тремя существенно различными типами являются: поворот тела на определённый угол вокруг некоторой оси, зеркальное отражение в некоторой плоскости и параллельный перенос тела на некоторое расстояние. Из них последним типом может обладать, очевидно, только неограниченная среда (кристаллическая решётка). Тело же конечных размеров (в частности, молекула) может быть симметрично только по отношению к поворотам и отражениям.

Если тело совмещается само с собой при повороте вокруг некоторой оси на угол $2\pi/n$, то такая ось называется осью симметрии n-го порядка. Число n может иметь любое целое значение: $n = 2, 3, \ldots$ значение $n = 1$ соответствует повороту на угол 2π или, что то же, на 0, т. е. соответствует тождественному преобразованию. Операцию поворота вокруг данной оси на угол $2\pi/n$ мы будем обозначать символически посредством C_n. Повторяя эту операцию два, три, \ldots раза, мы получим повороты на углы $2\ (2\pi/n), \ 3\ (2\pi/n), \ldots$, которые тоже совмещают тело с самим собой; эти повороты можно обозначать, как C_n^2, C_n^3, \ldots Очевидно, что если n кратно p, то

$$C_n^p = C_{n/p}.$$ \hspace{1cm} (88,1)

В частности, произведя поворот n раз, мы вернёмся в исходное положение, т. е. произведём тождественное преобразование; последнее принято обозначать посредством E, так что можно написать:

$$C_n^n = E.$$ \hspace{1cm} (88,2)
Если тело совмещается с самим собой при зеркальном отражении в некоторой плоскости, то такая плоскость называется плоскостью симметрии. Операцию отражения в плоскости мы будем обозначать символом σ. Очевидно, что двукратное отражение в одной плоскости есть тождественное преобразование

$$\sigma^2 = E.$$

(88,3)

Одновременное применение обоих преобразований — поворота и отражения — приводит к так называемому зеркально-поворотному осьм. Тело обладает зеркально-поворотной осью n-го порядка, если оно совмещается с самим собой при повороте вокруг этой оси на угол $2\pi/n$ и последующем отражении в плоскости, перпендикулярной к оси (рис. 34). Легко сообразить, что это есть некоторый новый вид симметрии только в том случае, если n — чётное число. Действительно, если n — нечётное число, то n-кратное повторение зеркально-поворотного преобразования будет равносильно простому отражению в плоскости, перпендикулярной к оси (поскольку угол поворота будет равен 2π, а нечётное число отражений в одной и той же плоскости есть простое отражение). Повторяя это преобразование ещё n раз, мы найдём в результате, что зеркально-поворотная ось сводится к одновременному наличию независимых осей симметрии n-го порядка и перпендикулярной к ней плоскости симметрии. Если же n — чётное число, то n-кратное повторение зеркально-поворотного преобразования возвращает тело в исходное положение.

Зеркально-поворотное преобразование обозначаем символом S_n. Обозначая отражение в плоскости, перпендикулярной к данной оси, посредством σ_h, можем записать по определению:

$$S_n = C_n \sigma_h = \sigma_h C_n$$

(88,4)

(порядок, в котором производятся операции C_n и σ_h, очевидно, не влияет на результат).

Важным частным случаем является зеркально-поворотная ось второго порядка. Легко сообразить, что поворот на угол τ с последующим отражением в плоскости, перпендикулярной к оси вращения, представляет собой преобразование инверсии, при котором точка P тела переводится в другую точку P', лежащую на продолжении прямой, соединяющей P с точкой O пересечения оси с плоскостью, так что расстояния OP и OP' одинаковы. О телах, симметричном относительно этого преобразования, говорят, что оно обладает центром симметрии. Операцию инверсии мы будем обозна-
чать посредством \(I \); имеем:
\[
I \equiv S_2 = C_2 \sigma_h. \tag{88,5}
\]
Очевидно также, что \(I \sigma_h = C_2, \ IC_2 = \sigma_h \); другими словами, ось второго порядка, перпендикулярная ей плоскость симметрии и центр симметрии в точке их пересечения взаимно зависимы — наличие любых двух из этих элементов автоматически приводит к наличию также и третьего.
Укажем здесь ряд чисто геометрических свойств, присущих поворотам и отражениям, которые полезно иметь в виду при изучении симметрии тел.
Произведение двух поворотов вокруг осей, пересекающихся в некоторой точке, есть поворот вокруг некоторой третьей оси, проходящей через ту же точку. Произведение двух отражений в пересекающихся друг с другом плоскостях эквивалентно повороту; ось этого поворота, очевидно, совпадает с линией пересечения плоскостей, а угол поворота равен, как легко убедиться простым геометрическим построением, удвоенному углу между обеими плоскостями. Если обозначить поворот вокруг оси на угол \(\varphi \) посредством \(C(\varphi) \), а отражения в двух плоскостях, проходящих через ось, символами \(\sigma_v \) и \(\sigma'_v \), то высказанное утверждение можно записать в виде:
\[
\sigma_v \sigma'_v = C(2\varphi), \tag{88,6}
\]
где \(\varphi \) — угол между обеими плоскостями. Необходимо отметить, что порядок, в котором производятся оба отражения, не безразличен. Преобразование \(\sigma_v \sigma'_v \) даёт поворот в направлении от плоскости \(\sigma'_v \) к \(\sigma_v \); при перестановке множителей мы получим поворот в обратном направлении. Умножая равенство (88,6) слева на \(\sigma_v \), получим:
\[
\sigma'_v = \sigma_v C(2\varphi); \tag{88,7}
\]
другими словами, произведение поворота и отражения в плоскости, проходящей через ось, эквивалентно отражению в другой плоскости, пересекающейся с первой под углом, равным половине угла поворота. В частности, отсюда следует, что ось симметрии второго порядка и две проходящие через неё взаимно перпендикулярные плоскости симметрии взаимно зависимы: наличие двух из них требует также наличия третьей.
Покажем, что произведение поворотов на угол \(\pi \) вокруг двух пересекающихся под углом \(\varphi \) осей (\(Oa \) и \(Ob \) на рис. 35) есть поворот на угол \(2\varphi \) вокруг оси, перпендикулярной к первым двум (\(PP' \) на рис. 35). Действительно, заранее ясно, что результирующее

1) Индексом \(v \) обычно отличают отражение в плоскости, проходящей через данную ось («вертикальная» плоскость), а индексом \(h \)—в плоскости, перпендикулярной к оси («горизонтальная» плоскость).
преобразование есть тоже поворот; после первого поворота (вокруг Oa) точка P переходит в P', а после второго (вокруг $O'b$) она возвращается в исходное положение. Это значит, что линия $P'O'$ остаётся неподвижной и, следовательно, является осью поворота. Для определения угла поворота достаточно заметить, что при первом повороте ось Oa остаётся на месте, а после второго переходит в положение Oa', образующее с Oa угол 2φ. Таким же способом можно убедиться в том, что при перемене порядка обоих преобразований мы получим поворот в противоположном направлении.

Хотя результат двух последовательных преобразований зависит, вообще говоря, от порядка, в котором они производятся, но в ряде случаев порядок операций не существуетен — преобразования коммутируют. Это имеет место для следующих преобразований:

1) два поворота вокруг одной и той же оси;
2) два отражения во взаимно перпендикулярных плоскостях (они эквивалентны повороту на угол π вокруг линии пересечения плоскостей);
3) два поворота на угол π вокруг взаимно перпендикулярных осей (они эквивалентны повороту на тот же угол вокруг третьей перпендикулярной оси);
4) поворот и отражение в плоскости, перпендикулярной к оси поворота;
5) любой поворот или отражение и инверсия в точке, лежащей на оси вращения или в плоскости отражения (это следует из 1 и 4).

§ 89. Группы преобразований

Совокупность всех преобразований симметрии данного тела называют его группой преобразований симметрии (или просто группой симметрии). Выше мы говорили об этих преобразованиях, как о геометрических перемещениях тела. В квантовомеханических приложениях удобнее, однако, рассматривать преобразования симметрии, как преобразования координат, оставляющие инвариантным гамильтониан данной системы. Очевидно, что если система совмещается сама с собой при некотором повороте или отражении, то соответствующее преобразование координат не изменит её уравнения Шредингера. Таким образом мы будем говорить о группе преобразований, по отношению к которым инвариантно данное уравнение Шредингера\(^1\).

1) Такая точка зрения позволяет включить в рассмотрение не только группы поворотов и отражений, о которых идёт здесь речь, но и другие
Изучение групп симметрии удобно производить с помощью общего математического аппарата так называемой теории групп, основы которого излагаются ниже. Мы будем рассматривать сначала группы, каждая из которых содержит конечное число различных преобразований (так называемые конечные группы). О каждом из преобразований, входящих в состав группы, говорят, как об элементе группы.

Группы симметрии обладают следующими очевидными свойствами. В состав всякой группы входит тождественное преобразование \(E \) (о нём говорят, как о единичном элементе группы). Элементы группы можно «перемножать» друг с другом; под произведением двух (или нескольких) преобразований подразумевается результат их последовательного применения. Очевидно, что произведение всяких двух элементов группы есть элемент той же группы. Для умножения элементов имеет место закон ассоциативности \((AB)C = A(BC)\), где \(A, B, C \) — элементы группы. Закон коммутативности, однако, не имеет, вообще говоря, места; в общем случае \(AB \neq BA \). Для каждого элемента группы \(A \) имеется в той же группе «обратный» элемент \(A^{-1} \) (обратное преобразование), такой, что \(AA^{-1} = E \). В некоторых случаях элемент может совпадать со своим обратным, в частности, \(E^{-1} = E \). Очевидно, что взаимно обратные элементы \(A \) и \(A^{-1} \) коммутативны.

Элемент, обратный произведению \(AB \) двух элементов, равен

\[(AB)^{-1} = B^{-1}A^{-1}\]

и аналогично для произведения большего числа элементов; в этом легко убедиться, производя перемножение и используя закон ассоциативности.

Если все элементы группы коммутативны, то такая группа называется абелевой. Частным случаем абелевых являются так называемые циклические группы. Под циклической группой понимают группу, все элементы которой могут быть получены путём возведения одного типа преобразований, оставляющих неизменным уравнение Шредингера. К ним относятся перестановки координат тождественных частей, входящих в состав данной системы (молекулы или атома). О совокупности всех возможных в данной системе перестановок тождественных частей говорят, как о её группе перестановок (мы имели уже с ними дело в § 61). Излагаемые ниже общие свойства группа относятся и к группам перестановок; более подробным изучением этого вида групп мы не станем заниматься.

По поводу применяемых нами в этой главе обозначений надо сделать следующее замечание. Преобразования симметрии представляют собой, по существу, такие же операторы, какие мы рассматриваем на протяжении всей книги (в частности, оператор инверсии рассматривался уже в §28). Поэтому их следует обозначать буквами со шляпками. Мы не делаем этого, имея в виду общеупотребимые обозначения, а также учитывая, что это не может привести в настоящей главе к недоразумениям. По той же причине мы пользуемся для обозначения тождественного преобразования общеупотребимым символом \(E \), а не 1, как это соответствовало бы обозначениям в остальных главах.
из них в последовательные степени, т. е. группу, состоящую из элементов

\[A, A^2, A^3, \ldots, A^n = E, \]

где \(n \) есть некоторое целое число.

Пусть \(G \) есть некоторая группа\(^1\). Если из неё можно выделить некоторую совокупность элементов \(H \), такую, что она сама тоже будет составлять группу, то группу \(H \) называют подгруппой группы \(G \). Один и тот же элемент группы может входить в различные её подгруппы.

Взяв любой элемент \(A \) группы и возводя его в последовательные степени, мы получим в конце концов единичный элемент (поскольку полное число элементов в группе конечно). Если \(n \) есть наименьшее число, при котором \(A^n = E \), то \(n \) называется порядком элемента \(A \), а совокупность элементов \(A, A^2, \ldots, A^n = E \) — периодом \(A \). Период обозначают посредством \(\{A\} \); он составляет сам по себе группу, т. е. является подгруппой исходной группы, причём подгруппой циклической.

Для того чтобы проверить, является ли данная совокупность элементов группы её подгруппой, достаточно убедиться в том, что при умножении всех двух её элементов получается элемент, содержащийся в той же совокупности. Действительно, тогда вместе со всякий элементом \(A \) будут иметься и все его степени, в том числе \(A^{n-1} \) (\(n \) — порядок элемента), играющий роль обратного (так как \(A^{n-1}A = A^n = E \)); будет иметься, очевидно, и единичный элемент.

Полное число элементов группы называют её порядком. Легко видеть, что порядок подгруппы есть делитель порядка всей группы. Для этого рассмотрим подгруппу \(H \) группы \(G \), и пусть \(G_1 \) есть некоторый элемент группы \(G \), не принадлежащий \(H \). Умножая все элементы \(H \) на \(G_1 \) (например, справа), мы получим совокупность (или, как говорят, комплекс) элементов, обозначаемый как \(HG_1 \).

Все элементы этого комплекса принадлежат, очевидно, группе \(G \). Однако ни один из них не принадлежит \(H \); действительно, если бы для каких-либо двух элементов \(H_a, H_b \), принадлежащих \(H \), было \(H_a G_1 = H_b \), то отсюда следовало бы \(G_1 = H_a^{-1} H_b \), т. е. \(G_1 \) тоже принадлежало бы подгруппе \(H \) в противоречии с предположением. Аналогично можно показать, что если \(G_2 \) есть элемент группы \(G \), не принадлежащий ни \(H \), ни \(HG_1 \), то все элементы комплекса \(HG_2 \) не будут принадлежать ни \(H \), ни \(HG_1 \). Продолжая этот процесс, мы в конце концов исчерпаем весь запас элементов конечной группы \(G \). Таким образом все элементы окажутся разбитыми по комплексам

\[H, HG_1, HG_2, \ldots, HG_m \]

\(^1\) Мы будем символически обозначать группы курсивными жирными буквами.
(где \(m \) — некоторое число), каждый из которых содержит по \(h \) элементов, где \(h \) — порядок подгруппы \(H \). Отсюда следует, что порядок \(g \) группы \(G \) равен \(g = hm \), чем и доказывается вышеуказанное утверждение.

Если порядок группы есть простое число, то из доказанного непосредственно следует, что такая группа вообще не обладает никакими подгруппами (за исключением \(E \) и самой себя). Справедливо и обратное утверждение: всякая группа, не имеющая подгрупп, непременно простого порядка и к тому же должна быть циклической (в противном случае она содержала бы элементы, период которых составлял бы подгруппу).

Введём важное понятие о сопряжённых элементах. Два элемента \(A \) и \(B \) называются сопряжёнными друг с другом, если

\[
A = CBC^{-1},
\]

где \(C \) есть тоже элемент группы (умножая написанное равенство справа на \(C \) и слева на \(C^{-1} \), получим обратное равенство \(B = C^{-1}AC \). Существует свойством сопряжённости является то, что \(\text{если} \) \(A \) сопряжено с \(B \), \(\text{а} \) \(B \) с \(C \), \(\text{то} \) и \(A \) сопряжено с \(C \); действительно, из \(B = P^{-1}AP, C = Q^{-1}BQ \) (где \(P, Q \) — элементы группы) следует, что \(C = (PQ)^{-1}A(PQ) \). По этой причине можно говорить о совокупностях элементов группы, сопряжённых друг с другом. Такие совокупности называются классами группы. Каждый класс вполне определяется одним каким-либо своим элементом \(A \); действительно, задав \(A \), мы получим весь класс, составляя произведения \(GAG^{-1} \), где \(G \) пробегает все элементы группы (при этом, конечно, каждый элемент класса может получиться и по нескольку раз). Таким образом мы можем разбить всю группу на классы; каждый элемент группы может входить, очевидно, только в один из классов. Единственный элемент группы сам по себе составляет класс, так как для всякого элемента группы \(GEG^{-1} = E \). Если группа абелева, то то же самое имеет место для каждого её элемента; поскольку все элементы такой группы, по определению, коммутативны, то каждый элемент сопряжён только самому себе и потому сам по себе составляет класс. Подчеркнём, что класс группы (не совпадающий с \(E \)) отнюдь не является её подгруппой; это видно уже из того, что он не содержит единичного элемента.

Все элементы одного и того же класса имеют одинаковый порядок. Действительно, если \(n \) есть порядок элемента \(A \) (так что \(A^n = E \)), то и для сопряжённого с ним элемента \(B = CAC^{-1} \) имеет место \((CAC^{-1})^n = CA^nC^{-1} = E \).

Пусть \(H \) есть подгруппа \(G \), а \(G_1 \) — элемент \(G \), не принадлежащий \(H \). Легко убедиться в том, что совокупность элементов \(G_1HG_1^{-1} \) удовлетворяет всем требуемым для группы свойствам, т. е. тоже есть подгруппа группы \(G \). Подгруппы \(H \) и \(G_1HG_1^{-1} \) называются сопряжён-
Ныні; каждый элемент одной из них сопряжен одному из элементов другой. Давая G_1 различные значения, мы получим ряд сопряженных подгрупп, которые могут оказаться частично совпадающими друг с другом. Может случиться, что все сопряженные с H подгруппы совпадают с H. В таком случае H называют нормальным делителем группы G. Так, например, всякая подгруппа абелевой группы является, очевидно, её нормальным делителем.

Рассмотрим группу A с n элементами A, A', A'', \ldots и группу B с m элементами B, B', B'', \ldots, и пусть все элементы A (кроме единичного E) отличны от элементов B и коммутируют с ними. Если перемножить каждый элемент группы A с каждым элементом группы B, то мы получим совокупность nm элементов, которые тоже составляют группу. Действительно, для всех двух элементов этой совокупности имеем $AB \cdot A'B' = AA' \cdot BB' = A''B''$, т. е. опять элемент той же совокупности. Получавшуюся группу порядка nm обозначают посредством $A \times B$ и называют прямым произведением групп A и B.

Наконец, введем понятие изоморфизма групп. Две группы A и B одинакового порядка называются изоморфными, если между их элементами можно установить взаимно однозначное соответствие, такое, что если элементу A соответствует элемент B, а элементу A' — элемент B', то элементу $A'' = AA'$ соответствует элемент $B'' = BB'$. Такие две группы, рассматриваемые абстрактно, обладают, очевидно, тождественными свойствами, хотя конкретный смысл их элементов различен.

§ 90. Точечные группы

Преобразования, входящие в состав группы симметрии тела конечных размеров (в частности, молекулы), должны быть такими, чтобы по крайней мере одна точка тела оставалась неподвижной при применении любого из этих преобразований. Другими словами, все оси и плоскости симметрии молекулы должны иметь по крайней мере одну общую точку пересечения. Действительно, последовательный поворот тела вокруг двух непересекающихся осей или отражение в непересекающихся плоскостях приводит к поступательному перемещению тела, которое, очевидно, не может совместить его с самим собой. Группы симметрии, обладающие указанным свойством, называются точечными группами.

Перед тем как перейти к построению возможных типов точечных групп, изложим простой геометрический способ, позволяющий легко произвести распределение элементов группы по классам. Пусть OA есть некоторая ось, а элемент группы A есть поворот вокруг этой оси на определённый угол. Пусть, далее, G есть преобразование из той же группы (поворот или отражение), которое, будучи применено к самой оси OA, переводит её в положение Ob. Покажем, что элемент $B = GAG^{-1}$ отвечает тогда повороту вокруг оси Ob на тот же угол,
на который элемент A поворачивает вокруг Oa. Действительно, рассмотрим воздействие преобразования GAG^{-1} на самую ось Ob. Преобразование G^{-1}, обратное G, переводит ось Ob в положение Oa, так что последующий поворот A оставляет её в этом положении; наконец, G переводит её обратно в исходное положение. Таким образом ось Ob остаётся в результате на месте, так что B есть поворот вокруг этой оси. Поскольку A и B относятся к одному классу, то порядок этих элементов одинаков; это значит, что они производят поворот на одинаковый угол.

Таким образом мы приходим к результату, что два поворота на одинаковый угол относятся к одному классу, если в числе элементов группы имеется преобразование, с помощью которого можно совместить одну ось поворота с другой. Точнее таким же образом можно показать, что и два отражения в различных плоскостях относятся к одному классу, если какое-либо преобразование группы переводит одну плоскость в другую. О самих осях или плоскостях симметрии, направления которых могут быть совмещены друг с другом, говорят как об эквивалентных.

Некоторые дополнительные замечания требуются для случая, когда оба поворота производятся вокруг одной и той же оси. Элементом, обратным повороту $C^k_n (k = 1, 2, \ldots, n - 1)$ вокруг оси симметрии n-го порядка, является элемент $C^{-k}_n = C_n^{n-k}$, т. е. поворот на угол $(n - k) (2\pi/n)$ в том же направлении, или, что то же, поворот на угол $2k\pi/n$ в обратном направлении. Если в числе преобразований группы имеется поворот на угол π вокруг перпендикулярной оси (такой поворот меняет направление рассматриваемой оси на противоположное), то, согласно доказанному общему правилу, повороты C^k_n и C^{-k}_n будут относиться к одному классу. Отражение σ_h в плоскости, перпендикулярной к оси, тоже меняет её направление на обратное; однако надо иметь в виду, что отражение меняет также и направление вращения. Поэтому наличие σ_h не делает элементы C^k_n и C^{-k}_n сопряжёнными. Отражение же σ_v в плоскости, проходящей через ось, не меняет направления оси, но меняет направление вращения, и потому $C^{-k}_n = \sigma_v C^k_n \sigma_v$, так что при наличии такой плоскости симметрии C^k_n и C^{-k}_n относятся к одному классу.

Если повороты вокруг оси на одинаковый угол в противоположных направлениях сопряжены, то мы будем называть ось двухсторонней.

Определение классов точечной группы часто облегчается следующим правилом. Пусть G есть некоторая группа, не содержащая инверсии I, а C_4 — группа из двух элементов: I и E. Тогда прямое произведение $G \times C_4$ есть группа, содержащая вдвоё больше элементов, чем G; половина из них совпадает с элементами группы G, а остальные получаются умножением последних на I. Поскольку I коммутирует с любым другим преобразованием точечной группы,
то ясно, что группа $G \times C_i$ содержит вдвое больше классов, чем G; каждому классу A группы G соответствуют в группе $G \times C_i$ два класса: A и AI. В частности, инверсия I всегда составляет сама по себе класс.

Перейдем теперь к перечислению всех возможных точечных групп. Мы будем строить их, начиная от простейших и прибавляя к ним новые элементы симметрии. Точечные группы будем обозначать жирными латинскими буквами с соответствующими индексами.

I. Группы C_n

Простейший тип симметрии содержит всего одну ось симметрии n-го порядка. Группа C_n есть группа поворотов вокруг оси n-го порядка. Эта группа, очевидно, циклическая. Каждый из её n элементов составляет сам по себе класс. Группа C_1 содержит только тождественное преобразование E и соответствует отсутствию какой бы то ни было симметрии.

II. Группа S_{2n}

Группа S_{2n} есть группа поворотов вокруг зеркально-поворотной оси чётного порядка $2n$. Она содержит $2n$ элементов и является, очевидно, циклической. В частности, группа S_2 содержит всего два элемента: E и I; её обозначают также посредством C_i. Отметим также, что если порядок группы n есть число вида $2n = 4p + 2$, то среди её элементов имеется инверсия; очевидно, что $(S_{4p+2})^{2p+1} = C_{2p+1}$. Такую группу можно написать в виде прямого произведения $S_{4p+2} = C_{2p+1} \times C_i$; её обозначают также и посредством $C_{2p+1,i}$.

III. Группы C_{nh}

Эти группы получаются присоединением к оси симметрии n-го порядка перпендикулярной к ней плоскости симметрии. Группа C_{nh} содержит $2n$ элементов: n поворотов группы C_n и n зеркально-поворотных преобразований $C_k \sigma_h$, $k = 1, 2, \ldots, n$ (в том числе отражение $C_{n/2} \sigma_h = \sigma_h$). Все элементы группы коммутативны, т. е. группа абелева; число классов равно числу элементов. Если n — чётно ($n = 2p$), то группа содержит центр симметрии (так как $C_{2p} \sigma_h = C_2 \sigma_h = I$). Простейшая группа C_{1h} содержит всего два элемента: E и σ_h; её обозначают также посредством C_0.

IV. Группы C_{nv}

Если присоединить к оси симметрии n-го порядка проходящую через неё плоскость симметрии, то это автоматически приведёт к появлению ещё ($n - 1$) плоскостей, пересекающихся друг с другом вдоль оси под углами π/n (это следует непосредственно из указанной в § 88 геометрической теоремы (88,7) 1). Получающаяся при этом группа C_{nv} содержит, следовательно, $2n$ элементов: n пово-

1) Легко видеть, что в конечной группе не может быть двух плоскостей симметрии, пересекающихся под углом, не равным рациональной части от 2π. Из факта наличия двух таких плоскостей следовало бы наличие бесконечного числа других плоскостей симметрии, пересекающихся вдоль
ротов вокруг оси \(n \)-го порядка и \(n \) отражений \(\sigma_e \) в вертикальных плоскостях. На рис. 36 изображены в качестве примера системы осей и плоскостей симметрии групп \(C_{3v} \) и \(C_{4v} \).

Для определения классов замечаем, что благодаря наличию проходящих через ось симметрии плоскостей симметрии эта ось двусторонняя. Фактическое распределение элементов по классам различно при чётных и нечётных \(n \).

Если \(n \) нечётно \((n = 2p + 1) \), то последовательные повороты \(C_{2p+1} \) совмещают каждую из плоскостей последовательно со всеми остальными \(2p \) плоскостями, так что все плоскости симметрии эквивалентны.

![Diagram](image)

Рис. 36.

и отражения в них входят в один класс. Среди поворотов вокруг оси имеется \(2p \) операций, отличных от тождественной, которые попарно сопряжены друг с другом, образуя \(p \) классов по два элемента \((C_{2p}^k \text{ и } C_{2p}^{-k}, k = 1, 2, \ldots, p)\); кроме того, \(E \) составляет ещё один отдельный класс. Таким образом имеется всего \(p + 2 \) классов.

Если же \(n \) чётно \((n = 2p)\), то последовательными поворотами \(C_{2p} \) можно совместить лишь чередующиеся через одну плоскости; две осевые плоскости не могут быть совмещены друг с другом. Таким образом имеются два набора по \(p \) эквивалентных плоскостей и соответственно два класса по \(p \) элементов (отражений) в каждом. Что касается поворотов вокруг оси, то \(C_{2p}^p = E \) и \(C_{2p}^{-p} = C_2 \) составляют каждый сам по себе класс, а остальные \(2p - 2 \) поворотов попарно сопряжены и дают ещё \(p - 1 \) классов по два элемента. Всего группа \(C_{2p} \) имеет, следовательно, \(p + 3 \) классов.

одной и той же прямой и получающихся путём отражения неограниченное число раз одной плоскости в другой. Другими словами, наличие двух таких плоскостей приводит сразу к полной аксиальной симметрии.
V. Группы \(D_n \)
Если к оси симметрии \(n \)-го порядка присоединить перпендикулярную ей ось второго порядка, то это приведёт к появлению ещё \((n - 1)\) таких же осей, так что будет всего \(n \) горизонтальных осей второго порядка, пересекающихся под углами \(\pi/n \). Получающаяся группа \(D_n \) содержит \(2p \) элементов: \(n \) поворотов вокруг оси \(n \)-го порядка и \(n \) поворотов на угол \(\pi \) вокруг горизонтальных осей (условимся обозначать последнее посредством \(U_2 \), оставив обозначение \(C_2 \) для поворота на угол \(\pi \) вокруг вертикальной оси). На рис. 36 изображены в качестве примера системы осей групп \(D_8 \) и \(D_4 \).
Совершенно аналогично предыдущему случаю, убеждаемся, что ось \(n \)-го порядка является двусторонней, а горизонтальные оси второго порядка все эквивалентны, если \(n \) нечётно, или образуют два неравнозначных набора, если \(n \) чётно. Следовательно, группа \(D_{2p} \) имеет следующие \(p + 3 \) классов: \(E \), 2 класса по \(p \) поворотов \(U_2 \) в каждом, поворот \(C_2 \) и \((p - 1) \) классов по два поворота вокруг вертикальной оси. Группа же \(D_{2p+1} \) имеет \(p + 2 \) классов: \(E \), 2\(p + 1 \) поворотов \(U_2 \) и \(p \) классов по два поворота вокруг вертикальной оси.
Важным частным случаем является группа \(D_2 \). Её система осей складывается из трёх взаимно перпендикулярных осей второго порядка. Эту группу обозначают также посредством \(V \).

VI. Группа \(D_{nh} \)
Если добавить к системе осей группы \(D_n \) горизонтальную плоскость симметрии, проходящую через \(n \) осей второго порядка, то при этом автоматически появится \(n \) вертикальных плоскостей, каждая из которых проходит через вертикальную ось и одну из горизонтальных осей. Получающаяся при этом группа \(D_{nh} \) содержит \(4n \) элементов; кроме \(2n \) элементов группы \(D_n \), в неё входят ещё \(n \) отражений \(\sigma_v \) и \(n \) зеркально-поворотных преобразований \(C_n \sigma_h \). На рис. 37 изображена система осей и плоскостей группы \(D_{8h} \).
§ 90] токучие группы 373

Отражение \(\sigma_h \) коммутирует со всеми остальными элементами группы; поэтому можно написать \(D_{nh} \) в виде прямого произведения \(D_{nh} = D_n \times C_4 \), где \(C_4 \) есть группа из двух элементов \(E \) и \(\sigma_h \). При чётном \(n \) в числе элементов группы имеется инверсия, и можно написать также \(D_{2p,h} = D_{2p} \times C_4 \).

Отсюда следует, что число классов в группе \(D_{nh} \) равно удвоенному числу классов в группе \(D_n \). Половина из них совпадает с классами группы \(D_n \) (повороты вокруг осей), а остальные получаются из них умножением на \(\sigma_h \). Отражения \(\sigma_v \) в вертикальных плоскостях относятся все к одному классу (если \(n \) нечётно) или образуют два класса (при чётном \(n \)). Зеркально-поворотные преобразования \(\sigma_h C_n^k \) и \(\sigma_h C_n^{-k} \) попарно сопряжены друг с другом.

VII. Группы \(D_{nd} \)

Присоединить плоскости симметрии к системе осей группы \(D_n \) можно ещё одним способом. Именно, можно провести их вертикально через ось \(n \)-го порядка посредине между каждыми двумя соседними горизонтальными осями второго порядка. Описать присоединение одной такой плоскости влечёт за собой появление ещё \((n-1)\) плоскостей. Получающийся система осей и плоскостей симметрии определяет группу \(D_{nd} \) (на рис. 37 изображены оси и плоскости групп \(D_{2d} \) и \(D_{3d} \)).

Группа \(D_{nd} \) содержит \(4n \) элементов. К \(2n \) элементам группы \(D_n \) присоединяется \(n \) отражений в вертикальных плоскостях (обозначаемых посредством \(\sigma_d \) — «диагональные» плоскости) и \(n \) преобразований вида \(G = U_x \sigma_d \). Для того чтобы выяснить характер последних, замечаем, что поворот \(U_x \) можно, согласно (88,6), написать в виде \(U_x = \sigma_v \sigma_h \), где \(\sigma_v \) — отражение в вертикальной плоскости, проходящей через данную ось второго порядка; тогда \(G = \sigma_h \sigma_v \sigma_d \) (преобразования \(\sigma_v \), \(\sigma_h \) самих по себе в числе элементов группы, разумеется, нет). Поскольку плоскости \(\sigma_v \) и \(\sigma_d \) пересекаются друг с другом вдоль оси \(n \)-го порядка, образуя угол \((\pi/2n)(2k+1)\), где \(k = 1, \ldots, (n-1) \) (поскольку здесь угол между соседними плоскостями равен \(\pi/2n \)), то, согласно (88,6), имеем \(\sigma_v \sigma_d = C_{2n}^{2k+1} \).

Таким образом находим, что \(G = \sigma_h C_{2n}^{2k+1} = S_{2n}^{2k+1} \), т. е. эти элементы представляют собой зеркально-поворотные преобразования вокруг вертикальной оси, оказывающейся, следовательно, не простой осью симметрии \(n \)-го порядка, а зеркально-поворотной осью \(2n \)-го порядка.

Диагональные плоскости отражают две соседние горизонтальные оси второго порядка друг в друга; поэтому в рассматриваемых группах все оси второго порядка эквивалентны (как при чётных, так и при нечётных \(n \)). Аналогично, эквивалентны все оси второго порядка. Зеркально-поворотные преобразования \(S_{2n}^{2k+1} \) и \(S_{2n}^{-2k-1} \) попарно сопряжены друг с другом 1).

1) Действительно имеем: \[\sigma_d S_{2n}^{2k+1} \sigma_d = \sigma_d \sigma_h C_{2n}^{2k+1} \sigma_d = \sigma_h \sigma_d C_{2n}^{2k+1} \sigma_d = \sigma_h C_{2n}^{-2k-1} = S_{2n}^{-2k-1}. \]
Применяя эти соображения к группе D_{2p}, находим, что она содержит следующие $2p + 3$ классов: E, поворот C_2 вокруг оси n-го порядка, $(p - 1)$ классов по два сопряженных поворота вокруг той же оси, класс $2p$ поворотов U_2, класс $2p$ отражений C_4 и p классов по два зеркально-поворотных преобразования.

При нечетном n ($n = 2p + 1$) в числе элементов группы имеется инверсия (это видно из того, что одна из горизонтальных осей в этом случае перпендикулярна к вертикальной плоскости). Поэтому можно написать $D_{2p+1} = D_{2p} \times C_i$, так что группа D_{2p+1} содержит $2p + 4$ классов, получающихся непосредственно из $p + 2$ классов группы D_{2p+1}.

VIII. Группа T (группа тетраэдра)

Система осей этой группы есть система осей симметрии тетраэдра. Она может быть получена добавлением к системе осей группы V четырёх наклонных осей третьего порядка, повороты вокруг которых переводят три оси второго порядка друг в друга. Эту систему осей удобно представить, изображая три оси второго порядка как проходящие через центры противоположных граней куба, а оси третьего порядка — как пространственные диагонали этого куба. На рис. 38 изображено расположение этих осей в кубе и в тетраэдре (по одной оси каждого типа).

Три оси второго порядка эквивалентны между собой. Оси третьего порядка тоже эквивалентны, так как переводятся друг в друга поворотами C_2, но они не являются двусторонними осями. Отсюда следует, что 12 элементов в группе T распределяются по четырём классам: E, три поворота C_2, четыре поворота C_3 и четыре поворота C_3^2.

IX. Группа T_d

Эта группа содержит все преобразования симметрии тетраэдра. Систему её осей и плоскостей можно получить, добавляя к осям группы T плоскости симметрии, каждая из которых проходит через одну ось второго и две оси третьего порядков. При этом оси второго порядка становятся зеркально-поворотными осями четвёртого порядка (подобно тому как это имеет место в группе D_{2d}). Эту систему удобно представить, рисуя три зеркально-поворотные оси проходящими через центры противоположных граней куба, четыре оси третьего порядка, как его пространственные диагонали, шесть плоскостей симметрии проходящими через каждую пару противоположных ребер (на рис. 39 изображено по одному из каждого рода осей и плоскостей).
Поскольку плоскости симметрии вертикальны по отношению к осям третьего порядка, то последние являются двусторонними осями. Все оси и плоскости каждого рода эквивалентны. Поэтому 24 элемента группы распределяются по следующим 5 классам: E, восемь поворотов C_3 и C_3^2, шесть отражений в плоскостях, шесть зеркально-поворотных преобразований S_4 и S_4^2, три поворота $C_2 = S_4^3$.

Х. Группа T_h

Эта группа получается из T добавлением центра симметрии: $T_h = T \times C_i$. В результате появляются три взаимно перпендикулярные плоскости симметрии, проходящие через каждые две оси второго порядка, а оси третьего порядка становятся зеркально-поворотными осями шестого порядка (на рис. 40 изображено по одной из этих осей и плоскостей).

Группа содержит 24 элемента, распределённых по 8 классам, непосредственно получающимся из классов группы T.

Рис. 39.

Рис. 40.

Рис. 41.

XI. Группа O (группа октаэдра)

Системой осей этой группы является система осей симметрии куба: три оси четвёртого порядка проходят через центры противоположных граней, четыре оси третьего порядка — через противоположные вершины и шесть осей второго порядка — через середины противоположных рёбер (рис. 41).

Легко видеть, что все оси одинакового порядка эквивалентны и каждая из них — двусторонняя. Поэтому 24 элемента распределяются по следующим 5 классам: E, восемь поворотов C_3 и C_3^2, шесть поворотов C_4 и C_4^2, три поворота C_4^3 и шесть поворотов C_2.

XII. Группа O_h

Это есть группа всех преобразований симметрии куба 1). Она получается добавлением к группе O центра симметрии: $O_h = O \times C_i$.

1) Группы T, T_d, T_h, O, O_h часто называют кубическими.
Оси третьего порядка группы \(O \) превращаются при этом в зеркально-поворотные оси шестого порядка (пространственные диагонали куба); кроме того, появляются ещё шесть плоскостей симметрии, проходящих через каждую пару противоположных рёбер, и три плоскости, параллельные граням куба (рис. 42). Группа содержит 48 элементов, распределённых по 10 классам, которые могут быть непосредственно получены из классов группы \(O \). Именно, 5 совпадают с классами группы \(O \), а остальные являются: \(I \); восемь зеркально-поворотных преобразований \(S_6 \) и \(S_5 \); шесть зеркально-поворотных преобразований \(C_4 \sigma_h, C_3 \sigma_h \) вокруг осей четвёртого порядка; три отражения \(\sigma_v \) в плоскостях, горизонтальных по отношению к осям четвёртого порядка; шесть отражений \(\sigma_i \) в плоскостях, вертикальных по отношению к этим осям.

XIII, XIV. Группы \(Y \), \(Y_h \) (группы икосаэдра)

Эти группы не имеют физического интереса, так как не существуют в природе в качестве групп симметрии молекул. Поэтому мы ограничиваем здесь указанием, что \(Y \) есть группа 60 поворотов вокруг осей симметрии икосаэдра (правильного 20-гранника с трёхугольными гранями) или пентагонального додекаэдра (правильного 12-гранника с пятиугольными гранями), причём имеется шесть осей пятого порядка, 10 — третьего и 15 — второго. Группа \(Y_h \) получается добавление центра симметрии: \(Y_h = Y \times C_6 \), и представляет собой полную группу преобразований симметрии указанных многогранников.

Эти исчерпываются все возможные типы точечных групп, содержащих конечное число элементов. В дополнение к ним надо рассмотреть так называемые непрерывные точечные группы, содержащие бесконечное число элементов. Это будет сделано в § 95.

§ 91. Представления групп

Рассмотрим какую-либо группу симметрии, и пусть \(\psi_1 \) есть некоторая однозначная функция координат \(^1\). При преобразованиях системы координат, соответствующем элементу \(G \) группы, эта функция перейдёт в некоторую другую функцию. Производя поочерёдно все \(g \) преобразований группы (\(g — порядок группы \)), мы получим из \(\psi_1 \), в общем случае \(g \) различных функций. При определённых выборах \(\psi_1 \) некоторые из этих функций могут, однако, оказаться линейно-зависимыми. В результате мы получим некоторое число \(f(f \leq g) \) линейно-независимых функций \(\psi_1, \psi_2, \ldots, \psi_f \), которые при преобразованиях симметрии, входящих в рассматриваемую группу, преобразуются линейно.

\(^1\) В конфигурационном пространстве данной физической системы.
друг через друга. Другими словами, в результате преобразования \(G \) каждая из функций \(\psi_i \) \((i = 1, 2, 3, \ldots, f)\) переходит в линейную комбинацию вида:

\[
\sum_{k=1}^{f} G_{ik} \psi_k,
\]

где \(G_{ik} \) — постоянные, зависящие от преобразования \(G \). О совокупности этих постоянных говорят, как о матрице преобразования\(^1\).

В этой связи удобно рассматривать элементы \(G \) группы как операторы, воздействующие на функции \(\psi_i \), так что можно будет написать:

\[
\hat{G} \psi_i = \sum_{k} G_{ik} \psi_k; \quad (91,1)
\]

функции \(\psi_i \) всегда можно выбрать таким образом, чтобы они были взаимно ортогональны и нормированы. Тогда понятие о матрице преобразования совпадает с понятием о матрице оператора в том виде, как оно было определено в § 11:

\[
G_{ik} = \int \psi_{i}^{*} \hat{G} \psi_{k} dq. \quad (91,2)
\]

Произведению двух элементов \(G \) и \(H \) группы соответствует матрица, определяющаяся по матрицам \(G \) и \(H \) с помощью обычного правила перемножения матриц (11,12):

\[
(GH)_{ik} = \sum_{l} G_{il} H_{lk}. \quad (91,3)
\]

О совокупности матриц всех элементов группы говорят, как о «представлении» группы. О функциях же \(\psi_1, \ldots, \psi_f \), с помощью которых определены эти матрицы, говорят, как о базисе представления. Число \(f \) этих функций определяет так называемую размерность представления.

Рассмотрим интеграл \(\int |\psi|^2 dq \), где \(\psi \) — некоторая функция координат. Поскольку интеграл берётся по всему пространству\(^2\), то очевидно, что при любом повороте или отражении системы координат его значение не изменится. Поэтому для любого преобразования симметрии \(G \) можно написать:

\[
\int (\hat{G}^{*} \psi^{*}) (\hat{G} \psi) dq = \int \psi^{*} \psi dq.
\]

\(^1\) Поскольку функции \(\psi_i \) предполагаются однозначными, то каждому элементу группы соответствует одна определённая матрица.

\(^2\) Для доказательства важен тот факт, что интеграл от существенно положительной функции \(|\psi|^2 \) действительно существует и отличен от нуля.
Вводя транспортированный с \hat{G} оператор \tilde{G}, имеем

$$\int (\hat{G}^* \psi^*) (\hat{G} \psi) \, dq = \int \psi \tilde{G} \hat{G}^* \psi \, dq = \int \psi^* \psi \, dq,$$

откуда, ввиду произвольности ψ, следует, что $\tilde{G} \hat{G}^* = 1$, или

$$\tilde{G}^* = \hat{G}^+ = \hat{G}^{-1},$$

(91,4)

т. е. сопряжённый оператор равен обратному (понимая вообще под оператором f^{-1}, обратным оператору f, такой, что $f \cdot f^{-1} = 1$). Равенство (91,4) является общим определением так называемой унитарности операторов; оператор, обладающий этим свойством, называется унитарным.

Если определять матричные элементы оператора \hat{G} с помощью ортогональной и нормированной системы функций, то, согласно (11,9), имеем $G_{ik}^+ = G_{ki}$. Равенство (91,4), переписанное в матричном виде, тогда имеет вид:

$$\sum_l G_{il}^* G_{kl} = \delta_{ik}.$$

(91,5)

Матрицы, удовлетворяющие этим равенствам, называются унитарными.

Таким образом представление группы симметрии, осуществляемое с помощью нормированных и взаимно ортогональных функций базиса, является унитарным, т. е. группа представляется унитарными матрицами.

Произведём над системой функций ψ_1, \ldots, ψ_f линейное преобразование

$$\psi_i' = \sum_k S_{ki} \psi_k;$$

(91,6)

это преобразование можно написать условно в операторном виде:

$$\tilde{S} \psi = \psi'.$$

Если мы теперь возьмём в качестве базиса представления функции ψ_i', то мы получим новое представление той же размерности. Такие представления, которые получаются друг из друга путём линейного преобразования функций их базиса, называются эквивалентными; они, очевидно, не являются существенно различными. Легко определить, каким образом выражаются друг через друга матрицы эквивалентных представлений.

Для этого замечаем, что если функции ψ_i' выражаются через функции ψ_i по (91,6), то обратно ψ_i выражаются через ψ_i' согласно уравнению

$$\psi_i = \sum_k S_{ki}^{-1} \psi_i'.$$
где S_{ki}^{-1} — элементы матрицы оператора \hat{S}^{-1}, обратного \hat{S}. Применим к обеим сторонам равенства (91,6) оператор \hat{G}, поэтому получим:

$$\hat{G}\psi_i' = \sum_k S_{ki} \hat{G}\psi_k = \sum_k S_{ki} G_{kk} \psi_i' = \sum_k S_{ki} G_{kk} S_{mi}^{-1} \psi_m' = \sum_m (\hat{S}^{-1}\hat{G}\hat{S})_{mi} \psi_m'. $$

Таким образом матрица оператора \hat{G} в новом представлении равна матрице оператора $\hat{G}' = \hat{S}^{-1}\hat{G}\hat{S}$ (91,7)

в старом представлении.

Если функции ψ_i' взаимно ортогональны и нормированы и мы хотим, чтобы то же самое относилось и к функциям ψ_i, то матрица S_{ik} преобразования (91,6) должна быть унитарной. Действительно, если подставить (91,6) в условие $\int \psi_i^*\psi_i' \, dq = \delta_{ik}$, то мы получим:

$$\sum_{l,m} \int S_{li}^* S_{mi} \hat{G}\psi_m \psi_i' \, dq = \sum_{l,m} S_{li}^* S_{mi} \hat{G}\psi_m \, dq = \sum_l S_{li}^* S_{lk} = \delta_{ik}.$$

Важным свойством унитарного преобразования является то, что оно оставляет инвариантной сумму квадратов модулей преобразуемых функций. Действительно:

$$\sum_i |\psi_i'|^2 = \sum_{k, l, e} S_{ki}^* \psi_k S_{le}^* \psi_l = \sum_{k, l, e} \psi_k^* \psi_l S_{le} = \sum_k |\psi_k|^2.$$

Сумма диагональных элементов матрицы, представляющей элемент G группы, называется её характером; мы будем обозначать характеры посредством $\chi(G)$. Очень существенно, что характеры матриц эквивалентных представлений совпадают. Действительно, с помощью правила умножения матриц имеем для характера матрицы оператора \hat{G}' (91,7)

$$\chi(G') = \sum_i G_{ii}' = \sum_{l, k, e} S_{li}^{-1} G_{kl} S_{lk} = \sum_k G_{kk} \delta_{kk} = \sum_k G_{kk},$$

т. е.

$$\chi(G) = \chi(G')$$

(91,8)

(мы воспользовались здесь тем, что, согласно определению обратного оператора, должно быть $\sum_i S_{ii} S_{ii}^{-1} = \delta_{kk}$). Это обстоятельство придаёт особую важность описанию представлений группы с помощью задания его характеров; оно позволяет сразу отличать существенно различные представления от представлений эквивалентных. Ниже мы будем говорить как о различных лишь о незэквивалентных представлениях.

Если понимать под S в (91,7) элемент группы, связывающий сопряжённые элементы G и G', то мы придём к результату, что в каждом
данном представлении группы характеры матриц, представляющих элементы одного класса, одинаковы.

Единичному элементу группы \(E \) соответствует тождественное преобразование. Поэтому представляющая его матрица во всяком представлении диагональна, причём диагональные элементы равны единице. Характер \(\chi(E) \) равен, следовательно, просто размерности представления

\[
\chi(E) = f. \tag{91,9}
\]

Рассмотрим некоторое представление размерности \(f \). Может оказаться, что в результате соответствующего линейного преобразования \((91,6) \) функции базиса разбиваются на наборы по \(f_1, f_2, \ldots \) функций \((f_1 + f_2 + \ldots = f) \) таким образом, что при воздействии всех элементов группы функции каждого набора преобразуются только друг через друга, не затрагивая функций из других наборов. В таком случае говорят, что данное представление приводимо.

Если же число преобразующихся друг через друга функций базиса не может быть уменьшено никаким их линейным преобразованием, то осуществляемое ими представление называется неприводимым. Всякое приводимое представление может быть, как говорят, разложено на неприводимые представления. Это значит, что соответствующим линейным преобразованием функции базиса разбиваются на ряд наборов, из которых каждый преобразуется при воздействии элементов группы по какому-либо неприводимому представлению. При этом может оказаться, что несколько различных наборов преобразуется по одному и тому же неприводимому представлению; в таком случае говорят, что это неприводимое представление содержит в приводимом соответствующее число раз.

Неприводимые представления являются существенной характеристикой группы и играют основную роль во всех квантовомеханических применениях теории групп. Укажем основные свойства неприводимых представлений.

Можно показать, что число различных неприводимых представлений группы равно числу \(r \) классов в группе. Мы будем отличать характеры различных неприводимых представлений верхними индексами; характеры матриц элемента \(G \) в различных представлениях будут \(\chi^{(1)}(G), \chi^{(2)}(G), \ldots, \chi^{(r)}(G) \).

Матричные элементы неприводимых представлений удовлетворяют целому ряду соотношений ортогональности \(^1\). Прежде всего для двух различных неприводимых представлений имеют место соотношения

\[
\sum_{G} G^{(a)}_{ik} G^{(b)*}_{lm} = 0, \tag{91,10}
\]

\(^1\) Доказательство этих соотношений можно найти в специальных курсах теории групп, например, в книге О. Ю. Шмидта, Абстрактная теория групп.
где $\alpha \neq \beta$ отличают два неприводимых представления, а суммирование производится по всем элементам группы. Для каждого же неприводимого представления имеют место соотношения

$$
\sum_{G} G^{(a)}_{ik} G^{(a^*)}_{lm} = \frac{g}{f_{\alpha}} \delta_{il} \delta_{km},
$$

(91,11)

т. е. отличны от нуля лишь суммы квадратов модулей матричных элементов:

$$
\sum_{G} |G^{(a)}_{ik}|^2 = \frac{g}{f_{\alpha}}.
$$

Соотношения (91,10 — 11) можно записать вместе в виде:

$$
\sum_{G} G^{(a)}_{ik} G^{(a^*)}_{lm} = \frac{g}{f_{\alpha}} \delta_{\alpha \beta} \delta_{il} \delta_{km}.
$$

(91,12)

В частности, отсюда можно получить важное соотношение ортогональности для характеров представлений; суммируя обе стороны равенства (91,12) по параметрам индексов i, k, l, m, получим:

$$
\sum_{G} \chi^{(a)}(G) \chi^{(\beta)}(G)^* = g \delta_{\alpha \beta}.
$$

(91,13)

При $\alpha = \beta$ имеем:

$$
\sum_{G} |\chi^{(a)}(G)|^2 = g,
$$

т. е. сумма квадратов модулей характеров неприводимого представления равна порядку группы. Заметим, что этим соотношением можно пользоваться как критерием неприводимости представления, — для приводимого представления эта сумма во всяком случае больше g (причём равна ng, где n — число содержащихся в нём неприводимых представлений).

Из (91,13) следует также, что равенство характеров двух неприводимых представлений является не только необходимым, но и достаточным условием их эквивалентности.

Соотношение (91,13) позволяет очень просто произвести разложение всякого приводимого представления на неприводимые, если известны характеры тех и других. Пусть $\chi(G)$ суть характер некоторого приводимого представления размерности f и пусть числа $a^{(1)}, a^{(2)}, \ldots, a^{(r)}$ показывают, сколько раз содержатся в нём соответствующие неприводимые представления, так что

$$
\sum_{\beta=1}^{r} a^{(\beta)} f_{\beta} = f
$$

(91,14)
(f_β — размерности неприводимых представлений). Тогда характеристики χ(G) можно написать в виде:

$$\chi(G) = \sum_{\beta=1}^{r} a^{(\beta)} \chi^{(\beta)}(G).$$ \hspace{1cm} (91,15)

Умножая это равенство на $\chi^{(*)}(G)$ и суммируя по всем G, получим в силу (91,13):

$$a^{(*)} = \frac{1}{g} \sum_{G} \chi(G) \chi^{(*)}(G).$$ \hspace{1cm} (91,16)

Рассмотрим представление размерности $f = g$, осуществляемое g функциями \hat{G}_ψ, где ψ есть некоторая функция координат общего вида (так что все получающиеся из неё g функции \hat{G}_ψ линейно независимы); такое представление называется регулярным. Ясно, что ни одна из матриц этого представления не будет содержать вовсе диагональных элементов, за исключением только матрицы, соответствующей единичному элементу; поэтому будет $\chi(G) = 0$ при $G \neq E$ и $\chi(E) = g$. Разлагая это представление на неприводимые, получим, согласно (91,16), для числел $a^{(*)}$ значения $a^{(*)} = (1/g) \chi^{(*)}(G) = f^{(*)}$, т. е. каждое неприводимое представление содержится в рассматриваемом приводимом числе раз, равное его размерности. Подставляя это в (91,14), найдём соотношение

$$f_1^2 + f_2^2 + \ldots + f_r^2 = g;$$ \hspace{1cm} (91,17)

сумма квадратов размерностей неприводимых представлений группы равна её порядку. Отсюда следует, в частности, что у абелевых групп (где $r = g$) все неприводимые представления одномерны ($f_1 = \ldots = f_r = 1$).

Укажем также, без доказательства, что размерности неприводимых представлений группы являются делителями её порядка.

Среди неприводимых представлений всякой группы всегда имеется одно тривиальное, осуществляющее одной функцией базиса, инвариантной по отношению ко всем преобразованиям группы. Это одномерное представление называется единичным; все характеристы в нём равны единице.

Рассмотрим две различные системы функций $\psi_1^{(*)}, \ldots, \psi_1^{(*)}$ и $\psi_1^{(*)}, \ldots, \psi_r^{(*)}$, осуществляющие два неприводимых представления группы. Составляя произведения $\psi_i^{(*)} \psi_k^{(*)}$, мы получим систему $f_\alpha f_\beta$ новых функций, которые могут служить базисом нового представления размерности $f_\alpha f_\beta$. Это представление называется прямым произведе-

1) Отметим, что для точечных групп уравнение (91,17) при данных r и h может быть удовлетворено набором целых чисел f_1, \ldots, f_r лишь одним единственным образом.
§ 91. ПРЕДСТАВЛЕНИЯ ГРУПП

нимем первых двух; оно неприводимо, только если \(f_a \) или \(f_\beta \) равно единице. Легко видеть, что характеристы прямого произведения равны произведениям характеров обоих составляющих представлений. Действительно, если

\[
\hat{G} \psi_i^{(a)} = \sum_l G_{li}^{(a)} \psi_l^{(a)}, \quad \hat{G} \psi_k^{(b)} = \sum_m G_{mk}^{(b)} \psi_m^{(b)},
\]

то

\[
\hat{G} \psi_i^{(a)} \psi_k^{(b)} = \sum_{l, m} G_{li}^{(a)} G_{mk}^{(b)} \psi_l^{(a)} \psi_m^{(b)},
\]

отсюда для характеров, которые мы обозначаем как \((\chi^{(a)} \times \chi^{(b)}) (G)\)

получим

\[
(\chi^{(a)} \times \chi^{(b)}) (G) = \sum_{l, k} G_{li}^{(a)} G_{lk}^{(b)} = \sum_l G_{li}^{(a)} \sum_k G_{lk}^{(b)},
\]

т. е.

\[
(\chi^{(a)} \times \chi^{(b)}) (G) = \chi^{(a)} (G) \chi^{(b)} (G). \tag{91,18}
\]

Оба перемножаемые неприводимые представления могут, в частности, совпадать; в этом случае мы имеем два различных набора функций \(\psi_1, \ldots, \psi_f \) и \(\varphi_1, \ldots, \varphi_f \), возможных одно и то же представление, а прямое произведение представления само на себя осуществляется \(f^2 \) функциями \(\psi_i \varphi_k \) и имеет характер

\[
(\chi \times \chi) (G) = [\chi (G)]^2.
\]

Это приводимое представление можно сразу разбить на два представления меньшей размерности (но, вообще говоря, всё ещё приводимые). Одно из них осуществляется \(f(f+1)/2 \) функциями \(\psi_i \varphi_k \) и \(\psi_k \varphi_i \); а другое \(f(f-1)/2 \) функциями \(\psi_i \varphi_k - \psi_k \varphi_i, i \neq k \) (очевидно, что функции каждого из этих наборов преобразуются только друг через друга). Первое называется симметричным произведением представления само на себя (его характеры обозначаются символом \([\chi^2] (G) \)), а второе — антисимметричным произведением (его характеры обозначаются символом \(\{\chi^2\} (G) \)).

Для определения характеров симметричного произведения пишем:

\[
\hat{G} (\psi_i \varphi_k + \psi_k \varphi_i) = \sum_{l, m} G_{li} G_{km} (\psi_l \varphi_m + \psi_m \varphi_l) = \frac{1}{2} \sum_{l, m} (G_{li} G_{km} + G_{lm} G_{kl}) (\psi_l \varphi_m + \psi_m \varphi_l).
\]

Отсюда имеем для характера

\[
[\chi^2] (R) = \frac{1}{2} \sum_{i, k} (G_{ik} G_{kk} + G_{ik} G_{kl}).
\]

Но \(\sum_i G_{ik} = \chi (G) \), а \(\sum_{i, k} G_{ik} G_{ik} = \chi (G^2) \); таким образом окончательно получим формулу

\[
[\chi^2] (G) = \frac{1}{2} \{ [\chi (G)]^2 + \chi (G^2) \}, \tag{91,19}
\]
позволяющую определить характеры симметричного произведения представления самого на себя по характерам исходного представления. Совершенно аналогичным образом найдём для характеров антисимметричного произведения формулу

\[\{\chi^a(G)\} = \frac{1}{2} \{[\chi(G)]^a - \chi(G^a)\}. \tag{91,20} \]

Если функции \(\psi_i\) и \(\varphi_i\) совпадают, то с их помощью можно, очевидно, определить лишь симметричное произведение, осуществляемое квадратами \(\psi_i^2\) и произведениями \(\psi_i \psi_k, \ i \neq k\). В применении приходится встречаться и с симметричными произведениями более высоких степеней; их характеры можно получить аналогичным образом.

Для применения полезно знать формулу, позволяющую представить произвольную функцию \(\psi\) в виде суммы функций, преобразующихся по неприводимым представлениям группы, т. е. в виде:

\[\psi = \sum_a \sum_i \psi_i^{(a)}, \tag{91,21} \]

где функции \(\psi_i^{(a)}\) \((i = 1, 2, \ldots, f_a)\) преобразуются по \(a\)-му неприводимому представлению. Задача состоит в определении функций \(\psi_i^{(a)}\) по функции \(\psi\) и решается формулой

\[\psi_i^{(a)} = \frac{f_a}{g} \sum_G G_{ik}^{(a)} \hat{G}_i. \tag{91,22} \]

Для доказательства достаточно показать, что выражение, стоящее в правой стороне равенства, тождественно обращается в \(\psi_i^{(a)}\), если положить \(\psi = \psi_i^{(a)}\), и в нуль, если положить \(\psi = \psi_k^{(b)}\) с \(k \neq i\) или \(b \neq a\); то и другое следует непосредственно из соотношений ортогональности (91,10), (91,11), если подставить \(\hat{G}_k^{(b)} = \sum_i G_{ik}^{(b)} \psi_i^{(b)}\).

Если подставить (91,22) в (91,21) и произвести суммирование по \(i\), то мы получим более простое разложение произвольной функции \(\psi\) на функции \(\psi_i^{(a)}\), относящиеся к различным неприводимым представлениям, но не к определённым строкам этих представлений:

\[\psi = \sum_a \psi_i^{(a)}, \quad \psi_i^{(a)} = \frac{f_a}{g} \sum_G \chi^{(a)}(G) \hat{G}_i. \tag{91,23} \]

Наконец, сделаем несколько замечаний о неприводимых представлениях группы, являющейся прямым произведением двух других групп (не смешивать с прямым произведением двух представлений одной и той же группы!). Если функции \(\psi_i^{(a)}\) осуществляют неприводимое представление группы \(A\), а функции \(\phi_k^{(b)}\)—тоже для группы \(B\), то произведения \(\phi_k^{(b)} \psi_i^{(a)}\) будут базисом \(f_a f_b\)-мерного представления группы \(A \times B\), причём представления неприводимого. Характеры этого
представления получаются перемножением соответствующих характеров исходных представлений (ср. вывод формулы (91,18)); элементу $C = AB$ группы $A \times B$ соответствует характер

$$\chi(C) = \chi^{(a)}(A)\chi^{(b)}(B).$$

Перемножая таким образом друг с другом все неприводимые представления групп A и B, мы получим все неприводимые представления группы $A \times B$.

§ 92. Неприводимые представления точечных групп

Перейдем теперь к конкретному определению неприводимых представлений тех из точечных групп, которые имеют физический интерес. Огромное большинство молекул обладает лишь осями симметрии второго, третьего, четвертого и шестого порядков. Поэтому нет необходимости рассматривать группы икосаэдра Y, Y_n; группы C_n, C_{nh}, C_{nv}, D_n, D_{nh} мы будем рассматривать лишь со значениями $n = 1, 2, 3, 4, 6$, а группы S_{2n}, D_{nd} — с $n = 1, 2, 3$.

Наиболее просто определение неприводимых представлений для циклических групп. Циклическая группа, как и всякая абелева группа имеет лишь одномерные представления. Пусть G есть производящий элемент группы (т. е. элемент, возведение которого в последовательные степени даёт все элементы группы). Поскольку $G^g = E$ (g — порядок группы), то ясно, что при воздействии оператора \hat{G} на функцию базиса ψ последняя может умножиться только на $\sqrt[1]{1}$, т. е.\(^1\)

$$\hat{G}\psi = e^{\frac{2\pi i}{g}}k$$

(\(k = 1, 2, \ldots, g\)).

Получающиеся таблицы характеров сведены в таблице 6.

Изоморфные группы имеют, очевидно, одинаковые неприводимые представления и приводятся вместе в одной таблице. В первых столбцах указаны принятые условные обозначения представлений.\(^2\)

\(^1\) Для точечной группы C_n в качестве функций ψ можно, например, выбрать функции $\psi = e^{ik\varphi}$, $k = 1, 2, \ldots, n$, где φ — угол поворота вокруг оси, отсчитываемый от некоторого определённого направления.

\(^2\) Одномерные представления обозначаются буквами A, B, двухмерные — буквой E, а трёхмерные — F (обозначение E для двухмерного неприводимого представления не смещивать с обозначением E для единичного элемента группы!). Функции базисов представлений A симметричны, а функции B — антисимметричны по отношению к поворотам вокруг главной оси n-го порядка. Функции различной симметрии по отношению к отражению c_h отличаются количеством штрихов (один или два), а индексы g и n указывают на симметрию по отношению к иррессии.

Примечание, по которой два комплексно сопряжённых одномерных представления обозначаются как одно двухмерное, выяснится в § 93.

Числа перед символами элементов группы в первых строках указывают числа элементов в соответствующих классах (о распределении элемента точечных групп по классам — см. § 90).
Таблица 6
Характеры неприводимых представлений точечных групп

<table>
<thead>
<tr>
<th>C_1</th>
<th>E</th>
<th>C_4</th>
<th>C_2</th>
<th>C_3</th>
<th>C_3^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>A_g</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A_z</td>
<td>z</td>
<td>z</td>
<td>z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A_x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A_y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A_2</td>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D_2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C_{2h}</td>
</tr>
</tbody>
</table>

$V = D_2$

C_{2v}

<table>
<thead>
<tr>
<th>E</th>
<th>C_{2v}</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_{2v}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_{2}^v</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_{2}^v</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_{2}^v</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D_2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C_{3v}</th>
<th>D_3</th>
<th>E</th>
<th>C_3</th>
<th>C_3^2</th>
<th>C_3^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A_2</td>
<td>A_2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A_3</td>
<td>A_3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A_4</td>
<td>A_4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A_5</td>
<td>A_5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A_6</td>
<td>A_6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E_{x}</td>
<td>E_{x}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E_{y}</td>
<td>E_{y}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E_{z}</td>
<td>E_{z}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

C_{4v}

<table>
<thead>
<tr>
<th>D_4</th>
<th>D_{2d}</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>C_2</th>
<th>$2C_4$</th>
<th>$2C_2$</th>
<th>$2C_2^2$</th>
<th>$2C_2^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_2</td>
<td>C_4</td>
<td>C_2</td>
<td>C_2</td>
<td>C_2</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>C_2</th>
<th>$2C_4$</th>
<th>$2C_2$</th>
<th>$2C_2^2$</th>
<th>$2C_2^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
</tr>
<tr>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
</tr>
<tr>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
</tr>
<tr>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>C_2</th>
<th>$2C_4$</th>
<th>$2C_2$</th>
<th>$2C_2^2$</th>
<th>$2C_2^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
</tr>
<tr>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
</tr>
<tr>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
</tr>
<tr>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>C_2</th>
<th>$2C_4$</th>
<th>$2C_2$</th>
<th>$2C_2^2$</th>
<th>$2C_2^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
</tr>
<tr>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
</tr>
<tr>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
</tr>
<tr>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>C_2</th>
<th>$2C_4$</th>
<th>$2C_2$</th>
<th>$2C_2^2$</th>
<th>$2C_2^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
</tr>
<tr>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
</tr>
<tr>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
</tr>
<tr>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>C_2</th>
<th>$2C_4$</th>
<th>$2C_2$</th>
<th>$2C_2^2$</th>
<th>$2C_2^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
</tr>
<tr>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
<td>A_2</td>
</tr>
<tr>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
<td>B_1</td>
</tr>
<tr>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
<td>B_2</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>
Вместе с ними указано буквами x, y, z, по какому представлению преобразуются сами координаты (имея в виду дальнейшие квантово-механические применения); ось z везде выбрана вдоль главной оси симметрии. Буквы ε и ω обозначают:

$$
\varepsilon = e^{2\pi i/3}, \quad \omega = e^{2\pi i/6} = -\omega^4.
$$

Рассмотрим группу C_{3h} (и изоморфные с ней C_{3v} и D_2). Эта группа абельева, так что все её неприводимые представления тоже одномерны, причём характеры могут быть равны только ± 1 (так как квадрат каждого элемента есть E).

Далее, рассмотрим группу C_{3v}. По сравнению с группой C_3 здесь прибавляются отражения σ_v в вертикальных плоскостях (относящиеся все к одному классу). Функция, инвариантная по отношению к повороту вокруг оси (функция базиса представления A группы C_3), может быть симметричной или антисимметричной по отношению к отражениям σ_v. Функции же, умножающиеся при повороте C_3 на ω и ω^2 (функции базисов комплексно сопряжённых представлений E),
при отражении переходят друг в друга. Из этих рассуждений следует, что группа C_{3v} (и изоморфная с ней D_3) имеет два одномерных и одно двухмерное неприводимое представление с характеристиками, указанными в таблице. В том, что мы действительно нашли все неприводимые представления, можно убедиться из того, что сумма $1^2 + 1^2 + 2^2 = 6$, т. е. равна порядку группы.

Аналогичными рассуждениями находятся характеры представлений других групп такого типа (C_{4v}, C_{6v}).

Группа T получается из группы V добавлением поворотов вокруг четырёх наклонных осей третьего порядка. Функция, инвариантная по отношению к преобразованиям группы V (базис представлений A_1), может умножаться при повороте C_3 на 1, $e^{2\pi i/3}$ или $e^{2\pi i/3}$. Функции же базиса трёх одномерных представлений B_1, B_2, B_3 группы V при поворотах вокруг осей третьего порядка переходят друг в друга (что видно, если взять, например, в качестве этих функций сами координаты x, y, z). Таким образом получаем три одномерных и одно трёхмерное неприводимое представление $1 + 1 + 1 + 3^3 = 12$.

Наконец, рассмотрим изоморфные группы O и T_d. Группа T_d получается из группы T добавлением отражений σ_d в плоскостях, каждая из которых проходит через две оси третьего порядка. Функции базиса единичного представления A группы T может быть симметричной или антисимметричной по отношению к этим отражениям (относящимся все к одному классу), что даёт два одномерных представлений группы T_d. Функции, умножающиеся на e или e^2 при повороте вокруг оси третьего порядка (базис комплексно сопряжённых представлений E группы T), при отражении в плоскости, проходящей через эту ось, переходят друг в друга, так что получается одно двухмерное представление. Наконец, из трёх функций базиса представления F группы T одна преобразуется при отражении сама через себя (примеч может остаться неизменной или изменить знак), а две другие — переходят друг в друга. Таким образом получаем всего два одномерных, одно двухмерное и два трёхмерных представлений.

Что касается остальных интересующих нас точечных групп, то их представления можно получить непосредственно из уже выписанных, если заметить, что эти группы являются прямыми произведениями рассмотренных уже групп на группу C_i (или C_3). Именно:

\[
\begin{align*}
C_{3h} &= C_3 \times C_i & D_{3h} &= D_3 \times C_i & D_{3d} &= D_3 \times C_i & O_h = O \times C_i \\
C_{4h} &= C_4 \times C_i & D_{4h} &= D_4 \times C_i & D_{6h} &= D_6 \times C_i \\
C_{6h} &= C_6 \times C_i & S_6 &= C_3 \times C_i & T_h = T \times C_i
\end{align*}
\]

1) Эти функции можно взять, например, в виде $\psi_1 = e^{2\pi i}, \psi_2 = e^{2\pi i}$. При отражении в вертикальной плоскости Ψ меняет знак.
Каждое из этих прямых произведений имеет вдвое больше неприводимых представлений, чем исходная группа, причем половина из них симметрична, а другая половина — антисимметрична по отношению к инверсии. Характеры этих представлений получаются из характеров представлений исходной группы умножением на ± 1 (в соответствии с правилом $(91,24)$). Так, например, для группы D_{3d} получим представления:

$$
\begin{array}{|c|c|c|c|c|c|c|}
\hline
D_{3d} & E & 2C_3 & 3U_2 & l & 2S_6 & 3\sigma_d \\
\hline
A_{1g} & 1 & 1 & 1 & 1 & 1 & 1 \\
A_{2g} & 1 & 1 & -1 & 1 & 1 & -1 \\
E_g & 2 & -1 & 0 & 2 & -1 & 0 \\
A_{1u} & 1 & 1 & 1 & -1 & -1 & 1 \\
A_{2u} & 1 & 1 & -1 & -1 & 1 & 1 \\
E_u & 2 & -1 & 0 & -2 & 1 & 0 \\
\hline
\end{array}
$$

§ 93. Неприводимые представления и классификация термов

Квантовомеханические применения теории групп основаны на том, что уравнение Шредингера для физической системы (атома, молекулы) инвариантно по отношению к преобразованиям симметрии этой системы. Из этого обстоятельства непосредственно следует, что после применения элементов группы к функции, удовлетворяющей уравнению Шредингера при некотором значении энергии (собственное значение), должны снова получаться решения того же уравнения с тем же значением энергии. Другими словами, при преобразовании симметрии волновые функции стационарных состояний системы, относящихся к одному и тому же уровню энергии, преобразуются друг через друга, т. е. осуществляют некоторое представление группы. Существенно, что это представление неприводимо. Действительно, функции, непременно преобразующиеся друг через друга при преобразованиях симметрии, во всяком случае должны относиться к одному и тому же уровню энергии; совпадение же собственных значений энергий, относящихся к нескольким группам функций (на которые можно разбить базис приводимого представления), не преобразующих друг через друга, было бы совершенно невероятной случайностью (если только на это нет особых причин — см. ниже).

Таким образом каждому уровню энергии системы соответствует некоторое неприводимое представление её группы симметрии. Размерность этого представления определяет кратность вырождения данного уровня, т. е. число различных состояний с данной энергией. Заданием неприводимого представления определяются все свойства
симметрии данного состояния, т. е. его поведение по отношению к различным преобразованиям симметрии.

Неприводимые представления с размерностью, большей чем еди-
ница, имеют только в тех группах, которые содержат некомму-
тивные элементы (абелевы группы имеют лишь одномерные непри-
водимые представления). Уместно по этому поводу напомнить, что
связь вырождения с наличием некоммутирующих друг с другом (но
коммутирующих с гамильтонианом) операторов была высказана уже
раньше из соображений, не связанных с теорией групп (§ 10).

Ко всем этим утверждениям необходимо сделать существенную
оговорку. Как уже в своё время указывалось (§ 16), симметрия по
отношению к изменению знака времени (имеющая место в отсутствии
магнитного поля) в квантовой механике приводит к тому, что ком-
плексно сопряжённые волновые функции должны относиться к одному
и тому же собственному значению энергии. Отсюда следует, что
если некоторый набор функций и набор комплексно сопряжённых
с ними функций осуществляют различные неприводимые представле-
ния группы, то эти два комплексно сопряжённых представления
должны с физической точки зрения рассматриваться вместе как одно
представление с удвоенной размерностью. В предыдущем параграфе
мы имели примеры таких представлений. Так, группа C_b имеет
только одномерные представления; однако два из них комплексно
сопряжены и физически соответствуют двукратно вырожденным
уровням энергии. (При наличии магнитного поля симметрия по отно-
шению к изменению знака времени не имеет места, и потому ком-
плексно сопряжённым представлением соответствуют различные
уровни энергии.)

Предположим, что физическая система подвергается воздействию
некоторого возмущения (т. е. система помещается во внешнем поле).
Возникает вопрос о том, в какой мере может возмущение привести
к расщеплению вырожденных уровней. Внешнее поле имеет, само по
себе, некоторую собственную симметрию 1). Если эта симметрия —
так же или более высокая 2), чем симметрия невозмущённой системы, то
симметрия возмущённого гамильтониана $\hat{\mathcal{H}} = \hat{\mathcal{H}}_0 + \hat{\mathcal{V}}$
совпадает с симметрией невозмущённого оператора $\hat{\mathcal{H}}_0$. Ясно, что в этом слу-
чае никакого расщепления вырожденных уровней не произойдёт.

1) Речь может идти, например, об уровнях энергии d- и f-оболочек
ионов в кристаллической решётке, слабо взаимодействующих с окружающими
атомами. Возмущением (внешним полем) является в этом случае поле, дей-
ствующее на ион со стороны остальных атомов.

2) Если группа симметрии \mathcal{H} является подгруппой группы \mathcal{G}, то гово-
рят, что \mathcal{H} соответствует симметрии более низкой, чем более высокая сим-
метрия группы \mathcal{G}. Очевидно, что симметрия суммы двух вырождений, из
которых одно обладает симметрией \mathcal{G}, а другое — \mathcal{H}, совпадает с более
низкой симметрией \mathcal{H}.
Если же симметрия возмущения ниже симметрии невозмущённой системы, то симметрия гамильтонiana \hat{H} будет совпадать с симметрией возмущения \hat{V}. Волновые функции, которые осуществляли неприводимое представление группы симметрии оператора \hat{H}_0, будут осуществлять также и представление группы симметрии возмущённого оператора \hat{H}, но это представление может оказаться приводимым, что означает расщепление вырожденного уровня. Покажем на примере, каким образом математический аппарат теории групп позволяет решить конкретно вопрос о расщеплении того или иного уровня.

Пусть невозмущённая система обладает симметрией T_d, и рассмотрим трёхкратно вырожденный уровень, соответствующий неприводимому представлению F_2 этой группы; характеристики этого представления равны:

<table>
<thead>
<tr>
<th>E</th>
<th>$8C_3$</th>
<th>$3C_2$</th>
<th>$6\sigma_d$</th>
<th>$6S_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Предположим, что система подвергается воздействию возмущения с симметрией C_{3v} (с осью третьего порядка, совпадающей с одной из таких осей группы T_d). Три волновые функции вырожденного уровня осуществляют представление группы C_{3v} (являющейся подгруппой группы T_d), причём характеры этого представления просто равны характерам тех же элементов в исходном представлении группы T_d, т. е.

<table>
<thead>
<tr>
<th>E</th>
<th>$2C_3$</th>
<th>$3\sigma_v$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Однако это представление приводимо. Зная характеры неприводимых представлений группы C_{3v}, легко произвести его разложение на неприводимые части (по общему правилу (91,16)). Таким образом найдём, что оно распадается на представления A_1 и E группы C_{3v}. Трёхкратно вырожденный уровень F_2 расщепляется, следовательно, на один невырожденный уровень A_1 и один двукратно вырожденный уровень E. Если та же система подвергается воздействию возмущения с симметрией C_{2v} (тоже являющейся подгруппой группы T_d), то волновые функции того же уровня F_2 дадут представление с характеристиками

<table>
<thead>
<tr>
<th>E</th>
<th>C_2</th>
<th>σ_v</th>
<th>σ_v'</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Разлагая его на неприводимые части, найдём, что оно содержит представления A_1, B_1, B_2. Таким образом в этом случае произойдёт полное расщепление уровня на три невырожденных.
§ 94. Правила отбора для матричных элементов

Теория групп позволяет не только произвести классификацию термов любой симметричной физической системы, но и даёт также простой метод нахождения правил отбора для матричных элементов различных величин, характеризующих систему.

Этот метод основан на следующей общей теореме. Пусть $\psi^{(a)}_i$ есть одна из функций базиса неприводимого (недиагонального) представления группы симметрии. Тогда её интеграл по всему пространству 1) тождественно обращается в нуль:

$$\int \psi^{(a)}_i \, dq = 0.$$

Доказательство основано на очевидном обстоятельстве, что взятый по всему пространству интеграл инвариантен по отношению к любому преобразованию системы координат, в том числе по отношению к любому преобразованию симметрии. Поэтому

$$\int \psi^{(a)}_i \, dq = \int \tilde{G} \psi^{(a)}_i \, dq = \int \sum_k G^{(a)}_{kk} \psi^{(a)}_k \, dq.$$

Просуммируем это равенство по всем элементам группы. Интеграл слева просто умножается на порядок группы g, и мы получаем:

$$g \int \psi^{(a)}_i \, dq = \sum_k \int \psi^{(a)}_k \sum_g G^{(a)}_{ki} \, dq.$$

Но для всякого неединичного неприводимого представления имеем тождественно $\sum G^{(a)}_{ki} = 0$ (это есть частный случай соотношений ортогональности (91, 10), когда одно из неприводимых представлений есть единичное). Тем самым теорема доказана.

Если ψ есть функция, относящаяся к некоторому приводимому представлению группы, то интеграл $\int \psi \, dq$ будет отличен от нуля только в том случае, если это представление содержит в себе единичное представление. Эта теорема есть непосредственное следствие предыдущей.

Пусть f есть оператор некоторой скалярной физической величины. По определению, он инвариантен по отношению ко всем преобразованиям симметрии. Его матричные элементы являются интегралами

$$\int \psi^{(a)*}_i \, f \, \psi^{(b)}_k \, dq,$$

где индексы α, β отличают различные термы системы, а индексы i, k нумеруют волновые функции состояний, относящихся к одному и тому же вырожденному терму. Обозначим символически неприводимые
представления группы симметрии данной системы, осуществляемые функциями $\psi^{(a)}_k$ и $\psi^{(b)}_k$, посредством $D^{(a)}$ и $D^{(b)}$. Произведения $\psi^{(a)}_k \psi^{(b)}_k$ осуществляют представление $D^{(a)} \times D^{(b)}$; поскольку сам оператор f инвариантен по отношению ко всем преобразованиям, то и всё подинтегральное выражение относится к этому представлению. Но прямое произведение двух различных неприводимых представлений не содержит единачного представления; прямое же произведение неприводимого представления самого на себя всегда содержит единачное представление (причём один только раз, а интеграл (94,2) равен const. δ_{ik}, где const. не зависит от i, k)\(^1\). Таким образом мы приходим к выводу, что у скалярной величины отличны от нуля матричные элементы лишь для переходов между состояниями одинакового типа (т. е. относящихся к одному и тому же неприводимому представлению). Это есть наиболее общая формулировка теорем, с частными случаями которой мы уже неоднократно встречались.

Рассмотрим далее какую-либо векторную физическую величину A. Три компоненты A_x, A_y, A_z преобразуются при преобразованиях симметрии друг через друга, как компоненты всякого вектора, осуществляя тем самым некоторое представление группы симметрии, которое мы обозначим посредством D_A\(^2\). Произведения $\psi^{(a)}_k \hat{A} \psi^{(b)}_k$ осуществляют представление $D^{(a)} \times D_A \times D^{(b)}$; матричные элементы отличны от нуля, если это представление содержит единачное. Практически удобнее разлагать на неприводимые части прямое представление $D^{(a)} \times D_A$; тем самым мы сразу узнаём все типы $D^{(b)}$ состояний, для переходов в которые (из состояния типа $D^{(a)}$) матричные элементы отличны от нуля.

Диагональные матричные элементы (в отличие от элементов для переходов между различными состояниями одного типа) требуют особого рассмотрения. В этом случае мы имеем всего одну, а не две различные, систему функций $\psi^{(a)}_k$, и их попарные произведения друг с другом осуществляют симметричное произведение $[D^{(a)}]^2$ представления $D^{(a)}$ самого на себя (а не прямое произведение $D^{(a)} \times D^{(a)}$). Поэтому наличие диагональных матричных элементов у векторной величины требует наличия единичного представления в разложении произведения $[D^{(a)}]^2 \times D_A$, или, что то же самое, наличия D_A в $[D^{(a)}]^2$\(^3\).

\(^1\) Характеры представления $D^{(a)} \times D^{(b)}$ равны $\chi^{(a)}(G) \chi^{(b)}(G)$. Для того, чтобы узнать, содержит ли в этом представлении единичное представление, надо (в соответствии с (91, 15)) просто просуммировать характеры по G (и разделить результат на порядок группы g). Но, согласно соотношениям ортогональности, мы получим при этом нуль, если $D^{(a)}$ и $D^{(b)}$ различны, или единицу, если $D^{(a)}$ и $D^{(b)}$ совпадают.

\(^2\) D_A, вообще говоря, различно для полярных и аксиальных векторов.

\(^3\) Мы не делали этой оговорки, когда рассматривали скалярную величину f, имея в виду, что симметричное произведение $[D^{(a)}]^2$, как и прямое $D^{(a)} \times D^{(a)}$, всегда содержит в себе единичное представление. Поэтому у скалярной величины диагональные матричные элементы, вообще говоря, всегда отличны от нуля.
Аналогичным образом можно найти правила отбора для матричных элементов тензора. Примеры применения этих правил приведены в задачах к этому параграфу.

З а д а ч и

1. Найти правила отбора для матричных элементов полярного вектора при наличии симметрии O.

Р е ш е н и е. Компоненты вектора преобразуются по неприводимому представлению \(F_1 \). Разложениями прямых произведений \(F_1 \) с другими представлениями группы \(O \) будут:

\[
\begin{align*}
F_1 \times A_1 &= F_1, & F_1 \times A_2 &= F_2, & F_1 \times E &= F_1 + F_2, \\
F_1 \times F_1 &= A_1 + E + F_1 + F_2, & F_1 \times F_2 &= A_2 + E + F_1 + F_2.
\end{align*}
\]

(1)

Поэтому отличны от нуля недиагональные матричные элементы для переходов:

\[
F_1 \leftrightarrow A_1, E, F_1, F_2; \quad F_2 \leftrightarrow A_2, E, F_2.
\]

Симметричные произведения неприводимых представлений группы \(O \) равны:

\[
[A_1^2] = [A_2^2] = A_1, \quad [E^2] = A_1 + E, \quad [F_1^2] = [F_2^2] = A_1 + E + F_2.
\]

(2)

\(F_1 \) не содержится ни в одном из них; поэтому диагональные матричные элементы отсутствуют.

2. То же, но при наличии симметрии \(D_{3d} \).

Р е ш е н и е. \(z \)-компонент вектора преобразуется по представлению \(A_{2u} \) а \(x, y \)-компоненты - по \(E_u \). Имеем:

\[
\begin{align*}
E_u \times A_{1g} &= E_u \times A_{2g} = E_u, & E_u \times A_{1u} &= E_u \times A_{2u} = E_g, \\
E_u \times E_u &= A_{1g} + A_{2g} + E_g, & E_u \times E_g &= A_{1u} + A_{2u} + E_u.
\end{align*}
\]

(1)

Поэтому отличны от нуля недиагональные матричные элементы от \(A_{2u} \), \(A_{1u} \) для переходов \(E_u \leftrightarrow A_{1g}, A_{2g}, E_g; E_g \leftrightarrow A_{1u}, A_{2u} \). Таким же образом найдём правила отбора для матричных элементов \(A_{1g} \leftrightarrow A_{2u}; A_{2g} \leftrightarrow A_{1u}; E_g \leftrightarrow E_u \).

Симметричные произведения неприводимых представлений равны:

\[
[A_{1g}^2] = [A_{2u}^2] = [A_{2g}^2] = [A_{2u}^2] = A_{1g}.
\]

(2)

\[[E_{1u}^2] = [E_{1u}^2] = E_g + A_{1g}. \]

Они не содержат ни \(A_{2u} \), ни \(E_u \); поэтому диагональные матричные элементы отсутствуют как у \(A_{2u} \), так и у \(A_{1g}, A_{2g} \).

3. Найти правила отбора для матричных элементов симметрического тензора второго ранга \(A_{tk} \) (с \(A_{xx} + A_{yy} + A_{zz} = 0 \) при симметрии \(O \)).

Р е ш е н и е. Компоненты \(A_{xy}, A_{xz}, A_{yz} \) преобразуются по \(F_2 \). Разлагая прямые произведения \(F_2 \) со всеми представлениями группы \(O \), найдём правила отбора \(F_1 \leftrightarrow A_{2}, E, F_1, F_2; F_2 \leftrightarrow A_{1}, E, F_1, F_2 \). Диагональные матричные элементы имеют (как видно из (2) задачи 1) для состояний \(F_1 \) и \(F_2 \).

Суммы \(A_{xx} + \varepsilon A_{yy} + \varepsilon^2 A_{zz} \), \(A_{xx} + \varepsilon^2 A_{yy} + \varepsilon A_{zz} \) (\(\varepsilon = e^{\pi i/3} \)) преобразуются по представлению \(E \). Правила отбора для недиагональных
§ 95. Непрерывные группы

Помимо конечных точечных групп, перечисленных в § 90, существуют также так называемые непрерывные точечные группы с бесконечным числом элементов. Это суть группы аксиальной и сферической симметрии.

Простейшей из групп аксиальной симметрии является группа C_∞, содержащая повороты $C(\varphi)$ на произвольный угол \(\varphi \) вокруг оси симметрии (ее называют двухмерной группой вращений). Эту группу можно рассматривать как предельный случай группы C_n при $n \to \infty$. Аналогично, в качестве предельных случаев групп $C_{nh}, C_{nv}, D_n, D_{nh}$ получаются непрерывные группы $C_{coh}, C_{co}, D_{co}, D_{coh}$.

Молекула обладает аксиальной симметрией только в том случае, если она состоит из атомов, расположенных по одной прямой. Если она при этом несимметрична относительно своей середины, то ее точечной группой будет группа C_{coy}, содержащая, помимо поворотов вокруг оси, также и отражения σ_v в любой плоскости, проходящей через ось. Если же молекула симметрична относительно своей середины, то ее точечной группой будет группа $D_{coh} = C_{coy} \times C_4$. Что же касается групп C_{co}, C_{coh}, D_{co}, то они вообще не могут существовать в качестве групп симметрии молекулы.

Группа полной сферической симметрии содержит повороты на произвольный угол вокруг любой оси, проходящей через центр, и отражения в любой плоскости, проходящей через ту же точку; эта группа (которую мы будем обозначать посредством K_∞) является группой симметрии отдельного атома. Она содержит в качестве подгруппы группу K всех пространственных поворотов (ее называют трёхмерной группой вращений, или просто группой вращений). Группа K_∞ может быть получена из группы K добавлением центра симметрии ($K_h = \bar{K} \times C_4$).

Элементы непрерывной группы можно различать одним или несколькими параметрами, пробегающими непрерывный ряд значений. Так, в группе вращений параметрами могут быть, например, два угла, определяющие направление оси, и угол поворота вокруг этой оси.

Описанные в § 89 общие свойства конечных групп и относящиеся к ним понятия (как-то: понятия подгруппы, сопряженных элементов, классов и т. п.) непосредственно обобщаются на непрер-
рвные группы. Теряют, разумеется, смысл те утверждения, которые непосредственно связаны с порядком группы (например, утверждение о том, что порядок подгруппы есть делитель порядка группы).

В группе C_{oo} все плоскости симметрии эквивалентны, так что все отражения σ_φ составляют один класс с непрерывным рядом элементов; ось симметрии двуторонняя, так что имеется непрерывный ряд классов, содержащих каждый по два элемента $C(\pm \varphi)$. Классы группы D_{ooh} получаются непосредственно из классов группы C_{ooe}, так как $D_{ooh} = C_{ooe} \times C_\varphi$.

В группе вращений K все оси эквивалентны и двусторонние; поэтому классами этой группы являются повороты на заданный по абсолютной величине $|\varphi|$ угол вокруг любой оси. Классы группы K_h получаются непосредственно из классов группы K.

Понятие представлений — приводимых и неприводимых — тоже непосредственно обобщается на случай непрерывных групп. Каждое неприводимое представление содержит непрерывный ряд матриц, но число преобразующих их функций базиса (т. е. размерность представления) конечно. Эти функции могут всегда быть выбраны таким образом, чтобы представление было унитарным. Число различных неприводимых представлений непрерывной группы бесконечно, но они составляют дискретный ряд, т. е. могут быть перенумерованы последовательными номерами. Для матричных элементов и характеров этих представлений имеют место соотношения ортогональности, являющиеся непосредственным обобщением аналогичных соотношений для конечных групп; вместо (91,12) имеем теперь

$$
\int G^{(s)}_{ik} G^{(p)*}_{lm} d\tau_G = \frac{1}{f_z} \delta_{a^s_i} \delta_{a^p_l} \delta_{b^p_k} \int d\tau_G, \quad (95,1)
$$

а для характеров взамен (91,13) будет:

$$
\int \chi^{(a)}(G) \chi^{(p)}(G)^* d\tau_G = \delta_{a^s b^p} \int d\tau_G. \quad (95,2)
$$

Интегрирование в этих формулах есть так называемое инвариантное интегрирование по группе; элемент интегрирования $d\tau_G$ выражается через параметры группы и их дифференциалы, причем таким образом, что при воздействии на него всех преобразований группы снова получается элемент интегрирования 1). Так, в группе вращений можно

1) Высказанные утверждения о свойствах неприводимых представлений непрерывных групп справедливы лишь при условии сходимости стоящих в (95, 1—2) интегралов; в частности, должен быть конечен «объем группы» $\int d\tau_G$. Для непрерывных точечных групп это условие выполняется. Однако в дальнейшем (часть 2 этого тома) мы познакомимся с другим видом непрерывных групп (так называемая лоренцова группа), которые не удовлетворяют этому условию.
выбрать $d\tau_\theta = d\theta \, d\varphi$, где $d\theta$ — элемент телесного угла для направления оси, а $d\varphi$ — дифференциал угла поворота вокруг оси.

Неприводимые представления трёхмерной группы вращений мы, по существу, уже нашли (не пользуясь при этом терминологией теории групп), когда определяли собственные значения и собственные функции полного момента количества движения. Действительно, оператор момента есть в основном оператор бесконечно малого поворота, и его собственные значения характеризуют поведение волновых функций по отношению к пространственным поворотам. Значению момента j соответствует $(2j + 1)$ различных собственных функций, отличающихся значениями z-компоненты момента и относящихся все к одному $(2j + 1)$-кратно выраженному уровню энергии. При поворотах системы координат эти функции преобразуются друг через друга, осуществляя таким образом неприводимые представления группы вращения. Таким образом с точки зрения теории групп, числа j нумеруют неприводимые представления группы вращений, причём каждому j соответствует одно $(2j + 1)$-мерное представление. Число j пробегает целые и полуцелые значения, так что размерность $(2j + 1)$ представлений пробегает все целые значения $1, 2, 3, \ldots$

Что касается функций базиса этих представлений, то они были уже, по существу, исследованы в главе VIII. Базисом представления с данным j являются $(2j + 1)$ независимых компонент симметричного спинора ранга $2j$.

Легко определить характеры неприводимых представлений группы вращений. Поскольку характеры элементов одного класса одинаковы, то достаточно рассмотреть повороты вокруг одной оси — оси z. Поведение волновых функций при повороте вокруг оси z определяется, как мы знаем, значением z-компоненты момента, т. е. величиной m; волновая функция состояния с данным m при повороте на угол φ вокруг оси z просто умножается на $e^{im\varphi}$. Давая m все значения от $-j$ до j, получим матрицу преобразования $(2j + 1)$ функций базиса, которая будет диагональной с характером

$$\chi(j)(\varphi) = \sum_{m=-j}^{j} e^{im\varphi}. $$

Производя суммирование, получаем:

$$\chi(j)(\varphi) = \frac{e^{i(j+1)\varphi} - e^{-i\varphi}}{e^{i\varphi} - 1} = \frac{\sin \left(j + \frac{1}{2} \right) \varphi}{\sin \frac{\varphi}{2}}. $$

(95,3)

Неприводимые представления группы вращений, соответствующие полуцелым значениям j, отличаются существенными особенностями.
Из (95,3) видно, что при полюсом \(j \):

\[
\chi(\varphi + 2\pi) = -\chi(\varphi)
\]

[между тем как при целом \(j \):]

\[
\chi(\varphi + 2\pi) = \chi(\varphi)
\]

Это значит, что при повороте на угол 2\(\pi \) функции базиса представления меняют знак (в соответствии с поведением спиноров нечетного ранга). Но поскольку поворот на 2\(\pi \) совпадает с единичным элементом группы, то мы приходим к выводу, что представления с полюсами \(j \) являются, как говорят, двузначными: каждому элементу группы (повороту вокруг некоторой оси на угол \(\varphi, 0 \leq \varphi < 2\pi \)) соответствует в таком представлении не одна, а две матрицы с противоположными по знаку характеристиками.

Изолированный атом обладает, как уже отмечалось, симметрией \(K_h = K \times C_i \). Поэтому, с точки зрения теории групп, каждому терму атома соответствует некоторое неприводимое представление группы вращений \(K \) (им определяется значение полного момента \(J \) атома) и неприводимое представление группы \(C_i \) (чем определяется чётность состояния).

Остановимся ещё коротко на неприводимых представлениях группы аксиальной симметрии \(C_{\text{ор}} \). Этот вопрос был, по существу, уже решён, когда мы выяснили классификацию электронных термов двухатомной молекулы, обладающей как раз симметрией \(C_{\text{ор}} \) (если оба атома различных). Термам \(0^+ \) и \(0^- \) (термы с \(\Omega = 0 \)) соответствуют два неприводимых представления, а двукратно вырожденным термам с \(\Omega \neq 0 \) — бесконечный ряд двухмерных представлений. При повороте на угол \(\varphi \) вокруг оси симметрии волновые функции состояний со значениями \(\pm \Omega \) момента относительно оси умножаются на \(e^{\pm i\varphi} \), а при отражении в вертикальной плоскости —

1) Необходимо оговориться, что «двузначные представления» группы, собственно говоря, вообще не являются представлениями в истинном смысле слова, так как осуществляются неоднозначными функциями базиса.

2) Кроме того, гамильтониан атома инвариантен по отношению к перестановкам электронов. В нерефлективном приближении координатные и спиновые волновые функции разделяются, и можно говорить о представлениях группы перестановок, осуществляемых координатными функциями. Заданием неприводимого представления группы перестановок определяется полный спин атома \(s \) (§ 61). При учёте же релятивистских взаимодействий разделение волновых функций на координатную и спиновую части невозможно. Симметрия по отношению к перестановкам одновременно координат и спинов частиц не приводит к какой-либо характеристике терма, так как принципом Паули допускаются лишь антисимметричные по всем электронам полные волновые функции. Это соответствует тому, что при учёте релятивистских взаимодействий спин, строго говоря, не сохраняется (сохраняется лишь полный момент \(J \)).
Переходят друг в друга. Поэтому характеры неприводимых представлений группы $C_{\infty v}$ равны:

<table>
<thead>
<tr>
<th>$C_{\infty v}$</th>
<th>E</th>
<th>$2C(\varphi)$</th>
<th>∞ σ_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A_d</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>E_1</td>
<td>2</td>
<td>$2 \cos \varphi$</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>E_k</td>
<td>2</td>
<td>$2 \cos k\varphi$</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

(95,4)

Неприводимые представления группы $D_{\infty h} = C_{\infty v} \times C_4$ получаются непосредственно из представлений группы $C_{\infty v}$ (и соответствуют классификации термов двухатомной молекулы с одинаковыми ядрами).

Если взять для Ω полуцелые значения, то функции $e^{\pm i\Omega \varphi}$ существуют двузначные неприводимые представления группы $C_{\infty v}$, соответствующие термам молекулы с полуцелым спином 1.

§ 96. Двузначные представления конечных точечных групп

Состояниям системы с полуцелым спином (а потому и полуцелым полным моментом) соответствуют двузначные представления точечной группы симметрии этой системы. Это является общим свойством спиноров и потому справедливо как для непрерывных, так и для конечных точечных групп. В связи с этим возникает необходимость в отыскании двузначных неприводимых представлений конечных точечных групп.

Как уже отмечалось, двузначные представления, по существу, вообще не являются истинными представлениями группы. К ним не относятся, в частности, соотношения, о которых шла речь в § 91, и когда в этих соотношениях (например, в соотношении (91,17) для суммы квадратов размерностей неприводимых представлений) шла речь у всех неприводимых представлениях, то в их числе подразумевались только истинные, однозначные представления.

Для отыскания двузначных представлений удобно применять следующий искусственный приём (Г. Бете, 1929). Введём число

1) В отличие от трёхмерной группы вращений, здесь можно было бы соответствующим выбором дробных значений Ω получить не только одно- и двузначные представления, но и представления трёхзначные и выше. Однако физически возможные собственные значения момента количества движения, как оператора трёхмерного бесконечно малого поворота, определяются представлениями именно трёхмерной группы вращений. Поэтому трёхзначные (и выше) представления двухмерной группы вращений (а также любой конечной группы симметрии) хотя и могут быть математически определены, но не имеют физического смысла.
формальным образом понятие о новом элменте группы (обозначим его посредством Q) — повороте на угол 2π вокруг произвольной оси — как об элементе, отличном от единичного, но совпадающем с E при своём двукратном применении: $Q^2 = E$. В соответствии с этим, повороты C_n вокруг осей симметрии n-го порядка будут давать тождественные преобразования лишь после $2n$-кратного (а не n-кратного) своего применения:

$$C_n^n = Q, \quad C_n^{2n} = E.$$ \hspace{1cm} (96,1)

Инверсия I как элемент, коммутирующий со всяким поворотом, должна при двукратном применении попрежнему давать E. Но двукратное отражение в плоскости будет равно Q, а не E:

$$\sigma^2 = Q, \quad \sigma^4 = E$$ \hspace{1cm} (96,2)

(это следует из того, что отражение может быть написано в виде $\sigma_h = I C_h$). В результате мы получим совокупность элементов, состоящих некую фигинную точечную группу симметрии, порядок которой вдвое больше порядка исходной группы; об этих группах мы будем говорить как о «двойных» точечных группах. Двузначные представления действительной точечной группы будут, очевидно, однозначными, т. е. истинными представлениями соответствующей двойной группы, так что для их отыскания можно применить обычные приёмы.

Число классов в двойной группе больше, чем в исходной группе (но, вообще говоря, не вдвое). Элемент Q коммутирует со всеми другими элементами группы1) и потому всегда составляет сам по себе класс. Если ось симметрии двусторонняя, то в двойной группе это означает сопряжённость элементов C_n^k и $C_n^{2n-k} = Q C_n^{-k}$. В связи с этим при наличии осей второго порядка распределение элементов по классам зависит также и от того, являются ли эти оси двусторонними (в обычных точечных группах это не существенно, так как C_2 совпадает с обратным поворотом C_2^{-1}).

Так, например, в группе T оси второго порядка эквивалентны, и каждая из них двусторонняя, а оси третьего порядка эквивалентны, но не являются двусторонними. Поэтому 24 элемента двойной группы T'2) распределяются по 7 классам: E, Q, класс из трёх поворотов C_2 и трёх $C_2 Q$, классы $4C_3$, $4C_3^2$, $4C_3 Q$, $4C_3^2 Q$.

В число всех неприводимых представлений двойной точечной группы входят, во-первых, представления, совпадающие с однозначными представлениями простой группы (причём элементу Q, как

1) Для поворотов и инверсии это очевидно; для отражения в плоскости это следует из того, что отражение можно представить в виде произведения инверсии и поворота.

2) Двойные группы мы будем отличать штрихом у символа обычной группы.
Двоичные представления конечных точечных групп

и E, соответствуя единичная матрица), и, во-вторых, двузначные представления простой группы, причём элементу Q соответствует отрицательная единичная матрица; нас интересует сейчас именно эти последние представления.

Двойные группы C'_n ($n = 1, 2, 3, 4, 6$) и S'_4, как и соответствующие им простые группы, являются циклическими группами 1). Все их неприводимые представления одномерны и могут быть найдены без всякого труда, как это было объяснено в начале § 92.

Неприводимые представления групп D'_n (или изоморфных им C'_{nv}) можно найти тем же способом, как и для соответствующих простых групп. Эти представления осуществляются функциями вида $e^{\pm i k \varphi}$, где φ — угол поворота вокруг оси n-го порядка, а для k берутся полуцелые значения (целые значения соответствуют обычным однозначным представлениям). Повороты вокруг горизонтальных осей второго порядка переводят эти функции друг в друга, а поворот C_n умножает на $e^{\frac{2\pi i}{n} k}$.

Несколько труднее нахождение представлений двойных кубических групп. 24 элемента группы T' распределяются по семи классам. Поэтому имеется всего семь неприводимых представлений, из которых четыре совпадают с представлениями простой группы T. Сумма квадратов размерностей остальных трёх представлений должна быть равна 12, откуда находим, что все они двумерны. Поскольку элементы C_2 и $C_2 Q$ находятся в одном классе, то $\chi(C_2) = \chi(C_2 Q) = - \chi(C_2)$, откуда заключаем, что во всех трёх представлениях $\chi(C_2) = 0$. Далее, из трёх представлений по крайней мере одно должно быть вещественным, так как комплексные представления могут встречаться лишь взаимно сопряжёнными парами. Рассмотрим это представление и предположим, что матрица элемента C_3 приведена к диагональному виду (пусть a_1, a_2 — её диагональные элементы). Поскольку $C_3^3 = 1$, то $a_3 = a_2 = 1$. Для того чтобы $\chi(C_3) = a_1 + a_2$ было вещественным, надо взять $a_1 = e^{\frac{2\pi i}{3}}$, $a_2 = e^{-\frac{2\pi i}{3}}$. Отсюда находим, что $\chi(C_3) = 1$, $\chi(C_3^2) = a_1^2 + a_2^2 = -1$. Таким образом одно из искомых представлений найдено. Сопоставляя его прямые произведения с двумя комплексно сопряжёнными одномерными представлениями группы T, найдём два остальных представления.

Аналогичными рассуждениями, которые мы не станем приводить здесь, можно найти представления группы O'. В сводной таблице 7 даны характеристики представлений перечисленных двойных групп; приведены лишь представления, соответствующие двузначным представлениям обычных групп.

1) Группы же $S'_2 = C'_3$, $S'_6 = C'_{3g}$, содержащие инверсию I, являются абельевыми группами, но не циклическими.

26 Эвак. 3337. Ландсау и Лифшиц, т. V, ч. I.
<table>
<thead>
<tr>
<th>D_2'</th>
<th>E</th>
<th>Q</th>
<th>$C_2^{(x)}$</th>
<th>$C_2^{(y)}$</th>
<th>$C_2^{(z)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E'</td>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D_3'</th>
<th>E</th>
<th>Q</th>
<th>C_3</th>
<th>C_3^2</th>
<th>$3U_2$, $3U_2Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1'</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>i, $-i$</td>
</tr>
<tr>
<td>E_2'</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>$-i$, i</td>
</tr>
<tr>
<td>E_3'</td>
<td>2</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D_6'</th>
<th>E</th>
<th>Q</th>
<th>C_2</th>
<th>C_3</th>
<th>C_3^2</th>
<th>C_6</th>
<th>C_6^2</th>
<th>$3U_2$, $3U_2'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1'</td>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>$\sqrt{3}$</td>
<td>$-\sqrt{3}$</td>
<td>0, 0</td>
</tr>
<tr>
<td>E_2'</td>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>$-\sqrt{3}$</td>
<td>$\sqrt{3}$</td>
<td>0, 0</td>
</tr>
<tr>
<td>E_3'</td>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>-2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D_4'</th>
<th>E</th>
<th>Q</th>
<th>C_4</th>
<th>C_4^2</th>
<th>C_4^3</th>
<th>$2U_2$, $2U_2'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1'</td>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>$\sqrt{2}$</td>
<td>$-\sqrt{2}$</td>
<td>0, 0</td>
</tr>
<tr>
<td>E_2'</td>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>$-\sqrt{2}$</td>
<td>$\sqrt{2}$</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T'</th>
<th>E</th>
<th>Q</th>
<th>$4C_3$</th>
<th>$4C_3^2$</th>
<th>$4C_3Q$</th>
<th>$4C_3^2Q$</th>
<th>$3C_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E'</td>
<td>2</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>G'</td>
<td>2</td>
<td>-2</td>
<td>ε</td>
<td>$-\varepsilon$</td>
<td>$-\varepsilon$</td>
<td>ε</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O'</th>
<th>E</th>
<th>Q</th>
<th>$4C_3$</th>
<th>$4C_3^2$</th>
<th>$3C_4^2$</th>
<th>$3C_4$</th>
<th>$3C_4^3$</th>
<th>$6C_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1'</td>
<td>2</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>$\sqrt{2}$</td>
<td>$-\sqrt{2}$</td>
<td>0</td>
</tr>
<tr>
<td>E_2'</td>
<td>2</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>$-\sqrt{2}$</td>
<td>$\sqrt{2}$</td>
<td>0</td>
</tr>
<tr>
<td>G'</td>
<td>4</td>
<td>-4</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Шестнацать точечные группы либо изоморфны с рассмотренными, либо получаются в результате прямого умножения последних на группу C_r, так что их представления не нуждаются в особом вычислении.

По тем же причинам, что и для обычных представлений, два комплексно сопряженных двузначных представлений должны, с физической точки зрения, рассматриваться как одно с удвоенной размерностью. Однако в некоторых случаях надо удваивать двузначные представления даже с вещественными характерами. Мы видели в § 58, что у систем с полуземным спином комплексно сопряженные волновые функции непременно линейно независимы. Поэтому, если мы имеем двузначное одномерное представление с вещественными характерами (осуществляемое некоторой функцией ψ), то хотя комплексно сопряженная функция ψ^* преобразуется по тому же представлению, можно всё же утверждать, что ψ и ψ^* линейно независимы. Поскольку, с другой стороны, комплексно сопряженные волновые функции должны принадлежать к одному и тому же уровню энергии, то мы видим, что в физических применениях такое представление должно быть удвоено.

Задача

Определить, каким образом расцепляются уровни атома (с данными значениями полного момента J), помещённого в поле, обладающее кубической симметрией O.

Решение. Волновые функции состояний атома с моментом J и различными значениями M_J обладают $(2J+1)$-мерное приводимое представление группы O с характерами, определяемыми формулой (95,3). Разлагая это представление на неприводимые части (однозначные при целом J или двузначные при полуцелом J), мы тем самым определяем искомое расцепление (ср. § 2). Перечислим неприводимые части представлений, соответствующих нескольким первым значениям J:

\[
J=0 : A_1, \\
1/2 : E_1, \\
1 : F_1, \\
3/2 : G', \\
2 : E + F_2, \\
5/2 : E_2' + G', \\
3 : A_2 + F_1 + F_2, \\
\ldots \ldots .
\]

1) Такие представления есть у групп C_n' с нечётными n; характеры в них равны $\chi(C_n'k) = (-1)^k$.

2) Речь может идти, например, об атоме в кристаллической решётке.

Наличие или отсутствие центра симметрии в группе симметрии внешнего поля для рассматриваемого вопроса не имеет значения, так как поведение волновой функции при инверсии (чётность или нечётность уровня) не имеет отношения к моменту J.

26
§ 97. Сложение моментов

Понятие о неприводимых представлениях группы вращений позволяет дать новый вывод правила сложения моментов.

Пусть \(j_1, j_2 (j_1 \geq j_2) \) будут моменты двух частиц (или систем), взаимодействием которых пренебрегаем. Их уровням энергии соответствуют \((2j_1 + 1)\) и \((2j_2 + 1)\)-мерные неприводимые представления группы вращений, которые мы будем условно обозначать символами \(D_{j_1} \) и \(D_{j_2} \). Базисом этих представлений являются волновые функции овных систем, которые мы будем обозначать соответственно как

\[\psi^{(1)}_{j_1 m_1} (m_1 = -j_1, -j_1 + 1, \ldots, j_1) \] и

\[\psi^{(2)}_{j_2 m_2} (m_2 = -j_2, \ldots, +j_2). \]

Если рассматривать обе частицы вместе как одну систему, то все её возможные (при данных \(j_1, j_2 \)) состояния описываются в рассматриваемом приближении волновыми функциями \(\psi^{(1)}_{j_1 m_1} \psi^{(2)}_{j_2 m_2} \). Эти \((2j_1 + 1)(2j_2 + 1)\) функций осуществляют представление группы вращений, являющееся прямым произведением представлений \(D_{j_1} \) и \(D_{j_2} \) \((D_{j_1} \times D_{j_2})\). Разлагая его на неприводимые части, мы тем самым определяем возможные значения полного момента \(j \) системы.

Характеры представления \(D_{j_1} \times D_{j_2} \) равны произведениям характеров представлений \(D_{j_1} \) и \(D_{j_2} \). С помощью формулы (95,3) имеем

\[\gamma_{(j_1)} (\varphi) \gamma_{(j_2)} (\varphi) = \sum_{m_1 = j_1}^{j_1} \sum_{m_2 = -j_2}^{j_2} \varepsilon_{m_1}^{m_2} = \sum_{m_1} \varepsilon_{m_1}^{m_2} \frac{\varepsilon^{-j_1} - \varepsilon^{j_1 + 1}}{\varepsilon - 1}, \]

где мы ввели обозначение \(\varepsilon = e^{i \varphi} \). Это выражение мы должны представить в виде суммы характеров неприводимых представлений \(D_j \), т. е. в виде:

\[\sum_{j} \frac{\varepsilon^{j+1} - \varepsilon^{-j}}{\varepsilon - 1}. \]

Приравнивая оба выражения, сокращая на \((\varepsilon - 1)^{-1}\) и произведение переменное, получим:

\[\varepsilon^{j_1 + j_2 + 1} + \varepsilon^{j_1 + j_2} + \ldots + \varepsilon^{j_1 - j_2 + 1} - \varepsilon^{1 - j_1} - \ldots - e^{-j_1 + j_2} = \sum_{j} \left(\varepsilon^{j+1} - \varepsilon^{-j} \right). \]

Комбинируя в левой стороне равенства попарно положительные и отрицательные члены, видим, что \(j \) должно пробегать значения от \(j_1 - j_2 \) до \(j_1 - j_2 \) — каждое по одному разу. Другими словами, можно написать:

\[D_{j_1} \times D_{j_2} = D_{j_1 + j_2} + D_{j_1 + j_2 - 1} + \ldots + D_{j_1 - j_2}. \] (97,1)

Это в точности соответствует известному уже нам правилу сложения моментов.
Методы теории групп позволяют, однако, пойти значительно дальше в исследовании задачи о сложении моментов. Полученное правило определяет лишь возможные значения полного момента j системы; остаётся ещё невыясненным вопрос о том, какова вероятность системе иметь то или иное значение j (при заданных j_1, j_2 и m_1, m_2). Согласно общим правилам квантовой механики, эта вероятность определяется квадратами модулей коэффициентов в разложении волновой функции $\psi^{(1)}_{j_1 m_1} \psi^{(2)}_{j_2 m_2}$ (описывающей состояние системы при заданных j_1, j_2, m_1, m_2) по волновым функциям Ψ_{jm} состояний с определёнными j_1, j_2, j, m. При заданных значениях m_1, m_2 z-компонент момента обеих частиц, число m для системы равно сумме $m = m_1 + m_2$. Поэтому разложение имеет вид:

$$\psi^{(1)}_{j_1 m_1} \psi^{(2)}_{j_2 m_2} = \sum_j C^j_{m_1 m_2} \Psi_{j, m_1 + m_2}.$$ \hspace{1cm} (97.2)

Квадраты $|C^j_{m_1 m_2}|^2$ определяют искомую вероятность.

Если разложение (97.2) известно, то можно непосредственно написать обратные формулы, выражающие функции Ψ_{jm} через произведения $\psi^{(1)}_{j_1 m_1} \psi^{(2)}_{j_2 m_2}$. Для этого достаточно заметить, что поскольку те и другие составляют полные наборы нормированных и взаимно ортогональных функций, то преобразование одних в другие осуществляется с помощью унитарной матрицы (§ 91). Поэтому преобразование, обратное (97.2), имеет вид:

$$\Psi_{jm} = \sum_{m_1} C^*_{m, m_1, m_1 + m_2} \psi^{(1)}_{j_1 m_1} \psi^{(2)}_{j_2 m_2}. \hspace{1cm} (97.3)$$

В таком виде эта формула определяет волновые функции состояний системы с определёнными значениями j, m по волновым функциям обеих частиц.

Вычисление коэффициентов $C^j_{m_1 m_2}$ требует знания матриц неприводимых представлений группы вращений, а не только их характеров. Эти матрицы можно найти, воспользовавшись тем, что представление D_j может быть осуществлено компонентами симметрического спинора ранга $2j$. При этом, очевидно, достаточно рассмотреть спинор частного вида, в качестве которого удобно выбрать $2j$-кратное произведение спинора первого ранга ψ^μ самого на себя. Однако, взяв в качестве функций базиса непосредственно самые компоненты спинора, мы получим неунитарное представление. Поэтому мы выбираем в качестве базиса функции $\psi(m)$, связанные с компонентами спинора порядком соотношений

$$\psi(m) = \sqrt{\frac{(2j)!}{(j+m)!(j-m)!}} (\psi^1)^{j+m} (\psi^2)^{j-m}, m = -j_1, \ldots, j_2. \hspace{1cm} (97.4)$$
(см. (56,2)) 1). Эти функции, рассматриваемые как волновые функции некоторой системы для состояний с различными значениями z-компоненсты момента, нормированы и взаимно ортогональны, так что существенное ими представление будет унитарным.

Пространственный поворот, определяемый эйлеровыми углами ψ, θ, φ, эквивалентен бинарному преобразованию с параметрами α, β из (57,7).

При этом компоненты спинора первого ранга преобразуются согласно формулам

$$\hat{G}\psi^1 = \alpha\psi^1 + \beta\psi^3, \quad \hat{G}\psi^3 = -\beta^*\psi^1 + \alpha^*\psi^3,$$

где \hat{G} обозначает оператор рассматриваемого поворота. Результат воздействия оператора \hat{G} на функцию $\psi(m)$ будет, следовательно:

$$\hat{G}\psi(m) = \sqrt{\frac{(2j)!}{(j+m)!(j-m)!}} (\alpha\psi^1 + \beta\psi^3)^{j+m} (-\beta^*\psi^1 + \alpha^*\psi^3)^{j-m}.$$

Раскрывая скобки согласно формуле бинома и выражая снова произведения ψ^1 и ψ^3 через функции $\psi(m)$, можно представить это выражение в виде:

$$\hat{G}\psi(m) = \sum_{m'} G_{m,m'}^{(j)} \psi(m').$$

Коэффициенты $G_{m,m'}^{(j)}$ составляют искомые унитарные матрицы неприводимого представления D_j группы вращения. Непосредственное вычисление приводит к довольно сложному выражению

$$G_{m,m'}^{(j)} = \sum_k (-1)^k \frac{\sqrt{(j+m)!(j-m)!(j+m')!(j-m')!}}{(j-m-k)!(j+m-k)!(k+m-k)!} \times \alpha^{j+m-k} \alpha^*^{j-m-k} \beta^{k+m-m'} \beta^*^k. \quad (97,5)$$

Суммирование производится по всем целым числам k, начиная от нуля, но надо помнить, что все члены суммы, содержащие в знаменателе факториал отрицательного числа, исчезают.

Вернёмся теперь к поставленной задаче об определении коэффициентов разложения в (97,2). Величины $C_{m_1m_2}^{j}$ можно рассматривать как матричные элементы некоторого унитарного оператора \hat{C}, осуществляющего линейное преобразование функций базиса приводимого представления $D_{j_1} \times D_{j_2}$ группы вращений. Если в качестве функций базиса взяты произведения $\psi^{(1)}_{j_1m_1} \psi^{(2)}_{j_2m_2}$, то элементы матрицы этого представления равны произведениям $G_{m_1m_1}^{(j_1)} G_{m_2m_2}^{(j_2)}$, а если взяты функции ψ_{jm}, то элементами будут $G_{m'm}^{(j)}$. С другой стороны, матрицы

1) Мы пользуемся формулами §§ 54—56, но пишем в них j, m вместо s, t.
двух эквивалентных представлений связаны друг с другом соотношениями, отвечающими операторному соотношению (91,7). В данном случае эти матричные соотношения принимают вид:

\[G_{m_1'm_1}^{(j_1)} G_{m_2'm_2}^{(j_2)} = \sum_{j'} C_{m_1'm_1}^{j'} G_{m_1'+m_2'}^{(j')} m_1+m_2 C_{j_1'}^{j'}. \]

Умножим это равенство с обеих сторон на \(G_{m_1'+m_2'}^{(j')} m_1+m_2 \) и проинтегрируем по всей группе. В силу соотношений ортогональности (95,1) в сумме по \(j' \) в правой стороне равенства останется лишь член с \(j'=j \), и мы получим:

\[\int G_{m_1'm_1}^{(j_1)} G_{m_2'm_2}^{(j_2)} G_{m_1'+m_2'}^{(j')} m_1+m_2 d\tau_G = \frac{g}{2j+1} G_{m_1'm_1}^{j_1}, G_{m_2'm_2}^{j_2}, \quad (97,6) \]

где \(g = \int d\tau_G \).

Этой формулой поставленная задача принципиально решается. Все \(C_{j_1}' \) оказывается возможным выбрать действительными. Удобно вычислить сначала \(C_j, -j \), положив в (97,6) \(m_1 = m_1'=j_1, m_2 = m_2' = -j_2 \) (эти коэффициенты имеют более простой вид, чем остальные), после чего остальные вычисляются, положив \(m_1' = j_1, m_2' = -j_2 \). Опускает эти вычисления 1), приведём их окончательный результат (E. Wigner):

\[C_{m_1'm_2}^{j_1} = V \frac{(-1)^{j_1+j_2+m}(j_1+j_2+m_1-k)!}{(j_1+j_2-k)!} \frac{(j_1-m_1+k)!}{(j_1+m_1)!} \frac{(j_2-m_2)!}{(j_2+m_2)!} \times \sum_k \frac{(-1)^{j_1+k+m}(j_1+j_2+m_1-k)!}{(j_1+j_2-k)!} \frac{(j_1-m_1+k)!}{(j_1+m_1)!} \frac{(j_2-m_2+k)!}{(j_2+m_2)!}. \quad (97,7) \]

Суммирование по всем целым числам \(k \) фактически сводится к суммированию по значениям от большего из чисел 0 и \(j_2-j_1+m \) до меньшего из \(j_1+m_2 \) и \(j-j_1-j_2 \).

Величины \(C_{m_1'm_2}^{j_1} \) обладают значительной симметрией, хотя её и трудно усмотреть непосредственно из выражения (97,7) (в связи с невозможностью вычисления стоящей в (97,7) суммы в явном виде). Эту симметрию можно обнаружить следующим способом. Введём формально в рассмотрение ещё одну, третью, частицу с моментом \(j_3=\hat{j} \), равным моменту системы из двух первых частиц. Для системы из всех трёх частиц существует, в частности, состояние,

1) Подробное изложение вычислений можно найти в книге E. Wigner Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren, Vieweg, 1931, стр. 198.
в котором её полный момент равен нулю. Волновая функция этого состояния равна сумме

\[\sum_{m} (-1)^{j-m} \frac{\Psi_{jm}^{(3)} \psi_{j,-m}^{(3)}}{\sqrt{2j+1}}, \]

где \(\Psi_{jm}^{(3)} \) — волновые функции системы из частиц 1 и 2, а \(\psi_{jm}^{(3)} \) — волновые функции частицы 3 \(^{1)}\). Введём для коэффициентов \(C_{m_1 m_2}^{j} \) другое обозначение:

\[C_{m_1 m_2}^{j} = (-1)^{-j+m_1+m_2} \sqrt{2j+1} \cdot S_{j_1 m_1; j_2 m_2; j, m_1}, \]

узкав при помощи индексов все квантовые числа, от которых они зависят. Для большей симметрии обозначений будем писать \(j_3 \) вместо \(j \) и \(m_3 \) вместо \((m_1 + m_2) \); тогда

\[C_{m_1 m_2}^{j_3} = (-1)^{-j_3-m_1} \sqrt{2j_3+1} \cdot S_{j_1 m_1; j_2 m_2; j_3 m_3}. \]

Подставляя в (97,8) для \(\Psi_{jm} \) выражение (97,3) с подставленными в него новыми обозначениями, получим сумму вида:

\[\sum_{m_1, m_2, m_3} S_{j_1 m_1; j_2 m_2; j_3 m_3} \psi_{j_1 m_1}^{(1)} \psi_{j_2 m_2}^{(2)} \psi_{j_3 m_3}^{(3)}, \]

где суммирование производится при условии: \(m_1 + m_2 + m_3 = 0 \). Но при равном нулю полном моменте все три частицы входят в систему симметричным образом, и порядок, в котором складываются их моменты, не существенен. Другими словами, при изменении порядка сложения моментов выражение (97,11) должно оставаться, с точностью до знака, неизменным. Отсюда следует, что при перестановках пар индексов \(j_1 m_1, j_2 m_2 \) и \(j_3 m_3 \) величины \(S \) могут либо оставаться все неизменными, либо одновременно все изменить знак. Более точное исследование показывает, что

\[S_{j_1 m_1; j_2 m_2; j_3 m_3} = (-1)^{j_1+j_2-j_3} S_{j_3 m_3; j_1 m_1; j_2 m_2} = \]

\[= (-1)^{j_1+j_2} S_{j_2 m_2; j_1 m_1; j_3 m_3} = (-1)^{j_1+j_2+j_3} S_{j_3 m_3; j_1 m_1; j_2 m_2; j_1 m_1}. \]

Величины \(S \) обладают также следующим свойством:

\[S_{j_1, -m_1; j_2, -m_2; j_3, -m_3} = (-1)^{j_1+j_2+j_3} S_{j_1 m_1; j_2 m_2; j_3 m_3}. \]

Оно получается непосредственно из (97,7) при одновременном изменении знака \(m_1 \) и \(m_2 \) и замене индекса суммирования \(k \) на \(j + j_2 - j_1 - k \).

\(^{1)}\) При \(j = 0, j_1 = j_2, m_1 = -m_2 \) формула (97,7) даёт:

\[C_{m_1, -m_1}^{0} = (-1)^{j_1-m_1} \frac{1}{\sqrt{2j_1+1}}. \]
Перепишем еще раз формулу (97,7) в новых обозначениях:

$$S_{j_1m_1;j_2m_2;j_3m_3} = \sqrt{\frac{(j_3 + j_1 - j_2)!}{(j_1 + j_2 + j_3 + 1)!}} \frac{(j_1 + j_2 + j_3)!}{(j_1 + m_1)! (j_2 + m_2)! (j_3 + m_3)!} \times \sum_{k} \frac{(-1)^{j_3 + j_2 + m_1 - k}}{(j_3 - j_1 + j_2 - k)! (j_3 - m_3 - k)! (j_3 + m_3)!}.$$

(97,14)

Здесь подразумевается, что $m_1 + m_2 + m_3 = 0$, а j_1, j_2, j_3 имеют такие значения, что каждое из них может получиться в результате сложения (векторного) двух других (геометрически j_1, j_2, j_3 должны быть сторонами замкнутого треугольника); другими словами, каждое из них больше разности и меньше суммы двух других.

В таблице 8 приведены для справочных целей вычисленные по формуле (97,14) значения S для $j_2 = 1/2$, 1, 3/2, 2. Для каждого j_2 приведено минимальное число величин S, из которых с помощью соотношений (97,12—13) можно получить все остальные.

Знание величины S позволяет сравнительно просто определить зависимость от квантового числа m матричных элементов от тензорных физических величин (зависимости, аналогичные формулам (27,11), (27,13) для матричных элементов вектора, которые, разумеется, сами тоже могут быть получены излагаемым ниже способом). Пусть $f^{(jm)}$ есть совокупность $2j + 1$ величин, преобразующихся друг через друга при преобразованиях координат как компоненты спиновой волновой функции частицы со спином j (индексы j, m имеют при этом совершенно формальный характер, не относясь к какому бы то ни было реальному моменту). Так, для вектора $j = 1$, для симметрического тензора второго ранга $j = 2$ и т. д.; надо, однако, помнить, что величины $f^{(jm)}$ не совпадают непосредственно с компонентами вектора или тензора, а связаны с ними определёнными соотношениями (см. § 57 и задачу к нему).

По определению матричных элементов можно написать:

$$\hat{f}^{(jm)}_{j_1m_1j_2m_2j_3m_3} = \sum_{j_1m_1} (f^{(jm)})_{j_1m_1j_2m_2j_3m_3}.$$

Умножим это равенство с обеих сторон на волновую функцию ψ_{jm} частицы с моментом j и его проекцией m и просуммируем по m:

$$\sum_{m} \psi_{jm} \hat{f}^{(jm)}_{j_1m_1j_2m_2j_3m_3} = \sum_{j_1m_1} (f^{(jm)})_{j_1m_1j_2m_2j_3m_3} \psi_{jm} \psi_{jm}.$$

По своему закону преобразования, сумма $\sum_{m} \psi_{jm} f^{(jm)}$ есть скаляр.

Поэтому закон преобразования выражения в левой стороне равенства совпадает с законом преобразования функций ψ_{jm}. По такому же закону должна, следовательно, преобразовываться правая сторона.
Формулы для величин $S_{j_3 m_3; j m; j_3 m_3}$

$$S_{j, m-1; \frac{1}{2} \frac{1}{2}}; j-\frac{1}{2}, -m + \frac{1}{2} = (-)^{j-m+1} \sqrt{\frac{j-m+1}{2j(2j+1)}}$$

$$(-)^{j-m} S_{j, m-\frac{1}{2}; \frac{1}{2} \frac{1}{2}}; j_3, -m$$

<table>
<thead>
<tr>
<th>j_3</th>
<th>m_3</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td></td>
<td>$\frac{m}{\sqrt{j(j+1)(2j+1)}}$</td>
<td>$-\sqrt{\frac{(j+m)(j-m+1)}{2j(j+1)(2j+1)}}$</td>
</tr>
<tr>
<td>$j-1$</td>
<td></td>
<td>$\sqrt{\frac{(j-m)(j+m)}{j(2j-1)(2j+1)}}$</td>
<td>$-\sqrt{\frac{(j-m)(j-m+1)}{2j(2j-1)(2j+1)}}$</td>
</tr>
</tbody>
</table>

$$(-)^{j-m} S_{j, m-\frac{1}{2} - m_3; \frac{1}{2} \frac{1}{2}}; j_3, -m + \frac{1}{2}$$

<table>
<thead>
<tr>
<th>j_3</th>
<th>m_2</th>
<th>$\frac{1}{2}$</th>
<th>$\frac{3}{2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$j-\frac{1}{2}$</td>
<td></td>
<td>$-(j+3m-2)\sqrt{\frac{j-m+1}{2j(2j-1)(2j+1)(\sqrt[4]{j+2})}}$</td>
<td>$\sqrt{\frac{3(j-m+1)(j-m+2)(j+m-1)}{2j(2j-1)(2j+1)(2j+2)}}$</td>
</tr>
<tr>
<td>$j-\frac{3}{2}$</td>
<td></td>
<td>$-\sqrt{\frac{3(j-m)(j-m+1)(j+m-1)}{2j(2j-2)(2j-1)(2j+1)}}$</td>
<td>$\sqrt{\frac{(j-m+1)(j-m)(j-m+2)}{2j(2j-2)(2j-1)(2j+1)}}$</td>
</tr>
<tr>
<td>j</td>
<td>m</td>
<td>j-1</td>
<td>m</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>j-2</td>
<td>(\frac{1}{3} \left(\frac{1}{1} - \frac{1}{2} \right) \frac{1}{2})</td>
<td>j-1</td>
<td>(\frac{1}{3} \left(\frac{1}{1} - \frac{1}{2} \right) \frac{1}{2})</td>
</tr>
</tbody>
</table>

\[\sqrt{j(j+1)(j+2)(j+3)} \]

\[\sqrt{j(j+1)(j+2)(j+3)} \]
равенства. Сравнивая его с равенством (97,3), мы можем заключить, что искомые матричные элементы должны иметь вид:

\[(f^{(d)})_{j_{m}m_{a}}^{j_{m}m_{a}} = (f^{(d)})_{j_{m}}^{j_{m}} (-1)^{m_{a}} \sqrt{2j_{m} + 1} \cdot S_{j_{m}m_{a}}j_{m}j_{m} - m_{a}, \quad (97,15)\]

где \((f^{(d)})_{j_{m}}^{j_{m}}\) суть величины, не зависящие от \(m_{1}, m_{2}, m\). Эта формула решается поставленный вопрос.

Наконец, с помощью полученных формул может быть решена задача об определении угловой зависимости волновых функций частицы со спином \(s\) в состояниях с заданными значениями орбитального момента \(l\), полного момента \(j\) и его проекции \(m\). Искомая функция представляет собой совокупность \(2s + 1\) «компонент», которые мы обозначим посредством \(\Psi_{s}^{m}(\sigma) (\sigma = -s, -s-1, \ldots, s)\). Задача непосредственно решается общей формулой (97,3), которую пишем в виде

\[\psi_{j_{m}} = \sum_{m_{a}} C_{m_{a}, m_{a} - m_{a}}^{j_{m}} \psi_{s}^{m_{a}} \psi_{l}^{m_{a} - m_{a}}^{(1)} \psi_{l}^{m_{a} - m_{a}}^{(2)}\]

(меняя обозначение индексов) и понимаем под функциями \(\psi_{j_{m}}\) искомые функции \(\Psi_{s}^{m}(\sigma)\), под функциями \(\psi_{l}^{m}\) — собственные функции орбитального момента (т. е. шаровые функции \(Y_{l}^{m}(0, \varphi)\), а под \(\psi_{s}^{m_{a}}\) — «собственные функции спина», т. е. совокупность \(2s + 1\) компонент \(\psi_{s}^{m_{a}} = \delta_{m_{a}m_{a}}, \) из которых отлична от нуля лишь компонента с \(m_{a}\), равным данному значению \(\sigma\). Благодаря этому обстоятельству, сумма по \(m_{a}\) сводится к одному члену, и мы получаем:

\[\Psi_{s}^{m}(\sigma) = C_{s, m - m}^{j_{m}} Y_{l}^{m - m} = (-1)^{-j_{m} + m} \sqrt{2j_{m} + 1} \cdot S_{m_{a}m_{a} - m_{a}}^{j_{m} - m} Y_{l}^{m - m}. \quad (97,16)\]

Эта формула решает поставленную задачу 1). Поскольку шаровые функции предполагаются нормированными, то автоматически выполняется условие нормировки

\[\sum_{\sigma} \int |\Psi_{s}^{m}(\sigma)|^2 d\sigma = \sum_{\sigma} (C_{s, m - m}^{j_{m}})^2 = 1\]

(коэффициенты \(C\) удовлетворяют этому соотношению автоматически ввиду унитарности преобразования (97,3)).

1) Легко видеть, что при \(s = 0\) получается, как и должно было быть, \(\psi_{0l}^{l} = Y_{l}^{m}\).
ГЛАВА XIII

МНОГОАТОМНЫЕ МОЛЕКУЛЫ

§ 98. Классификация молекулярных колебаний

В применении к многоатомным молекулам теория групп прежде всего непосредственно решает вопрос о классификации их электронных термов, т. е. уровней энергии при заданном расположении ядер. Они классифицируются по неприводимым представлениям точечной группы симметрии, которой обладает рассматриваемая конфигурация ядер. При этом, однако, надо подчеркнуть очевидный факт, что получаемая таким образом классификация относится именно к данному определённому расположению ядер, так как при их смещении симметрия конфигурации, вообще говоря, нарушается. Обычно речь идёт о расположении, соответствующем положению равновесия ядер. В этом случае классификация продолжает иметь известный смысл и при малых колебаниях ядер, но, конечно, теряет смысл, если колебания нельзя рассматривать как малые.

В двухатомной молекуле мы не сталкивались с таким вопросом, так как её аксиальная симметрия сохраняется, разумеется, при любом перемещении ядер. Аналогичное положение имеет место и для трёхатомных молекул. Три ядра всегда находятся в одной плоскости, являющейся плоскостью симметрии молекулы. Поэтому классификация электронных термов трёхатомной молекулы по отношению к этой плоскости (симметрия или антисимметрия волновых функций по отношению к отражению в плоскости) возможна всегда.

Для нормальных электронных термов многоатомных молекул имеет место эмпирическое правило, согласно которому у подавляющего большинства молекул волновая функция нормального электронного состояния обладает полной симметрией (для двухатомных молекул это правило уже упоминалось в § 75). Другими словами, она инвариантна по отношению ко всем элементам группы симметрии молекулы, т. е. относится к единичному неприводимому представлению группы.

Применение методов теории групп особенно существенно при исследовании молекулярных колебаний (E. Вигнер, 1930). Квантовомеханическому изучению этого вопроса необходимо предпослать чisto
классическое рассмотрение колебаний молекулы, как системы из не-
которого числа взаимодействующих частиц (ядер).

Как известно из механики ¹), система из \(N \) частиц (не расположенных на одной прямой) обладает \(3N - 6 \) колебательными степенями свободы; из общего числа \(3N \) степеней свободы три соответствуют поступательному и три — вращательному движению системы как целого ²). Энергия системы частиц, совершающих малые колебания, может быть записана следующим образом:

\[
E = \frac{1}{2} \sum_{i,k} m_{ik} \dot{u}_i u_k + \frac{1}{2} \sum_{ik} k_{ik} u_i u_k,
\]

где \(m_{ik}, k_{ik} \) — постоянные коэффициенты, а \(u_i \) — компоненты векторов смещения частиц от их положений равновесия (индицированы \(i, k \) номера частиц). Соответствующим линейным преобразованием величин \(u_i \) можно исключить из (98,1) координаты, соответствующие поступательному движению и вращению системы, а колебательные координаты выбрать таким образом, чтобы обе квадратичные формы в (98,1) превратились в сумму квадратов. Нормируя эти координаты так, чтобы обратить все коэффициенты в выражении кинетической энергии в единицу, получим колебательную энергию в виде:

\[
E = \frac{1}{2} \sum_{i} Q_{\alpha i}^2 + \frac{1}{2} \sum_{\alpha} \omega_{\alpha}^2 \sum_{i} Q_{\alpha i}^2.
\]

Колебательные координаты \(Q_{\alpha i} \) называются нормальными; \(\omega_{\alpha} \) суть частоты соответствующих им независимых колебаний. Может ока-
заться, что некоторым нормальным координатам соответствует одна и та же частота (о ней говорят тогда, как о кратной); индекс \(\alpha \) у нормальной координаты соответствует номеру частоты, а индекс \(i = 1, 2, \ldots, f_{\alpha} \) нумерует координаты, относящиеся к одной и той же частоте \(f_{\alpha} \) — кратность частоты).

Выражение (98,2) для энергии молекулы должно быть инвариантным по отношению к преобразованиям симметрии. Это значит, что при всяком преобразовании, относящемся к точечной группе симме-
трии молекулы, нормальные координаты \(Q_{\alpha i}, i = 1, 2, \ldots, f_{\alpha} \) (с каж-
дым данным \(\alpha \)) преобразуются линейно друг через друга, причём так, что сумма квадратов \(\sum_i Q_{\alpha i}^2 \) остаётся неизменной. Другими словами, нормальные координаты, относящиеся к каждой данной собственной

¹) См., например, «Механика», §§ 29—32.
²) Если все частицы расположены по одной прямой, то число колеба-
тельных степеней свободы есть \(3N - 5 \) (вращению, соответствует в этом случае всего две координаты, так как говорить о вращении линейной моле-
кулы вокруг своей оси не имеет смысла).
частоте колебаний молекулы, осуществляют некоторое неприводимое представление её группы симметрии; кратность частоты определяет размерность представления. Неприводимость следует из тех же соображений, которые были применены в § 93 для решений уравнения Шредингера. Совпадение частот, соответствующих двум различным неприводимым представлениям, было бы невероятной случайностью. Исключение снова представляют неприводимые представления с комплексно сопряжёнными системами характеров. Поскольку физически нормальные координаты являются по самому своему существу действительными величинами, то два комплексно сопряжённых представления физически соответствуют одной собственной частоте вдвое большей кратности.

Эти соображения дают возможность произвести классификацию собственных колебаний молекулы без того, чтобы решать сложную задачу о конкретном определении её нормальных координат. Для этого надо сначала найти (описанным ниже способом) представление, осуществляемое сразу всеми колебательными координатами (мы будем говорить о нём, как о полном представлении); это представление приводимо, и, разлагая его на неприводимые части, мы тем самым определим кратность собственных частот и свойства симметрии соответствующих колебаний. При этом может оказаться, что одно и то же неприводимое представление входит в полное представление несколько раз; это означает, что имеется несколько различных частот одинаковой кратности с колебаниями одинаковой симметрии.

Для нахождения полного представления исходим из того, что характеристики представления инвариантны относительно линейного преобразования функций базиса. Поэтому для их вычисления можно воспользоваться в качестве функций базиса не нормальными координатами, а просто компонентами u_i векторов смещения ядер от их положений равновесия.

Прежде всего очевидно, что при вычислении характера некоторого элемента G точечной группы надо рассматривать только те ядра, которые (точнее — положения равновесия которых) остаются на месте при данном преобразовании симметрии. Действительно, если при рассматриваемом повороте или отражении G ядро I перемещается в новое положение, где до этого находилось другое такое же ядро 2, то это значит, что при операции G смещение ядра I преобразуется через смещение ядра 2. Другими словами, в соответствующих этому ядру (т. е. его смещению u_i) строках матрицы G_{ik} во всяком случае не будет диагональных элементов. Компоненты же вектора смещения ядра, положение равновесия которого не затрагивается операцией G, очевидно, преобразуются только друг через друга, так что их можно рассматривать независимо от векторов смещения остальных ядер.

Рассмотрим сначала поворот $C(\varphi)$ на угол φ вокруг некоторой оси симметрии. Пусть u_x, u_y, u_z суть компоненты вектора смещения некоторого ядра, положение равновесия которого находится на самой
оси и потому не затрагивается поворотом. При повороте эти компоненты преобразуются, как и компоненты всякого обычного (полярного) вектора, по формулам (ось \(z \) совпадает с осью симметрии)

\[
\begin{align*}
u'_x &= u_x \cos \varphi + u_y \sin \varphi, \\
u'_y &= -u_x \sin \varphi + u_y \cos \varphi, \\
u'_z &= u_z.
\end{align*}
\]

Характер, т. е. сумма диагональных членов матрицы преобразования, равен \(1 + 2 \cos \varphi \). Если всего на данной оси расположено \(N_C \) ядер, то суммарный характер равен:

\[
N_C (1 + 2 \cos \varphi).
\] (98,3)

Однако этот характер отвечает преобразованию всех \(3N \) смещений \(u_i \); поэтому надо отделить часть, соответствующую преобразованиям поступательного перемещения и поворота (малого) молекулы в целом. Поступательное перемещение определяется вектором смещения \(\mathbf{U} \) центра инерции молекулы; соответствующая часть характера, следовательно, равна \(1 + 2 \cos \varphi \). Поворот же молекулы как целого определяется вектором \(\delta \Omega \) угла поворота. Вектор \(\delta \Omega \) есть аксиальный вектор; но по отношению к поворотам системы координат аксиальный вектор ведет себя так же, как и полярный вектор. Поэтому вектору \(\delta \Omega \) тоже соответствует характер, равный \(1 + 2 \cos \varphi \). Всего, следовательно, мы должны вычесть из (98,3) величину \(2 (1 + 2 \cos \varphi) \). Таким образом окончательно находим характер \(\chi(C) \) поворота \(C(\varphi) \) в полном колебательном представлении:

\[
\chi(C) = (N_C - 2) (1 + 2 \cos \varphi).
\] (98,4)

Характер единичного элемента \(E \) всегда равен величине \(\chi(E) = 3N - 6 \) \((N_C = N, \varphi = 0)\).

Совершенно аналогичным образом вычисляем характер зеркально-поворотного преобразования \(S(\varphi) \) (поворот на угол \(C(\varphi) \) вокруг оси \(x \) и отражение в плоскости \(xy \)). При этом преобразовании вектор преобразуется согласно формулам

\[
\begin{align*}
u'_x &= u_x \cos \varphi + u_y \sin \varphi, \\
u'_y &= -u_x \sin \varphi + u_y \cos \varphi, \\
u'_z &= -u_z,
\end{align*}
\]

1) Как известно, угол малого поворота можно рассматривать как вектор \(\delta \Omega \), по абсолютной величине равный углу поворота и направленный вдоль оси поворота в направлении, определяемом по правилу буравчика (см., например, «Механика», § 12). Определённый таким образом вектор \(\delta \Omega \) является, очевидно, аксиальным.
чему соответствует характер, равный \((-1 + 2 \cos \varphi)\). Поэтому характер представления, осуществляемого всеми \(3N\) смещениями \(u_i\), равен

\[N_S (- 1 + 2 \cos \varphi), \]

(98,5)

где \(N_S\) — число ядер, не затрагиваемых операцией \(S(\varphi)\) (это число, очевидно, может быть либо нулём, либо единицей). Вектору \(U\) смещения центра инерции соответствует характер \(-1 + 2 \cos \varphi\). Что же касается вектора \(\delta Q\), то, будучи аксимальным вектором, он не меняется при инверсии системы координат; с другой стороны, зеркально-поворотное преобразование \(S(\varphi)\) можно представить в виде:

\[S(\varphi) = C(\varphi) \sigma_h = C(\varphi) C_2 I = C(\pi + \varphi) I, \]

т. е. как поворот на угол \(\pi + \varphi\) вместе с последующей инверсией. Поэтому характер преобразования \(S(\varphi)\), применённого к вектору \(\delta Q\), равен характеру преобразования \(C(\pi + \varphi)\), применённому к обычному вектору, т. е. равен \(1 + 2 \cos (\pi + \varphi) = 1 - 2 \cos \varphi\). Сумма \((-1 + 1 + 2 \cos \varphi) + (1 - 2 \cos \varphi) = 0\), так что мы приходим к результату, что выражение (98,5) непосредственно равно искомому характеру \(\chi(S)\) зеркально-повернутого преобразования \(S(\varphi)\) в полном представлении:

\[\chi(S) = N_S (- 1 + 2 \cos \varphi). \]

(98,6)

В частности, характер отражения в плоскости (\(\varphi = 0\)) равен \(\chi(\sigma) = N_S\), а характер инверсии (\(\varphi = \pi\)) : \(\chi(I) = -3N_I\).

После того как определены характеры \(\chi\) полного представления, остаётся только разложить его на неприводимые представления, что осуществляется непосредственно по формуле (91,16) с помощью таблиц характеров, приведённых в § 92 (см. задачи к этому параграфу).

Для классификации колебаний линейной молекулы нет необходимости прибегать к теории групп. Полное число колебательных степеней свободы равно \(3N - 5\). Среди колебаний надо различать такие, при которых атомы остаются на одной прямой, и такие, при которых это не выполняется\(^1\). Число степеней свободы при движении \(N\) частиц вдоль прямой равно \(N\); из них одна соответствует поступательному перемещению молекулы как целого. Поэтому число нормальных координат колебаний, оставляющих атомы на прямой, равно \(N - 1\); им соответствуют, вообще говоря, \(N - 1\) различных собственных частот. Остальные \((3N - 5) - (N - 1) = 2N - 4\) нормальных координат относятся к колебаниям, нарушающим прямолинейность молекулы; им соответствуют \(N - 2\) различные двукратные

\(^1\) Если молекула симметрична относительно своей середины, то появляется ещё одна дополнительная характеристика колебаний, по поводу которой см. задачу 10 к этому параграфу.
частоты (каждой частоте отвечают две нормальные координаты, соответствующие одинаковым колебаниям в двух взаимно перпендикулярных плоскостях) 1).

ЗАДАЧИ

1. Произвести классификацию нормальных колебаний молекулы NH₃ (правильная пирамида с атомом N в вершине и атомами H в углах основания — рис. 43).

Решение. Точечная группа симметрии молекулы — C₃ᵥ. Повороты вокруг оси третьего порядка оставляют на месте только один атом (N), а отражения в плоскостях — по два атома (N и один из H). По формулам (98.4), (98.6) находим характеры полного представления:

\[
\begin{array}{ccc}
E & 2C_3 & 3σ_v \\
6 & 0 & 2
\end{array}
\]

Разлагая это представление на неприводимые части, найдём, что в нём содержится дважды представление A₁ и дважды E. Таким образом имеются две простые частоты, соответствующие колебаниям типа A₁, сохраняющие полную симметрию молекулы (так называемые полно-симметрические колебания), и две двукратные частоты, соответствующие нормальным координатам, преобразующимся друг через друга по представлению E.

2. То же для молекулы H₂O (рис. 44).

Решение. Группа симметрии — C₂ᵥ. Преобразование C₂ оставляет на месте атом O, преобразование σᵥ (отражение в плоскости молекулы) — все три атома, а отражение σ'ᵥ — только атом O. Характеры полного представления будут равны:

\[
\begin{array}{ccc}
E & C₂ & σᵥ \\
3 & 1 & 3
\end{array}
\]

Это представление разбивается на неприводимые представления: 2A₁, 1B₁, т. е. имеются два полно-симметричных колебания и одно с симметрией, определяемой представлением B₁; все частоты — простые (на рис. 44 изображены соответствующие нормальные колебания).

3. То же для молекулы CH₃Cl₃ (рис. 45, а).

Решение. Группа симметрии молекулы — S₃ᵥ. Тем же способом находим, что имеются три полно-симметрических колебания A₁ и три двукратных колебания типа E.

4. То же для молекулы CH₄ (атом C в центре, а атомы H — в вершинах тетраэдра; рис. 45, б).

Решение. Симметрия молекулы — Tₐ. Колебания 1 A₁, 1 E, 2 F₂.

5. То же для молекулы C₆H₆ (рис. 45, в).

1) Пользуясь обозначениями неприводимых представлений группы C₃ᵥ (см. (91,4)), можно сказать, что имеется N — 1 колебаний типа A₁ и N — 2 колебаний типа E₁.
§ 98) Классификация молекулярных колебаний

Решение. Симметрия молекулы — D_{8h}. Колебания:

$2A_{1g}, 1A_{2g}, 1A_{2u}, 1B_{1g}, 1B_{1u}, 1B_{2g}, 3B_{2u}, 1E_{1g}, 3E_{1u}, 4E_{2g}, 2E_{2u}$.

6. То же для молекулы OsF₈ (атом Os — в центре, атомы F — в вершинах куба, рис. 45, а).

Решение. Симметрия молекулы — O_h. Колебания:

$1A_{1g}, 1A_{2u}, 1E_{g}, 1E_{u}, 2F_{1u}, 2F_{2g}, 1F_{2u}$.

7. То же для молекулы UF₆ (атом U — в центре, атомы F — в вершинах октаэдра, рис. 45, б).

Рис. 45.

Решение. Симметрия молекулы — O_h. Колебания:

$1A_{1g}, 1E_{g}, 2F_{1u}, 1F_{2g}, 1F_{2u}$.

8. То же для молекулы C₂H₆ (рис. 45, в).

Решение. Симметрия молекулы — D_{3d}. Колебания:

$3A_{1g}, 1A_{1u}, 2A_{2u}, 3E_{g}, 3E_{u}$.

9. То же для молекулы C₂H₄ (рис. 45, г; все атомы в одной плоскости).

Решение. Симметрия молекулы — D_{2h}. Колебания:

$3A_{1g}, 1A_{1u}, 2B_{1g}, 1B_{1u}, 2B_{2u}, 1B_{2g}, 2B_{2u}$

(оси координат выбраны, как указано на рисунке).
10. То же для линейной молекулы из \(N \) атомов, симметричной относительно своей середины.

Решение. К рассмотренной в тексте классификации колебаний линейной молекулы присоединяется классификация по поведению относительно инверсии в центре. Надо различать случай, когда \(N \) чётно или нечётно.

Если \(N \) чётно \((N = 2p)\), то в середине молекулы нет атома. Давая \(p \) атомам одной из половин молекулы независимые смещения вдоль прямой, а \(p \) остальным атомам — равные и противоположные смещения, найдём, что \(p \) из колебаний, оставляющих атомы на прямой, симметричны относительно центра, а остальные \((2p - 1) - p = p - 1\) колебаний этого типа антисимметричны относительно центра. Далее, \(p \) атомов имеет \(2p \) степеней свободы для движений, при которых атомы не удерживаются на прямой. Давая симметрично расположенным атомам равные и противоположные смещения, мы получили бы \(2p \) симметричных колебаний; из этого числа надо, однако, вычесть два соответствующих вращению молекулы. Таким образом имеется \(p - 1 \) двухкратных частот колебаний, выводящих атомы с прямой и симметричных относительно центра, и столько же \((2p - 2) - (p - 1) = p - 1\) — антисимметричных. Пользуясь обозначениями неприводимых представлений группы \(D_{coh} \) (см., 91, 94), можно сказать, что имеется \(p \) колебаний типа \(A_{1g} \) и по \((p - 1)\) колебаний типов \(A_{1u}, E_{1g}, E_{1u} \).

Если \(N \) — нечётно \((N = 2p + 1)\), то аналогичные рассуждения показывают, что имеется по \(p \) колебаний типов: \(A_{1g}, A_{1u}, E_{1u} \) и \((p - 1)\) колебаний типа \(E_{1g} \).

§ 99. Колебательные уровни энергии

При квантовомеханическом рассмотрении колебательная энергия молекулы определяется собственными значениями гамильтониана

\[
\hat{H}^{(v)} = \frac{1}{2} \sum_{a} \sum_{t} \hat{P}_{at}^2 + \frac{1}{2} \sum_{a} \omega_{a}^2 \sum_{t} Q_{at}^2,
\]

где \(\hat{P}_{at} = -i\hbar \frac{\partial}{\partial Q_{at}} \) — операторы импульсов, соответствующих нормальным координатам \(Q_{at} \). Поскольку этот гамильтониан распадается на сумму независимых слагаемых \(\frac{1}{2} (\hat{P}_{at}^2 + \omega_{a}^2 Q_{at}^2) \), то уровни энергии представляются суммами

\[
E^{(v)} = \hbar \sum_{a} \omega_{a} \sum_{t} \left(v_{at} + \frac{1}{2} \right) = \sum_{a} \hbar \omega_{a} \left(v_{a} + \frac{f_{a}}{2} \right),
\]

где \(v_{a} = \sum_{t} v_{at} \), а \(f_{a} \) — кратность частоты \(\omega_{a} \). Волновые же функции представляются произведениями соответствующих волновых функций линейных гармонических осцилляторов:

\[
\psi = \text{const. exp} \left\{ -\frac{1}{2} \sum_{a} c_{a}^2 \sum_{t} t Q_{at}^2 \right\} \prod_{a} \prod_{t} H_{vat} (c_{a} Q_{at}),
\]

где \(H_{o} \) обозначает полином Эрмита \(v \)-й степени, а \(c_{a} = \sqrt{\frac{\omega_{a}}{\hbar}} \).
§ 99] КОЛЕБАТЕЛЬНЫЕ УРОВНИ ЭНЕРГИИ 421

Если среди частот ω_α имеются кратные, то колебательные уровни энергии, вообще говоря, вырождены. Энергия (99,2) зависит только от сумм $v_\alpha = \sum_i v_{\alpha i}$. Поэтому кратность вырождения уровня равна числу способов, которыми можно составить данный набор чисел v_α из чисел $v_{\alpha i}$. Для одного числа v_α оно равно 1):

$$\frac{(v_\alpha + f_\alpha - 1)!}{v_\alpha!(f_\alpha - 1)!}.$$

Поэтому полная кратность вырождения равна:

$$\prod_\alpha \frac{(v_\alpha + f_\alpha - 1)!}{v_\alpha!(f_\alpha - 1)!} \quad (99,4)$$

Для двукратных частот множители этого произведения равны $v_\alpha + 1$, а для трёхкратных: $\frac{1}{2} (v_\alpha + 1) (v_\alpha + 2)$.

Надо иметь в виду, что это вырождение имеет место лишь постольку, поскольку рассматриваются чисто гармонические колебания.

При учёте в гамильтониане членов более высоких степеней по нормальным координатам (ангармоничность колебаний) вырождение, вообще говоря, снимается, хотя и не полностью (см. об этом подробнее в § 102).

Волновые функции, относящиеся к одному и тому же вырожденному колебательному терму, осуществляют некоторое представление (вообще говоря, приводимое) группы симметрии молекулы. Волновые функции (99,3) можно представить в виде произведений функций

$$e^{-\frac{1}{2} \sum_{\alpha} Q_{\alpha i}^2} \prod_i H_{v_\alpha i} (c_\alpha Q_{\alpha i}), \quad (99,5)$$

относящихся к отдельным частотам ω_α. Функции, относящиеся к различным частотам, преобразуются независимо друг от друга. Поэтому представление, осуществляемое всеми функциями (99,3), является произведением представлений, осуществляемых функциями (99,5), так что достаточно рассмотреть только последнее.

Экспоненциальный множитель в (99,5) инвариантен по отношению ко всем преобразованиям симметрии. В полиномах Эрмита члены каждой данной степени преобразуются только друг через друга (преобразование симметрии не меняет, очевидно, степени каждого

1) Это есть число способов, которыми можно распределить v_α шаров по f_α ящикам.
члена). Поскольку, с другой стороны, каждый полином Эрмита вполне определяется своим высшим членом, то, написав

\[
\prod_{i=1}^{f_a} H_{c_a}^{(Q_a)} (c_a Q_a) = \text{const.} Q_a^{v_{a1}} Q_a^{v_{a2}} \ldots Q_a^{v_{af_a}} + \text{члены низших степеней},
\]

dостаточно рассматривать только высший член.

К одному и тому же терму относятся функции, для которых сумма \(v_a = \sum_i v_{ai} \) имеет одинаковое значение. Таким образом мы имеем представление, осуществляемое произведениями по \(v_a \) величин \(Q_{ia} \); это есть не что иное, как симметрическое произведение (см. § 91) \(v_a \) раз самого на себя неприводимого представления, осуществляемого величинами \(Q_{ia} \).

Для одномерных представлений нахождение характеристик их симметрических произведений \(v \) раз само на себя тривиально 1):

\[
\chi_v (G) = [\chi (G)]^v.
\]

Для двух- и трёхмерных представлений удобно воспользоваться следующим математическим приёмом 2). Сумма квадратов функций базиса неприводимого представления инвариантно относительно всех преобразований симметрии. Поэтому можно формально рассматривать их как компоненты двух- или трёхмерного вектора, а преобразования симметрии — как некоторые повороты (или отражения), производимые над этими векторами. Подчеркнём, что эти повороты и отражения, вообще говоря, не имеют ничего общего с фактическими преобразованиями симметрии и зависят (для каждого данного элемента группы \(G \)) также и от конкретного рассматриваемого представления.

Рассмотрим подробнее двухмерные представления. Пусть \(\chi (G) \) есть характер некоторого элемента группы в данном двухмерном представлении, причём \(\chi (G) \neq 0 \). Сумма диагональных элементов матрицы преобразования компонент \(x, y \) двухмерного вектора при повороте в плоскости на угол \(\varphi \) равна 2 \(\cos \varphi \). Приравнив

\[
2 \cos \varphi = \chi (G),
\]

мы найдём угол поворота, формально соответствующего элементу \(G \) в данном неприводимом представлении. Симметричное произведение представления \(v \) раз само на себя есть представление с базисом из

1) Мы пользуемся обозначением \(\chi_v (G) \) вместо громоздкого \([\chi^v] (G) \),
2) Применённым для этой цели А. С. Компанейцем (1940).
\(\nu + 1 \) величин \(x^\nu, x^\nu y, \ldots, y^\nu \). Характеры этого представления равны \(^1\):
\[
\chi_\nu(G) = \frac{\sin(\nu + 1)\varphi}{\sin \varphi}.
\]
(99,7)
Случай \(\chi(G) = 0 \) требует особого рассмотрения, так как равный нулю характер отвечает как повороту на угол \(\pi/2 \), так и отражению. Если \(\chi(G^2) = -2 \), то мы имеем дело с поворотом на угол \(\pi/2 \) и для \(\chi_\nu(G) \) получим:
\[
\chi_\nu(G) = -\frac{1 + (-1)^\nu}{2}.
\]
(99,8)
Если же \(\chi(G^2) = 2 \), то \(\chi(G) \) надо рассматривать как характер отражения (т. е. преобразования \(x \rightarrow x, y \rightarrow -y \)); тогда
\[
\chi_\nu(G) = \frac{1 + (-1)^\nu}{2}.
\]
(99,9)
Аналогичным образом можно получить формулы для симметрических произведений трёхмерных представлений. Нахождение поворота (или отражения), который формально соответствует элементу группы в данном представлении, легко осуществляется с помощью таблицы 6. Это будет то преобразование, которое соответствует данному \(\chi(G) \) в той из изоморфных групп, в которой координаты преобразуются по этому представлению. Так, для представления \(F_1 \) групп \(O \) и \(T_d \) надо брать преобразование из группы \(O \), а для представления \(F_2 \) — из группы \(T_d \). Мы не станем останавливаться здесь на выводе соответствующих формул для характеров \(\chi_\nu(G) \).

§ 100. Устойчивость симметричных конфигураций молекулы

При симметричном расположении ядер электронный терм молекулы может быть вырожденным, — если среди неприводимых представлений группы симметрии есть представления с размерностью, большей чем единица. Поставим вопрос о том, может ли такая симметричная конфигурация являться устойчивой равновесной конфигурацией молекулы. При этом мы будем полностью пренебрегать влиянием спина (если таковой вообще имеется), поскольку у многоатомных молекул это влияние, вообще говоря, ничтожно. Вырождение электронных термов, о котором будет итти речь, есть поэтому только «орбитальное» вырождение, не связанное со спином.

\(^1\) Для вычисления удобно выбрать функции базиса в виде:
\[
(x + iy)^\nu, (x + iy)^\nu - 1(x - iy), \ldots, (x - iy)^\nu;
\]
tогда матрица поворота диагональна, а сумма диагональных элементов имеет вид:
\[
e^{i\nu\varphi} + e^{i(\nu - 2)\varphi} + \ldots + e^{-i\nu\varphi}.
\]
Для того чтобы данная конфигурация была устойчивой, энергия молекулы, как функция расстояний между ядрами, должна иметь при этом расположении ядер минимум. Это значит, что изменение энергии при малом смещении ядер не должно содержать линейных по величине смещений членов.

Пусть \hat{H} есть гамильтониан электронного состояния молекулы, в котором расстояния между ядрами рассматриваются как параметры. Посредством \hat{H}_0 обозначим этот гамильтониан при заданной симметричной конфигурации. В качестве величин, определяющих малые смещения ядер, можно воспользоваться нормальными колебательными координатами $Q_{\alpha i}$. Разложение \hat{H} по степеням $Q_{\alpha i}$ имеет вид:

$$\hat{H} = \hat{H}_0 + \sum_{\alpha, i} V_{\alpha i} Q_{\alpha i} + \sum_{\alpha, \beta, i, \kappa} W_{\alpha i, \beta \kappa} Q_{\alpha i} Q_{\beta \kappa} + \ldots \quad (100,1)$$

Коэффициенты V, W, \ldots разложения суть функции только от координат электронов. При преобразовании симметрии величины $Q_{\alpha i}$ преобразуются друг через друга. Суммы в (100,1) переходят при этом в другие суммы того же вида. Мы можем поэтому формально рассматривать преобразование симметрии как преобразование коэффициентов в этих схемах при неизменных $Q_{\alpha i}$. При этом, в частности, коэффициенты $V_{\alpha i}$ (с каждым данным α) будут преобразовываться по тому же представлению группы симметрии, по которому преобразуются соответствующие координаты $Q_{\alpha i}$. Это непосредственно следует из того, что, в силу инвариантности гамильтониана по отношению ко всем преобразованиям симметрии, то же самое должно иметь место для совокупности членов каждого данного порядка в его разложении, в частности для линейных членов разложения ¹.

Рассмотрим некоторый вырожденный (при симметричной конфигурации) электронный терм E_0. Смещение ядер, нарушающее симметрию молекулы, приведёт; вообще говоря, к расщеплению терма. Величина расщепления определяется, с точностью до членов первого порядка относительно смещений ядер, секулярным уравнением, составленным из матричных элементов от линейного члена разложения (100,1)

$$V_{\rho \sigma} = \sum_{\alpha, i} Q_{\alpha i} \int \psi_\rho \psi_\sigma * dq, \quad (100,2)$$

где ψ_ρ, ψ_σ — волновые функции электронных состояний, относящихся к данному вырожденному терму (причём эти функции выбраны

¹ Строго говоря, величины $V_{\alpha i}$ должны преобразовываться по представлению, комплексно сопряжённому с представлением, по которому преобразуются $Q_{\alpha i}$. Однако, как указывалось, если два комплексно сопряжённых представления не совпадают друг с другом, то физически их всё равно надо рассматривать вместе как одно представление вдвое большей размерности. Поэтому указанная оговорка не существенна,
действительными). Устойчивость симметричной конфигурации требует, чтобы линейное по Q расщепление отсутствовало, т. е. все корни секулярного уравнения должны тождественно обратиться в нуль, а это значит, что должна исчезнуть и вся матрица $V_{\rho z}$. При этом, разумеется, мы должны рассматривать только те из нормальных колебаний, которые нарушают симметрию молекулы, т. е. должны отбросить полино-симметрические колебания (соответствующие единичному представлению группы).

Поскольку $Q_{a i}$ произвольны, то матричные элементы (100,2) исчезают только, если исчезают все интегралы

$$\int \psi_\rho V_{\rho z} \psi_a \, dq.$$

(100,3)

Пусть $D^{(el)}$ есть неприводимое представление, по которому преобразуются электронные волновые функции ψ_ρ, а D_a — то же для величин $V_{\rho z}$; как уже указывалось, представления D_a совпадают с теми, по которым преобразуются соответствующие нормальные координаты $Q_{a i}$. Согласно результатам § 94, интегралы (100,3) будут отличны от нуля, если произведение $[D^{(el)}_2] \times D_a$ содержит в себе единичное представление, или, что то же, если $[D^{(el)}_2]$ содержит в себе D_a. В противном случае все интегралы обратятся в нуль.

Таким образом симметричная конфигурация устойчива, если представление $[D^{(el)}_2]$ не содержит в себе ни одного (за исключением единичного) из неприводимых представлений D_a, характеризующих колебания молекулы. Для невырожденных электронных состояний это условие всегда выполняется, так как симметричное произведение одномерного представления само на себя есть единичное представление.

Рассмотрим, например, молекулу типа CH_4, в которой один атом (C) находится в центре, а четыре (H) — в вершинах тетраэдра. Такая конфигурация имеет симметрию T_d. Вырожденные электронные термы соответствуют представлениям E, F_1, F_2 этой группы. Молекула обладает одним нормальным колебанием A_1 (полно-симметрическое колебание), одним двукратным E и двумя трёхкратными F_2 (см. задачу 4, § 98). Симметрические произведения представлений E, F_1, F_2 самим на себя равны:

$$[E^2] = A_1 + E, \quad [F_{1}^2] = [F_{2}^2] = A_1 + E + F_2.$$

Мы видим, что каждое из них содержит по крайней мере одно из представлений E, F_2, и потому рассматриваемая тетраэдрическая конфигурация при вырожденных электронных состояниях оказывается неустойчивой.

Этот результат является общим правилом (Г. Ян, Е. Теллер, 1937). Исследование (подобное только что произведённому) всех возможных
типов симметричных расположений ядер показывает, что при вырожденном электронном состоянии всякое симметричное расположение ядер (за исключением только расположения на одной прямой) неустойчиво. В результате этой неустойчивости ядра сместятся так, чтобы симметрия их конфигурации нарушилась настолько, что вырождение терма окажется полностью снятия. В частности, можно утверждать, что нормальным электронным термом симметричной (нелинейной) молекулы может быть только невырожденный терм.

Исключение, как уже упомянуто, представляют только линейные молекулы. В этом легко убедиться даже без помощи теории групп. Смещение ядра, при котором последнее покидает ось молекулы, представляет собой обычный вектор с $ξ$- и $η$-компонентами (ось $ζ$ направлена по оси молекулы). Мы видели в § 84, что такие векторы имеют матричные элементы только для переходов с изменением момента $Δ$ относительно оси на единицу. Между тем, выраженному терму линейной молекулы соответствуют состояния с моментами $Δ$ и $−Δ$ относительно оси (причём $Δ ≫ 1$). Переход между ними сопровождается изменением момента по крайней мере на 2, и следовательно, матричные элементы во всяком случае обратятся в нуль. Таким образом линейное расположение ядер в молекуле может быть устойчивым и при выраженном электронном состоянии.

§ 101. Квантование вращения твёрдого тела

Исследование вращательных уровней многоатомной молекулы часто затрудняется необходимостью рассматривать вращение одновременно с колебаниями. В качестве предварительной задачи мы рассмотрим вращение молекулы как твёрдого тела, т. е. с «жёстко закреплёнными» атомами.

Пусть $ξ$, $η$, $ζ$ есть система координат с осями, направленными вдоль трёх осей инерции твёрдого тела и вращающейся вместе с ним. Соответствующий гамильтониан получается заменой компонент $J_ξ$, $J_η$, $J_ζ$ его момента вращения в классическом выражении для энергии соответствующими операторами, т. е.

$$
\hat{H} = \frac{\hbar^2}{2} \left(\frac{\hat{J}_ξ^2}{I_A} + \frac{\hat{J}_η^2}{I_B} + \frac{\hat{J}_ζ^2}{I_C} \right),
$$

где I_A, I_B, I_C — главные моменты инерции тела.

Правила коммутации для операторов $\hat{J}_ξ, \hat{J}_η, \hat{J}_ζ$ компонент момента во вращающейся системе координат не очевидны, так как обычный вывод правила коммутации относится к компонентам $\hat{J}_x, \hat{J}_y, \hat{J}_z$ в неподвижной системе координат. Их, однако, легко получить, воспользовавшись формулой

$$
(\hat{J}_a)(\hat{J}_b) = (\hat{J}_b)(\hat{J}_a) = − \imath \hat{J} [ab],
$$

(101,2)
где \mathbf{a}, \mathbf{b} — два произвольных вектора, характеризующих данное тело (и коммутирующих друг с другом). Эту формулу легко проверить, производя вычисление левой стороны равенства в неподвижной системе координат x, y, z с помощью общих правил коммутации компонент момента друг с другом и с компонентами произвольного вектора.

Пусть \mathbf{a} и \mathbf{b} будут единичные векторы вдоль осей ξ и η. Тогда $[\mathbf{ab}]$ — единичный вектор вдоль оси ζ, и (101,2) даёт:

$$\hat{J}_\zeta^2\hat{J}_\eta^2 - \hat{J}_\eta^2\hat{J}_\zeta^2 = -i\hat{J}_\xi.$$ (101,3)

Аналогично получаются ещё два соотношения. Таким образом мы приходим к выводу, что правила коммутации операторов компонент момента во врачающейся системе координат отличаются от правил коммутации в неподвижной системе лишь знаком в правой стороне равенства. Отсюда следует, что и все полученные нами ранее из правил коммутации результаты для собственных значений и матричных элементов имеют место и для J_ζ, J_η, J_ξ с той лишь разницей, что все выражения надо заменить комплексно им сопряжёнными.

В частности, собственные значения J_ζ (как и J_ξ) будут целыми числами, $k = -J, \ldots, +J$.

Нахождение собственных значений энергии врачающегося тела (или, как говорят, «волнка») наиболее просто для случая, когда все три главных момента инерции тела одинаковы: $I_A = I_B = I_C \equiv I$ («шаровой волнок»). Для молекулы это имеет место в тех случаях, когда она обладает симметрией одной из кубических точечных групп. Гамильтониан (101,1) принимает вид:

$$\hat{H} = \frac{\hbar^2}{2I} \hat{J}^2,$$

и его собственные значения равны

$$E = \frac{\hbar^2}{2I} J(J + 1).$$ (101,4)

Каждый уровень энергии вырожден, как всегда, по $2J + 1$ направлениям момента в пространстве и, кроме того, для шарового волнка имеет место ещё дополнительное ($2J + 1$)-кратное вырождение по направлениям момента относительно самой оси (т. е. по значениям $J_\xi = k$). Полная кратность вырождения, следовательно, равна $(2J + 1)^2$.

Не представляет труда также и вычисление уровней энергии в случае, когда лишь два из моментов инерции тела совпадают: $I_A = I_B \neq I_C$ («симметрический волнок»). Это имеет место для молекул, обладающих одной осью симметрии более чем второго порядка. Гамильтониан (101,1) приобретает вид:

$$\hat{H} = \frac{\hbar^2}{2I_A} (\hat{J}_\xi^2 + \hat{J}_\eta^2) + \frac{\hbar^2}{2I_C} \hat{J}_\zeta^2 = \frac{\hbar^2}{2I_A} \hat{J}^2 + \frac{\hbar^2}{2} \left(\frac{1}{I_C} - \frac{1}{I_A}\right) \hat{J}_\zeta^2.$$ (101,5)
Отсюда видно, что в состоянии с определёнными значениями \(J \) и \(k \) энергия равна

\[
E = \frac{\hbar^2}{2I_A} J(J+1) + \frac{\hbar^2}{2} \left(\frac{1}{I_C} - \frac{1}{I_A} \right) k^2,
\]

(101,6)

чем и определяются уровни энергии симметрического волчка.

Выражение по значениям \(k \), имеющее место для шарового волчка, здесь оказывается частично снятным. Значения энергии совпадают лишь для значений \(k \), отличающихся только знаком, что соответствует взаимно противоположным направлениям момента относительно оси волчка.

Таким образом полная кратность выражения уровней симметрического волчка равна 2 \((2J+1)\).

При \(I_A \neq I_B \neq I_C \) («асимметрический волчок») вычисление уровней энергии в общем виде невозможно. Выражение по направлениям момента относительно тела здесь снимается полностью, так что данному \(J \) соответствует 2\(J+1 \) различных уровней (выраженных лишь по направлениям момента в пространстве). Их вычисление следует производить; решая уравнение Шредингера в матричном виде, что сводится к решению сектулярного уравнения степени \((2J+1)\), составленного из матричных элементов \(H_{jk}^{J,k} \) с заданным значением \(J \) (О. Клейн, 1929). Элементы матрицы \(H_{jk}^{J,k} \) определяются с помощью волновых функций \(\psi_{jk} \) состояний, в которых имеют определённые значения абсолютная величина и \(\zeta \)-проекция момента (энергия же не имеет никакого определённого значения). Напротив, в стационарных состояниях асимметрического волчка проекция \(J_\zeta \) момента не имеет, разумеется, определённых значений, т. е. уровням энергии нельзя приписывать определённых значений \(k \).

Операторы \(\hat{J}_\xi \), \(\hat{J}_\eta \) имеют матричные элементы только для переходов с изменением \(k \) на единицу, а \(\hat{J}_\zeta \) — только диагональные элементы (см. формулы (25,13), в которых надо писать \(J, k \) вместо \(L, M \)). Поэтому операторы \(\hat{J}_\xi^2, \hat{J}_\eta^2, \hat{J}_\zeta^2 \), а с ними и \(\hat{H} \) имеют матричные элементы лишь для переходов с \(k \rightarrow k, k \pm 2 \). Отсутствие матричных элементов для переходов между состояниями с чётными и нечётными \(k \) приводит к тому, что сектулярное уравнение степени 2\(J+1 \) сразу распадается на два независимых уравнения степеней \(J \) и \(J+1 \). Одно из них составляется из матричных элементов для переходов между состояниями с чётными, а другое — с нечётными \(J \). Каждое из этих уравнений, в свою очередь, может быть приведено к двум уравнениям более низкой степени. Для этого надо пользоваться матричными элементами, определёнными не с помощью функций \(\psi_{J,k} \), а с помощью...
§ 101] КВАНТНОВАНИЕ ВРАЩЕНИЯ ТВЕРДОГО ТЕЛА

Функции

\[
\psi_{jk}^+ = \frac{1}{\sqrt{2}} (\psi_{J,k} + \psi_{J,-k}),
\]

\[
\psi_{jk}^- = \frac{1}{\sqrt{2}} (\psi_{J,k} - \psi_{J,-k}), \quad (k \neq 0)
\]

(функция \(\psi_{J0}\), очевидно, совпадает с функцией \(\psi_{J0}^+\)). Функции, отличающиеся индексом \(\pm\) и \(-\), обладают различной симметрией (по отношению к меняющему знак \(k\) отражению в плоскости, проходящей через ось \(\zeta\)), а потому матричные элементы для переходов между ними исчезают. Следовательно, можно составлять секулярные уравнения в отдельности для состояний \(\pm\) и состояний \(-\).

Гамильтонаин (101,1) вместе с правилами коммутации (101,3) обладает своеобразной симметрией — они инвариантны по отношению к одновременному изменению знака любых двух из операторов \(\hat{J}_z\), \(\hat{J}_\eta\), \(\hat{J}_k\). Такая симметрия формально соответствует группе \(D_2\). Поэтому термы асимметрического волчка можно классифицировать по неприводимым представлениям этой группы. Таким образом имеется четыре типа невырожденных\(^1\) тermов, соответствующих представлениям \(A_1\), \(B_1\), \(B_2\), \(B_3\) (см. таблицу 6).

При вычислении матричных элементов различных векторных величин, характеризующих симметрический волчок (в том числе единичного вектора вдоль его оси), надо иметь в виду, что задача о движении такого волчка формально совпадает с задачей о вращении двуахтомной молекулы (без спина), причём роль момента вращения \(k\) волчка вокруг своей оси играет у молекулы электронный момент \(\Lambda\) относительно оси\(^2\). Поэтому все полученные в § 84 формулы (84,1—4) непосредственно применимы и к симметричному волчку, причём \(K\), \(M_K\), \(\Lambda\) надо заменить соответственно на момент волчка \(J\), его проекцию \(M_J\) на неподвижную ось \(z\) и проекцию \(k\) на подвижную ось \(\zeta\).

Выведшние матричных элементов для асимметрического волчка более сложно. Представляя волновые функции его стационарных состояний в виде линейных комбинаций функций \(\psi_{J,k}\), \(\psi_{J,-k}\) (совпадающих с волновыми функциями симметрического волчка),

\[e^{iM_J\hat{\theta}} e^{i\hat{k}\zeta} \Theta_{kJM_J}(\theta), \]

где \(\Theta\) — функции, вычисленные в задаче к § 79.
мы тем самым сведём вычисление искомых матричных элементов к известным уже матричным элементам симметрического волчка.

У асимметрического волчка имеют место правила отбора для матричных элементов по отношению к переходам между состояниями типов A_1, B_1, B_2, B_3, которые легко получить обычным способом из соображений симметрии. Так, для компонент векторной физической величины A имеют место правила отбора:

для A_ξ: $A_1 \shortarrow B_3^{(\xi)}$, $B_1^{(\xi)} \shortarrow B_2^{(\xi)}$,

A_η: $A_1 \shortarrow B_2^{(\eta)}$, $B_1^{(\eta)} \shortarrow B_3^{(\eta)}$,

A_ζ: $A_1 \shortarrow B_1^{(\zeta)}$, $B_2^{(\zeta)} \shortarrow B_3^{(\zeta)}$.

(для ясности указываем в виде индекса у символа представления ось, вокруг которой имеет в данном представлении характер $+1$).

Задачи

1. Вычислить матричные элементы $H_{jk'}^{II}$ для асимметрического волчка.

Решение. С помощью формул (25,13) находим:

$$(J_\xi^2)_{k+1} = (J_\eta^2)_{k+1} = \frac{1}{2} [J(J+1) - k^2],$$

$$(J_\xi^2)_{k+2} = (J_\eta^2)_{k+2} = -(J_\eta^2)_{k+2} = -(J_\xi^2)_{k+2} =$$

$$= \frac{1}{4} \sqrt{(J-k)(J-k-1)(J+k+1)(J+k+2)}$$

(диагональные индексы J, J у матричных элементов для краткости везде опускаем). Отсюда получаем для искомых матричных элементов от H:

$$H_{k}^{+} = \frac{\hbar^2}{4} \left(\frac{1}{I_A} + \frac{1}{I_B} \right) [J(J+1) - k^2] + \frac{\hbar^2k^2}{2I_G},$$

$$H_{k+2}^{+} = H_{k+2}^{-} = \frac{\hbar^2}{8} \left(\frac{1}{I_A} - \frac{1}{I_B} \right) \sqrt{(J-k)(J-k-1)(J+k+1)(J+k+2)}.$$

Матричные элементы по отношению к функциям (101,6) выражаются через элементы из формул (1) согласно соотношениям

$$H_{k+1}^{+} = H_{k-1}^{-} = H_{k}^{+} (k \neq 1), \quad H_{1}^{+} = H_{1}^{-} = H_{1}^{+} + H_{1}^{-}, \quad H_{1}^{-} = H_{1}^{+} - H_{1}^{-},$$

$$H_{k+2}^{+} = H_{k+2}^{-} = H_{k+2}^{+} (k \neq 0), \quad H_{2}^{+} = \sqrt{2} H_{2}^{0}.$$

2. Определить уровни энергии асимметрического волчка при $J = 1$.

Решение. Секулярное уравнение 3-й степени распадается на три уравнения 1-й степени. Одно из них есть $E_1 = H_{0}^{+}$, откуда

$$E = \frac{\hbar^2}{4} \left(\frac{1}{I_A} + \frac{1}{I_B} \right).$$
Отсюда можно сразу написать два других уровня энергии, так как заранее очевидно, что три момента инерции \(I_A, I_B, I_C \) входят в задачу равно правным образом. Поэтому достаточно просто заменить моменты инерции \(I_A, I_B, I_C \) один раз на \(I_A, I_C, I_C \), а другой раз на \(I_B, I_B, I_C \). Таким образом
\[
E_2 = \frac{h^2}{4} \left(\frac{1}{I_A} + \frac{1}{I_C} \right), \quad E_3 = \frac{h^2}{4} \left(\frac{1}{I_B} + \frac{1}{I_C} \right).
\]
Уровни \(E_1, E_2, E_3 \) относятся соответственно к типам \(B_1, B_2, B_3 \) (если \(I_A, I_B, I_C \) — моменты инерции относительно осей \(\xi, \eta, \zeta \)).

3. То же при \(J = 2 \).

Решение. Секулярное уравнение 5-й степени распадается на три уравнения 1-й и одно 2-й степени. Одно из уравнений 1-й степени имеет вид:
\[
E_1 = H^2_{2,2}, \quad \text{откуда}
\]
\[
E_1 = \frac{2h^2}{I_C} + \frac{h^2}{2} \left(\frac{1}{I_A} + \frac{1}{I_B} \right).
\]
(уровень типа \(B_1 \)). Отсюда сразу заключаем, что должны быть ещё два уровня (типов \(B_2 \) и \(B_3 \)):
\[
E_2 = 2h^2 + \frac{h^2}{2} \left(\frac{1}{I_C} + \frac{1}{I_A} \right), \quad E_3 = 2h^2 + \frac{h^2}{2} \left(\frac{1}{I_B} + \frac{1}{I_C} \right).
\]
Уравнение 2-й степени будет следующим:
\[
\begin{vmatrix}
H^0_{0,0} - E & H^0_{2,2} \\
H^0_{2,2} & H^0_{2,2} - E
\end{vmatrix} = 0.
\]
Решая его, получаем:
\[
E_{4,5} = h^2 \left(\frac{1}{I_A} + \frac{1}{I_B} + \frac{1}{I_C} \right) \pm \sqrt{\left(\frac{1}{I_A} + \frac{1}{I_B} + \frac{1}{I_C} \right)^2 - 3 \left(\frac{1}{I_A I_B} + \frac{1}{I_B I_C} + \frac{1}{I_A I_C} \right)}.
\]
Эти уровни относятся к типу \(A_1 \).

4. То же для \(J = 3 \).

Решение. Секулярное уравнение 7-й степени распадается на одно 1-й и три 2-й степени. Уравнение первой степени имеет вид:
\[
E_1 = H^2_{2,2}, \quad \text{откуда}
\]
\[
E_1 = 2h^2 \left(\frac{1}{I_A} + \frac{1}{I_B} + \frac{1}{I_C} \right).
\]

1) Это следует непосредственно из соображений симметрии. Так, энергия \(E_1 \) симметрична по отношению к моментам инерции \(I_A \) и \(I_B \); такой должна быть энергия состояния, симметрия которого по отношению к осям \(\xi \) и \(\eta \) одинакова (состояние типа \(B_1 \)).
(уровень типа A_1). Одно из уравнений 2-й степени есть уравнение (1) предыдущей задачи (с другим значением J). Его корни:

$$E_{2,3} = \frac{5h^2}{2} \left(\frac{1}{I_A} + \frac{1}{I_B} \right) + \frac{h^2}{I_C} \pm \sqrt{4 \left(\frac{1}{I_A} - \frac{1}{I_B} \right)^2 + \frac{1}{I_C} + \left(\frac{1}{I_A I_B} - \frac{1}{I_A I_C} - \frac{1}{I_B I_C} \right)}$$

(уровни типа B_1). Остальные уровни получаются отсюда перестановкой I_A, I_B и I_C.

§ 102. Взаимодействие колебаний и вращения молекулы

До сих пор мы рассматривали вращение и колебания как независимые движения молекулы. В действительности же одновременное наличие того и другого приводит к своеобразному взаимодействию между ними (Е. Теллер, Л. Тисса, Г. Плачек, 1932—33).

Начнем с рассмотрения линейных многоатомных молекул. Линейная молекула может совершать колебания двух типов (см. конец § 98) — продольные с прямыми частотами и поперечные с двукратными частотами. Нас будут интересовать сейчас последние. Молекула, совершающая поперечные колебания, обладает, вообще говоря, некоторым моментом количества движения. Это очевидно уже из простых механических соображений, но может быть показано и квантовомеханическим рассмотрением. Последнее позволяет также определить и возможные значения этого момента в данном колебательном состоянии.

Предположим, что в молекуле возбуждена какая-либо одна двукратная частота ω_a. Уровень энергии с колебательным квантовым числом v_a выражен $(v_a + 1)$-кратно. Ему соответствует $v_a + 1$ волновых функций

$$\psi_{v_a1v_a2} = \text{const.} e^{-\frac{1}{2} e^2_a \left((Q_{21}^2 + Q_{22}^2) \right)} H_{v_a1} (c_a Q_{21}) H_{v_a2} (c_a Q_{22})$$

(где $v_{a1} + v_{a2} = v_a$) или какие-либо любые их независимые линейные комбинации. Общая (по Q_{a1} и Q_{a2}) старшая степень полинома, на который умножается экспоненциальный множитель, во всех этих функциях одинакова и равна v_a. Очевидно, что всегда можно выбрать в качестве основных функции линейные комбинации функций $\psi_{v_a1v_a2}$ вида:

$$\psi_{v_a l_a} = \text{const.} e^{-\frac{1}{2} e^2_a (Q_{1a}^2 + Q_{2a}^2)} \times$$

$$\times \left[(Q_{a1} + i Q_{a2}) \frac{v_a + l_a}{2} (Q_{a1} - i Q_{a2}) \frac{v_a - l_a}{2} + \ldots \right]. \quad (102,1)$$

1) Так, два взаимно перпендикулярных поперечных колебания с разностью фаз в $\pi/2$ можно рассматривать как чистое вращение изогнутой молекулы вокруг продольной оси.
В квадратных скобках стоит определённый полином, из которого мы выписали только старший член. l_a есть целое число, могущее принимать $v_a + 1$ различных значений: $l_a = v_a, v_a - 2, v_a - 4, \ldots, -v_a$.

Нормальные координаты Q_{a1}, Q_{a2} поперечного колебания представляют собой два взаимно перпендикулярных смещения от оси молекулы. При повороте вокруг этой оси на угол φ старший член полинома (а с ним и вся функция $\psi_{v_al_a}$) умножается на

$$e^{i\varphi \left(\frac{v_a + l_a}{2} \right)} e^{-i\varphi \left(\frac{v_a - l_a}{2} \right)} = e^{il_a \varphi}.$$

Отсюда видно, что функция $\psi_{v_al_a}$ соответствует состоянию с моментом количества движения l_a относительно оси.

Таким образом мы приходим к результату, что в состоянии, в котором возбуждена ($с$ квантовым числом v_a) двукратная частота ω_a, молекула обладает моментом (относительно своей оси), пробегающим значения

$$l_a = v_a, v_a - 2, v_a - 4, \ldots, -v_a. \quad (102,2)$$

О нём говорят, как о колебательном моменте количества движения. Если возбуждено одновременно несколько поперечных колебаний, то полный колебательный момент равен сумме Σl_a. Сложенный с электронным орбитальным моментом, он даёт полный момент I молекулы относительно её оси.

Полный момент количества движения молекулы J (как и у двухатомной молекулы) не может быть меньше момента относительно оси, т. е. J пробегает значения

$$J = |l|, |l| + 1, \ldots$$

Другими словами, состояний с $J = 0, 1, \ldots, |l| + 1$ не существует.

При гармонических колебаниях энергия зависит только от чисел v и не зависит от l_a. Вырождение колебательных уровней (по значениям l_a) снимается при наличии ангармоничности. Снятое, однако, неполное: уровни остаются двукратно выраженнымным, причём одинаковой энергией обладают состояния, отличающиеся одновременным изменением знака всех l_a и l. В следующем (после гармонического) приближении в энергии появляется квадратичный по моментам l_a член вида $\Sigma g_{a3} l_a l_\beta$ (g_{a3} — постоянные) 1).

Переходя к нелинейным молекулам, необходимо прежде всего сделать следующее замечание чisto механического характера. Для произвольной (нелинейной) системы частиц возникает вопрос о том,

1) Остающееся двукратное выражение снимается эффектом, аналогичным Δ-удвоению у двухатомных молекул.
каким образом можно вообще отделить колебательное движение от вращения, другими словами, что следует понимать под «невращающейся системой». На первый взгляд, можно было бы подумать, что критерием отсутствия вращения может являться равенство нулю момента количества движения:

$$\sum \mu [rv] = 0$$ (102,3)

(суммирование по частицам системы). Однако стоящее слева выражение не является полной производной по времени какой-либо функции координат. Поэтому написанное равенство не может быть пронтергировано по времени так, чтобы быть сформулированным в виде равенства нулю некоторой функции координат. Между тем, именно это необходимо для того, чтобы можно было разумным образом сформулировать понятие о «чистых колебаниях» и «чистом вращении».

Поэтому в качестве определения отсутствия вращения надо взять условие

$$\sum \mu [r_0v] = 0,$$ (102,4)

где r_0 — радиус-векторы положений равновесия частиц. Написав $r = r_0 + u$, где u — смещения при малых колебаниях, имеем $v = r = u$. Уравнение (102,4) интегрируется по времени, в результате чего получаем:

$$\sum \mu [r_0u] = 0.$$ (102,5)

Движение молекулы мы будем рассматривать как совокупность чисто колебательного движения, при котором удовлетворяется условие (102,5), и вращения молекулы как целого 1).

Написав момент количества движения в виде:

$$\sum \mu [rv] = \sum \mu [r_0v] + \sum \mu [uv],$$

мы видим, что, в соответствии с определением (102,4) отсутствия вращения, под колебательным моментом количества движения надо понимать сумму $\sum \mu [uv]$. Необходимо, однако, иметь в виду, что этот момент, являясь лишь частью полного момента системы, сам по себе отнюдь не сохраняется. Поэтому каждому колебательному состоянию можно приписать лишь среднее значение колебательного момента.

Молекулы, не обладающие ни одной осью симметрии более чем второго порядка, относятся к типу асимметрического волчка. У молекулы этого типа все частоты колебаний — прямые (их группы симметрии обладают только одномерными неприводимыми представлениями). Поэтому все колебательные уровни не выражены. Но во всяком невырожденном состоянии средний момент количества движения обра-

1) Поступательное движение предполагается отделённым с самого начала выбором системы координат, в которой центр инерции молекулы покоятся.
§ 102] взаимодействие колебаний и вращения молекулы 435

щается в нуль (см. § 24). Таким образом у молекул типа асимметрического волчка средний колебательный момент во всех состояниях отсутствует.

Если в числе элементов симметрии молекулы имеется одна ось более чем второго порядка, молекула относится к типу симметрического волчка. Такая молекула обладает колебаниями как с прямыми, так и с двукратными частотами. Средний колебательный момент первых снова обращается в нуль. Двукратным же частотам соответствует отличный от нуля средний момент количества движения относительно оси молекулы. Ввиду того что колебательный момент сам по себе не сохраняется, нельзя утверждать, что его среднее значение должно быть целочисленным. Вместо выражения $\sum I_\alpha$, которое мы имели у линейных молекул, здесь получается для среднего колебательного момента выражение вида:

$$\sum \zeta_\alpha I_\alpha,$$

где числа I_α пробегают прежний ряд значений (102,2), а ζ_α — характерные для данных колебаний постоянные, которые могут иметь значения в интервале от -1 до $+1$.

Не представляет труда получить выражение для энергии вращательных уровней молекул (типа симметрического волчка) с учётом колебательного момента. Гамильтониан «чисто вращательного» движения молекулы, вместо (101,5), теперь имеет вид:

$$\hat{H}_\text{вр} = \frac{\hbar^2}{2 I_A} [\hat{J}_\xi - \hat{J}_\eta]_\text{вр}^2 + \frac{\hbar^2}{2 I_C} (\hat{J}_\xi - \hat{J}_\eta)_{вр}^2,$$

где посредством $\hat{J}^{(v)}$ обозначен колебательный момент, а \hat{J} означает попрежнему полный момент количества движения молекулы. Вращательная энергия есть среднее значение: $E_{\text{вр}} = \bar{H}_{\text{вр}}$. При усреднении надо иметь в виду, что полный момент сохраняется; у колебательного же момента средние значения поперечных компонент $\bar{J}^{(v)} (\bar{J}_\xi, \bar{J}_\eta)$ равны нулю, а $\bar{J}^{(v)}_\xi = \sum_a I_a \zeta_a$. В результате получим:

$$E_{\text{вр}} = \frac{\hbar^2}{2 I_A} J \left(J + 1\right) + \frac{\hbar^2}{2} \left(\frac{1}{I_C} - \frac{1}{I_A}\right) k^2 - \frac{\hbar^2}{I_C} \bar{k} \sum_a \zeta_a I_a \quad (102,6)$$

(как и в § 101, целое число k есть значение проекции полного момента на ось молекулы). Последний член в (102,6) представляет собой искомый эффект взаимодействия колебаний молекулы с её вращением. Его называют кориолисовым взаимодействием (имея в виду его соответствие кориолисовым силам в классической механике).

Наконец, рассмотрим молекулы типа шарового волчка. Сюда относятся молекулы с симметрией какой-либо из кубических групп. Такие молекулы обладают одно-, дву- и трёхкратными частотами (среди...
неприводимых представлений кубических групп имеются одно-, двух- и трёхмерные). Вырождение колебательных уровней, как всегда, частично снимается ангармоничностью; после учёта этих эффектов остаются, кроме невырожденных, лишь дву- и трёхкратно вырожденные уровни. Мы будем сейчас говорить именно об этих расщеплённых ангармоничностью уровнях.

Легко видеть, что у молекул типа шарового волчка средний колебательный момент отсутствует не только в невырожденных, но и в двукратно вырожденных колебательных состояниях. Это следует непосредственно из соображений, основанных на теории групп. По самому способу образования момента из координат и скоростей ясно, что его свойства симметрии определяются антисимметричным произведением (см. § 91) самого на себя неприводимого представления, к которому относятся координаты данного колебания (рассматриваемого чисто классическим образом). Но антисимметричное произведение двумерного представления самого на себя есть одномерное представление. Между тем, при симметрии кубических групп компоненты момента количества движения, как и всякого вектора, должны преобразовываться по трёхмерному неприводимому представлению группы. Отсюда следует, что в данном случае он должен тождественно обратиться в нуль.

Трёхкратно же вырожденным колебательным уровням соответствует отличный от нуля средний момент 1). Из соображений симметрии (с помощью теории групп) можно показать, что момент трёхкратно вырожденного колебательного состояния должен изображаться оператором вида $H = \zeta I$, где $\zeta — характерная для данного состояния постоянная ($|\zeta| < 1$), а I — оператор момента, равного единице.

Гамильтониан вращательного движения молекулы имеет вид:

$$\hat{H}_b = \frac{\hbar^2}{2I} (\hat{J} - \zeta \hat{I})^2 = \frac{\hbar^2}{2I} \hat{J}^2 - \frac{\hbar^2}{I} \zeta \hat{I} \hat{J} + \frac{\hbar^2}{2I} \zeta^2 \hat{I}^2.$$

При усреднении с целью нахождения вращательной энергии последний член дает не зависящую от вращательного квантового числа несущественную постоянную $\frac{\hbar^2}{2I} \zeta^2 \cdot 2$; её можно опустить. Таким образом

$$E_b = \frac{\hbar^2}{2I} J (J + 1) - \frac{\hbar^2 \zeta}{I} I J.$$

Величина IJ вычисляется обычным образом; она может иметь (при данном J) три различных значения (соответствующих значениям вектора

1) Антисимметрическое произведение трёхмерного представления самого на себя есть трёхмерное же представление; конкретным вычислением его характеров (по формуле (91,20)) легко убедиться в том, что для всех трёхмерных представлений кубических групп это произведение совпадает с представлением, по которому преобразуются компоненты аксиального вектора.
§ 102] взаимодействие колебаний и вращения молекулы 437

В результате получим значения

\[E_{\text{bp}}^{(\pm)} = \frac{\hbar^2}{2I} [J(J + 1) \pm 2\zeta(J + 1)], \quad E_{\text{bp}}^{(-)} = \frac{\hbar^2}{2I} [J(J + 1) - 2\zeta J], \]

\[E_{\text{bp}}^{(0)} = \frac{\hbar^2}{2I} [J(J + 1) + 2\zeta]. \]

(102,8)

Таким образом корнолисово взаимодействие полностью снимает вырождение трёхкратно вырожденного колебательного уровня.

ЗАДАЧА

Определить волновые функции колебаний с двукратной частотой, соответствующие определённым значениям колебательного момента количества движения.

Решение. Пусть \(Q_1, Q_2 \) — нормальные координаты, соответствующие данной частоте \(\omega \) (индекс \(\alpha \) опускаем). Вводим радиус-вектор \(r = \sqrt{Q_1^2 + Q_2^2} \) и полярный угол \(\varphi \) в плоскости \(Q_1, Q_2 \). Уравнение Шредингера имеет вид:

\[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \varphi^2} + \frac{2}{\hbar^2} \left[\hbar \omega (v + 1) - \frac{\omega^2 r^2}{2} \right] \psi = 0 \]

(для энергии мы подставляем: \(E = \hbar \omega (v + 1) \)). Положив \(\psi = e^{iv\varphi} R(r) \), получим для «радиальной» функции \(R(r) \) уравнение

\[\frac{1}{r} \frac{d}{dr} \left(r \frac{dR}{dr} \right) + \frac{2}{\hbar^2} \left[\hbar \omega (v + 1) - \frac{\omega^2 r^2}{2} - \frac{\hbar^2 \omega^2}{2} \right] R = 0. \]

Вводим новую переменную

\[\rho = \frac{\omega}{\hbar} r^2, \]

после чего получим уравнение

\[R'' + \frac{R'}{\rho} + \left[-\frac{1}{4} + \frac{v + 1}{2\rho} - \frac{I^2}{4\rho^2} \right] R = 0, \]

по типу совпадающее с (36,4). Ищем \(R \) в виде:

\[R = e^{-v/\rho} \rho^{1/2} |l|^2 w(\rho), \]

и получаем для \(w(\rho) \) уравнение

\[\rho w'' + (|l| + 1 - \rho) w' + \frac{v - |l|}{2} w = 0, \]

удовлетворяющееся выраженной гипергеометрической функцией

\[w = F \left(-\frac{v - |l|}{2}, |l| + 1, \rho \right). \]

\[\frac{v - |l|}{2} \] должно быть целым положительным числом (тогда \(F \) сводится к полиному), откуда снова получаем для \(l \) набор значений (102,2). Искомые волновые функции, таким образом, будут иметь вид:

\[\psi_{vl} = \text{const.} e^{-\omega r^2/2I} F \left(-\frac{v - |l|}{2}, |l| + 1, \sqrt{\frac{n}{\omega} r} \right) e^{iv\varphi}. \]
§ 103. Классификация молекулярных термов

Волновая функция молекулы представляет собой произведение электронной волновой функции, волновой функции колебательного движения ядер и вращательной волновой функции. О классификации и типах симметрии этих функций в отдельности мы уже говорили. Теперь нам остаётся рассмотреть вопрос о классификации молекулярных термов в целом, т. е. о возможной симметрии полной волновой функции.

Ясно, что задание симметрии всех трёх множителей по отношению к тем или иным преобразованиям определяет также и симметрию произведения по отношению к этим же преобразованиям. Для полной характеристики симметрии терма надо ещё указать поведение полной волновой функции при одновременной инверсии координат всех частей (электронов и ядер) в молекуле. Терм называют отрицательным или положительным, смотря по тому, меняет ли волновая функция свой знак или остаётся неизменной при этом преобразовании 1).

Необходимо оговориться, что характеристика терма по отношению к инверсии имеет смысл только для молекул, не обладающих стереоизомерами. Наличие стереоизомерии означает, что при инверсии молекула принимает конфигурацию, которая никаким поворотом в пространстве не может быть совмещена с исходной (молекулы «правой» и «левой» модификаций вещества) 2). Поэтому волновые функции, получающиеся друг из друга при инверсии, при наличии стереоизомерии относятся, по существу, к различным молекулам, и сравнивать их не имеет смысла 3).

Рассмотрим молекулу с атомами, расположенными не в одной плоскости. Представим себе все атомы перенумерованными. Тогда при инверсии мы получим конфигурацию, которая никаким поворотом молекулы в пространстве не может быть совмещена с исходной (без изменения нумерации атомов). Составляя сумму и разность волновых функций, соответствующих этим двум конфигурациям, мы получим два состояния (одно положительное и одно отрицательное), соответствующих одному и тому же уровню энергии. Таким образом каждый вращательный уровень оказывается дополнительно двукратно выраженным.

Надо отметить, что указанное двукратное выражение может быть снято в результате следующего своеобразного эффекта. Обе конфигурации

1) Мы пользуемся, как это принято, той же неудачной терминологией, что и для двухатомных молекул (§ 83).
2) Для возможности наличия стереоизомерии необходимо, чтобы молекула не обладала каким-либо элементом симметрии, связанным с отражением (центр инверсии, плоскость симметрии, зеркально-поворотная ось).
3) Строго говоря, квантовая механика всегда приводит к отличной от нуля вероятности перехода из одной модификации в другую. Однако эта вероятность, связанная с переадом ядер через барьер (см. ниже), всегда столь мала, что этого явления можно не рассматривать.
гурации, получающиеся друг из друга при инверсии, разделены
(в конфигурационном пространстве) потенциальным барьером; вообще
говоря, очень высоким. Прохождением ядер «через барьер» может осу-
ществиться переход молекулы из одной конфигурации в другую. Нали-
чие же отличной от нуля вероятности перехода между двумя взаимно
вырожденными состояниями приводит к расщеплению соответствую-
щего уровня энергии (см. задачу 3 к § 50). Надо, однако, иметь
в виду, что в большинстве молекул вероятность рассматриваемого
перехода чрезвычайно мала, и потому соответствующее расщепление
уровней не наблюдаемо 1).

У плоской молекулы инверсии приводит к конфигурации, которая
всегда может быть совмещена с исходной (даже при нумерованных
атомах) посредством пространственного поворота молекулы, как
целого. Поэтому описанное выше двукратное вырождение (и соответ-
ствующее расщепление) здесь отсутствует. Каждый уровень либо
положителен, либо отрицателен.

Мы видели в § 83, что у двухатомных молекул спин ядер оказы-
вает существенное косвенное влияние на схему молекулярных термов,
определяя кратности их вырождения, а в некоторых случаях вовсе
запрещая уровни той или иной симметрии. То же самое имеет место
у многоатомных молекул. Однако здесь исследование вопроса значи-
тельно сложнее и требует применения методов теории групп в каждом
конкретном случае.

Идея метода заключается в следующем. Полная волновая функция
должна содержать, наряду с координатной частью (которую мы до
сих пор только и рассматривали), также и спиновый множитель,
являющийся функцией от проекций спинов всех ядер на какое-либо
выбранное направление в пространстве. Проекция спин ядра про-
бегает \(2i + 1\) значений (\(i\) — спин ядра); давая всем \(\sigma_1, \sigma_2, \ldots, \sigma_N\)
(\(N\) — число атомов в молекуле) все возможные значения, получим
всего \((2i_1 + 1)(2i_2 + 1)\ldots(2i_N + 1)\) различных значений спинового
множителя. При каждом преобразовании симметрии те или другие
ядра (одинакового сорта) меняются местами, и если представлять
себе значения спинов «остающимися на местах», то преобразование
будет эквивалентно перестановке значений спинов между ядрами.
Соответственно, различные спиновые множители будут преобразова-
ваться друг через друга, осуществляя, таким образом, некоторое
(вобще говоря приводимое) представление группы симметрии молекулы.
Разлагая его на неприводимые части, мы тем самым найдём возмож-
ные типы симметрии спиновой волновой функции.

Для характеров \(\chi_{\text{сп}} (G)\) представления, осуществляемого спиновыми
множителями, легко написать общую формулу. Для этого достаточно

1) Такое расщепление фактически наблюдается, например у \(\text{NH}_3\) (моле-
кула в виде правильной трёхгранный пирамиды с атомом \(\text{N}\) в вершине
и атомами \(\text{H}\) в вершинах основания),
заметить, что при преобразованиях не меняются только те спиновые множители, в которых меняющиеся местами ядра имеют однаковые σ_a; в противном случае один спиновый множитель переходит в другой и ничего не даёт для характера. Имея в виду, что σ_a пробегает $2i_a + 1$ значений, находим, что

$$\chi_{\text{оп}}(G) = \prod (2i_a + 1), \tag{103,1}$$

где произведение берётся по группам атомов, меняющихся друг с другом местами при данном преобразовании G (по одному множителю в произведении от каждой группы).

Нас, однако, интересует не столько симметрия спиновой функции, сколько симметрия координатной волновой функции (речь идёт о симметрии по отношению к перестановкам координат ядер при неизменных координатах электронов). Но эти симметрии непосредственно связаны друг с другом тем, что полная волновая функция должна оставаться неизменной или менять знак при перестановке каждой пары ядер, подчиняющихся соответственно статистике Бозе или Ферми (другими словами, должна умножаться на $(-1)^{2l_i}$, где l_i — спин переставляемых ядер). Вводя соответствующий множитель в характеры (103,1), мы получим систему характеров $\chi(G)$ представления, содержащего в себе все неприводимые представления, по которым преобразуются координатные волновые функции:

$$\chi(G) = \prod (2i_a + 1) (-1)^{2l_i} (n_a - 1) \tag{103,2}$$

(n_a — число ядер в каждой группе ядер, меняющихся друг с другом местами при данном преобразовании). Разлагая это представление на неприводимые части, мы непосредственно получим возможные типы симметрии координатных волновых функций молекулы вместе с кратностями вырождения соответствующих уровней энергии (здесь и ниже речь идёт о вырождении по отношению к различным спиновым состояниям системы ядер) 1).

Каждый тип симметрии термов связан с определёнными значениями суммарного спина ядер в молекуле. Связь эта не взаимно однозначна: каждый тип симметрии может осуществляться, вообще говоря, с несколькими различными полными спинами. Установление этой связи в каждом конкретном случае тоже возможно с помощью теории групп; однако мы не станем останавливаться здесь на этом 2).

Рассмотрим в качестве примера молекулу типа асимметрического волчка — молекулу этилена $C_2^1H_4^2$ (рис. 45, жс, группа симметрии D_{2h}).

1 О кратности вырождения уровня в этой связи часто говорят, как о его статистическом весе.

2 Укажем лишь, что для установления этой связи надо рассматривать представления, осуществляемые не только одновременно всеми возможными спиновыми множителями, но и множителями, относящимися к каждому возможному значению проекции полного спина; начиная с максимального.
Верхний индекс у химического символа указывает, к какому изотопу относится ядро; такое указание необходимо, поскольку ядра различных изотопов обладают различным спином. В данном случае спин ядра H^1 равен половине, а ядро C^{12} не имеет спина. Поэтому надо рассматривать только атомы водорода.

Выберем систему координат, как указано на рис. 45, ωz (ось z перпендикулярна к плоскости молекулы, ось x направлена по её оси). Отражение в плоскости $\sigma(xy)$ оставляет все атомы на местах, а остальные отражения и повороты меняют атомы водорода попарно местами. По формуле (103,2) получаем следующие характеры представления:

$$E \sigma(xy)\sigma(xz)\sigma(yz) I_{C_2(z)} C_2(y) C_2(z)$$

Разлагая это представление на неприводимые части, найдём, что в нём содержатся следующие неприводимые представления группы $D_{2h}: 7A_g, 3B_{1g}, 3B_{2u}, 3B_{3u}$. Цифра указывает на кратность, с которой данное неприводимое представление входит в приводимое; эти числа и являются «ядерными» кратностями вырождения (ядерными статистическими весами) уровней соответствующей симметрии.1)

Полученная классификация термов молекулы этилена относится к симметрии полной (координационной) волновой функции, содержащей электронную, колебательную и вращательную части. Обычно, однако, представляет интерес подходит к этим результатам с другой точки зрения. Именно, зная возможные симметрии полной волновой функции, можно непосредственно найти, какие вращательные уровни возможны (и с какими статистическими весами) при том или другом заданном электронном и колебательном состоянии.

Рассмотрим, например, вращательную структуру низшего колебательного уровня (колебания не возбуждены) нормального электронного терма, предполагая электронную волновую функцию нормального состояния полностью симметричной (что имеет место практически для всех многоатомных молекул). Тогда симметрия полной волновой функции по отношению к поворотам вокруг осей симметрии совпадает с симметрией вращательной волновой функции. Сопоставляя с полученными выше результатами, мы приходим, следовательно, к выводу, что вращательные уровни типов A и B_1 (см. § 101) могут быть только положительными, а уровни типов B_2 и B_3 — отрицательными.

Как и у двухатомных молекул (см. конец § 83), ввиду чрезвычайной слабости взаимодействия ядерных спинов с электронами, переходы между состояниями различной ядерной симметрии практически

1) Полный спин молекулы $\text{C}_2\text{H}_4^{12}$ может иметь значения 2, 1, 0, соответствственно, одним, тремя и двумя способами. Термам симметрии A_g соответствуют спины 2 и 0, термам B_{1g}, B_{2u}, B_{3u} — спин 1.
обычно не имеют места. Поэтому молекулы, находящиеся в состояниях с различной ядерной симметрией, ведут себя практически как различные модификации вещества. Так, этилен С2Н4 имеет четыре модификации с ядерными статистическими весами 7, 3, 3, 3.

Рассмотрим еще один пример — молекулу аммиака N14H3 типа симметрического волчка (рис. 43, группа симметрии С3v). Спин ядра N14 равен 1, спин H1 — половине. С помощью формулы \(\frac{E}{24} = \frac{2C_3}{6} + 3\sigma_v - 12 \).

Оно содержит следующие неприводимые представления группы C3v: 12A2, 6E. Таким образом возможны уровни двух типов; их ядерные статистические веса равны 12 и 6.

Вращательные уровни симметрического волчка классифицируются (при данном J) по значениям квантового числа k. Рассмотрим, как и в предыдущем примере, вращательную структуру нормального электронного и колебательного состояния молекулы NH3 (т. е. предполагаем электронную и колебательную волновые функции полностью симметричными). При определении симметрии вращательной волновой функции надо иметь в виду, что имеет смысл говорить о её поведении лишь по отношению к поворотам вокруг осей. Поэтому плоскости симметрии заменяем перпендикулярными им осями симметрии второго порядка (отражение в плоскости эквивалентно повороту вокруг такой оси вместе с последующей инверсией). В данном случае, следовательно, надо рассматривать вместо C3v изоморфную с ней точечную группу D3h.

Вращательные волновые функции с \(k = \pm |k| \) при повороте C3 вокруг вертикальной оси третьего порядка умножаются, соответственно, на \(e^{\pm \frac{2\pi}{3} |k|} \), а при повороте U2 вокруг горизонтальной оси второго порядка переходят друг в друга, осуществляя таким образом двухмерное представление группы D3. При \(\bar{k} \), не кратном трём, это представление неприводимо — представление E. Представление группы C3v, соответствующее полной волновой функции, получится умножением характера \(\chi(U_2) \) на \(+1 \) или \(-1 \), смотря по тому, является ли терм положительным или отрицательным. Но поскольку в представлении E имеем \(\chi(U_2) = 0 \), то в обоих случаях мы получаем снова то же представление E (на этот раз уже как представление группы C3v, а не D3). Имея в виду полученные выше результаты, заключаем, таким образом, что при \(|k| \), не кратном трём, возможны как положительные, так и отрицательные уровни

1) Термам симметрии A2 соответствует суммарный спин ядер водорода, равный \(\frac{3}{2} \), а термам E — спин \(\frac{1}{2} \).
с ядерными статистическими весами, равными 6 (уровни с симметрией полной координатной волновой функции типа E).

При $|k|$, кратном трём (но отличном от нуля) вращательные функции осуществляют представление (группы D_3) с характеристиками

$$
\begin{align*}
E & \quad 2C_3 & 3U_2 \\
2 & \quad 2 & 0
\end{align*}
$$

Это представление приводимо и разбивается на представления A_1, A_2. Для того чтобы полная волновая функция относилась к представлению A_2 группы C_{3v}, вращательный уровень A_1 должен быть отрицательным, а A_2 — положительным. Таким образом при отличном от нуля кратном трём $|k|$ возможны как положительные, так и отрицательные уровни с ядерными статистическими весами, равными 12 (уровни типа A_2).

Наконец, проекции момента $k = 0$ соответствуют всего одна вращательная функция, осуществляющая представление с характеристиками 1

$$
\begin{align*}
E & \quad 2C_3 & 3U_2 \\
1 & \quad 1 & (-1)^J
\end{align*}
$$

Для того чтобы полная волновая функция имела симметрию A_2, её поведение по отношению к инверсии должно, следовательно, определяться множителем $(-1)^J$. Таким образом при $k = 0$ уровни с чётным (нечётным) J могут быть только отрицательными (положительными); статистический вес в обоих случаях равен 6 (уровни типа A_2).

Пример молекулы типа шарового волчка разобран в задаче 4 к этому параграфу.

Задачи

1. Определить типы симметрии полных (координатных) волновых функций и статистические веса соответствующих уровней для молекул $C_2H_4^2$, $C_4^1H_4^1$, $N_2^1O_4^1$ (все молекулы имеют одинаковую форму; спины $i(H^2) = 1$, $i(C_{13}) = 1/2$, $i(N_{14}) = 1$).

Решение. Тем же способом, что и изложенный в тексте для молекулы $C_2H_4^2$, найдём следующие термы (оси координат выбраны так же, как и в тексте):

для молекулы $C_2H_4^2$: $27A_g$, $18B_{1g}$, $18B_{2u}$, $18B_{3u}$;

\triangleright \triangleright $C_4^1H_4^1$: $16A_g$, $12B_{1g}$, $12B_{2u}$, $12B_{3u}$;

\triangleright \triangleright $N_2^1O_4^1$: $6A_g$, $3B_{3u}$.

1 При повороте на угол π собственная функция момента с величиной J и равной нулю проекцией умножается на $(-1)^J$ (см. § 77).
2. То же для молекулы $^{14}\text{H}_2^3$.
Решение. Подобно тому как это было сделано в тексте для молекулы $^{14}\text{H}_3^1$, находим термы: $30 A_1$, $3A_2$, $24E$.
В нормальном электронном и колебательном состоянии при различных значениях квантового числа k возможны следующие термы ($+$ и $-$ обозначают положительные и отрицательные термы):

$$
\begin{align*}
|k| & \text{ не кратно трём} & (+) & 24E \\
|k| & \text{ кратно трём} & 30 A_1, 3A_2 & 30 A_1, 3A_2 \\

k = 0 & \begin{cases}
J \text{ чётно} \\
J \text{ нечётно}
\end{cases} & \begin{cases}
30A_1 & 3A_2 \\
3A_2 & 30 A_1
\end{cases}
\end{align*}
$$

3. То же для молекулы $^{12}\text{C}_2^1\text{H}_6^1$ (см. рис. 45, e; симметрия, D_{9d}).
Решение. Возможны термы следующих типов $7 A_{1g}$, $1A_{1u}$, $3A_{2g}$, $13 A_{2u}$, $9E_{g}$, $11E_{u}$.
В нормальном электронном и колебательном состоянии получаются следующие уровни:

$$
\begin{align*}
|k| & \text{ не кратно трём} & (+) & 9E_g \\
|k| & \text{ кратно трём} & 7A_{1g}, 3A_{2g} & 1A_{1u}, 13A_{2u} \\

k = 0 & \begin{cases}
J \text{ чётно} \\
J \text{ нечётно}
\end{cases} & \begin{cases}
7A_{1g} & 1A_{1u} \\
3A_{2g} & 13A_{2u}
\end{cases}
\end{align*}
$$

4. То же для молекулы метана $^{12}\text{C}_4^1\text{H}_4^1$ (атомы Н в вершинах, атом С — в центре тетраэдра).
Решение. Молекула относится к типу шарового волчка и имеет симметрию T_d. Следуя тому же методу, найдём, что возможны термы типов: $5A_2$, $1E$, $3F_1$ (им соответствует полный спин молекулы, равный, соответственно, 2, 0, 1).

Вращательные термы шарового волчка классифицируются по значениям J полного момента. ($2J + 1$) вращательных функций, относящихся к данному значению J, осуществляют ($2J + 1$)-мерное представление группы O, изоморфной группе T_d, из которой она получается заменой всех плоскостей симметрии перпендикулярными им осями второго порядка. Характеры этого представления совпадают с характерами соответствующих поворотов в $2J + 1$-мерном неприводимом представлении группы вращения (формула (95,3)). Так, например, для $J = 3$ получаем представление с характерами

$$
E \begin{array}{cccc}
8 & C_3 & 6C_2 & 3C_4^2 \\
7 & 1 & -1 & -1 & -1
\end{array}
$$

В нём содержатся следующие неприводимые представления группы O: A_2, F_1, F_2. Рассматривая снова вращательную структуру нормального электронного и колебательного терма, заключаем отсюда, что при $J = 3$ уровня с симметрией A_2 полной волной функции могут быть только положительными, а уровни типа F_1 — как положительными, так и отрицательными.
Для нескольких первых значений J получаются таким же образом следующие уровни (пишем их вместе с их ядерными статистическими весами):

$J = 0$ \quad 5A_2

$J = 1$ \quad 3F_1

$J = 2$ \quad 1E, 1E, 3F_1

$J = 3$ \quad 5A_2, 3F_1, 3F_1

$J = 4$ \quad 1E, 3F_1, 5A_2, 1E, 3F_1

§ 104. Электрон в периодическом поле

В этом параграфе мы рассмотрим движение электрона в пространственно периодическом электрическом поле (Ф. Блох, 1929). Задача эта, хотя и не имеет непосредственного физического смысла, но имеет весьма существенное вспомогательное значение для теории проводимости металлических и других кристаллов.

Симметрия периодического поля есть симметрия некоторой кристаллической решётки. Основой этой симметрии является пространственная периодичность, определяемая тремя основными периодами — a_1, a_2, a_3. Поле $U(r)$ не меняется при параллельном переносе на любой вектор вида:

$$a = n_1 a_1 + n_2 a_2 + n_3 a_3.$$ \hspace{1cm} (104,1)

где n_1, n_2, n_3 — положительные или отрицательные целые числа:

$$U(r + a) = U(r).$$ \hspace{1cm} (104,2)

Представляется уравнение Шредингера, описывающее движение электрона в периодическом поле, инвариантно относительно любого преобразования $r \rightarrow r + a$.

Отсюда можно сделать существенное заключение. Если $\psi(r)$ есть волновая функция некоторого стационарного состояния, то функция $\psi(r + a)$ тоже есть решение уравнения Шредингера, описывающее то же самое состояние электрона. Это значит, что функции $\psi(r)$ и $\psi(r + a)$ должны совпадать с точностью до постоянного множителя: $\psi(r + a) = \text{const} \cdot \psi(r)$. Очевидно, что const. должна быть равна по модулю единице; в противном случае при неограниченном повторении смещения на a (или на $-a$) волновая функция обращалась бы в бесконечность. Наиболее общий вид функции, обладающий этим свойством, следующий:

$$\psi_{nk}(r) = e^{ikr} u_{nk}(r),$$ \hspace{1cm} (104,3)

где k есть произвольный постоянный действительный вектор, а $u_{nk}(r)$ — периодическая функция:

$$u_{nk}(r + a) = u_{nk}(r)$$ \hspace{1cm} (104,4)

(об индексе n — см. ниже).
Функция (104,3) обнаруживает некоторое сходство с волновыми функциями свободно движущегося электрона $\psi = \text{const.} \, e^{i \frac{p r}{\hbar}}$, причём роль сохраняющегося импульса p играет постоянный вектор $\hbar k$. Мы увидим ниже, что этот вектор аналогичен импульсу и в ряде других отношений, хотя в то же время между ними имеется и ряд существенных отличий. На этом основании вектор $\hbar k$ называется «квазимпульсом» электрона в периодическом поле. Необходимо подчеркнуть, что истинного сохраняющегося импульса в этом случае вообще нет, так как в пространственно-переменном внешнем поле закон сохранения импульса не имеет места. Замечательно, однако, что электрон в периодическом поле, тем не менее, характеризуется некоторым постоянным вектором.

Таким образом каждому стационарному состоянию электрона в периодическом поле соответствует некоторое значение квазимпульса k. Это соответствие, однако, неоднозначное — при заданном k энергия электрона может, вообще говоря, иметь дискретный ряд различных значений. В связи с этим в волновых функциях (104,3) введён индекс n, нумерующий уровни энергии при данном k. Энергию E электрона можно представлять себе как многозначную функцию квазимпульса: $E = E_n(k)$, где индекс n нумерует различные ветви функции. Геометрически функциональная зависимость E от k_x, k_y, k_z изображается четырёхмерной гиперповерхностью. Различными ветвями функции соответствуют различные листы этой поверхности. Надо, однако, иметь в виду, что гиперповерхность $E = E(k_x, k_y, k_z)$, вообще говоря, самопересекающаяся; поэтому соответствие между различными ветвями при изменении k не может быть установлено однозначным образом. Вид функции $E(k)$ не может быть, разумеется, определён в общем виде, так как это требует решения уравнения Шредингера с конкретной функцией $U(r)$. Однако применение методов теории групп позволяет исследовать ряд её существенных свойств в зависимости от симметрии поля; мы не станем останавливаться здесь на этом вопросе 1).

Все функции ψ_{nk} с различными n или k, разумеется, взаимно ортогональны. В частности, из ортогональности ψ_{nk} с различными n и одинаковыми k следует, что

$$\int u_{mk}^* u_{nk} dV = 0 \quad (m \neq n). \quad (104,5)$$

Таким образом функции u_{nk} с данным значением k составляют систему взаимно ортогональных функций.

Очень важным свойством квазимпульса, отличающим его от истинного импульса, является его неоднозначность. Определение

Электрон в периодическом поле

Квазиволн Фермик после, в том, что его значением определяется поведение волновой функции при параллельном переносе. Преобразование $\mathbf{r} \rightarrow \mathbf{r} - \mathbf{a}$ умножает функцию (104.3) на $e^{i\mathbf{k}\mathbf{a}}$. Значения \mathbf{k}, для которых этот множитель (при всех возможных \mathbf{a}) одинаков, физически эквивалентны и соответствуют одному и тому же состоянию электрона. Этим, свойством обладают при заданном \mathbf{k} все значения $\mathbf{k} \pm 2\pi\mathbf{b}$, где \mathbf{b} — вектор вида:

$$\mathbf{b} = m_1 \mathbf{b}_1 + m_2 \mathbf{b}_2 + m_3 \mathbf{b}_3,$$

причём m_1, m_2, m_3 — любые целые числа, а векторы $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ при умножении на $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ дают:

$$a_i \mathbf{b}_k = \delta_{ik}.$$

Действительно:

$$e^{i(k \pm 2\pi\mathbf{b})\mathbf{a}} = e^{i\mathbf{k}\mathbf{a}} e^{i2\pi \mathbf{a} \cdot (n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3)} = e^{i\mathbf{k}\mathbf{a}}.$$

Векторы $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ называются в кристаллографии основными периодами обратной решётки по отношению к решётке, построенной на периодах $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$. Из определений (104.7) непосредственно следует связь тех и других:

$$\mathbf{b}_1 = \frac{1}{V} [\mathbf{a}_2 \mathbf{a}_3], \quad \mathbf{b}_2 = \frac{1}{V} [\mathbf{a}_3 \mathbf{a}_1], \quad \mathbf{b}_3 = \frac{1}{V} [\mathbf{a}_1 \mathbf{a}_2],$$

где $V = a_1[a_2a_3]$ есть объём элементарной ячейки.

Таким образом значения квазиволн Ферми, отличные от какого-либо (умноженного на 2π) период \mathbf{b} обратной решётки, физически эквивалентны. Можно сказать, что физически различные значения квазиволн Ферми лежат в одной элементарной ячейке обратной решётки. Отсюда, в частности, следует, что энергия электрона как функция от \mathbf{k} должна оставаться неизменной при замене \mathbf{k} на $\mathbf{k} \pm 2\pi\mathbf{b}$:

$$E_n(\mathbf{k} \pm 2\pi\mathbf{b}) = E_n(\mathbf{k}).$$

Другими словами, энергия является периодической функцией квазиволн Ферми с основными периодами $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$.

Далее, предположим, что в периодическом поле находится два электрона. Рассматривая их вместе как одну систему и применяя к её волновой функции $\psi(\mathbf{r}_1, \mathbf{r}_2)$ те же рассуждения, которые были сделаны при выводе (104.3), найдём, что при преобразовании $\mathbf{r}_1 \rightarrow \mathbf{r}_1 + \mathbf{a}$, $\mathbf{r}_2 \rightarrow \mathbf{r}_2 + \mathbf{a}$ она умножается на $e^{i\mathbf{k}\mathbf{a}}$; постоянный вектор \mathbf{k} можно назвать квазиволновым системой обоих электронов. С другой стороны, если электроны находятся настолько далеко друг от друга, что их взаимодействием можно пренебречь, то волновая функция системы представляется в виде произведения волновых функций отдельных электронов и при параллельном переносе умножится.
на $e^{i k_1 a} e^{i k_2 a}$, где k_1, k_2 — квазиимпульсы каждого из электронов. Из $e^{i k a} = e^{i (k_1 + k_2) a}$ находим, что

$$k = k_1 + k_2 + 2\pi b,$$

т. е. квазиимпульс системы равен, с точностью до вектора вида $2\pi b$, сумме квазиимпульсов отдельных электронов. Отсюда, в частности, следует, что если рассматривать столкновение двух электронов, движущихся в периодическом поле, то сумма их квазиимпульсов k_1, k_2 до столкновения равна (с точностью до $2\pi b$) сумме их же квазиимпульсов k'_1, k'_2 после столкновения:

$$k_1 + k_2 = k'_1 + k'_2 + 2\pi b.$$

(104,10)

Дальнейшая аналогия между квазиимпульсом и истинным импульсом выясняется при определении средней скорости электрона. Вычисление её требует знания оператора скорости $\hat{v} = \hat{r}$ в k-представлении. Операторы в k-представлении действуют на коэффициенты a_{nk} разложения произвольной волновой функции ψ по собственным функциям Ψ_{nk}:

$$\psi = \sum_n a_{nk} \Psi_{nk} d\tau_k$$

(104,11)

(ср. вывод выражения для операторов координат в k-представлении в § 13). Имеем тождественно:

$$\hat{r} \psi_{nk} = -i \frac{\partial}{\partial k} \psi_{nk} + i e^{ikr} \frac{\partial u_{nk}}{\partial k}.$$

Поэтому

$$\hat{r} \psi = \sum_n \int \hat{r} a_{nk} \psi_{nk} d\tau_k =$$

$$= -i \sum_n a_{nk} \frac{\partial \psi_{nk}}{\partial k} d\tau_k + i \sum_n e^{ikr} a_{nk} \frac{\partial u_{nk}}{\partial k} d\tau_k.$$

В первом члене производим интегрирование по частям, а во втором разложим периодическую (как и сама u_{nk}) функцию $\partial u_{nk}/\partial k$ по системе взаимно ортогональных функций u_{nk} с тем же k:

$$\frac{\partial u_{nk}}{\partial k} = \sum_m \lambda_{mn}^{(k)} u_{mk}.$$

(104,12)

Тогда получим:

$$\hat{r} \psi = i \sum_n \int \psi_{nk} \frac{\partial a_{nk}}{\partial k} d\tau_k + i \sum_{n,m} \int a_{nk} \lambda_{mn}^{(k)} \psi_{mk} d\tau_k =$$

$$= \sum_n \int \left\{ i \frac{\partial a_{nk}}{\partial k} + i \sum_m a_{mk} \lambda_{mn}^{(k)} \right\} \psi_{nk} d\tau_k.$$
§ 104] Электрон в периодическом поле 449

С другой стороны, по определению оператора в к-представлении должно быть

\[\hat{r} \psi = \sum_n \int b_{nk} \psi_{nk} d\tau_k, \]

где \(b_{nk} = \hat{r} a_{nk} \). Сравнивая с полученным выражением, находим, что оператор \(\hat{r} \) имеет вид:

\[\hat{r} = i \frac{\partial}{\partial k} + \hat{\Omega}, \quad (104,13) \]

gде оператор \(\hat{\Omega} \) определяется посредством

\[\hat{\Omega} a_{nk} = i \sum_m \lambda_{nm}^{(k)} a_{mk}. \quad (104,14) \]

Существенно, что \(\Omega \) имеет отличные от нуля матричные элементы только для переходов между состояниями с одинаковыми \(k \): \(\Omega_{nk}^{nk} = i \lambda_{nm}^{(k)} \) (в том числе диагональные элементы \(\Omega_{nk}^{nk} \)).

Оператор скорости получается, согласно общему правилу, путём коммутирования оператора \(\hat{r} \) с гамильтонианом. В к-представлении гамильтониан есть не что иное, как энергия \(E(k) \), выраженная в виде функции от \(k \). Поэтому оператор \(\hat{v} \) в к-представлении имеет вид:

\[\hat{v} = \frac{i}{\hbar} \left(E \hat{r} - \hat{r}E \right) = - \frac{1}{\hbar} \left(E \frac{\partial}{\partial k} - \frac{\partial}{\partial k} E \right) + \frac{i}{\hbar} (E \hat{\Omega} - \hat{\Omega}E), \]

или

\[\hat{v} = \frac{1}{\hbar} \frac{\partial E(k)}{\partial k} + \hat{\Omega}. \quad (104,15) \]

Матричные элементы \(\hat{\Omega} \) связаны с матричными элементами \(\Omega \) посредством соотношения

\[\hat{\Omega}_{nk}^{nk} = \frac{1}{\hbar} [E_n(k) - E_m(k)] \Omega_{nk}^{nk}. \]

Отсюда видно, что при \(n = m \): \(\hat{\Omega}_{nk}^{nk} = 0 \), т. е. \(\Omega \) не имеет диагональных матричных элементов.

Среднее значение скорости равно диагональному матричному элементу оператора (104,15). Согласно сказанному, имеем просто:

\[\bar{v} = \frac{\partial E(k)}{\hbar \partial k}. \quad (104,16) \]

Таким образом средняя скорость получается дифференцированием энергии по квазимпульсу — вполне аналогично классическому соотношению между энергией, импульсом и скоростью.

Наконец, предположим, что на рассматриваемое периодическое поле наложено ещё однородное электрическое поле, в котором на электрон действует сила \(F \). Тогда квазимпульс электрона не будет сохраняться; определим его производную по времени. Однородное
поле добавляет к гамильтониану член — F. Оператор квазимпульса в k-представлении есть просто само k. Поэтому

$$
\hat{k} = -i\frac{\hbar}{\hbar} F (\hat{r}k - k\hat{r}) = \frac{F}{\hbar} \left(\frac{\partial}{\partial k} k - k \frac{\partial}{\partial k} \right) - i\frac{\hbar}{\hbar} F (\hat{\Omega}k - k\hat{\Omega}) =
$$

$$
= \frac{1}{\hbar} F - i\frac{\hbar}{\hbar} F (\hat{\Omega}k - k\hat{\Omega}).
$$

Легко видеть, что оператор $\hat{\Omega}k - k\hat{\Omega}$ есть тождественный нуль. Действительно, матрица от k в k-представлении диагональна, причём её диагональные элементы просто совпадают с самими значениями k. Матрица же Ω имеет элементы только для переходов без изменения k. Поэтому все вообще матричные элементы от $\Omega k - k\Omega$ обращаются в нуль. Таким образом имеем:

$$
\hbar k = F. \quad (104, 17)
$$

Мы видим, что оператор производной по времени от квазимпульса равен силе, действующей на электрон со стороны однородного поля, — так же, как это было бы для производной от истинного импульса в отсутствии периодического поля.

ЗАДАЧА

Определить зависимость энергии от квазимпульса для одномерного движения электрона в периодическом поле, изображённом на рис. 46.

Решение. Волновая функция в области ямы $0 < x < a$ имеет вид:

$$
\psi = c_1 e^{ikx} + c_2 e^{-ikx}, \quad x_1 = \frac{1}{\hbar} \sqrt{2\mu E}, \quad (1)
$$

а в области барьера ($b < x < 0$):

$$
\psi = c_3 e^{ikx} + c_4 e^{-ikx}, \quad x_2 = \frac{1}{\hbar} \sqrt{2\mu (E - U_b)}, \quad (2)
$$

(при $E < U_0$, x_2 чисто мнимо). В области следующего барьера ($a < x < a + b$) ψ должно отличаться от (2) только множителем $e^{ik(a + b)} (a + b)$ — период поля), т. е. имеет вид:

$$
\psi = c_3 e^{ik(a + b)} e^{ikx} (x - a) + c_4 e^{ik(a + b)} e^{-ikx} (x - a).
$$

Условия непрерывности ψ и $\frac{d\psi}{dx}$ в точках $x = 0$ и $x = a$ дают четыре уравнения для c_1, c_2, c_3, c_4; условие совместности этих уравнений приводит к уравнению

$$
\cos k (a + b) = \cos x_2 a \cdot \cos x_2 b - \frac{1}{2} \left(\frac{x_1}{x_2} + \frac{x_2}{x_1} \right) \sin x_1 a \sin x_2 b,
$$

определяющему в неявном виде искомую зависимость.
ГЛАВА XIV
ТЕОРИЯ УПРУГИХ СТОЛКНОВЕНИЙ
§ 105. Общая теория рассеяния

В классической механике столкновения двух частиц полностью определяются их скоростями и «прицельным расстоянием» (т. е. расстоянием, на котором они прошли бы друг мимо друга при отсутствии взаимодействия). В квантовой механике меняется сама постановка вопроса, так как при движении с определёнными скоростями понятие траектории, а с нею и «прицельного расстояния» теряет смысл. Целью теории является здесь лишь вычисление вероятности того, что в результате столкновения частицы отклонятся (или, как говорят, рассеиваются) на тот или иной угол. Мы говорим здесь о так называемых упругих столкновениях, при которых внутреннее состояние сталкивающихся частиц (если эти частицы сложные) не меняется.

Задача об упругом столкновении, как и всякая задача двух тел, сводится к задаче о рассеянии одной частицы с приведённой массой в поле $U(r)$ неподвижного силового центра. Сведение осуществляется посредством перехода к системе координат, в которой покоятся центр инерции обеих частиц. Угол рассеяния в этой системе будем обозначать посредством θ. Он связан простыми формулами с углами θ_1 и θ_2 отклонения обеих частиц в системе координат, в которой одна из частич (вторая) до столкновения покоялась 1):

$$
tg \theta_1 = \frac{\mu_2 \sin \theta}{\mu_1 + \mu_2 \cos \theta}, \quad \theta_2 = \frac{\pi - \theta}{2},
$$

где μ_1, μ_2 — массы частиц. В частности, если массы обеих частиц одинаковы ($\mu_1 = \mu_2$), то получается просто:

$$
\theta_1 = \frac{\theta}{2}, \quad \theta_2 = \frac{\pi - \theta}{2};
$$

сумма $\theta_1 + \theta_2 = \pi/2$, т. е. частицы разлетаются под прямым углом.

Ниже мы пользуемся везде (где противное не оговорено особо) системой координат, связанной с центром инерции.

1 См., например, «Механика», § 11.
Свободная частица, движущаяся в положительном направлении оси z, описывается плоской волной const. $e^{ikz} (k = \mu v / \hbar)$. В качестве const. выберем единицу; функция $\varphi = e^{ikz}$ соответствует потоку вероятности плотности v. Рассеянные частицы должны описываться вдали от центра расходящейся сферической волной вида $\frac{f(\theta)}{r} e^{ikr}$, где $f(\theta)$ — некоторая функция угла рассеяния θ (угол между осью z и направлением рассеянной частицы). Таким образом точная волновая функция, являющаяся решением уравнения Шредингера с потенциальной энергией $U(r)$, должна иметь на больших расстояниях асимптотический вид:

$$\varphi \approx e^{ikz} + \frac{f(\theta)}{r} e^{ikr}.$$ \hfill (105,3)

Вероятность рассеянной частице пройти в единицу времени через элемент поверхности $dS = r^2 d\phi \, (d\phi$ — элемент телесного угла) равна $\frac{v}{r^2} |f(\theta)|^2 dS = v |f(\theta)|^2 d\phi$. Её отношение к плотности вероятности в падающей волне равно:

$$d\sigma = |f(\theta)|^2 d\phi.$$ \hfill (105,4)

Эта величина имеет размерность площади и называется эффективным сечением для рассеяния внутри телесного угла $d\phi$. Если положить $d\phi = 2\pi \sin \theta \, d\theta$, то мы получим эффективное сечение

$$d\sigma = 2\pi \sin \theta |f(\theta)|^2 d\theta$$ \hfill (105,5)

для рассеяния на углы в интервале между θ и $\theta + d\theta$.

Определение функции $f(\theta)$ («амплитуд рассеяния») требует, вообще говоря, нахождения решения точного уравнения Шредингера при условиях: конечность во всём пространстве и асимптотический вид (105,3) при $r \to \infty$.

Всякое решение уравнения Шредингера в центрально-симметрическом поле может быть написано в виде суммы произведений шаровых функций на радиальные функции $R_l(r)$, удовлетворяющие уравнениям

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dR_l}{dr} \right) + \left[k^2 - \frac{l(l + 1)}{r^2} - \frac{2\mu}{\hbar^2} U(r) \right] R_l = 0.$$ \hfill (105,6)

Асимптотический вид функций R_l (см. (33,16)):

$$R_l \approx a_l \frac{\sin (kr - \frac{l\pi}{2} + \delta_l)}{2}.$$ \hfill (105,7)

Покажем, каким образом можно выразить через эти фазы амплитуду рассеяния $f(\theta)$. Общий вид аксиально-симметрического (относи-
§ 105] ОБЩАЯ ТЕОРИЯ РАССЕЯНИЯ

тельно оси z) решения уравнения Шредингера, каковым должно быть решение, описывающее рассеяние, есть сумма произведений $R_l(r)P_l(\cos \theta)$. Соответственно, общий асимптотический вид такого решения есть:

$$
\psi \approx \sum_l A_l P_l(\cos \theta) \frac{\sin \left(kr - \frac{l\pi}{2} + \delta_l \right)}{kr}.
$$

(105,8)

Мы должны выбрать постоянные A_l таким образом, чтобы эта функция имела вид (105,3). Для этого воспользуемся полученным в § 34 разложением плоской волны по сферическим. Асимптотический вид этого разложения есть (34, 1а)

$$
e^{ikz} \approx \sum_l i^l (2l + 1) P_l(\cos \theta) \frac{\sin \left(kr - \frac{l\pi}{2} \right)}{kr}.
$$

Вычитая e^{ikz} из (105,8), имеем:

$$
\psi - e^{ikz} \approx \sum_l \frac{1}{kr} P_l(\cos \theta) \left\{ A_l \sin \left(kr - \frac{l\pi}{2} + \delta_l \right) - \right.

- i^l (2l + 1) \sin \left(kr - \frac{l\pi}{2} \right) \}\right).
$$

Эта разность должна представлять собой расходящуюся волну. Для этого во всех заключённых в фигурные скобки выражениях, каждое из которых можно написать в виде:

$$
\frac{1}{2i} e^{i \left(kr - \frac{l\pi}{2} \right)} \left[A_l e^{i\delta_l} - i^l (2l + 1) \right] -

- \frac{1}{2i} e^{-i \left(kr - \frac{l\pi}{2} \right)} \left[A_l e^{-i\delta_l} - i^l (2l + 1) \right],
$$

dолжен выпасть член с e^{-ikr}. Отсюда находим для искомых коэффициентов A_l:

$$
A_l = i^l (2l + 1) e^{i\delta_l}.
$$

(105,9)

Для коэффициента при $\frac{1}{r} e^{ikr}$ в разности $\psi - e^{ikz}$ получаем:

$$
f(0) = \frac{1}{2ik} \sum_{l=0}^{\infty} (2l + 1) \left[e^{2i\delta_l} - 1 \right] P_l(\cos \theta).
$$

(105,10)

Эта формула решает задачу о выражении амплитуды рассеяния, а с нею и эффективного сечения, через фазы δ_l (Факсен, Хольцммарк, 1927 г).
Если проинтегрировать $d\sigma$ по всем углам θ, то мы получим полное эффективное сечение рассеяния σ, представляющее собой отношение полной вероятности рассеяния частицы (в единицу времени) к плотности потока вероятности в падающей волне. Подставляя (105,10) в интеграл

$$
\sigma = 2\pi \int_{0}^{\pi} |f(\theta)|^2 \sin \theta \, d\theta
$$

и помня, что полиномы Лежандра с различными l взаимно ортогональны, а

$$
\int_{0}^{\pi} P_l^2(\cos \theta) \sin \theta \, d\theta = \frac{2}{2l+1},
$$

получим следующее выражение для полного эффективного сечения:

$$
\sigma = \frac{4\pi}{k^2} \sum_{l=0}^{\infty} (2l+1) \sin^2 \delta_l.
$$

(105,11)

§ 106. Исследование общей формулы

Полученные формулы применимы, принципиально, к рассеянию в любом поле $U(r)$, обращающемуся на бесконечности в нуль. Остаётся, однако, вопрос о сходимости рядов, представляющих эффективные сечения.

Для оценки порядка величины фаз δ_l с большими значениями l воспользуемся тем, что при больших l движение квазиклассично (см. § 49). Поэтому фаза волновой функции определяется интегралом

$$
\int_{r_0}^{r} \sqrt{k^2 - \frac{(l+1/2)^2}{r^2} - \frac{\mu U(r)}{k^2}} \, dr \mp \frac{\pi}{4},
$$

где r_0 есть корень полукоренного выражения ($r > r_0$ есть классически достижимая область движения). Вычтя отсюда фазу

$$
\int_{r_0}^{r} \sqrt{k^2 - \frac{(l+1/2)^2}{r^2}} \, dr \mp \frac{\pi}{4},
$$

волновой функции свободного движения и положив $r \to \infty$, мы получим, по определению, величину δ_l. При больших l значение r_0 тоже
велико; поэтому во всей области интегрирования $U(r)$ мало, и мы получаем приближённо:

$$\delta_t = - \int_{r_0}^{\infty} \frac{\mu U(r) dr}{h^2 \sqrt{k^2 - \frac{(l + \frac{1}{2})^2}{r^2}}}.$$ \hspace{1cm} (106,1)

По порядку величины этот интеграл (если он сходится) равен:

$$\delta_t \sim \frac{\mu U(r_0)}{kh^2} r_0.$$ \hspace{1cm} (106,2)

Порядок величины r_0 есть $r_0 \sim l/k$.

Если $U(r)$ обращается на бесконечности в ноль, как $1/r^n$ с $n > 1$, то интеграл (106,1) сходится, и фазы δ_t конечны. Напротив, при $n \leq 1$ интеграл расходится, так что фазы δ_t оказываются бесконечными. Это относится к произвольным l, так как сходимость или расходимость интеграла (106,1) зависит от поведения $U(r)$ при больших r, а на больших расстояниях (где поле $U(r)$ уже слабо) радиальное движение квазиклассично при любом l. Как надо понимать формулы (105,10—11) при бесконечных δ_t, будет указано ниже.

Рассмотрим сначала сходимость ряда (105,11), представляющего полное эффективное сечение. При больших l фазы $\delta_t \ll 1$, как это видно из (106,2), если учесть, что $U(r)$ спадает быстрее чем $1/r$. Поэтому можно положить $\sin^2 \delta_t \equiv \delta_t^2$, и таким образом сумма далёких членов ряда (105,11) будет порядка $\sum l_1^2$. Согласно известному интегральному признаку сходимости рядов, заключаем, что рассматриваемый ряд сходится, если сходится интеграл $\int l_1^2 dU$. Подставляя сюда (106,2) и заменяя l на kr_0, получаем интеграл

$$\int_0^{\infty} U^2(r_0) r_0^2 dr_0.$$

Если $U(r)$ спадает на бесконечности, как $1/r^n$ с $n > 2$, этот интеграл сходится, и полное эффективное сечение конечно. Напротив, если поле $U(r)$ убывает, как $1/r^2$ или ещё медленнее, то полное эффективное сечение оказывается бесконечным. Физически это связано с тем, что при медленном убывании поля с расстоянием вероятность рассеяния на малые углы становится очень большой. Напомним в этой связи, что в классической механике во всяком поле, обращающемся в нуль только при $r \to \infty$, частица, проходящая на любом сколь угодно большом, но конечном, прицельном расстоянии, всё же испытывает отклонение на некоторый малый, но отличный от нуля угол; поэтому полное эффективное сечение рассеяния оказывается бесконечным при всяком законе спадания $U(r)$. В квантовой механике такое рассуждение
неприменимо уже потому, что говорить о рассеянии на некоторый угол можно лишь при условии, чтобы этот угол был велик по сравнению с неопределенностью в направлении движения частицы. Если же «прицельное расстояние» известно с точностью до $\Delta \rho$, то тем самым создается неопределенность $h/\Delta \rho$ в поперечной компоненте импульса, т. е. неопределенность $\sim h/\nu \Delta \rho$ в угле.

Ввиду большой роли, которую играет рассеяние на малые углы при медленном законе убывания $U(r)$, естественно возникает вопрос — не будет ли расходиться амплитуда рассеяния $f(\theta)$ при $\theta = 0$ даже при $U(r)$, убывающем быстрее, чем $1/r^2$. Положив в (105,10) $\theta = 0$, получаем для далеких членов суммы выражение, пропорциональное $\sum \delta_0$. Рассуждая, как в предыдущем случае, приходим при отыскании критерия конечности суммы к интегралу

$$\int_0^\infty U^2(r_0)r_0^2dr_0,$$

расходящемуся уже при $U(r) \propto 1/r^n$, $n \leq 3$. Таким образом дифференциальное эффективное сечение рассеяния обращается в бесконечность при $\theta = 0$ в полях, спадающих, как $1/r^3$ или медленнее.

Наконец, остановимся на случае, когда сама фаза δ_0 бесконечна, что имеет место при $U(r) \propto 1/r^n$, $n < 1$. Заранее очевидно из полученных выше результатов, что при таком медленном убывании поля будет бесконечным как полное эффективное сечение, так и амплитуда рассеяния при $\theta = 0$. Остаётся, однако, вопрос о вычислении $f(\theta)$ для $\theta \neq 0$. Прежде всего заметим, что имеет место формула

$$\sum_{l=0}^{\infty} (2l + 1) P_l(\cos \theta) = 2 \delta(1 - \cos \theta). \quad (106,3)$$

Другими словами, при всех $\theta \neq 0$ эта сумма равна нулю. Поэтому в выражении (105,10) для амплитуды рассеяния можно при $\theta \neq 0$ опустить единицу в квадратных скобках в каждом члене суммы, так что останется

$$f(\theta) = \frac{1}{2ik} \sum_{l=0}^{\infty} (2l + 1) P_l(\cos \theta) e^{2i\delta_0}. \quad (106,4)$$

Если умножить правую сторону равенства на постоянный множитель $e^{-2i\delta_0}$, то это не скажется на эффективном сечении, определяемом квадратом модуля $|f(\theta)|^2$, а фаза комплексной функции $f(\theta)$ изменится лишь на несущественную постоянную. С другой стороны, в разности $\delta_0 - \delta_0$ выражений (106,1) расходящийся интеграл от

1) Эта формула представляет собой разложение δ-функции по полиномам Лежандра и непосредственно проверяется умножением с обеих сторон на $\sin \theta P_l(\cos \theta)$ и интегрированием по $d\theta$.

§ 107. Связь между законом рассеяния и дискретными уровнями энергии

На основании теории аналитических функций можно установить некоторую связь, существующую между законом рассеяния частиц (с положительной энергией) в данном поле и дискретным спектром отрицательных энергий в том же поле.

Для упрощения рассуждений рассмотрим движение с моментом \(l = 0 \) (хотя получаемые результаты справедливы для любого \(l \)). Пусть \(U(r) \) есть поле, отрицательное во всём пространстве и обращающееся на бесконечности в нуль быстрее чем \(1/r \). Асимптотический вид волновой функции частицы с положительной энергией есть

\[
\psi = \frac{1}{r} \left\{ a(k)e^{ikr} + b(k)e^{-ikr} \right\}, \tag{107,1}
\]

где \(k = \frac{1}{\hbar} \sqrt{2\mu E} \) — волновой вектор частицы, а \(a(k) \) и \(b(k) \) — постоянные, являющиеся функциями от \(k \). Волновая функция предполагается нормированной каким-либо определённым условием, скажем, условием \(\psi(0) = 1 \). Функции \(a(k) \) и \(b(k) \) не независимы, а связаны друг с другом простыми соотношениями. Одно из них следует непосредственно из того, что \(\psi \) должно быть действительным:

\[
b(k) = a^*(k). \tag{107,2}
\]

Будем формально рассматривать \(k \) как комплексную переменную. \(a(k) \) и \(b(k) \) будут тогда функциями комплексного переменного, попрежнему связанными равенством (107,2) (символ \(a^*(k) \) означает при этом, что надо перейти к комплексно сопряжённой с \(a(k) \) функции, оставив при этом прежнее значение \(k \)), а также равенством

\[
a(-k) = b(k), \tag{107,3}
\]

вытекающим из самого определения \(a \) и \(b \) в формуле (107,1). Функция с комплексным \(k \), являясь аналитическим продолжением решения уравнения Шредингера с действительным \(k \), попрежнему будет решением уравнения Шредингера, удовлетворяющим тому же условию в начале координат. Однако, вообще говоря, эта функция не удовлетворяет теперь условию конечности во всём пространстве: при \(r \to \infty \) первый или второй член (смотра по знаку мнимой части \(k \)) обращается в бесконечность.
В частности, при чисто мнимых \(k \) (107,1) определяет асимптотический вид решения уравнения Шредингера с отрицательной энергией. Однако, для того чтобы это решение соответствовало стационарному состоянию дискретного спектра, \(\psi \) должно удовлетворять условию конечности на бесконечности. Каждому отрицательному значению энергии соответствует пара чисто мнимых значений \(k \), отличающихся знаком. Из сказанного выше следует, что на верхней части мнимой оси (в комплексной плоскости \(k \)) отрицательным собственным значениям энергии должны соответствовать нули функции \(b(k) \) (так, чтобы в выражении (107,1) отсутствовал второй член), а на нижней части мнимой оси — нули функции \(a(k) \).

С другой стороны, сравнивая (107,1) с асимптотическим выражением волновой функции частицы с положительной энергией, написанным в форме (105,7),

\[
\psi \approx \frac{a_0}{2ir} \left(e^{i(kr+\delta_0)} - e^{-i(kr+\delta_0)} \right), \tag{107,4}
\]

мы видим, что отношение \(\frac{a(k)}{b(k)} \) связано с фазой \(\delta_0 \) посредством

\[
e^{2i\delta_0(k)} = -\frac{a(k)}{b(k)}. \tag{107,5}
\]

Поэтому мы можем сказать, что дискретным уровням энергии соответствуют в верхней полуплоскости комплексного переменного \(k \) полюса функции \(e^{2i\delta_0(k)} \).

Совершенно аналогичным образом можно притти к такому же результату для уровней с отличным от нуля моментом \(l \), — для них в верхней полуплоскости обращается в бесконечность функция \(e^{2i\varphi_l(k)} \).

Но величины \(e^{2i\varphi_l} \) есть как раз те, которые входят в общую формулу (105,10) для амплитуды рассеяния. Мы видим, что амплитуда рассеяния, рассматриваемая формально как функция комплексного \(k \), имеет особые точки при значениях \(k \), лежащих в верхней полуплоскости и соответствующих дискретным уровням энергии.

Необходимо, однако, подчеркнуть, что обратная теорема не имеет места: функция \(e^{2i\varphi_l} = a/b \) (и аналогично для \(l \neq 0 \)) может обратиться в бесконечность в верхней полуплоскости не только в нулях функции \(b(k) \), но и в полюсах функции \(a(k) \), наличие которых отнюдь не исключено и которым не соответствуют отрицательные

1) Никаких других нулей, кроме лежащих на самой мнимой оси, функции \(a(k) \) и \(b(k) \) (соответственно в нижней и верхней полуплоскостях) не имеют. Это обстоятельство непосредственно следует из того, что уравнение Шредингера имеет только действительные собственные значения.
уровни энергии дискретного спектра. Таким образом взаимно одно-
значного соответствия между полюсами амплитуды рассеяния и уров-
нями энергии дискретного спектра не существует (Д. тер Хаар, С.Ма,
1946).

§ 108. Рассеяние медленных частиц

Эффективное сечение рассеяния есть функция от скорости рас-
сеиваемых частиц, и можно поставить вопрос о пределе, к кото-
рому оно стремится при малых скоростях (т. е. малых \(k\)). Решение
этих вопросов требует выяснения зависимости фаз \(\delta_t\) от \(k\) при ма-
лых значениях последнего.

Пусть \(r_0\) есть некоторое значение \(r\), настолько большое, что
\(U(r_0)\) можно считать малым, но в то же время малое по сравнению
с \(1/k\). При \(r \ll r_0\) в точном уравнении Шредингера (105,6) можно
пренебречь лишь членом с \(k^3\):

\[
R_t'' + \frac{2}{r} R_t' - \frac{l(l+1)}{r^2} R_t = \frac{2\mu}{\hbar^2} U(r) R_t. \tag{108,1}
\]

В области же \(r_0 \ll r \ll 1/k\) можно опустить также и член с \(U(r)\),
так что остается

\[
R_t'' + \frac{2}{r} R_t' - \frac{l(l+1)}{r^2} R_t = 0. \tag{108,2}
\]

Общее решение этого уравнения имеет вид:

\[
R_t = c_1 r^l + \frac{c_2}{r^{l+1}}. \tag{108,3}
\]

Значения постоянных \(c_1\) и \(c_2\) могут быть, принципиально,
определены лишь путем решения уравнения (108,1) с конкретной функцией \(U(r)\);
они, разумеется, различны для разных \(l\). На еще больших расстоя-
ниях, \(r \sim 1/k\), в уравнении Шредингера может быть опущен член
с \(U(r)\), но нельзя пренебрегать членом с \(k^3\), так что имеем:

\[
R_t'' + \frac{2}{r} R_t' + \left[\frac{k^2}{r^2} - \frac{l(l+1)}{r^2}\right] R_t = 0. \tag{108,4}
\]

Решение этого уравнения будет (см. § 33)\(^1\):

\[
R_t = c_1 (-1)^l \frac{(2l+1)!!}{(2l+1)!} r^l \left(\frac{d}{dr}\right)^l \frac{\sin kr}{r} +
\]

\[
- c_2 (-1)^l \frac{r^l}{(2l-1)!!} \left(\frac{d}{dr}\right)^l \frac{\cos kr}{r}. \tag{108,5}
\]

\(^1\) Знак \(!!\) обозначает произведение всех чисел одинаковой чётности
dо данного включительно.
Постоянные коэффициенты мы выбрали здесь таким образом, чтобы при \(kr \ll 1 \) это решение переходило бы в (108,3); тем самым достигается «сшивание» решения (108,3) в области \(r \ll 1/k \) с решением (108,5) в области \(r \sim 1/k \).

Наконец, при \(kr \gg 1 \) решение (108,5) принимает асимптотический вид (§ 33)

\[
R_l \approx c_1 (2l + 1)! \left(\frac{\sin \left(kr - \frac{\pi l}{2} \right)}{r^{k^{l+1}}} + \frac{c_0 k^l}{(2l-1)!} r \cos \left(kr - \frac{\pi l}{2} \right) \right).
\]

Эта сумма может быть представлена в виде:

\[
R_l \approx \text{const.} \left(\frac{\sin \left(kr - \frac{\pi l}{2} + \delta_l \right)}{r} \right),
\]

(108,6)

где фаза \(\delta_l \) определяется равенством

\[
tg \delta_l = \frac{c_2}{c_1 (2l-1)! (2l+1)!} k^{2l+1}.
\]

(108,7)

В частности,

\[
tg \delta_0 = \beta k, \quad \beta = \frac{c_2}{c_1}.
\]

(108,8)

Поскольку \(k \ll 1 \), то \(tg \delta_l \approx \delta_l \), и мы приходим к выводу, что в предельном случае малых скоростей фаза \(\delta_l \) пропорциональна \(k^{2l+1} \):

\[
\delta_l \propto k^{2l+1}.
\]

(108,9)

Таким образом все фазы \(\delta_l \) с \(l \neq 0 \) оказываются малыми по сравнению с \(\delta_0 \). Соответственно этому, в формулах (105,10—11) пренебрегаем всеми членами суммы, кроме первого, и получаем для амплитуды рассеяния

\[
f(0) \approx \frac{1}{2ik} \left(e^{2i\delta_0} - 1 \right) \approx \frac{\delta_0}{k} = \beta,
\]

так что

\[
d\sigma = \beta^2 d\sigma_0,
\]

(108,10)

а полное эффективное сечение

\[
\sigma = 4\pi\beta^2.
\]

(108,11)

Мы приходим, следовательно, к существенному результату, что при малых скоростях рассеяние изотропно по всем направлениям, а эффективное сечение не зависит от скорости.

1) Если сталкивающиеся частицы обладают спином, то полный момент системы совпадает (при \(l = 0 \)) с полным спином \(S \). При этом амплитуда рассеяния \(\frac{\gamma}{\beta} \), вообще говоря, различна при различных \(S \).
Формулы (108, 10—11) применимы для скоростей, при которых $1/k$ (т. е. дебройлевская длина волны частицы) велика по сравнению с расстоянием r_0, на котором поле $U(r)$ становится малым. Это, по существу, предполагалось нами с самого начала, когда мы рассматривали уравнение Шредингера в области $r_0 \ll r \ll 1/k$. Практически для оценки расстояния r_0 можно брать значение, при котором $U(r)$ сравнивается с полной энергией рассеиваемой частицы.

Мы оставили до сих пор в стороне вопрос об условиях, которым должно удовлетворять поле $U(r)$ для того, чтобы произведённые вычисления были справедливыми. Оценим погрешность, связанную с пренебрежением $U(r)$ в уравнении (108,1). Для этого решаем это уравнение последовательными приближениями. Положив $R_l = R_l^{(0)} + R_l^{(1)}$, где $R_l^{(0)}$ есть решение (108,3) уравнения без правой части, а $R_l^{(1)}$ — малая добавка, имеем:

$$R_l^{(1)''} + \frac{2r}{r} R_l^{(1)'} - \frac{l(l+1)}{r^2} R_l^{(1)} = \frac{2\nu U(r)}{h^2} R_l^{(0)}. \tag{108,12}$$

В $R_l^{(0)}$ опускаем член с $r^{-(l+1)}$, как малый при больших r. Пусть $U(r)$ спадает на больших расстояниях, как $1/r^n$ (экспоненциальному затуханию соответствовало бы $n \to \infty$). Тогда правая сторона уравнения пропорциональна r^{l-n}, а потому $R_l^{(1)}$ пропорционально r^{2l+1-n}. Для справедливости произведённых выше вычислений необходимо, чтобы на больших расстояниях $R_l^{(1)}$ было мало по сравнению с обоими членами в (108,3). Это требует выполнения условия $2l + 1 - n < -(l+1)$ или

$$n > (2l + 3).$$

Таким образом закон (108,9) зависимости δ_l от k имеет место лишь при $n > 2l + 3$. В частности, δ_0 пропорционально k при $n > 3$. Это и есть условие применимости полученных выше результатов: эффективное сечение стремится при $k \to 0$ к постоянному пределу только в поле $U(r)$, спадающем на больших расстояниях быстрее чем $1/r^3$.

Что касается фазы δ_l с $l > \frac{n-3}{2}$, то мы выясним их зависимость от k, воспользовавшись следующим качественным методом. При малом δ_l асимптотическое выражение (108,6) волновой функции можно написать в виде:

$$R_l = \text{const.} \left\{ \frac{\sin \left(kr - \frac{\pi l}{2} \right)}{r} + \delta_l \frac{\cos \left(kr - \frac{\pi l}{2} \right)}{r} \right\}.$$

Отсюда видно, что по порядку величин фаза δ_l равна относительному значению поправки к волновой функции свободного движения (первый член в скобках) при $kr \sim 1$. Поэтому, например, мы могли бы получить закон (108,9), не выводя количественной формулы (108,7),
а просто взяв отношение второго члена в (108,3) к первому при
\(r \sim 1/k \).

При \(2l > n - 3 \) в качестве поправки к волновой функции свободного движения надо взять не \(c_2 r^{l+1} \), как в (108,3), а решение \(R_l^{(1)} \) уравнения (108,12). Так как \(R_l^{(1)} \propto r^{2+l-n} \), то, взяв его отношение к \(c_1 r^l \) при \(r \sim 1/k \), найдём, что \(\delta \) пропорционально \(k^{n-2} \).

Таким образом вместо (108,9) правильнее писать:
\[\delta_l \propto k^{2l+1} \] (при \(2l < n - 3 \)), \[\delta_0 \propto k^{n-2} \] (при \(2l > n - 3 \)). (108,13)

Все \(\delta \) с \(l \neq 0 \), разумеется, попрежнему остаются малыми по сравнению с \(\delta_0 \) (при \(n > 3 \)).

Задачи

1. Определить эффективное сечение рассеяния сферической потенциальной ямы глубины \(U_0 \) и радиуса \(a \) \((U (r) = -U_0 \) при \(r < a, \) \(U (r) = 0 \) при \(r > a \). \) Радиус предполагается малым по сравнению с де-Броилевской длиной волны частиц \((ka \ll 1) \).

Решение. Нас интересует только фаза \(\delta \). Поэтому полагаем в уравнении (108,1) \(l = 0 \) и получаем для функции \(\chi (r) = rR_0 (r) \) при \(r < a \) уравнение:
\[\chi'' + k^2 \chi = 0, \quad \chi = \frac{1}{h \sqrt{2 \mu U_0}}. \]

Решением, обращающимся при \(r = 0 \) в нуль \((\chi/r_0) \) должно быть конечным при \(r = 0 \), является:
\[\chi = A \sin \frac{kr}{r_0}. \quad (r < a). \]

При \(r > a \) функция \(\chi \) удовлетворяет уравнению \(\chi'' + k^2 \chi = 0 \) (уравнение (108,4) с \(l = 0 \)), откуда
\[\chi = B \sin (kr + \delta_0), \quad (r > a). \]

Приравнивая при \(r = a \) логарифмические производные от (1) и (2), получим уравнение
\[\frac{1}{\lambda} \frac{k}{\lambda} = k \frac{k}{\lambda} + \delta_0 \equiv \frac{k}{ka + \delta_0}, \]
откуда определяем \(\delta_0 \). В результате для эффективного сечения получим 1):
\[\sigma = 4\pi \left(\frac{1g \lambda a - \lambda a}{\lambda} \right)^2. \]

Если изменить знак \(U_0 \) (в связи с чем надо заменить \(\lambda \) на \(i\lambda \)), то мы получим для эффективного сечения рассеяния от «потовенциального горба» \((U (r) = U_0 \) при \(r < a, \) \(U (r) = 0 \) при \(r > a \) формулу
\[\sigma = 4\pi \left(\frac{1h \lambda a - \lambda a}{\lambda} \right). \]

При \(U_0 \to \infty \) имеем:
\[\sigma = 4\pi a^2. \]

1) Эта формула становится неприменимой, если ширина и глубина ямы таковой, что \(\lambda a \) близко к нечётному кратному от \(\pi/2 \). При таких значениях \(\lambda a \) среди дискретного спектра отрицательных уровней энергии имеется уровень, близкий к нулю (см. задачу к § 33), и рассеяние описывается формулами, которые будут получены в следующем параграфе.
Это соответствует рассеянию от непроницаемой сферы радиуса \(a \); отметим, что классическая механика дала бы результат, в четыре раза меньше, \(\sigma \approx \pi a^2 \).

2. Определить эффективное сечение рассеяния частиц с малой энергией в поле \(U = a/r^4 \), \(a > 0 \).

Решение. Уравнение (108.1) с \(l = 0 \) есть:

\[
\chi'' - \frac{2\mu_0}{h^2} \frac{\chi}{r^4} = 0.
\]

Подставив

\[
\chi = \varphi \sqrt{r}, \quad r = \frac{i}{h} \sqrt{2\mu a} \frac{1}{x}
\]

оно приводится к виду:

\[
\frac{d^2 \varphi}{dx^2} + \frac{1}{x} \frac{d \varphi}{dx} + \left(1 - \frac{1}{4x^2} \right) \varphi = 0,
\]

t. е. к уравнению Бесселя порядка 1/2. Решением, обращающимся в нуль при \(r = 0 \) (т. е. \(x = \infty \)), с точностью до постоянного множителя будет выражение

\[
\chi = \sqrt{r} H^{(1)}_{1/2} \left(i \frac{\sqrt{2\mu a}}{hr} \right),
\]

где \(H^{(1)}_{1/2} \) — функция Ганкеля первого рода порядка 1/2. С помощью известных формулу

\[
H^{(1)}_{p} (z) = \frac{i}{\sin p \pi} \left[e^{-i p \pi} J_p (z) - J_{-p} (z) \right]; \quad J_p (z) \approx \frac{z^p}{2^p \Gamma (p + 1)} \quad (z \ll 1)
\]

получаем для функции \(\chi \) на больших расстояниях \((\sqrt{2\mu a} \ll r \ll 1/k)\) выражение

\[
\chi = \text{const.} \left[r \left(\frac{h^2}{2\mu a} \right)^{1/4} - \left(\frac{2\mu a}{h^2} \right)^{1/4} \right].
\]

Эта формула соответствует формуле (108.3), так что отношение коэффициентов в ней непосредственно определяет \(\delta_0 \):

\[
\delta_0 = \frac{\sqrt{2\mu a}}{h} k,
\]

и эффективное сечение:

\[
\tau = \frac{8\pi \mu a}{h^2}.
\]

Условием применимости этой формулы является \(k \ll \hbar / \sqrt{2\mu a} \) (малость аргумента функции Ганкеля в (1) при \(r \sim 1/k \)).

§ 109. Резонансное рассеяние

Особого рассмотрения требует рассеяние медленных частиц в поле притяжения в том случае, когда среди дискретного спектра отрицательных уровней энергии имеется уровень (с моментом \(l = 0 \)), близкий к нулю; мы будем обозначать этот уровень посредством — \(\varepsilon \) \(\varepsilon > 0 \). Энергия \(E \) рассеиваемой частицы, будучи малой положительной,
величиной, близка к уровню — \(\varepsilon \), т. е. находится, как говорят, почти в резонансе с ним. Это приводит, как мы увидим, к значительному увеличению эффективного сечения рассеяния.

Наличие неглубокого уровня можно учесть в теории рассеяния удобным формальным методом, основанным на следующих замечаниях. Уравнение Шредингера, определяющее стационарное состояние с энергией — \(\varepsilon \), имеет вид:

\[
\gamma'' - \frac{2\mu}{\hbar^2} (\varepsilon + U(r)) \gamma = 0
\] \hspace{1cm} (109,1)

(\(\gamma = rR_0 \)). В области малых \(r \), где \(|U(r)| \) велико по сравнению с \(\varepsilon \), можно написать:

\[
\gamma'' - \frac{2\mu}{\hbar^2} \gamma U(r) = 0.
\] \hspace{1cm} (109,2)

Решая это уравнение с граничным условием \(\gamma(0) = 0 \), мы получим функцию, определённую с точностью до несущественного постоянного множителя (логарифмическая производная \(\gamma'/\gamma \) эту постоянную не содержит). В области же больших \(r \) можно, напротив, пренебречь \(U(r) \) по сравнению с \(\varepsilon \), так что имеем:

\[
\gamma'' - \frac{2\mu}{\hbar^2} \varepsilon \gamma = 0.
\]

Решением этого уравнения, не расходящимся при \(r \to \infty \) будет:

\[
\gamma = \text{const.} \ e^{-\frac{\sqrt{2\mu\varepsilon}}{\hbar} r}.
\] \hspace{1cm} (109,3)

Оно должно быть «сшито» с решением уравнения (109,2) условием непрерывности \(\gamma'/\gamma \) при \(r = r_0 \), где \(r_0 \) определяет размеры области, в которой поле \(U(r) \) заметно отлично от нуля. Таким образом имеем:

\[
\left. \frac{\gamma'}{\gamma} \right|_{r = r_0} = -\frac{\sqrt{2\mu\varepsilon}}{\hbar}.
\] \hspace{1cm} (109,4)

Мы видим, что величина \(\varepsilon \) уровня определяется значением при \(r = r_0 \) логарифмической производной, вычисленной по решению уравнения (109,2).

При решении задачи о рассеянии мы можем не рассматривать вовсе области малых \(r \), в которой действует поле \(U(r) \), и формально учесть наличие уровня — \(\varepsilon \) (предполагая его известным). Тем, что на волновую функцию рассеиваемой частицы налагается условие

\[
\left. \frac{\gamma'}{\gamma} \right|_{r \to 0} = -\frac{\sqrt{2\mu\varepsilon}}{\hbar}.
\] \hspace{1cm} (109,5)

Мы видели в предыдущем параграфе, что вне области действия поля рассеиваемая частица описывается волновой функцией

\[
\gamma = rR_0 = c_1 r + c_2
\]
(формула (108,3) с \(l = 0 \)). Подставив в (109,5), найдём:

\[
\frac{c_1}{c_2} = -\frac{V_{2\mu_E}}{h}.
\]

Следовательно, согласно (108,8), для фазы \(\delta_0 \) получим:

\[
\tan \delta_0 = \frac{hk}{\sqrt{2\mu_E}} = -\frac{\sqrt{\frac{E}{\varepsilon}}}{\varepsilon}.
\]

(109,6)

Благодаря малости \(\varepsilon \) фаза \(\delta_0 \) может оказаться в этом случае немалой величиной.

Фазы \(\delta_2 \) с \(l \neq 0 \) остаются попрежнему малыми. Поэтому в амплитуде рассеяния попрежнему можно пренебречь всеми членами с \(l \neq 0 \), так что рассеяние остаётся изотропным по всем направлениям. Однако для полного эффективного сечения теперь имеем

\[
\sigma = \frac{4\pi}{k^2} \sin^2 \delta_0 = \frac{4\pi}{k^2(1 + \cot^2 \delta_0)}
\]

или, подставляя сюда (109,6):

\[
\sigma = \frac{2\pi h^2}{\mu} \frac{1}{E + \varepsilon}.
\]

(109,7)

Таким образом эффективное сечение резонансного упругого рассеяния зависит от энергии рассеиваемой частицы и велико по сравнению с сечением в отсутствии резонанса.

Полученная формула имеет несколько более общий характер, чем сделанное при её выводе предположение. Подвергнем функцию \(U(r) \) небольшому изменению; при этом изменится и логарифмическая производная \(\chi'/\chi \big|_{r=r_0} \), вычисленная по решению уравнения (109,2). Соответствующим изменением \(U(r) \) можно добиться обращения этой производной в нуль, а затем сделать малой положительной величиной. Определяя формально величину \(\varepsilon \) равенством (109,4) с изменённым знаком

\[
\chi' \big|_{r=r_0} = \frac{\sqrt{2\mu_E}}{h},
\]

мы получим для рассеяния ту же формулу (109,7). Величина \(\varepsilon \) является характерной для поля \(U(r) \) постоянной, но отнюдь не является теперь уровнем энергии в этом поле. В таких случаях говорят, что в поле имеется виртуальный уровень, имея в виду, что хотя в действительности никакого близкого к нулю уровня нет, но уже небольшого изменения поля было бы достаточно для того, чтобы такой уровень появился.

1) Формула (109,7) получена Вигнером (1933). Идея приведённого здесь вывода принадлежит Бете и Пайерльсу (1935).

Функция \(\sigma(E) \), определяемая формулой (109,7), имеет особую точку при \(E = -\varepsilon \) в полном согласии с общими утверждениями § 107.
§ 110. Формула Борна

Эффективное сечение рассеяния может быть вычислено в общем виде в очень важном случае; именно, когда рассеивающее поле может рассматриваться как возмущение. В § 45 было показано, что это возможно при выполнении хотя бы одного из двух условий:

\[|U(r)| \ll \frac{\hbar^2}{\mu r^2} \quad (110,1) \]

или

\[|U(r)| \ll \frac{\hbar v}{r} \quad (110,2) \]

В частности, из второго условия видно, что рассматриваемое приближение во всяком случае применимо для достаточно быстрых частиц. При выполнении же первого условия оно применимо для всех скоростей.

Энергия рассеиваемой частицы положительна, т. е. лежит в области непрерывного спектра. Согласно общей формуле (43,1) теории возмущений, вероятность перехода между состояниями непрерывного спектра даётся формулой

\[dw_{v_0} = \frac{2\pi}{\hbar} |U_{v_0}|^2 \delta(E_v - E_{v_0}) dv. \]

В данном случае мы должны применить эту формулу к переходу из состояния падающей частицы с данным начальным импульсом \(p \) в состояние частицы с импульсом \(p' \), рассеянной в элемент телесного угла \(d\sigma \). В качестве «интervalа» состояний \(dv \) можно взять элемент объёма \(dp_x' dp_y' dp_z' \) импульсного пространства. Подставляя вместо \(E_v - E_{v_0} \) разность \((p'^2 - p^2)/2\mu \) энергией свободных частиц с импульсами \(p' \) и \(p \), имеем:

\[dw_{pp'} = \frac{4\pi p}{\hbar} |U_{pp'}|^2 \delta(p'^2 - p^2) dp_x' dp_y' dp_z'. \quad (110,3) \]

Волновыми функциями падающей и рассеянной частиц являются функции свободного движения, т. е. плоские волны:

\[\psi_p = \text{const.} e^{ipr'/\hbar}, \quad \psi_{p'} = \text{const.} e^{ipr/\hbar}. \]

Поскольку мы выбрали в качестве «интervalа» \(dv \) элемент импульсного пространства, то волновая функция \(\psi_{p'} \) должна быть нормирована на \(\delta \)-функцию в импульсном пространстве:

\[\psi_{p'} = \frac{1}{(2\pi \hbar)^{3/2}} e^{ip'r/\hbar} \quad (110,4) \]

(см. (13,8)). Функцию же \(\psi_p \) мы пронормируем на равную единицу плотность потока:

\[\psi_p = \sqrt{\frac{\mu}{p}} e^{ipr/\hbar}. \quad (110,5) \]
§ 110] ФОРУМУЛА БОРНА

Тогда вероятность \((110,3)\) будет иметь размерность площади и представляет собой дифференциальное эффективное сечение рассеяния.

Наличие \(\delta\)-функции в формуле \((110,3)\) означает, что \(p' = p\), т. е. абсолютная величина импульса не меняется, как и должно быть при упругом рассеянии. Можно исключить \(\delta\)-функцию, перейдя к «сферическим координатам» в импульсном пространстве (т. е. заменяя \(dp_x dp_y dp_z\) на \(p'^2 dp' do'\) и проинтегрировав по \(d(p'^2)\)). Интегрирование сводится к замене абсолютного значения \(p'\) на \(p\) в подинтегральном выражении, и мы получим:

\[
d\sigma = \frac{2\pi\hbar p}{h} |U_{p',p}|^2 d\omega.
\]

Подставляя в матричный элемент

\[
U_{p',p} = \int\psi_{p'}^* U\psi_p dV
\]

функции \((110,4-5)\), приходим к следующему окончательному выражению для эффективного сечения рассеяния в элемент телесного угла \(d\omega\):

\[
d\sigma = \frac{\mu^2}{4\pi^2\hbar^4} \left| \int U e^{iqr} dV \right|^2 d\omega,
\]

где мы ввели вектор

\[
q = \frac{1}{\hbar} (p - p')
\]

с абсолютной величиной

\[
q = \frac{2p}{\hbar} \sin \frac{\theta}{2}
\]

(\(\theta\) — угол между \(p\) и \(p'\), т. е. угол рассеяния). Мы видим, что рассеяние с изменением импульса на величину \(\hbar q\) определяется квадратом модуля соответствующей компоненты Фурье поля \(U\).

В таком виде эта формула применима к рассеянию в поле \(U(x, y, z)\), являющемся функцией от координат в любой их комбинации, а не только от \(r\). Но в случае \(U = U(r)\) формула \((110,6)\) может быть подвергнута дальнейшему преобразованию.

В интеграле

\[
\int U(r) e^{iqr} dV
\]

пользуемся сферическими пространственными координатами \(r, \theta, \varphi\) с полярной осью, выбранной в направлении вектора \(q\) (полярный

\[1\) Эта формула была получена Борном (1926). Рассматриваемое здесь приближение в теории столкновений называют часто борновским приближением.\]
угол обозначаем посредством θ в отличие от угла рассеяния θ. Интегрирование по θ и ϕ может быть произведено, и в результате получим:

$$\int_0^\infty \int_0^{2\pi} \int_0^\pi U(r) e^{iqr \cos \theta} r^2 \sin \theta d\theta d\phi dr = 4\pi \int_0^\infty U(r) \frac{\sin qr}{q} r dr.$$

Подставляя это выражение в (110,6), получаем следующую формулу для эффективного сечения рассеяния в центрально-симметрическом поле:

$$d\sigma = d_0 \frac{4\mu^2}{\hbar^2} \left| \int_0^\infty U(r) \frac{\sin qr}{q} r dr \right|^2.$$

(110,9)

При $\theta = 0$ (т. е. $q = 0$) стоящий здесь интеграл расходится, если $U(r)$ убывает на бесконечности, как $1/r^3$, или медленнее (в согласии с общими результатами § 106).

Обратим внимание на следующее интересное обстоятельство. Импульс p частицы и угол рассеяния θ входят в (110,9) только посредством q. Таким образом в борновском приближении эффективное сечение зависит от p и θ только в комбинации $p \sin \frac{\theta}{2}$.

В предельном случае малых скоростей можно положить в (110,6) $e^{iqr} \approx 1$, так что

$$d\sigma = \frac{\mu^2}{4\pi^3h^2} \left| \int UdV \right|^2 d_0,$$

(110,10)

а если $U = U(r)$, то

$$d\sigma = \frac{4\mu^2}{\hbar^2} \left| \int_0^\infty U(r) r^2 dr \right|^2 d_0.$$

(110,11)

Рассеяние оказывается здесь изотропным по направлениям и не зависящим от скорости, что находитя в согласии с общими результатами § 108.

В обратном предельном случае больших q (что предполагает большие скорости и не слишком малые углы рассеяния) множитель e^{iqr} есть быстро осциллирующая функция, и интеграл от его произведения на медленно меняющуюся функцию U близок к нулю. Таким образом при увеличении скорости эффективное сечение (при не слишком малых θ) стремится к нулю, как это и следовало ожидать.

Легко видеть, что при больших скоростях полное эффективное сечение (если интеграл $\int d\sigma$ вообще сходится) обратно пропорционально квадрату скорости, т. е. первой степени энергии. Действительно, при больших скоростях рассеяние происходит в основном на
малые углы. Поэтому можно положить \(\sin (\theta/2) \approx \theta/2 \), так что дифференциальное эффективное сечение имеет вид \(d\sigma = f(\nu\delta) d\theta \). Интеграл по \(d\theta \) сходится при больших \(\theta \) настолько быстро, что интегрирование можно распространить без особой погрешности до бесконечности, так что

\[
\sigma = 2\pi \int_0^\infty f(\nu\theta) \theta d\theta.
\]

Вводя \(\nu\theta \) в качестве новой переменной интегрирования, получим указанный результат.

В ряде физических применений теории столкновений \(^1\) в качестве характерной величины, характеризующей рассеяние, входит интеграл

\[
\int (1 - \cos \theta) d\sigma.
\]

Рассуждения, в точности аналогичные только что произведённым, показывают, что при больших скоростях эта величина обратно пропорциональна квадрату энергии.

Формула Борна может быть получена, конечно, и из общей теории рассеяния, развитой в § 105. Борновскому приближению соответствует случай, когда все фазы \(\delta_i \) малы; сверх того, необходимо, чтобы эти фазы могли быть вычислены из уравнения Шредингера, в котором потенциальная энергия рассматривается как возмущение.

Задачи

1. Определить в борновском приближении эффективное сечение рассеяния в поле \(U = U_0 e^{-ar^2} \).

Решение. Выбирая ось \(x \) в направлении вектора \(q \), имеем из (110,6):

\[
d\sigma = \frac{\mu^2 U_0^2}{4\pi^2 \hbar^4} \left| \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\alpha (x^2 + y^2 + z^2) - iqz} dx dy dz \right|^2 d\theta.
\]

Производя интегрирование, найдём:

\[
d\sigma = \frac{\pi \mu^2 U_0^2}{4\alpha^3 \hbar^4} e^{-\frac{2\rho^2}{\hbar^2 \alpha^2}} \sin^2 \frac{\theta}{2} d\theta.
\]

Полное эффективное сечение имеет вид:

\[
\sigma = \frac{\pi^2 U_0^2}{2\alpha^2 \hbar^2 a^2} \left(1 - e^{-\frac{2\rho^2}{\hbar^2 \alpha^2}} \right).
\]

Эти формулы применимы при всех скоростях, если \(U_0 \ll \frac{\hbar^2 a^2}{\mu} \) (условие (110,1) с \(r \sim 1/\alpha \)).

\(^1\) Например, при рассмотрении диффузии.
2. Найти эффективное сечение рассеяния в поле \(U = a/r^3 (a > 0) \). Предполагается, что частица настолько медленна, что её волновой вектор \(k \ll h^2/\mu a \).

Решение. Пусть \(r_0 \) есть некоторое значение \(r \), такое, что \((1/k) \gg r_0 \gg \mu a / h^2 \). Будем рассматривать рассеяние, как вызывающееся наложением двух полей, из которых одно равно нулю при \(r < r_0 \), а другое — при \(r > r_0 \). При \(r > r_0 \) выполнено условие (110.1) и потому в этом поле применимо борновское приближение. Для соответствующей части амплитуды рассеяния имеем, согласно (110.9):

\[
\frac{2\mu}{h^2} \int_{r_0}^{\infty} \frac{q r}{r_3} \sin qr \, dr = \frac{2\mu a}{h^2 q} \int_{r_0}^{\infty} \frac{\sin qr}{r^2} \, dr = \frac{2\mu a}{h^2} \int_{qr_0}^{\infty} \frac{\sin \xi}{\xi^2} \, d\xi.
\]

В стоящем здесь интеграле наиболее существенна область малых \(\xi \), в которой интеграл расходится логарифмически. Поэтому при \(qr_0 \ll 1 \) (что следует из \(kr_0 \ll 1 \)) этот интеграл равен выражению вида \(\ln (c/qr_0) \), где \(c \) — некоторое число, так что амплитуда рассеяния равна:

\[
\frac{2\mu a}{h^2} \ln \frac{c}{qr_0}.
\] \hspace{1cm} (1)

Для рассеяния в поле, обрабатывающего при \(r > r_0 \), мы можем применить результаты § 108, согласно которому амплитуда рассеяния медленных частиц (в поле, достаточно быстро убывающем с расстоянием) равна постоянной. Складывая её с амплитудой (1), мы тем самым лишь изменяем число \(c \). Возволяя полную амплитуду в квадрат, найдём окончательно эффективное сечение в виде:

\[
d\sigma = \frac{4\pi^2 a^2}{h^4} \ln^2 \frac{\text{const.}}{q} \, d\omega
\]

(где const. — постоянная порядка \(h^2/\mu a \)).

§ 111. Квазиклассический случай

Представляет интерес проследить, каким образом происходит предельный переход от квантовомеханической теории рассеяния к классической.

Заранее очевидно, что поле \(U(r) \) и энергия \(E \) рассеиваемой частицы должны быть таковы, чтобы выполнялись условия квазиклассичности движения. Оказывается, однако, что этого ещё недостаточно для того, чтобы и рассеяние было квазиклассическим.

Исклучая из рассмотрения равный нулю угол рассеяния \(\theta \), мы можем записать амплитуду рассеяния, даваемую точной квантова-механической теорией, в виде (106.4):

\[
f(\theta) = \frac{1}{2ik} \sum_{l=0}^{\infty} (2l + 1) P_l (\cos \theta) e^{2il\xi}.
\] \hspace{1cm} (111.1)

Мы знаем, что квазиклассические волновые функции характеризуются большой величиной их фазы. Поэтому естественно предположить заранее, что предельному переходу в теории рассеяния соответствуют большие фазы \(\delta_l \). Значение суммы (111.1) определяется
в основном членами с большими \(l \). Поэтому можно заменить \(P_t(\cos \theta) \) асимптотическим выражением (49,6), которое мы напишем в виде:

\[
P_t(\cos \theta) \approx \frac{i}{\sqrt{2\pi l \sin \theta}} \left[e^{i \left(t + \frac{1}{2} \right) \theta} + e^{-i \left(t + \frac{1}{2} \right) \theta} \right].
\]

Подставляя это выражение в (111,1), получим:

\[
f(\theta) = \frac{1}{k} \sum_l \sqrt{\frac{i}{2\pi \sin \theta}} \left\{ e^{i \left[\frac{2l}{h} - (t + \frac{1}{2}) \theta - \frac{\pi}{4} \right]} - e^{i \left[\frac{2l}{h} + (t + \frac{1}{2}) \theta + \frac{\pi}{4} \right]} \right\}.
\] \hspace{1cm} (111,2)

Экспоненциальные множители, рассматриваемые как функции от \(l \), являются быстро осциллирующими функциями (поскольку их фазы велики). В связи с этим большинство членов суммы (111,2) взаимно уничтожается. Сумма будет в основном определяться областью значений \(l \), близких к тому, при котором одна из экспонент имеет экстремум, т. е. близких к корню уравнения

\[
2 \frac{d\delta}{dr} \pm \theta = 0.
\] \hspace{1cm} (111,3)

В этой области имеется большое число членов ряда, для которых экспоненциальные множители сохраняют почти постоянные значения (экспоненты медленно меняются вблизи точки своего экстремума) и которые поэтому не будут взаимно уничтожаться.

Фазы \(\delta_l \) в квазиклассическом случае могут быть написаны (см. § 106) как предел, к которому стремится при \(r \to \infty \) разность фазы

\[
\frac{\pi}{4} + \frac{1}{h} \int_{r_0}^{r} \sqrt{2\mu \left[E - U(r) \right] - \frac{h^2(l + \frac{1}{2})^2}{r^2}} \, dr
\]

квазиклассическими волновой функции в поле \(U(r) \) и фазы волновой функции свободного движения, равной (см. § 33)

\[
k r = \frac{\pi l}{2}.
\]

Таким образом

\[
\delta_l = \int_{r_0}^{\infty} \left\{ \frac{1}{h} \sqrt{2\mu (E - U) - \frac{h^2(l + \frac{1}{2})^2}{r^2}} - k \right\} \, dr + \left(1 + \frac{\pi}{2} (l + \frac{1}{2}) - kr_0 \right). \hspace{1cm} (111,4)
\]

Это выражение надо подставить в уравнение (111,3). При определении производной от интеграла надо помнить, что предел интегриро-
вания \(r_0 \) тоже зависит от \(l \); но получающийся от этого член \(k \frac{dr_0}{dl} \) сокращается с производной от члена — \(kr_0 \) в \(\delta_l \).

\[h(l + \frac{1}{\theta_0}) \] есть момент количества движения частицы. В классической механике его можно написать в виде \(\mu \rho \mathbf{v} \), где \(\rho \) — «прицельное расстояние», а \(\mathbf{v} \) — скорость частицы на бесконечности. Мы сделаем эту подстановку, после чего уравнение (111,4) примет окончательно вид:

\[\int_{r_0}^{\infty} \frac{\mu \rho \mathbf{v} \, dr}{r^2 \sqrt{2\mu (E - U) - \left(\frac{\mu \mathbf{v} \rho}{r} \right)^2}} = \frac{\pi \theta}{2}. \]

(111,5)

В поле отталкивания это уравнение имеет корень (для \(\rho \)) лишь при знаке минус перед \(\theta \) в правой стороне, а в поле притяжения — при знаке плюс.

Уравнение (111,5) в точности совпадает с классическим уравнением, определяющим угол рассеяния по прицельному расстоянию. Легко убедиться, что оно и для эффективного сечения действительно получается классическое выражение.

Произведённый вывод показывает, что условие классического рассеяния при заданном угле \(\theta \) заключается в том, чтобы было велико значение \(l \), при котором имеет место (111,3), и чтобы было велико также и \(\delta_l \) при этом значении \(l \). Это условие имеет простое физическое истолкование. Для того чтобы можно было говорить о классическом рассеянии на угол \(\theta \) при пролетании частицы на прицельном расстоянии \(\rho \), необходимо, чтобы квантовомеханические неопределённости в значениях того и другого были относительно малы: \(\Delta \rho \ll \rho, \Delta \theta \ll \theta \). Неопределенность угла рассеяния имеет порядок величины \(\Delta \theta \sim \Delta \rho / \rho \), где \(\rho \) — импульс частицы; а \(\Delta \rho \) — неопределённость его поперечной составляющей. Так как \(\Delta \rho \sim \frac{\hbar}{\Delta \rho} \ll \frac{h}{\rho} \), то \(\Delta \theta \gg h / \rho \), а потому во всяком случае и

\[\theta \gg \frac{h}{\rho \mu \mathbf{v}}. \]

(111,6)

Заменяя момент количества движения \(\mu \rho \mathbf{v} \) на \(\hbar l \), получаем \(\theta l \gg 1 \), что совпадает с условием \(\delta_l \gg 1 \) (так как \(\delta_l \sim l \theta \), как это видно из (111,3)).

Классический угол отклонения частицы (если он мал) равен по порядку величин силе \(U' (\rho) \), действующей на частицу на расстояниях...
нин п, умноженной на «время столкновения» \(\rho/v \) и делённой на импульс \(\mu v \):

\[
\theta \sim \frac{|U'(\rho)| \rho}{\mu v^2}.
\]

Поэтому для рассеяния на малые углы условие (111,6) можно переписать в виде:

\[
|U'(\rho)| \rho^2 \gg \hbar v. \tag{111,7}
\]

Отсюда можно сделать следующие выводы. Если поле \(U(r) \) спадает быстрее, чем \(1/r \), то условие (111,7) во всяком случае перестаёт выполняться при достаточно больших \(\rho \). Но большим \(\rho \) соответствуют малые \(\theta \); таким образом рассеяние на достаточно малые углы во всяком случае не будет классическим. Если же поле спадает медленнее, чем \(1/r \), то рассеяние на малые углы будет классическим; будет ли в этом случае классическим рассеяние на большие углы, — зависит от хода поля на малых расстояниях.

Для кулоновского поля \(U = \alpha/r \) условие (111,7) выполняется, если \(\alpha \gg \hbar v \). Это есть условие, обратное тому, которое позволяет рассматривать кулоново поле как возмущение. Мы увидим, впрочем, что по случаенным причинам квантовая теория рассеяния в кулоновом поле приводит к результату, совпадающему с классическим во всех случаях.

Задача

Найти полное эффективное сечение квазиклассического рассеяния в поле, имеющем на достаточно больших расстояниях вид \(U = \alpha/r^s \) (где \(s > 2 \)).

Решение. Имея в виду, что основную роль играют фазы \(\delta_l \) с большими \(l \), вычисляем их по формуле (106,1)

\[
\delta_l = -\frac{\mu \alpha}{\hbar^2} \int \frac{dr}{r^s \sqrt{k^2 - \frac{l^2}{r^2}}} \tag{1}
\]

Производя подстановку \(P/k^2r^2 = \xi \), приведём интеграл к известному интегралу Эйлера и получим:

\[
\delta_l = -\frac{\mu \alpha k^{s-2}}{2\hbar^2 l^{s-1}} \frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{s-1}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}. \tag{2}
\]

Заменяя суммирование в (105,11) интегрированием, пишем:

\[
\epsilon = \frac{4\pi}{k^2} \int_0^\infty 2l \sin^2 \delta_l dl.
\]

Для интегрирования делаем подстановку \(\delta_l = u \), интегрируем один раз
по du по частям, после чего интеграл приводится к Γ-функции. В результате получается:

$$
\sigma = 2\pi^{s-1} \sin \left[\frac{\pi}{2} \frac{(s-3)}{s-1} \right] \Gamma\left(\frac{s-3}{s-1}\right) \left[\Gamma\left(\frac{s-1}{2}\right) \Gamma\left(\frac{s}{2}\right) \right]^{2} \left(\frac{\alpha}{h\nu}\right)^{2} \cdot (3)
$$

Условие применимости полученной формулы заключается прежде всего в том, чтобы при $\delta_t \sim 1$ было $t \gg 1$; отсюда получаем неравенство

$$
\frac{\mu \alpha k^{s-2}}{\hbar^{2}} \gg 1.
$$

Поле $U(r)$ должно иметь рассматриваемый вид, начиная с расстояний

$$
\frac{r}{k} \sim \left(\frac{\mu \alpha}{\hbar^{2}k}\right)^{1/(s-1)}.
$$

(t из соотношения $\delta_t \sim 1$), которые играют основную роль в интеграле (1).

§ 112. Формула Резерфорда

Рассеяние в кулоновом поле представляет особый интерес с точки зрения физических применений. Оно интересно также и в том отношении, что для этого случая квантовомеханическая задача о стокновениях может быть решена до конца точно.

При наличии выделенного направления (в данном случае — направление падающей частицы) уравнение Шредингера в кулоновом поле удобно решать в параболических координатах ξ, η, φ (§ 37). Задача о рассеянии частицы в центральном поле обладает аксиальной симметрией. Поэтому волновая функция ψ не зависит от угла φ. Частное решение уравнения Шредингера (37,6) пишем в виде:

$$
\psi = f_1(\xi) f_2(\eta) \tag{112,1}
$$

((37,7) с $m = 0$), и соответственно этому после разделения переменных получаем уравнения (37,8) с $m = 0$):

$$
\frac{d}{d\xi} \left(\xi \frac{df_1}{d\xi} \right) + \left[k_1^{2} \xi - \beta_1 \right] f_1 = 0,
\frac{d}{d\eta} \left(\eta \frac{df_2}{d\eta} \right) + \left[k_2^{2} \xi - \beta_2 \right] f_2 = 0; \quad \beta_1 + \beta_2 = 1. \tag{112,2}
$$

Энергия рассеиваемой частицы, разумеется, положительна; мы положили $E = \frac{k^2}{2}$. Знаки в уравнениях (112,2) соответствуют случаю поля отталкивания; для сечения рассеяния в поле притяжения получается в точности тот же окончательный результат.

1) Мы пользуемся здесь кулоновыми единицами.
Мы должны найти такое решение уравнения Шредингера, которое при отрицательных \(z \) и больших \(r \) имеет вид плоской волны:

\[
\phi \sim e^{ikz} \quad \text{при} \quad -\infty < z < 0, \quad r \to \infty,
\]

что соответствует частице, падающей в положительном направлении оси \(z \). Мы увидим из дальнейшего, что поставленному условию можно удовлетворить одним частным интегралом (112,1) (а не суммой интегралов с различными значениями \(\beta_1, \beta_2 \)).

В параболических координатах это условие имеет вид:

\[
\psi \sim e^{\frac{ik}{2}(\xi - \eta)} \quad \text{при} \quad \eta \to \infty \quad \text{и всех} \quad \xi.
\]

Ему можно удовлетворить, только если

\[
f_1(\xi) = e^{\frac{ik}{2}\xi}, \tag{112,3}
\]

а \(f_2(\eta) \) подчиняется условию

\[
f_2(\eta) \sim e^{\frac{-ik}{2}\eta} \quad \text{при} \quad \eta \to \infty. \tag{112,4}
\]

Подставляя (112,3) в первое из уравнений (112,2), убеждаемся в том, что эта функция действительно удовлетворяет уравнению, если постоянная \(\beta_1 \) имеет значение \(\beta_1 = ik/2 \). Второе из уравнений (112,2) с \(\beta_2 = 1 - \beta_1 \) приобретает тогда вид:

\[
\frac{d}{d\eta} \left(\eta \frac{df_2}{d\eta} \right) + \left(\frac{k^2}{4} \eta - 1 + \frac{ik}{2} \right) f_2 = 0.
\]

Ищем его решение в виде:

\[
f_2(\eta) = e^{\frac{-ik}{2}\eta} \omega(\eta), \tag{112,5}
\]

где функция \(\omega(\eta) \) стремится к постоянному пределу при \(\eta \to \infty \). Для \(\omega(\eta) \) получаем уравнение

\[
\eta \omega'' + (1 - ik\eta) \omega' - \omega = 0, \tag{112,6}
\]

которое путём введения новой переменной \(\eta_1 = ik\eta \) приводится к уравнению выраженной гипергеометрической функции с параметрами \(a = -i/k, \gamma = 1 \). Мы должны выбрать то из решений уравнения (112,6), которое, будучи умножено на \(f_1(\xi) \), содержит в себе только расходящуюся (т. е. рассеянную), но не сходящуюся, сферическую волну. Таким решением будет функция (см. ниже)

\[
\omega = \text{const.} \ F\left(-\frac{i}{k}, 1, ik\eta\right).
\]
Таким образом, собирая полученные выражения, находим следующее точное решение уравнения Шредингера, описывающее рассеяние:

$$\psi = e^{-\frac{\pi}{2k}} \Gamma\left(1 + \frac{i}{k}\right) e^{\frac{i}{2}(-\eta)} F\left(-\frac{i}{k}, 1, i\kappa \eta\right). \quad (112,7)$$

Мы выбрали нормированную постоянную в \(\psi \) таким образом, чтобы падающая плоская волна имела единичную амплитуду. (см. ниже).

Для того чтобы выделить в этой функции падающую и рассеянную волны, надо рассмотреть её вид на больших расстояниях от центра. Воспользовавшись первыми двумя членами асимптотического разложения ((d, 14) математического дополнения) вырожденной гипергеометрической функции, получим при больших \(\eta \):

$$F\left(-\frac{i}{k}, 1, i\kappa \eta\right) \approx \frac{(i\kappa \eta)^\frac{i}{k}}{\Gamma\left(1 + \frac{i}{k}\right)} \left(1 - \frac{\frac{\pi}{2}}{i\kappa \eta}\right) e^{\frac{i}{2} \ln \kappa \eta} =$$

$$= \frac{\frac{\pi}{2} e^{\frac{i}{2k}}}{\Gamma\left(1 + \frac{i}{k}\right)} \left(1 - \frac{1}{i\kappa \eta}\right) e^{\frac{i}{2} \ln \kappa \eta} - \frac{\frac{\pi}{2k} e^{\frac{i}{2k}}}{\Gamma\left(1 - \frac{i}{k}\right)} e^{\frac{i}{2} \ln \kappa \eta}.$$

Подставляя это в (112,7) и переходя к сферическим координатам \((\xi = \eta = 2z, \theta = r - z = r (1 - \cos \theta))\), получаем следующее окончательное асимптотическое выражение волновой функции:

$$\psi = \left[1 - \frac{1}{i\kappa r (1 - \cos \theta)}\right] e^{\frac{i}{k} \ln \kappa r (1 - \cos \theta)} +$$

$$+ \frac{f(\theta)}{r} e^{\frac{i}{k} \ln \kappa r}, \quad (112,8)$$

где 1)

$$f(\theta) = -\frac{1}{2k^2 \sin^2 \frac{\theta}{2}} e^{\frac{2i}{k} \ln \sin \frac{\theta}{2}} \Gamma\left(1 + \frac{i}{k}\right) \Gamma\left(1 - \frac{i}{k}\right). \quad (112,9)$$

Первый член в (112,8) представляет собой падающую волну. Мы видим, что в связи с медленностью спадания кулоновского поля падающая плоская волна исчезает даже на больших расстояниях от центра, как это показывает наличие логарифмиче ского члена в фазе,

1) Обратим внимание на то, что амплитуда рассеяния \(f(\theta) \) обращается в бесконечность в нулях функции \(\Gamma\left(1 - \frac{i}{k}\right) \), т. е. в точках, где аргумент Г-функции равен целому отрицательному числу или нулю. Соответствующие значения энергии равны \(k^2/2 = -1/2n^2 \) \((n = 1, 2, 3, \ldots)\), что совпадает с уровнями энергии дискретного спектра в кулоновом поле (ср. § 107).
а также члена порядка $1/r$ в амплитуде волны. Искажающий логарифмический член в фазе имеется также и в рассеянной сферической волне, изображающейся вторым членом в (112,8). Эти отличия от обычного асимптотического вида волновой функции (105,3), однако, не существенны, так как дают для плотности потока поправки, стремящиеся к нулю при $r \to \infty$.

Таким образом получаем для эффективного сечения рассеяния $d\sigma = |f(l)|^2 \, dl$ формулу

$$d\sigma = \frac{do}{4k^4 \sin^4 \frac{\theta}{2}},$$

или в обычных единицах:

$$d\sigma = \left(\frac{\alpha}{2\mu \varphi^2}\right)^2 \frac{do}{\sin^4 \frac{\theta}{2}} \quad (112,10)$$

(мы ввели скорость частицы $v = kh/\mu$). Эта формула совпадает с известной формулой Резерфорда, к которой приводит классическая механика: Таким образом для рассеяния в кулоновом поле квантовая и классическая механика даёт одинаковый результат (Н. Мотт, В. Гордон, 1928). Естественно, что и формула Борна (110,9) приводит к тому же выражению (112,10).

Наконец, приведём для справочных целей выражение для амплитуды рассеяния (112,9), написанное в виде суммы по сферическим функциям. Оно получается подстановкой в (106,4) фазы δ_i из (36,28), т. е.

$$e^{2i\delta_i} = \frac{\Gamma\left(l + 1 + \frac{i}{k}\right)}{\Gamma\left(l + 1 - \frac{i}{k}\right)}.$$

(112,11)

Таким образом получим:

$$f(\theta) = \sum_0 \frac{(2l+1)}{\Gamma\left(l + 1 + \frac{i}{k}\right)} P_l(\cos \theta).$$

(112,12)

§ 113. Система волновых функций непрерывного спектра

Полученные в предыдущем параграфе формулы для волновых функций, описывающих рассеяние, представляют интерес ещё и с другой точки зрения. Мы видели в § 105, что функция вида

$$\psi = c_k \sum_0 \frac{(2l+1)}{\Gamma\left(l + 1 + \frac{i}{k}\right)} e^{i\theta} P_l(\cos \theta) R_{kl}(r)$$

(113,1)
(c_k — постоянная) описывает стационарное состояние частицы в центрально-симметрическом поле, при котором на бесконечности имеется распространяющаяся в положительном направлении оси z плоская волна и расходящаяся сферическая волна. \(\theta \) в этой формуле есть угол между радиусом-вектором \(r \) и осью \(z \), совпадающей с направлением волнового вектора падающей волны. Если подставить \(\cos \theta = \frac{k r}{k r} \), то выражение (113.1) не будет связано с каким-либо определенным выбором осей координат. Давая вектору \(k \) всевозможные значения, мы получим, как сейчас будет показано, полный набор взаимно ортогональных волновых функций непрерывного спектра. Эти функции будем обозначать посредством \(\psi_k^\pm \):

\[
\psi_k^\pm = \frac{1}{4\pi k} \sum_{l=0}^{\infty} l \left(2l + 1\right) e^{i \theta} R_{k l}(r) P_l \left(\frac{kr}{kr}\right). \tag{113.2}
\]

Мы выбрали постоянную \(c_k \) в (113.1) такой, чтобы функции были нормированы обычным для непрерывного спектра образом на \(\delta \)-функцию в \(k \)-пространстве 1):

\[
\int \psi_{k'}^* \psi_k^+ dV = \delta (k' - k). \tag{113.3}
\]

(это будет подтверждено последующим вычислением). Таким образом, наряду с обычной системой волновых функций \(\psi = R_{k l}(r) Y_{l m}(\theta, \varphi) \) (соответствующих стационарным состояниям с определёнными энергией \(\frac{\hbar^2 k^2}{2\mu} \), моментом \(l \) и его проекцией \(m \)), мы имеем для непрерывного спектра также и другую систему функций, описывающих состояние с определённой энергией (и не моментом и его проекцией), в которых на бесконечности, наряду с расходящейся волной, имеется падающая в определенном направлении \(k \) плоская волна. Эта система функций очень удобна при решении ряда задач, связанных со столкновениями.

Переходя к доказательству (113.3), обозначим посредством \(\theta \) и \(\theta' \) углы между радиусом-вектором и соответственно \(k \) и \(k' \), а угол между \(k \) и \(k' \) — посредством \(\alpha \). Произведение \(\psi_{k'}^+ \psi_k^+ \) выражается в виде двойной суммы по \(l \) и \(l' \) членов, содержащих произведения \(P_{l'}(\cos \theta') P_l(\cos \theta) \). Замечая, что

\[
\cos \theta' = \cos \theta \cos \alpha - \sin \theta \sin \alpha \cos \varphi
\]

1) При этой нормировке падающая плоская волна имеет (на бесконечности) вид:

\[
\frac{1}{(2\pi)^{3/2}} e^{i kr}.
\]
(ϕ — угол между плоскостями (r, k) и (k, k')), и воспользовавшись теоремой сложения сферических функций (формула (c, 8) математического дополнения), получим:

\[
P_l'(\cos \theta') P_l(\cos \theta) = P_l(\cos \theta) P_l'(\cos \theta) P_l(\cos \alpha) + 2P_l(\cos \theta) \sum_{m'=1}^{\infty} \left(\frac{l-m'}{(l'+m')!} P_{l'}^{m'}(\cos \theta) P_{l'}^{m'}(\cos \alpha) \cos m (\varphi - \varphi'). \right. \tag{113,4}
\]

Прежде всего умножаем \(\psi_k^+ \psi_k^+\) на \(d\theta = \sin \theta d\theta d\varphi\) и интегрируем по всем углам. Интегрирование по \(d\varphi\) обращает в нуль все члены в (113,4), за исключением первого. Последний же при интегрировании по \(d\theta\) даст нуль, если \(l \neq l'\) (в силу ортогональности полиномов Лежандра), а при \(l = l'\)

\[
\int_0^\pi P_l^2(\cos \theta) \sin \theta d\theta = \frac{2}{2l+1}.
\]

Таким образом получим:

\[
\int \psi_k^+ \psi_k^+ dV = \frac{1}{4\pi k^2} \sum_{l=0}^{\infty} (2l+1) e^{i[k(k')-k(k')] \sum_{l=0}^{\infty} (2l+1) P_l(\cos \alpha) \int_0^\infty R_{k'l'}(r) R_{kl}(r) r^2 dr.
\]

Но радиальные функции \(R_{kl}\) ортogonalны и нормированы согласно

\[
\int_0^\infty R_{k'l'} R_{kl} r^2 dr = \delta (k' - k).
\]

Поэтому в коэффициентах перед интегралами можно положить \(k = k'\); воспользовавшись также соотношением (106,3), имеем:

\[
\int \psi_k^+ \psi_k^+ dV = \frac{1}{4\pi k^2} \delta (k' - k) \sum_{l=0}^{\infty} (2l+1) P_l(\cos \alpha) = \frac{1}{2\pi k^2} \delta (k' - k) \delta (1 - \cos \alpha).
\]

Стоящее справа выражение при умножении на \(2\pi k^2 \sin \alpha dk d\alpha\) и интегрировании по всему \(k\)-пространству даёт 1; другими словами, оно совпадает с \(\delta\)-функцией в \(k\)-пространстве, что и доказывает формулу (113,3).

Наряду с системой функций \(\psi_k^+\) можно ввести также систему, соответствующую состояниям, в которых на бесконечности имеется плоская волна и наряду с ней сходящаяся сферическая волна. Эти
функции, которые мы обозначим посредством \(\psi_k^- \), получаются непосредственно из \(\psi_k^+ \). Прежде всего переходим к комплексно сопряжённому выражению; тем самым мы получим из расходящейся волны сходящуюся \(\sim \frac{e^{-ikr}}{r} \), а плоская волна примет вид: \(\sim e^{-ikr} \). Для того чтобы сохранить прежнее определение \(k \) (плоская волна \(\sim e^{ikr} \)), надо ещё изменить направление \(k \) на обратное, т. е. заменить \(k \) на \(-k\). Замечая, что \(P_{1l} (\cos \theta) = (-1)^l P_{1l} (\cos \theta) \), получим из (113,2):

\[
\psi_k^- = \frac{1}{4\pi k} \sum_{l=0}^{\infty} i^l (2l + 1) e^{-i\frac{\pi}{2}} R_{kl} (r) P_{1l} \frac{(kr)}{r} \quad (113,5)
\]

(функции \(R_{kl} \) предполагаются действительными).

Очень важен случай кулоновского поля. Здесь функции \(\psi_k^+ \) (и \(\psi_k^- \)) могут быть написаны в замкнутом виде, непосредственно по формуле (112,7), которую надо умножить при этом на \((2\pi)^{-\frac{3}{2}}\) (см. примечание на стр. 478). Параболические координаты выражаем посредством

\[
\frac{k}{2} \left(\xi - \eta \right) = k z = kr, \quad k \eta = k (r - z) = kr - kr.
\]

Таким образом получаем для кулоновского поля отталкивания 1):

\[
\psi_k^+ = \frac{1}{(2\pi)^{\frac{3}{2}}} e^{-\frac{\pi}{2k}} \Gamma \left(1 + \frac{i}{k} \right) e^{ikr} F \left(-\frac{i}{k}, 1, i \left(kr - kr \right) \right), \quad (113,6)
\]

\[
\psi_k^- = \frac{1}{(2\pi)^{\frac{3}{2}}} e^{-\frac{\pi}{2k}} \Gamma \left(1 - \frac{i}{k} \right) e^{ikr} F \left(\frac{i}{k}, 1, -i \left(kr + kr \right) \right). \quad (113,7)
\]

Волновые функции для кулоновского поля притяжения получаются отсюда одновременной заменой знака \(k \) и \(r \):

\[
\psi_k^+ = \frac{1}{(2\pi)^{\frac{3}{2}}} e^{\frac{\pi}{2k}} \Gamma \left(1 - \frac{i}{k} \right) e^{ikr} F \left(\frac{i}{k}, 1, i \left(kr - kr \right) \right) \quad (113,8)
\]

\[
\psi_k^- = \frac{1}{(2\pi)^{\frac{3}{2}}} e^{\frac{\pi}{2k}} \Gamma \left(1 + \frac{i}{k} \right) e^{ikr} F \left(-\frac{i}{k}, 1, -i \left(kr + kr \right) \right). \quad (113,9)
\]

Характеристикой воздействия кулоновского поля на движение частицы вблизи начала координат может служить отношение квадрата модуля \(\psi_k^+ \) или \(\psi_k^- \) в точке \(r = 0 \) к квадрату модуля волновой функции \(\psi_k = \frac{1}{(2\pi)^{\frac{3}{2}}} e^{ikr} \) свободного движения; эта величина суще-

1). В кулоновых единицах.
стовенна для некоторых вопросов (см., например, § 118). Простое вычисление даёт для поля отталкивания

$$\frac{|\psi_k^+(0)|^2}{|\psi_k|^2} = \frac{|\psi_k^-(0)|^2}{|\psi_k|^2} = \frac{2\pi}{k(e^{\frac{2\pi}{k}} - 1)}$$

(113,10)

и для поля притяжения:

$$\frac{|\psi_k^+(0)|^2}{|\psi_k|^2} = \frac{|\psi_k^-(0)|^3}{|\psi_k|^3} = \frac{2\pi}{k(1 - e^{-\frac{2\pi}{k}})}$$

(113,11)

Функции ψ_k^- играют существенную роль в ряде задач, связанных с применением теории возмущений в непрерывном спектре. Предположим, что в результате некоторого возмущения частица переходит в состояние непрерывного спектра (причём исходное состояние может относиться как к дискретному, так и к непрерывному спектру) 1). Тогда возникает вопрос о вычислении вероятности того, что получающаяся в результате перехода свободно движущаяся частица будет иметь определённое направление в пространстве. Можно показать, что для этого надо в качестве волновой функции конечного состояния частицы пользоваться функцией ψ_k^-, где k есть волновой вектор частицы на бесконечности.

Действительно, рассмотрим функцию

$$\psi_{k_0}^- + \frac{V_{2\mu}}{h^3} \int \int \frac{V_{kk_0}}{E_0 - E} \psi_k^- \sqrt{E} dE d\sigma.$$

Это есть функция (43,3), в которой в качестве функции $\psi_{i(0)}$ взяты ψ_k^-, а вместо dv написано $k^2 dk d\sigma = (\sqrt{2\mu}/h^3) \sqrt{E} dE d\sigma$. Она описывает собой состояние частицы, возникшее в результате постоянно действующего возмущения, причём невозмущёнными волновыми функциями являются ψ_k^-. Интегрирование по dE производится по пути, огибающему (в плоскости комплексного переменного E) точку $E = E_0$ снизу. Рассмотрим большие значения r и покажем, что члены в ψ_k^-, содержащие сходящуюся волну, при интегрировании по dE исчезают. Для этого достаточно немного сместить контур интегрирования в нижнюю полуплоскость. Тогда на нём будет $\text{Im} \ (E) < 0$, а потому и $\text{Im} \ (k) < 0$ (корень $k = \sqrt{2\mu E}/h$ определяется так, что на положительной половине действительной оси E он положителен). Сходящаяся волна содержит множитель e^{-ikr} и при $\text{Im} \ (k) < 0$ и больших r он может быть сделан сколь угодно малым, чем и дока-

1) Например, электрон, сталкиваясь с атомом, испускает рентгеновский квант, меняя при этом свою энергию и направление движения.
зывается сделанное утверждение. Таким образом в результате интегрирования по \(dE \) из функции \(\phi_k^- \) остаётся (на бесконечности) только плоская волна, что соответствует частице, движущейся в определённом направлении.

§ 114. Столкновения одинаковых частиц

Особого рассмотрения требует случай столкновения двух одинаковых частиц. Тождественность частиц приводит, как мы знаем, в квантовой механике к появлению своеобразного обменного взаимодействия между ними. Оно существенно сказывается и на рассеянии (Мотт, 1930).

Орбитальная волновая функция системы из двух частиц должна быть симметричной или антисимметричной относительно частиц в зависимости от того, чётен или нечётен суммарный спин последних (см. § 60). Поэтому, описывающая рассеяние волновая функция, получающаяся путём решения обычного уравнения Шредингера, должна быть симметризованна или антисимметризована по частицам. Перестановка частиц эквивалентна замене направления соединяющего их радиуса-вектора на обратное. В системе координат, в которой находится центр инерции, это означает, что \(r \) остаётся неизменным, а угол \(\theta \) заменяется на \(\pi - \theta \) (в связи с чем \(z = r \cos \theta \) переходит в \(-z \)). Поэтому вместо асимптотического выражения (105,3) волновой функции мы должны писать:

\[
\psi = e^{ikz} + e^{-ikz} + \frac{1}{r} e^{ikr} [f(\theta) \pm f(\pi - \theta)]. \tag{114,1}
\]

В силу тождественности частиц, нельзя, конечно, указывать, которая из них есть рассеиваемая, а которая — рассеивающая. В системе координат, где центр инерции покойится, мы имеем две одинаковые распространяющиеся навстречу друг другу падающие плоские волны \(e^{ikz} \) и \(e^{-ikz} \) в (114,1)). Расходящаяся же сферическая волна в (114,1) учитывает рассеяние обеих частиц и вычисленный с её помощью поток вероятности определяет вероятность того, что в данном элементе \(d\theta \) телесного угла будет рассеяна какая-либо из частиц. Эффективное сечение есть отношение этого потока к плотности потока в каждой из падающих плоских волны, т. е. попрежнему определяется квадратом модуля коэффициента при \(e^{ikr}/r \) в волновой функции (114,1).

Таким образом, если суммарный спин сталкивающихся частиц чётен, то эффективное сечение рассеяния имеет вид:

\[
d\sigma_a = |f(\theta) + f(\pi - \theta)|^2 d\theta, \tag{114,2}
\]

а если нечётен, то будет:

\[
d\sigma_a = |f(\theta) - f(\pi - \theta)|^2 d\theta. \tag{114,3}
\]
Характерно для обменного взаимодействия появление «интерферционного» члена \(f(\theta)f^*(\pi-\theta) + f^*(\theta)f(\pi-\theta) \). Если бы частицы были отличными друг от друга, как в классической механике, то вероятность рассеяния какой-либо из них в данный элемент телесного угла \(\, \text{d} \omega \) была бы равна просто сумме вероятностей отклонения одной из них на угол \(\theta \), а движущейся навстречу ей — на угол \(\pi-\theta \); другими словами, эффективное сечение было бы равно

\[
\left\{ |f(\theta)|^2 + |f(\pi-\theta)|^2 \right\} \, \text{d} \omega.
\]

В формулах (114,2—3) предполагается, что суммарный спин сталкивающихся частиц имеет определённое значение. Обычно, однако, приходится иметь дело со стохастическим вариантом частиц, не находящихся в определённых спиновых состояниях. Для определения эффективного сечения в этом случае надо произвести усреднение по всем возможным спиновым состояниям, считая их все равновероятными. В § 60 было показано, что из общего числа \((2s+1)^2\) различных спиновых состояний системы двух частиц со спином \(s\), \(s(2s+1)\) состояний соответствует чётному, а \((s+1)(2s+1)\) — нечётному полному спину (если \(s\) — полуцелое), или же наоборот (если \(s\) — целое). Предположим сначала, что спин \(s\) частиц — полуцелый. Тогда вероятность системе из двух сталкивающихся частиц иметь чётное \(S\) равна \(s\), а вероятность нечётного \(S\) равна \((2s+1)^2\). Поэтому эффективное сечение равно:

\[
d\sigma = \frac{s}{2s+1} \, d\sigma_s + \frac{s+1}{2s+1} \, d\sigma_a.
\]

Подставляя сюда (114,2—3), получим:

\[
d\sigma = \left\{ |f(\theta)|^2 + |f(\pi-\theta)|^2 - \frac{1}{2s+1} [f(\theta)f^*(\pi-\theta) + f^*(\theta)f(\pi-\theta)] \right\},
\]

Аналогичным образом получим при целом \(s\):

\[
d\sigma = \left\{ |f(\theta)|^2 + |f(\pi-\theta)|^2 + \frac{1}{2s+1} [f(\theta)f^*(\pi-\theta) + f^*(\theta)f(\pi-\theta)] \right\}.
\]

В качестве примера выпишем формулу для стохастического двух электронов, взаимодействующих по закону Кулона \((U = -e^2/r)\). Подстановка выражения (112,9) в формулу (114,4) с \(s = \frac{1}{2}\) даёт (в обычных единицах) после простого вычисления:

\[
d\sigma = \left(\frac{e^2}{\mu_0\hbar^2} \right)^2 \left[\frac{1}{\sin^4\theta /2} + \frac{1}{\cos^4\theta /2} - \frac{1}{\sin^2\theta /2 \cos^2\theta /2} \cos \left(\frac{e^2}{\hbar \nu} \ln \tan \theta /2 \right) \right] \, \text{d} \omega \quad (114,6)
\]
(мы ввели массу μ₀ частиц вместо приведённой массы μ = μ₀/2). Эта формула заметно упрощается, если скорость настолько велика, что \(e^2 \ll \nu h \) (заметим, что это есть как раз условие применимости к кулоновому полю теории возмущения). Тогда косинус в третьем члене можно заменить единицей, и получается:

\[
\sigma = \left(\frac{2e^2}{\mu_0 v^2} \right)^3 \frac{4 - 3\sin^2 \theta}{\sin^4 \theta} \, d\theta.
\]

При \(e^2 \ll \nu h \), соответствует переходу к классической механике (см. конец § 111). В формуле (114,6) этот переход происходит весьма своеобразно. При \(e^2 \ll \nu h \) косинус в третьем члене в квадратных скобках есть быстро осциллирующая функция. При каждом данном \(\theta \) формула (114,6) даёт для эффективного сечения значение, вообще говоря, заметно отличающееся от резерфордовского\(^1\). Однако уже при усреднении по небольшому интервалу значений \(\theta \) осциллирующий член в (114,6) исчезает, и мы приходим к классической формуле.

Все формулы для эффективных сечений (114,2—6) относятся к системе координат, в которой центр инерции покойится. Переход к системе, в которой до столкновения одна из частиц покоялась, осуществляется (согласно (105,2)) просто путём замены \(\theta \) на \(\theta/2 \). Так, для столкновения электронов получим из (114,6):

\[
\sigma = \left(\frac{2e^2}{\mu_0 v^2} \right)^3 \left[\frac{1}{\sin^4 \theta} + \frac{1}{\cos^4 \theta} - \frac{1}{\sin^2 \theta \cos^2 \theta} \cos \left(\frac{e^2}{h\nu} \ln \tan^2 \theta \right) \right] \cos \theta \, d\theta, \quad (114,8)
\]

где \(d\theta \) есть элемент телесного угла в новой системе координат\(^2\).

Задача

Определить эффективное сечение рассеяния двух одинаковых частиц со спином 1/2, имеющих определённые значения \(\sigma = \pm 1/2 \) проекции спина на оси, образующие друг с другом угол \(\alpha \).

Решение. Пусть спиноры \(\chi^i \) и \(\xi^i \) являются спиновыми волновыми функциями частиц. Волновая функция системы из обеих сталкивающихся частиц будет произведением \(\chi^i \xi^i \). Напишем его в виде:

\[
\chi^i \xi^i = \frac{1}{2} (\chi^i \xi^i + \chi^i \xi^i) + \frac{1}{2} (\chi^i \xi^i - \chi^i \xi^i).
\]

Первый член есть симметрический спинор 2-го ранга и соответствует состоянию системы с полным спином \(S = 1 \); второй же есть антисимметрический

1) См., например, «Механика», § 22.
2) При замене \(\theta \) на 2\(\theta \) элемент телесного угла \(d\theta \) надо заменить на \(4 \cos \theta \, d\theta \) (так как \(\sin \theta \, d\theta \, d\varphi = 4 \cos \theta \sin \theta \, d\theta \, d\varphi \)).
§ 115. УПРУГИЕ СТОЛКОВЕНИЯ БЫСТРЫХ ЭЛЕКТРОНОВ С АТОМАМИ

спинор, сводящийся к скаляр и соответствующий состоянию с $S = 0$. Поэтому вероятности системы иметь спин 1 или 0 равны соответственно:

$$\omega_1 = \frac{1}{4} \left| \chi^\mu \xi^\nu + \chi^\nu \xi^\mu \right|^2 = \frac{1}{2} \left(1 + \left| \chi^\mu \xi^\mu \right|^2 \right),$$

$$\omega_0 = \frac{1}{4} \left| \chi^\mu \xi^\nu - \chi^\nu \xi^\mu \right|^2 = \frac{1}{2} \left(1 - \left| \chi^\mu \xi^\mu \right|^2 \right)$$

(по дважды повторяющимся спинорным индексам подразумевается суммирование; следует помнить, что $\left| \chi^\mu \right|^2 = \left| \xi^\mu \right|^2 = 1$). Искомое эффективное сечение равно:

$$d\sigma = \omega_0 d\sigma_0 + \omega_1 d\sigma_1.$$ \hspace{1cm} (2)

Выберем систему координат с осью z, вдоль которой имеет определённое значение ($\sigma = \pm 1/2$) проекция спина первой частицы; тогда $\chi^1 = 1$, $\chi^2 = 0$. Компоненты же спинора ξ^μ равны $\xi^1 = \cos \frac{\alpha}{2}$, $\xi^2 = i \sin \frac{\alpha}{2}$ (см. формулы преобразования (57,7); в системе координат с осью z, вдоль которой имеет определённое значение проекция спина второй частицы, было бы $\xi^1 = 1$, $\xi^2 = 0$). Подставляя эти значения в (1), находим эффективное сечение (2) в виде

$$d\sigma = \frac{1}{4} (1 - \cos \alpha) d\sigma_0 + \frac{1}{4} (3 + \cos \alpha) d\sigma_1.$$ \hspace{1cm} (3)

§ 115. Упругие столкновения быстрых электронов с атомами

Формула Борна (110,6) может быть применена не только к столкновениям двух элементарных частиц, но и к упругому столкновению, скажем, электрона с атомом, если при этом должны быть определены потенциальную энергию $U(r)$. Условие применимости борновского приближения к такому столкновению требует, чтобы скорость падающего электрона была велика по сравнению со скоростями атомных электронов.

При выводе формулы (110,6) мы вычисляли матричный элемент $U_p p'$ энергии взаимодействия по отношению к волновым функциям свободной частицы до и после столкновения\(^1\). Но при столкновении с атомом необходимо, очевидно, учитывать также и волновые функции, описывающие внутреннее состояние атома. При упругом столкновении состояние атома не меняется. Поэтому $U_p p'$ должно быть определено как матричный элемент по отношению к волновым функциям ϕ_p и $\phi_{p'}$, электрона, диагональный по отношению к волновой функции атома. Другими словами, $U(r)$ в формуле (110,6) надо понимать как потенциальную энергию взаимодействия электрона

\(^1\) Ввиду большой разницы в массах между электроном и атомом последний можно считать при столкновении неподвижным, и система координат, в которой неподвижен центр инерции, совпадает с системой, в которой неподвижен атом. p и p' означают тогда импульсы электрона до и после столкновения, μ — его масса, а угол θ совпадает с углом θ отклонения электрона.
с атомом, усреднённую по волновой функции последнего. Она равна $\varphi(r)$, где $\varphi(r)$ есть потенциал поля, создаваемый в точке r средним распределением зарядов в атоме.

Обозначая плотность распределения зарядов в атоме посредством $\rho(r)$, имеем для потенциала φ уравнение Пуассона:

$$\Delta \varphi = -4\pi \rho(r).$$

Искомый матричный элемент U_{pr}^p есть, в основном, компонента Фурье от U (т. е. от φ), соответствующая волновому вектору q. Применяя уравнение Пуассона к каждой из компонент Фурье в отдельности, имеем

$$\Delta \varphi_q e^{-iqr} = -q^2 \varphi_q e^{-iqr} = -4\pi \rho_q e^{-iqr},$$

откуда

$$\varphi_q = \frac{4\pi \rho_q}{q^2},$$

т. е.

$$\int \varphi e^{iqr} dV = \frac{4\pi}{q^2} \int \rho e^{iqr} dV.$$

Плотность зарядов $\rho(r)$ составляет из электронных зарядов и заряда ядра:

$$\rho = -en(r) + Ze\delta(r),$$

где $en(r)$ — плотность электронного заряда в атоме. Умножая на e^{iqr} и интегрируя, имеем:

$$\int \rho e^{iqr} dV = -e \int ne^{iqr} dV + Ze.$$

Таким образом получаем для интересующего нас интеграла выражение

$$\int U e^{iqr} dV = \frac{4\pi e^2}{q^2} [Z - F(q)],$$

где величина $F(q)$ определяется формулой

$$F(q) = \int ne^{iqr} dV$$

и называется атомным фактором рассеяния (Atomformfactor). Он является функцией угла рассеяния, а также скорости падающего электрона.

Наконец, подставляя (115,1) в (110,6), получим окончательно следующее выражение для эффективного сечения упругого рассеяния быстрых электронов атомом:

$$d\sigma = \frac{4\mu^2 e^4}{h^4 q^4} [Z - F(q)]^2 d\omega =$$

$$= \left(\frac{e^2}{2\mu v^2}\right)^3 \left[Z - F\left(\frac{2\mu v}{\hbar} \sin\frac{\theta}{2}\right)\right] \frac{d\omega}{\sin^4\frac{\theta}{2}}.$$

(115,3)
§ 115] УПРУГИЕ СТОЛКНОВЕНИЯ ВЫСТЫРХ ЭЛЕКТРОНОВ С АТОМАМИ 487

Рассмотрим предельный случай малых q; мы имеем в виду значения q, малые по сравнению с «обратным атомным радиусом», т. е. по сравнению с $1/a_0$, где a_0 есть порядок величины размеров атома ($qa_0 \ll 1$). Малым q соответствуют малые углы рассеяния; именно: $\theta \ll \frac{v_0}{v}$, где $v_0 = \frac{n}{\mu a_0}$ есть порядок величины скоростей атомных электронов.

Разложим $F(q)$ в ряд по степеням q. Член нулевого порядка равен $\int ndV$, т. е. полному числу Z электронов в атоме. Член первого порядка пропорционален $\int r n(r) dV$, т. е. среднему значению дипольного момента атома; это значение обращается тождественно в нуль (см. § 72).

Поэтому надо произвести разложение до члена второго порядка включительно, и мы имеем:

$$Z - F(q) = q^2 \int nr^2 dV;$$

подставляя в (115,3), получаем:

$$d\sigma = \left[\frac{2\mu e^2}{\hbar^2} \int nr^2 dV \right]^2 do.$$ \hspace{1cm} (115,4)

Таким образом в области малых углов эффективное сечение оказывается не зависящим от угла рассеяния и определяется средним квадратом расстояния атомных электронов от ядра.

В обратном предельном случае больших $q (qa_0 \gg 1$, т. е. $\theta \gg (v_0/v)$) множитель e^{iqr} в подинтегральном выражении в (115,2) есть быстро осциллирующая функция, и потому весь интеграл близок к нулю. Мы можем, следовательно, пренебреж $F(q)$ по сравнению с Z, так что

$$d\sigma = \left(\frac{Ze^2}{4\mu v^2} \right)^2 \frac{d\theta}{\sin^4 \frac{\theta}{2}}.$$ \hspace{1cm} (115,5)

Другими словами, мы получаем резерфордовское рассеяние на ядре атома.

В применениях часто представляет интерес значение интеграла

$$\int (1 - \cos \theta) d\sigma.$$

В области углов $\theta \ll \frac{v_0}{v}$ имеем, согласно (115,4), $d\sigma = \text{const.} \sin \theta d\theta = \text{const.} \theta d\theta$, где const. не зависит от θ. Поэтому в этой области подинтегральное выражение в рассматриваемом интеграле пропорционально $\theta^2 d\theta$, так что на нижнем пределе интеграл быстро сходится. В области же $1 \gg \theta \gg v_0/v$ имеем $d\sigma \approx \text{const.} (d\theta/\theta^3)$, подинте-
гральное выражение пропорционально $d\theta/\theta$, т. е. интеграл распадается логарифмически. Отсюда видно, что основную роль в интеграле играет именно эта область углов, и можно ограничиться интегрированием только по ней. Нижний предел интегрирования должен быть взят порядка v_0/v; мы пишем его в виде $e^2/\gamma hv$, где γ — безразмерная постоянная. Существенно, что значение интеграла мало зависит от выбора этой постоянной, поскольку она входит под знаком логарифма, умноженной на большую величину e^2/hv. В результате получаем следующую формулу:

$$\int (1 - \cos \theta) d\sigma = 4\pi \left(\frac{Ze^2}{\mu v^2}\right) \ln \frac{\gamma hv}{e^2}. \quad (115,6)$$

Точное вычисление постоянной γ требует рассмотрения рассеяния на углы $\theta > (v_0/v)$ и не может быть произведено в общем виде.

Для численного вычисления атомного фактора тяжёлых атомов можно пользоваться распределением Томаса-Ферми плотности $n(r)$. Мы видели, что в модели Томаса-Ферми $n(r)$ имеет вид (69,9):

$$n(r) = Z^2 f \left(\frac{rZ^{1/3}}{b}\right)$$

(все величины в этой и следующих формулах измеряются в атомных единицах). Легко сообразить, что интеграл (115,2), вычисленный с такой функцией $n(r)$, будет содержать q лишь в комбинации с Z (именно, $qZ^{-1/3}$):

$$F(q) = Z\varphi \left(bq Z^{-1/3}\right) \quad (115,7)$$

или в обычных единицах:

$$F(q) = Z\varphi \left(0,885 \frac{h^2}{ue^2} qZ^{-1/3}\right).$$

В таблице 9 приведены для справочных целей значения универсальной для всех атомов функции $\varphi(x)$ ¹).

Таблица 9

<table>
<thead>
<tr>
<th>x</th>
<th>$\varphi(x)$</th>
<th>x</th>
<th>$\varphi(x)$</th>
<th>x</th>
<th>$\varphi(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,000</td>
<td>0,15</td>
<td>0,922</td>
<td>1,08</td>
<td>0,422</td>
</tr>
<tr>
<td>0,31</td>
<td>0,796</td>
<td>1,24</td>
<td>0,373</td>
<td>0,342</td>
<td>2,32</td>
</tr>
<tr>
<td>0,46</td>
<td>0,684</td>
<td>1,39</td>
<td>0,309</td>
<td>0,284</td>
<td>2,64</td>
</tr>
<tr>
<td>0,62</td>
<td>0,589</td>
<td>1,55</td>
<td>0,284</td>
<td>0,264</td>
<td>2,94</td>
</tr>
<tr>
<td>0,77</td>
<td>0,522</td>
<td>1,86</td>
<td></td>
<td>0,240</td>
<td></td>
</tr>
<tr>
<td>0,93</td>
<td>0,469</td>
<td>2,02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹) Надо иметь в виду, что при малых q эта формула неприменима, в соответствии с тем, что интеграл от nr^2 фактически не может быть вычислен по методу Томаса-Ферми (см. сноску на стр. 539).
С атомным фактором (115,7) эффективное сечение (115,3) будет иметь вид:

\[
d\sigma = \frac{4Z^2}{q^4} \left[1 - \varphi(bqZ^{-1/3})^2\right] = Z^{2/3} \Phi \left(Z^{-1/3} v \sin \frac{\theta}{2}\right), \tag{115,8}
\]

где \(\Phi(x) \) — новая универсальная функция. Интегрированием можно получить полное эффективное сечение. В интеграле основную роль играет область малых \(\theta \). Поэтому можно записать \(d\sigma \equiv Z^{2/3} \Phi \left(Z^{-1/3} v \frac{\theta}{2}\right) 2\pi d\theta \), а интегрирование по \(d\theta \) распространить до бесконечности:

\[
\sigma = 2\pi Z^{2/3} \int_0^\infty \Phi \left(Z^{-1/3} \frac{\theta}{2}\right) \theta d\theta = \frac{8\pi}{v^2} Z^{4/3} \int_0^\infty \Phi(x) dx.
\]

Таким образом \(\sigma \) имеет вид:

\[
\sigma = \text{const} \cdot \frac{Z^{4/3}}{v^2}. \tag{115,9}
\]

Аналогичным образом легко убедиться в том, что постоянная \(\gamma \) в формуле (115,6) будет пропорциональна \(Z^{-1/3} \).

З а д а ч а

Вычислить эффективное сечение упругого рассеяния быстрых электронов атомом водорода в основном состоянии.

Решение. Волновая функция нормального состояния атома водорода есть \(\psi = \frac{1}{\sqrt{\pi}} e^{-r} \), так что \(n = (1/\pi) e^{-2r} \) (мы пользуемся атомными единицами). Интегрирование в (115,2) по углам производится, как при выводе формулы (110,9); имеем:

\[
F = \frac{4\pi}{q^2} \int_0^\infty n(r) \sin q r \cdot r dr = \frac{1}{\left(1 + \frac{q^2}{4}\right)^2}.
\]

Подставляя в (115,3), получаем:

\[
d\sigma = \frac{4(8 + q^2)^2}{(4 + q^2)^4} d\varphi,
\]

где \(q = 2v \sin \frac{\theta}{2} \). Полное эффективное сечение удобно вычислять, положив \(d\sigma = 2\pi \sin \theta d\theta = (2\pi/\varrho^2) q d\varphi \) и интегрируя по \(dq \); при этом, разумеется, надо сохранить лишь член наиболее высокой степени по \(v \). В результате получим:

\[
\sigma = \frac{7\pi}{3\varrho^2}.
\]
Глава XV
Теория неупругих столкновений
§ 116. Принцип детального равновесия

Неупругими называют столкновения, сопровождающиеся изменением внутреннего состояния сталкивающихся частиц. Изменения внутреннего состояния мы понимаем здесь в самом широком смысле; в частности, может меняться и самый род частиц, как это обычно имеет место в ядерных реакциях.

Исходя из симметрии по отношению к изменению знака времени, можно получить весьма общее соотношение, связывающее эффективное сечение некоторого неупругого столкновения с эффективным сечением обратного процесса.

Для целей вывода будем чисто формальным образом считать, что движение сталкивающихся частиц происходит в большом, но конечном объёме V, имея в виду перейти затем к пределу $V \to \infty$. На границах этого объёма должны быть формально наложены такие граничные условия, которые бы допускали описание частиц на больших расстояниях в виде плоских волн. Тогда энергетический спектр относительного движения частиц из непрерывного станет дискретным (с очень малыми расстояниями между уровнями, стремящимися к нулю при $V \to \infty$).

Пусть w_{12} есть вероятность перехода системы обеих сталкивающихся частиц из некоторого состояния 1 в состояние 2. Каждое из этих состояний характеризуется определёнными внутренними состояниями частиц и определёнными по величине и направлению их скоростями. Если изменить знак времени, то прежде всего изменят знак скорости и проекции моментов количества движения частиц. Состояния, отличающиеся от состояний 1 и 2 изменением направлений скоростей и моментов на противоположные, обозначим посредством 1^* и 2^*. Кроме того, начальное состояние станет конечным, и наоборот. Из симметрии по отношению к изменению знака времени следует, что вероятности переходов $1 \to 2$ и $2^* \to 1^*$ должны быть одинаковыми 1):

$$w_{12} = w_{2*1^*}.$$ \hspace{1cm} (116,1)

1) См. также «Механика сплошных сред», § 99.
Переходим от вероятностей к эффективным сечениям. Пусть $d\sigma_{12}$ есть эффективное сечение столкновения с данным изменением внутренних состояний частиц и с отклонением скорости их относительного движения в элемент телесного угла $d\omega_2$ (в системе координат, в которой покоятся центр инерции частиц). Полная энергия обеих частиц при столкновении, конечно, не меняется ($E_1 = E_2$). Введём, однако, эффективное сечение, отнесённое формально к интервалу dE_2 энергий в конечном состоянии; такое сечение напишется в виде:

$$d\sigma_{12} \cdot \delta(E_2 - E_1) dE_2.$$ \hspace{1cm} (116,2)

Стоящая здесь δ-функция обеспечивает соблюдение закона сохранения энергии. По определению понятия об эффективном сечении, последнее получается делением вероятности данного процесса на плотность падающего потока. Эта плотность равна произведению абсолютной величины относительной скорости v_1 частиц до столкновения на плотность вероятности $1/V$ (одна частица в объёме V). Кроме того, надо иметь в виду, что эффективное сечение (116,2) отнесено к целому интервалу углов рассеяния и энергий, а вероятность w_{12} относится к строго определённому изменению величины и направления скорости. Поэтому для получения эффективного сечения из w_{12} надо ещё умножить последнее на число квантовых состояний, приходящихся на данный интервал направлений и величин скорости. Поскольку движение частиц в большей части пространства можно считать свободным, а потому и квазиклассическим, мы можем воспользоваться понятием о «клетках» в фазовом пространстве. Тогда число квантовых состояний, «приходящихся» на объём $V 4\pi p_2^2 dp_2 d\omega_2$ фазового пространства, равно:

$$\frac{V 4\pi p_2^2 dp_2 d\omega_2}{(2\pi\hbar)^3}.$$

Резюмируя эти рассуждения, можем написать следующее соотношение между эффективным сечением и вероятностью:

$$d\sigma_{12} \cdot \delta(E_2 - E_1) dE_2 = \frac{w_{12}}{v_1} \cdot \frac{V 4\pi p_2^2 dp_2 d\omega_2}{(2\pi\hbar)^3}.$$

Отсюда

$$w_{12} = \frac{(2\pi\hbar)^3}{V^2} \cdot \frac{\sigma_{12} \cdot \delta(E_2 - E_1) dE_2}{4\pi p_2^2 dp_2 d\omega_2}.$$

Написав в таком же виде w_{2*1} и приравнивая оба выражения, получим:

$$\frac{(2\pi\hbar)^3}{V^2} \cdot \frac{\sigma_{12} \cdot \delta(E_2 - E_1) dE_2}{4\pi p_2^2 dp_2 d\omega_2} = \frac{(2\pi\hbar)^3}{V^2} \cdot \frac{\sigma_{2*1} \cdot \delta(E_1 - E_2) dE_1}{4\pi p_1^2 dp_1 d\omega_1}.$$
Учитывая, что \(dE_1/dp_1 = v_1 \), \(dE_2/dp_2 = v_2 \) и сократив все общие множители, окончательно найдём следующее соотношение:

\[
\frac{d\sigma_{12}}{p_2^2 d\sigma_{12}} = \frac{d\sigma_{2*1*}}{p_1^2 d\sigma_{12}}.
\] (116.3)

Объем \(V \) из этого соотношения выпадает; поэтому оно сохраняется в том же виде и при переходе к пределу \(V \to \infty \).

Соотношение (116,3) представляет собой содержание так называемого принципа детального равновесия. Оно связывает эффективное сечение двух процессов \(I \to 2, 2* \to I* \), которые хотя и не являются прямым и обратным в буквальном смысле слова \(I \to 2, 2 \to I \), но по физическому смыслу очень близки к ним.

Из (116,3) можно получить аналогичное соотношение для интегрального эффективного сечения. Физический интерес представляет обычно интегральное (т. е. проинтегрированное по всем направлениям скорости после столкновения) эффективное сечение, просуммированное, кроме того, по всем направлениям моментов частиц после столкновения и усреднённое по направлениям скорости и моментов частиц в исходном состоянии. Обозначим такое сечение посредством \(\bar{\sigma}_{12} \):

\[
\bar{\sigma}_{12} = \frac{1}{4\pi (2J_1^{(1)} + 1) (2J_1^{(2)} + 1)} \sum_{M_1^{(1)} M_1^{(2)}} \sum_{M_2^{(1)} M_2^{(2)}} \int \int d\sigma_{12} d\sigma_{12},
\] (116.4)

где \(J_1^{(1)}, J_1^{(2)} \) — моменты частиц до столкновения, а \(M_1^{(1)}, M_2^{(1)}, M_1^{(2)}, M_2^{(2)} \) — проекции моментов частиц до и после столкновения. Написав (116,3) в виде:

\[
p_1^2 d\sigma_{12} d\sigma_{12} = p_2^2 d\sigma_{2*1*} d\sigma_{12}
\]

и произведя интегрирование и суммирование, получим соотношение

\[
(2J_1^{(1)} + 1) (2J_1^{(2)} + 1) p_1^2 \bar{\sigma}_{12} = (2J_2^{(1)} + 1) (2J_2^{(2)} + 1) p_2^2 \bar{\sigma}_{2*1*}.
\] (116,5)

Будучи применено к упругому столкновению двух частиц, соотношение (116,3) обращается в тождество (эффективное сечение зависит только от угла рассеяния). Для упругого же рассеяния в не обладающем центральной симметрией поле \(U (x, y, z) \) соотношение

\[
\frac{d\sigma_{12}}{d\sigma_{12}} = \frac{d\sigma_{2*1*}}{d\sigma_{12}}
\] (116,6)

(\(p_1 = p_2 \)) определяет некоторые свойства зависимости эффективного сечения от направлений.

Отметим, что в боровском приближении соотношение (116,6) имеет место не только для переходов \(I \to 2, 2* \to I* \), но и для пря-
мого и обратного переходов в буквальном смысле ($I \rightarrow 2$, $2 \rightarrow I$):

$$
\frac{d\sigma_{12}}{d\sigma_2} = \frac{d\sigma_{21}}{d\sigma_1}.
$$ (116.7)

Это видно непосредственно из формулы (110.6). Однако оно не имеет места уже в следующем приближении теории возмущений\(^1\).

§ 117. Общая теория неупругого рассеяния

В общем случае неупругого рассеяния асимптотический вид волновой функции системы двух сталкивающихся частиц представляет собой сумму, в которой каждому возможному результату столкновения (в смысле рода, внутреннего состояния и кинетической энергии образовавшихся частиц) соответствует по одному члену; кроме того, имеется, конечно, член, описывающий частицы до столкновения. Каждый такой член есть произведение волновых функций внутренних состояний частиц и функции, описывающей свободное относительное движение частиц (в системе координат, в которой покойтся центр инерции). Среди этих членов имеется, в частности, член, соответствующий упругому рассеянию. Будем рассматривать именно этот член, сложив его с членом, описывающим падающие частицы. Огделив волновые функции неизменного внутреннего состояния частиц, мы получим волновую функцию относительного движения, зависящую только от взаимного расстояния частиц и угла рассеяния. Обозначим её посредством φ и выясним её асимптотический вид.

Вычисления производятся в точности аналогично тому, как это было сделано в § 105. Разница заключается в том, что асимптотическое выражение для радикальных функций $R_t(r)$ не может быть взято в виде стоячей волны (105.7). Стоящая волна есть сумма сходящейся и расходящейся волны с одинаковыми амплитудами. При упругом рассеянии это соответствует физическому смыслу задачи, но при неупругом рассеянии амплитуда расходящейся волны должна быть меньше амплитуды сходящейся волны. Поэтому вместо (105.7) имеем

$$
R_t(r) \approx \alpha_t e^{\frac{i(kr - \frac{n_2}{2})}{2lkr} - \frac{i(kr - \frac{n_2}{2})}{2lkr}},
$$ (117.1)

где α_t — некоторая (вообще говоря, комплексная) величина с модулем,

\(^1\) На первый взгляд формула (43.5) второго приближения теории возмущений тоже симметрична по отношению к перестановке начального и конечного состояний. В действительности такая симметрия отсутствует в связи с тем, что при переходе к комплексно сопряжённой формуле меняется контур интегрирования (направление обхода особых точек).
меньшим единицей. Для асимптотического выражения волновой функции ψ получим разложение

$$\psi = \sum_i l^2 (2l + 1) \frac{ae^{i(kr - \frac{l\pi}{2})} - e^{-i(kr - \frac{l\pi}{2})}}{2ikr} P_l(\cos \theta). \quad (117,2)$$

Коэффициенты в нём подобраны таким образом, чтобы при вычитании падающей плоской волны e^{ikr} оставалась бы только расходящаяся волна. Для коэффициента при $e^{-ikr/r}$ в этой разности получается выражение

$$f(\theta) = \frac{1}{2ik} \sum_{l=0}^{\infty} (2l + 1)(\alpha_l - 1) P_l(\cos \theta), \quad (117,3)$$

заменяющее формулу (105,10). Квадрат $|f(\theta)|^2$ определяет дифференциальное эффективное сечение рассеяния частицы в неизмеренном состоянии, т. е. эффективное сечение упругого рассеяния. Для полного эффективного сечения упругого рассеяния получим вместо (105,11) формулу

$$\sigma_{\text{уп}} = \frac{\pi}{k^2} \sum_{l=0}^{\infty} (2l + 1) |1 - \alpha_l|^2. \quad (117,4)$$

Полное эффективное сечение неупругого рассеяния (со всеми возможными конечными состояниями частиц) тоже можно выразить через величины α_l. Для этого достаточно заметить, что для каждого значения l интенсивность расходящейся волны ослаблена по сравнению с интенсивностью сходящейся волны в отношении $|\alpha_l|^2$. Это ослабление должно быть целиком отнесено на счёт неупругого рассеяния. Поэтому ясно, что

$$\sigma_{\text{неуп}} = \frac{\pi}{k^2} \sum_{l=0}^{\infty} (2l + 1)(1 - |\alpha_l|^2), \quad (117,5)$$

а полное эффективное сечение

$$\sigma = \sigma_{\text{уп}} + \sigma_{\text{неуп}} = \frac{\pi}{k^2} \sum_{l} (2l + 1)(2 - \alpha_l - \alpha_l^*). \quad (117,6)$$

Каждый из членов суммы в (117,4), (117,5) можно рассматривать как эффективное сечение рассеяния частицы, падающей с определённым моментом l: $\sigma_{\text{уп}} = \frac{\pi}{k^2} (2l + 1)|1 - \alpha_l|^2, \sigma_{\text{неуп}} = \frac{\pi}{k^2} (2l + 1)(1 - |\alpha_l|^2). \quad (117,7)$
Если $|\alpha| = 1$, то неупругое рассеяние отсутствует, а сечение упругого рассеяния может лежать в пределах:

$$0 \leq \sigma_{\text{упл}} \leq \frac{4\pi}{k^2} (2l + 1).$$

Нижний предел достигается при $\alpha = 1$; тогда отсутствует как неупругое, так и упругое рассеяние. Интересно, что наличие неупругого рассеяния непременно приводит к одновременному наличии упругого рассеяния.

Отметим также случай $\alpha = 0$. Тогда

$$\sigma_{\text{нейр}} = \sigma_{\text{упл}} = \frac{\pi}{k^2} (2l + 1),$$

t. e. эффективные сечения упругого и неупругого рассеяния одинаковы.

ЗАДАЧА

Нейтроны рассеиваются тяжёлым ядром, «радиуса» a которого велико, если в сравнении с деброилевской длиной волны нейтронов (в силу чего допускается квазиклассическое рассмотрение). Все нейтроны, падающие с орбитальным моментом $l < l_0 = ka$ (т. е. с «прицельным расстоянием» $\rho = \frac{\hbar l}{\nu v} = \frac{l}{k} < a$), подвергаются неупругому рассеянию, а при $l > l_0$ — не взаимодействуют вовсе с ядром. Определить эффективное сечение упругого рассеяния на малые углы.

Решение. Согласно условию задачи, имеем $\alpha = 0$ при $l < l_0$ и $\alpha = 1$ при $l > l_0$. Поэтому амплитуда упругого рассеяния

$$f(\theta) = -\frac{1}{2ik} \sum_{l=0}^{l_0} (2l + 1) P_l(\cos \theta).$$

Основную роль в сумме играют члены с большими l (напоминание, что l_0 велико). Соответственно этому, пишем $2l$ вместо $2l + 1$, для $P_l(\cos \theta)$ при малых θ пользуемся приближённым выражением (49,6) и переходим от суммирования к интегрированию:

$$f(\theta) = i \int_0^{l_0} \frac{1}{k} l J_0(\theta l) dl = \frac{i}{k \theta} l_0 J_1(\theta l_0) = \frac{ia}{\theta} J_1(ka\theta).$$

Эффективное сечение равно:

$$d\sigma_{\text{упл}} = \frac{a^2}{\pi \theta^2} \frac{J_1^2(ak\theta)}{\pi^2} d\theta.$$

Заметим, что эта формула формально совпадает с выражением для интенсивности света, испытывающего дифракцию Фраунгофера от чёрного шарика радиуса a.

1) См., например, «Теория поля», 2-е изд. задача 3 к § 61 (задача о дифракции от чёрного шарика эквивалентна задаче о дифракции от круглого отверстия, прорезанного в непрозрачном экране).
§ 118. Неупругое рассеяние медленных частиц

Вывод предельного закона неупругого рассеяния при малых скоростях производится в точности аналогично тому, как это было сделано в § 108 для упругого рассеяния.

Основную роль при малых скоростях (малых k) играет рассеяние с $l = 0$. Радиальная волновая функция с $l = 0$ (в области $r_0 \ll r \ll 1/k$) имеет вид:

$$R_0 = c_1 + \frac{c_2}{r}$$ (118,1)

(см. (108,3). При упругом рассеении постоянные c_1, c_2 всегда могут быть определены как действительные величины, поскольку действительно как уравнение Шредингера, так и граничное условие к нему (асимптотический вид стоящей волны). При неупругом рассеении условие на бесконечности (асимптотический вид (117,1)) комплексно; поэтому и постоянные c_1, c_2, вообще говоря, комплексны.

В области $r \gtrsim 1/k$ волновая функция (с $l = 0$) имеет вид:

$$R_0 = \frac{c_1}{2ikr} [(ik\beta - 1) e^{-ikr} + (ik\beta + 1) e^{ikr}],$$ (118,2)

где $\beta = c_2/c_1$. Коэффициенты при сходящейся и расходящейся волнах выбраны так, чтобы при $rk \ll 1$ функция (118,2) переходила в (118,1).

Сравнивая (118,2) с общим асимптотическим выражением (117,1), найдём, что

$$\alpha_0 = \frac{1 + i k\beta}{1 - i k\beta} \cong 1 + 2i k\beta.$$

Подставляя это выражение в формулы

$$\sigma_{yn} = \sigma_{yn0} = \frac{\pi}{k^2} \left| 1 - \alpha_0 \right|^2, \quad \sigma_{nep} = \sigma_{nep0} = \frac{\pi}{k^2} \left(1 - \left| \alpha_0 \right|^2 \right),$$

для эффективных сечений окончательно получим выражения

$$\sigma_{yn} = 4\pi \beta \beta^*, \quad \sigma_{nep} = \frac{2\pi}{k} i(\beta^* - \beta).$$ (118,3) (118,4)

Таким образом для упругого рассеяния мы получили прежний результат — независимость эффективного сечения от скорости. Эффективное же сечение неупругого рассеяния оказывается обратно пропорциональным скорости (Бете, 1935). Следовательно, при уменьшении скорости роль неупругого рассеяния по сравнению с упругим возрастает.

Совершенно аналогичным образом можно было бы исследовать
Зависимость от скорости эффективных сечений $\sigma_{\text{неуп}}$ с $l \neq 0$. Ограничиваемся указанием результата:

$$
\sigma_{\text{неуп}} \propto k^{2l-1}.
$$

(118,5)

Упругие же сечения $\sigma_{\text{уп}}$ попрежнему пропорциональны k^{4l}, т. е. убывают с уменьшением скорости быстрее, чем $\sigma_{\text{неуп}}$ с теми же l.

Закон $1/\nu$ для эффективного сечения неупругого рассеяния можно легко получить ещё и другим способом, более наглядным, но менее строгим. Для этого считаем, что неупругое рассеяние пропорционально квадрату модуля в точке $r=0$ волновой функции падающей частицы, не возмущённой рассеивающим полем. Физически это предположение выражает тот факт, что, например, сталкивающийся с ядром медленный нейтрон может вызвать реакцию, лишь «проникнув» в ядро. Разделив $|\psi(0)|$ на плотность потока, получим (с точностью до постоянной) эффективное сечение. Взяв ψ в виде плоской волны, нормированной на равную единице плотность потока, имеем $|\psi|^2 = 1/\nu$, т. е. искомый результат.

Описанный способ позволяет легко сделать заключение о границах применимости закона $1/\nu$. Очевидно, что рассеивающее поле должно быть таким, чтобы квадрат $|\psi(0)|^2$ в нём не отличался бы по порядку величин от квадрата волновой функции свободного движения. Для этого поле должно убывать с расстоянием быстрее чем $1/r^2$.

Важный случай кулонова взаимодействия между сталкивающимися частицами требует поэтому особого рассмотрения. Кулоново поле существенно меняет вблизи начала координат падающую из бесконечности плоскую волну. Эффективное сечение получится умножением $1/\nu$ на отношение квадратов модулей кулоновой и свободной волновых функций (в начале координат); это отношение даётся формулами (113, 10—11). Таким образом получим (в кулоновых единицах):

$$
\sigma_{\text{неуп}} \propto \frac{1}{\nu k (e^{\pm 2\pi i/k} - 1)}
$$

(верхние знаки имеют место для поля отталкивания, нижние — для поля притяжения). Для скоростей, малых также и по сравнению с кулоновой единицей, имеем в поле отталкивания (в обычных единицах 1)

$$
\sigma_{\text{неуп}} \propto \frac{1}{\nu^2 e^{2\pi Z_1 Z_2 e}}
$$

(118,6)

где $Z_1 e$, $Z_2 e$ — заряды сталкивающихся частиц. В поле притяжения

$$
\sigma_{\text{неуп}} \propto \frac{1}{\nu^2}.
$$

(118,7)

1 Экспоненциальный множитель представляет собой вероятность походжения через кулоновский потенциальный барьер (см. задачу 2, § 50).
Наконец, остановимся на случае неупругого рассеяния, при котором малой является не относительная скорость сталкивающихся частиц до столкновения, а их скорость v' после столкновения (например, ядерная реакция с образованием медленного нейтрона).

Такой процесс является в некотором смысле обратным неупругому рассеянию медленной частицы. Зависимость его эффективного сечения от скорости образующейся частицы получается непосредственно из закона $1/v$ с помощью принципа детального равновесия. Из (116,5) непосредственно заключаем, что для рассматриваемого процесса

$$\sigma_{\text{неуп}} \propto v',$$ \hspace{1cm} (118,8)

т. е. эффективное сечение пропорционально скорости образующейся медленной частицы.

§ 119. Формула Брейта и Вигнера

Система, способная к распаду, не обладает, строго говоря, дискретным спектром энергий. Вылетающая из неё при распаде частица (или частицы) уходит на бесконечность; в этом смысле движение системы инфинитно, а потому энергетический спектр непрерывен.

Может, однако, оказаться, что вероятность распада системы очень мала. Простейший пример такого рода представляет частица, окруженная достаточно высоким и широким потенциальным барьером. Другим примером является нейтрон в тяжёлом ядре. Хотя общая энергия частиц в ядре велика, но в течение большей части времени она примерно поровну распределена между частицами, так что каждая из них обладает энергией, недостаточной для того, чтобы преодолеть притяжение остальных частиц и вылететь из ядра. Лишь сравнительно редко на одной частице концентрируется достаточно большая для этого энергия.

Для таких систем с малой вероятностью распада можно ввести понятие о «квазистационарных» состояниях, в которых частицы движутся в течение длительного времени «внутри системы», покидая её лишь по истечении значительного промежутка времени τ, которое можно назвать «продолжительностью жизни» данного почти стационарного состояния ($\tau \sim 1/\omega$, где ω — вероятность распада в единицу времени). Энергетический спектр этих состояний будет «квазидискретным»; он состоит из ряда размывших уровней, «ширина» которых Γ связана с продолжительностью жизни посредством $\Gamma \sim h/\tau$ (см. (44,7)). Ширины квазидискретных уровней малы по сравнению с расстояниями между ними.

При рассмотрении квазистационарных состояний можно применить следующий своеобразный метод. До сих пор мы всегда рассматривали решения уравнения Шрёдингера с граничным условием, требующим конечности волновой функции на бесконечности. Вместо этого будем теперь искать решения, представляющие собой на бес-
конечности расходящуюся сферическую волну; это соответствует частице, вылетающей в конце концов из системы при её распаде. Ввиду того, что такое граничное условие комплексно, нельзя уже утверждать, что собственные значения энергии должны быть действительными. Напротив, в результате решения уравнения Шредингера мы получим набор комплексных значений, которые мы будем писать в виде:

\[E = E_0 - i\Gamma, \quad (119,1) \]

где \(E_0 \) и \(\Gamma \) — две положительные (см. ниже) величины.

Легко видеть, в чём заключается физический смысл комплексных значений энергии. Временной множитель волновой функции квазистационарного состояния имеет вид:

\[e^{-\frac{i}{\hbar} E_0 t} = e^{-\frac{i}{\hbar} E_0 t} e^{\frac{i}{\hbar} \Gamma t}. \]

Поэтому все вероятности, определяющиеся квадратами модуля волновой функции, затухают со временем по закону \(e^{-\frac{2\Gamma}{\hbar} t} \). В частности, по этому закону затухает и вероятность нахождения частицы «внутри системы». Таким образом \(\Gamma \) определяет продолжительность жизни состояния; вероятность распада в единицу времени равна

\[\omega = \frac{2\Gamma}{\hbar}. \quad (119,2) \]

О величине \(\Gamma \) говорят как о «ширине» уровня энергии \(E_0 \).

На первый взгляд, имеется противоречие между затуханием квадрата \(|\psi|^2 \) со временем и тем, что нормировочный интеграл \(\int |\psi|^2 dV \) должен быть постоянной величиной, как это непосредственно следует из волнового уравнения. В действительности, однако, никакого противоречия нет, так как нормировочный интеграл для рассматриваемых волновых функций расходится. Это видно уже из того, что на больших расстояниях волновая функция (расходящаяся волна) содержит множитель \(e^{ikr} \) (где \(k = \frac{1}{\hbar} \sqrt{2\mu (E_0 - i\Gamma)}, \text{Im}(k) < 0 \)), экспоненциально возрастающий при \(r \to \infty \).

Будем нормировать волновую функцию условием, чтобы интеграл \(\int |\psi|^2 dV \), взятый по области «внутри системы», был равен единице. При произвольной энергии \(E \) асимптотический вид радиальной части волновой функции (для заданного момента \(l \) частицы относительно

1) Заметим, что отсюда видна физическая необходимость положительности \(\Gamma \). Она, впрочем, автоматически оказывается такой (как это можно показать из волнового уравнения) при поставленном на бесконечности условии.

2) Часто, впрочем, называют шириной уровня и обозначают посредством \(\Gamma \) величину, вдвое большую.
начала координат) представляет собой совокупность сходящейся и расходящейся волн:
\[
R_i \approx \frac{1}{r} \left[a_i(E) e^{-i\kappa r} + a_i^*(E) e^{i\kappa r} \right],
\]
где коэффициент \(a_i(E)\) можно рассматривать как функцию комплексного переменного \(E\). Коэффициенты при сходящейся и расходящейся волнах написаны так, чтобы \(R_i\) было действительным при действительных \(E\) (как это и должно быть для волновых функций истиных стационарных состояний).

При \(E\), равном какому-либо из комплексных собственных значений \(E_0 - i\Gamma\) (для данного \(l\)), в асимптотическом выражении волновой функции должна оставаться только расходящаяся волна. Другими словами, собственные значения энергии суть нули функции \(a_i(E)\). Таким образом
\[
a_i(E_0 - i\Gamma) = 0. \tag{119,4}
\]

Для значений энергии, лежащих вблизи некоторого её собственного значения, можно разложить \(a_i(E)\) в ряд по степеням разности \(E - (E_0 - i\Gamma)\). Нулевой член разложения исчезает, согласно (119,4); ограничиваясь членом первого порядка, имеем
\[
a_i(E) = a_i(E - E_0 + i\Gamma), \tag{119,5}
\]
где \(a_i\) — постоянная. Подставляя это выражение в (119,3), найдём следующую формулу для волновой функции состояния, близкого к квазистационарному:
\[
R_i = \frac{1}{r} \left[a_i(E - E_0 + i\Gamma) e^{-i\kappa r} + a_i^*(E - E_0 - i\Gamma) e^{i\kappa r} \right]. \tag{119,6}
\]

Абсолютное значение постоянной \(a_i\) легко определить, замечая, что в квазистационарном состоянии при принятой нормировке («внутри системы находится одна частица») полный поток вероятности в расходящейся волне должен быть равен вероятности распада в единицу времени. При \(E = E_0 - i\Gamma\) функция (119,6) сводится к
\[
R_i = \frac{2i\Gamma a_i^*}{r} e^{i\kappa r}.
\]

Соответствующий полный поток вероятности есть \(\psi|2i\Gamma a_i^*|^2\), где скорость \(\psi = \sqrt{\frac{2\mu}{m}}\) (предполагаем, что \(\Gamma \ll E_0\)). Приравнивая его вероятности (119,2), найдём:
\[
|a_i|^2 = \frac{1}{2\hbar\psi\Gamma}. \tag{119,7}
\]

Асимптотический вид обычной волновой функции непрерывного спектра с действительной энергией \(E\) (стоячая сферическая волна),
нормированной на δ-функцию от энергии, будет следующим:

$$R_0 \approx \sqrt{\frac{2}{\pi \hbar v}} \frac{1}{r} \sin \left(kr - \frac{\pi l}{2} + \delta_i \right) =$$

$$= \frac{i}{\sqrt{2 \pi \hbar v}} \frac{1}{r} \left[e^{-i \left(kr - \frac{\pi l}{2} + \delta_i \right)} - e^{i \left(kr - \frac{\pi l}{2} + \delta_i \right)} \right]. \tag{119.8}$$

Отношение квадрата модуля нормировочного коэффициента в этой формуле к квадрату такого же коэффициента в функции (119.6) (с a_t из (119.7)) равно:

$$\frac{\Gamma}{\pi \left(|E - E_0|^2 + \Gamma^2 \right)}. \tag{119.9}$$

Поскольку функция (119.6) нормирована так, что интеграл квадрата её модуля по области «внутри системы» равен единице, то ясно, что выражение (119.9) определяет значение этого интеграла для состояния, описываемого волновой функцией (119.8). Обратим внимание на то, что «вдали от резонанса» ($|E - E_0| \gg \Gamma$) эта величина пропорциональна ширине уровня Γ, а «вблизи резонанса» ($|E - E_0| \ll \Gamma$) — обратно пропорциональна ей.

Сравнивая (119.6) с (119.8), мы видим, что фаза δ_i функции (119.6) определяется соотношением

$$e^{2i\delta_i} = e^{2i\delta_i^{(0)}} \frac{E - E_0 - i\Gamma}{E - E_0 + i\Gamma} = e^{2i\delta_i^{(0)}} - \frac{2i\Gamma}{E - E_0 + i\Gamma}, \tag{119.10}$$

где

$$e^{2i\delta_i^{(0)}} = -e^{i\pi a^*_t/a}. \tag{119.11}$$

При $|E - E_0| \gg \Gamma$ фаза δ_i совпадает с $\delta_i^{(0)}$; другими словами, $\delta_i^{(0)}$ есть значение фазы «вдали от резонанса».

Из формулы (119.10) видно, что в области резонанса δ_i сильно зависит от энергии. Если переписать эту формулу в виде:

$$\delta_i = \delta_i^{(0)} + \arctg \frac{\Gamma}{(E_0 - E)},$$

tо непосредственно видно, что при прохождении через всю область резонанса (от $E \ll E_0$ до $E \gg E_0$) фаза меняется на π.

Полученные результаты позволяют рассмотреть вопрос об упругом рассеянии частицы с энергией E, близкой к некоторому квазидискретному уровню E_0 «составной системы», состоящей из рассеивающей системы вместе с рассеиваемой частицей (при рассеянии ядром говорят о «составном ядре»). В общей формуле (105.10) для амплитуд рассеяния, в члене с тем значением момента l, которому
соответствует уровень E_0, мы должны подставить выражение (119,10). Тогда мы получим:

$$f(\theta) = f^{(0)}(\theta) - \frac{2l+1}{k} \frac{\Gamma}{E - E_0 + i\Gamma} e^{2i\delta_{l}^{(0)}} P_l(\cos \theta), \quad (119,12)$$

где $f^{(0)}(\theta)$ есть амплитуда рассеяния вдали от резонанса (определяющаяся формулой (105,10) с $\delta_{l} = \delta_{l}^{(0)}$ во всех членах суммы).

Полученная формула определяет упругое рассеяние в резонансной области. Область её применимости ограничивается лишь требованием, чтобы разность $|E - E_0|$ была мала по сравнению с расстоянием D между соседними квазидискретными уровнями составной системы:

$$|E - E_0| \ll D, \quad (119,13)$$

Амплитуду $f^{(0)}(\theta)$ часто называют амплитудой потенциального рассеяния, а второй член в формуле (119,12) — амплитудой резонансного рассеяния.

Если речь идёт о рассеянии ядром заряженной частицы (например, протона), то для $e^{2i\delta_{l}^{(0)}}$ надо воспользоваться выражением (112,11), которое в обычных единицах имеет вид:

$$e^{2i\delta_{l}^{(0)}} = \frac{\Gamma \left(l + 1 + i \frac{h^2}{Ze^2\mu k} \right)}{\Gamma \left(l + 1 - i \frac{h^2}{Ze^2\mu k} \right)} \quad (119,14)$$

(Ze — заряд ядра, ze — заряд рассеиваемой частицы, μ — приведённая масса частицы и ядра, $\Gamma(x)$ — Γ-функция).

Особый интерес представляет рассеяние нейтральных частиц (рассеяние нейтронов ядрами). Силы взаимодействия нейтрона с ядром быстро убывают с расстоянием, и если нейтроны достаточно медленны, то можно применить результаты § 108 (скорость нейтронов должна быть такой, чтобы h/p было велико по сравнению с «радиусом» ядра). При рассеянии медленных частиц существенно лишь рассеяние с $l = 0$; будем считать, что уровень E_0 относится именно к движению с моментом $l = 0$. Амплитуда $f^{(0)}(\theta)$ потенциального рассеяния есть теперь просто некоторая действительная постоянная β (см. § 108). Во втором члене полагаем $l = 0$ и заменяем $e^{2i\delta_{l}^{(0)}}$ единицей (поскольку $\delta_{l}^{(0)} \ll 1$). Таким образом, получим следующую формулу для амплитуды упругого рассеяния медленных нейтронов ядрами:

$$f(\theta) = \beta \frac{\Gamma}{k(E - E_0 + i\Gamma) \quad (119,15)}$$

Во всех предыдущих выводах (начиная с формулы (119,5)) молчаливо подразумевалось, что величина самого уровня E_0 не слишком
мала. Случай же E_0, малого по сравнению с расстоянием между уровнями ($E_0 \ll D$), требует особого исследования. Мы рассмотрим здесь столкновения медленных нейтронов с ядрами, когда существенно лишь рассеяние с $l = 0$.

Коэффициент $\alpha(E)$ в волновой функции (119,3) надо разлагать теперь по степеням энергии E (индекс $l = 0$ у α_l для краткости опускаем). Для того чтобы выяснить характер первых членов разложения, замечаем, что выражение (119,3), рассматриваемое как функция комплексной переменной E, должно быть одно-значной функцией (в силу однозначности решения уравнения Шредингера для каждого данного E). Если, исходя из некоторого положительного действительного значения E, совершить полный обход в комплексной плоскости вокруг начала координат, возвратясь к исходному значению, то корень \sqrt{E} изменит знак. Вместе с \sqrt{E} меняет знак и $k = \frac{1}{\hbar} \sqrt{2\mu E}$. Между тем функция (119,3) должна оставаться неизменной. Другими словами, при замене \sqrt{E} на $-\sqrt{E}$ функция $\alpha(E)$ должна перейти в $\alpha^* (E)$. Из этих рассуждений следует, что первые члены разложения $\alpha(E)$ имеют вид:

$$\alpha(E) = a(E - \epsilon_0 + i\gamma \sqrt{E}), \quad (119,16)$$

где ϵ_0 и γ — действительные постоянные 1). Это выражение заменяет собой в рассматриваемом случае формулу (119,5); соответствующим образом должны быть изменены и остальные формулы (надо заменить везде E_0 на ϵ_0 и Γ на $\gamma \sqrt{E}$). Так, амплитуда упругого рассеяния медленных нейтронов будет теперь иметь вид:

$$f(\theta) = \beta - \frac{\hbar \gamma}{\sqrt{2\mu (E - \epsilon_0 + i\gamma \sqrt{E})}} \quad (119,17)$$

(мы подставили $k = \frac{1}{\hbar} \sqrt{2\mu E}$, где μ — приведённая масса нейтрона и ядра). При $E \rightarrow 0$ амплитуда рассеяния стремится, как это и требуется общей теорией, к постоянной (в формуле (119,15) перехода $E \rightarrow 0$ делать, разумеется, нельзя). Заметим, что это обстоятельство тоже могло бы служить доказательством необходимости замены Γ на $\gamma \sqrt{E}$ при малых E.

Формула (119,17) применима не только к рассеянию при наличии близкого к нулю квазидискретного уровня, но и в случае, когда вблизи нуля имеется истиный дискретный уровень составной системы; обозначим его как — ϵ. Связь ϵ с постоянными ϵ_0 и γ определяем из условия обращения амплитуды рассеяния в бесконечность.

1) Связь постоянных ϵ_0 и γ с величиной E_0 уровня и его шириной Γ определяется уравнением $\alpha_l(E_0 - i\Gamma) = 0$, т. е. $E_0 - i\Gamma - \epsilon_0 + i\gamma \sqrt{E} = 0$. В частности, если $\epsilon_0 \gg \gamma^2$, то получается: $E_0 = \epsilon_0$, $\Gamma = \gamma \sqrt{E_0}$.

при \(E = - \varepsilon \) (§ 107). Значение корня \(\sqrt{-\varepsilon} \) надо при этом понимать, как указано в § 107, как \(+i\sqrt{\varepsilon} \). Таким образом получим условие
\[
\varepsilon + i\sqrt{\varepsilon} + \varepsilon_0 = 0.
\] (119,18)
При \(\varepsilon_0 < 0 \) это уравнение даёт действительное значение \(\varepsilon \) в соответствии с наличием истинного дискретного уровня, не имеющего ширины. При не слишком близком к нулю отрицательном \(\varepsilon_0 \) из (119,8) имеем просто \(\varepsilon = -\varepsilon_0 \).
Покажем, в каком соотношении находится формула (119,17) с формулой Вигнера (109,7). Если \(|\varepsilon_0| \ll \gamma^2 \), то для энергии \(E \ll \gamma^2 \) в знаменателе амплитуды резонансного рассеяния в (119,17) можно пренебречь первым членом \(E \). Далее, ввиду малости этого знаменателя можно пренебречь вовсе амплитудой \(\beta \) потенциального рассеяния. Тогда мы получим для эффективного сечения выражение
\[
4\pi |f|^2 = \frac{2\pi h^2}{\mu} \frac{1}{E + \frac{\varepsilon_0^2}{\gamma^2}},
\]
совпадающее с формулой Вигнера, причём величина уровня равна \(\varepsilon = \varepsilon_0^2/\gamma^2 \) (это значение получается и из уравнения (119,18) при \(\varepsilon_0 \ll \gamma^2 \). Этот уровень — истинный или виртуальный (см. конец § 109), смотря по тому, отрицательна или положительна постоянная \(\varepsilon_0 \) (при положительном \(\varepsilon_0 \) уравнение (119,18) не имеет решений; напоминаем, что \(\sqrt{\varepsilon} \) должен быть положительным).
Всё предыдущее рассмотрение предполагало, что рассеяние целиком упруго. Если же наряду с упругим возможно также и неупругое рассеяние (как это обычно и имеет место в ядерных процессах), то произведённое исследование должно быть видоизменено. Следуя изложенной в § 117 общей теории, мы должны написать асимптотическое выражение волновой функции, описывающей падающую и упруго рассеянную частицу: Это выражение будет иметь вид суммы сходящейся и расходящейся волн, но амплитуды этих волн уже не должны быть одинаковыми по абсолютной величине, как в (119,3). Разлагая каждую из них в ряд, получим выражение, аналогичное (19,6):
\[
rR_l(r) = a_l (E - E_0 - i\Gamma) e^{-ikr} + a'_l (E - E_0 + b_l + ic_l) e^{ikr},
\]
где \(a_l, a'_l \) — комплексные, а \(b_l, c_l \) — действительные постоянные (коэффициент при сходящейся волне должен попрежнему обращаться в нуль при \(E = E_0 - i\Gamma \)). Сравнивая это выражение с формулой (117,1), мы можем определить стоящую в последней величину \(\alpha_l \), а затем по общим формулам § 117 — эффективные сечения упругого и неупругого рассеяний. Заметим, что постоянные \(a_l, a'_l, b_l, c_l \) должны удовлетворять определённым неравенствам, вытекающим из требования \(|\alpha_l|^2 < 1 \).
Получающиеся таким образом формулы довольно громоздки и представляют мало интереса. Они упрощаются в наиболее важном для ядерной физики случае, когда неупругое рассеяние осуществляется лишь через промежуточную стадию образования «составного ядра». Ввиду очень быстрого закона спадания специфических ядерных сил взаимодействия неупругое рассеяние, сопровождающееся перестройкой ядра, обычно происходит так, что сначала падающая частица поглощается ядром; образовавшееся составное ядро распадается затем тем или иным способом, переходя в устойчивое состояние.

Такой характер неупругого рассеяния позволяет утверждать, что оно не сказывается на потенциальном (не связанном с близостью \(E \) к уровню \(E_0 \)) упругом рассеянии, изменения лишь величину резонансного рассеяния. Для того чтобы учесть это обстоятельство математически, перепишем выражение (119,6) для волновой функции в отсутствии неупругого рассеяния в виде:

\[
R_l = \frac{(E - E_0 - i\Gamma)(a_l e^{-ikr} + a_l^* e^{ikr}) - 2i\Gamma a_l^* e^{ikr}}{E - E_0 + i\Gamma}.
\]

Первый член здесь соответствует, очевидно, потенциальному упругому рассеянию — фаза рассеянной волны в нём есть \(\delta_l^{(0)} \) из (119,11). Второй же член, следовательно, соответствует резонансному рассеянию. Понимая под \(\frac{2\Gamma}{\hbar} \) полную вероятность любого распада составного ядра — как упругого, так и неупругого, — мы должны теперь в резонанском члене заменить \(\Gamma \) на некоторую другую величину \(\Gamma_e < \Gamma \), причём \(\frac{2\Gamma_e}{\hbar} \) означает вероятность упругого распада. Тогда мы получим:

\[
R_l = \frac{E - E_0 + i\Gamma}{r} \left\{ a_l e^{-ikr} + a_l^* \left(1 - \frac{2i\Gamma_e}{E - E_0 + i\Gamma} \right) e^{ikr} \right\}.
\]

Сравнение с общим выражением (117,1) показывает, что величина \(\alpha_l \) в последнем в данном случае равна:

\[
\alpha_l = e^{2i\delta_l^{(0)}} \left[1 - \frac{2i\Gamma_e}{E - E_0 + i\Gamma} \right].
\]

Найдя \(\alpha_l \), мы можем непосредственно определить все эффективные сечения. Подставляя в (117,3) выражение (119,19) для одного из \(\alpha_l \) (с тем \(l \), которому соответствует уровень \(E_0 \)) и \(\alpha_l = e^{2i\delta_l^{(0)}} \) для остальных, найдём амплитуду упругого рассеяния в виде:

\[
f(\theta) = f^{(0)}(\theta) - \frac{2l + 1}{k} \frac{\Gamma_e}{(E - E_0 + i\Gamma)} e^{2i\delta_l^{(0)}} P_l (\cos \theta),
\]

отличающуюся от (119,12) заменой \(\Gamma \) в числителе амплитуды резонансного рассеяния на \(\Gamma_e \).

Эффективное сечение неупругого рассеяния получится подстановкой тех же значений \(\alpha_l \) в общую формулу (117,5). Из всей суммы
после в (117,5) останется лишь один член, что вполне естественно ввиду чисто резонансного характера неупругого рассеяния. После элементарного преобразования получим

$$
\sigma_{\text{неуп}} = (2l + 1) \frac{4\pi}{k^2} \frac{\Gamma_e \Gamma_u}{(E - E_0)^2 + \Gamma^2},
$$

(119,21)

gде \(\Gamma_u = \Gamma - \Gamma_e \). Очевидно, что \(\frac{2\Gamma_u}{\hbar} \) есть вероятность неупругого распада составного ядра. Величины \(\Gamma_e \) и \(\Gamma_u \) часто называют упругой и неупругой ширинами уровня 1).

Представляет интерес значение эффективного сечения неупругого рассеяния, пропорционального по области энергий вокруг резонансного значения \(E = E_0 \). Поскольку \(\sigma_{\text{неуп}} \) быстро падает с увеличением \(|E - E_0| \), то интегрирование по \(dE \) можно распространить от \(-\infty \) до \(+\infty \), и мы получим:

$$
\int \sigma_{\text{неуп}} dE = (2l + 1) \frac{4\pi^2}{k^2} \frac{\Gamma_e \Gamma_u}{\Gamma^2}.
$$

(119,22)

При рассеянии медленных нейтронов ядрами амплитуда упругого рассеяния имеет вид:

$$
f(\theta) = \beta - \frac{\Gamma_e}{k (E - E_0 + \Gamma^2)}
$$

(вместо (119,15)). Полное эффективное сечение упругого рассеяния \(\sigma_{\text{ун}} = 4\pi |f|^2 \) равно:

$$
\sigma_{\text{ун}} = 4\pi \beta^2 + \frac{4\pi}{k^2} \frac{\Gamma_e^2 - 2\beta k \Gamma_e (E - E_0)}{(E - E_0)^2 + \Gamma^2}.
$$

(119,23)

Член \(\sigma_0 = 4\pi \beta^2 \) можно назвать эффективным сечением потенциального рассеяния; но мы видим, что в резонансной области имеет место интерференция между потенциальным и резонансным рассеянием.

В непосредственной близости уровня потенциальным рассеянием можно пренебречь 2), и формула для эффективного сечения упругого рассеяния медленных нейтронов приобретает вид:

$$
\sigma_{\text{ун}} = \frac{4\pi}{k^2} \frac{\Gamma_e^2}{(E - E_0)^2 + \Gamma^2}.
$$

(119,24)

1) Если при данном столкновении возможно несколько различных типов неупругого рассеяния, то \(\sigma_{\text{неуп}} \) есть полное эффективное сечение для всех этих типов вместе. Для каждого типа в отдельности получается такая же формула, где вместо \(\Gamma_u \) стоит та часть ширины уровня, которая связана с данным процессом.

2) Напомним, что произведение \(\beta k \) совпадающее с фазой \(\delta_0^{(0)} \), предполагается малой величиной.
Полное эффективное сечение как упругого, так и неупругого рассеяния равно:

$$\sigma = \sigma_{\text{уп}} + \sigma_{\text{неуп}} = 4\pi \frac{\Gamma^2}{k^2 \left(E - E_0\right)^2 + \Gamma^2}$$ \hspace{2cm} (119,25)$$

($$\sigma_{\text{неуп}}$$ из (119,21) с $$l = 0$$).
Если энергия уровня мала ($$E_0 \ll D$$), то, как уже указывалось, формулы, в которых ширина уровня рассматривается как постоянная, не годятся. По тем же причинам, что и выше, надо в формулах (119,18—25) заменить $$E_0$$ на некоторую связанную с ней постоянную $$\varepsilon_0$$, а $$\Gamma$$ — на $$\Gamma_0 \sqrt{E}$$. Что касается «неупругой ширины» $$\Gamma_u$$, то ее надо попрежнему рассматривать как постоянную. Это видно уже из того, что лишь при этом условии $$\sigma_{\text{неуп}}$$ (119,21) будет при $$E \to 0$$ возрастать как $$\frac{1}{\sqrt{E}}$$, как это требуется общей теорией неупругого рассеяния (см. § 118).

Наконец, нам осталось рассмотреть вопрос о влиянии на рассеяние спина сталкивающихся частиц, которым мы до сих пор вообще пренебрегали. В общем случае учёта спина приводит к весьма громоздким формулам, и мы ограничимся наиболее простым, но важным случаем рассеяния медленных нейtronов. Пусть $$i$$ есть спин ядра, а $$s = \frac{1}{2}$$ — спин нейтрона (предполагаем, что $$i \neq 0$$; в противном случае никакого изменения в формулах не происходит). Поскольку рассеяние происходит при орбитальном моменте $$l = 0$$, то момент составного ядра получается сложением $$i$$ с $$s$$, т. е. может иметь значения $$j = i \pm \frac{1}{2}$$. Каждый квазидискретный уровень составного ядра относится, вообще говоря, к одному определенному значению $$j$$. Поэтому эффективное сечение неупругого рассеяния получится умножением выражения (119,21) (с $$l = 0$$) на вероятность системе ядро + нейтрон иметь нужное значение $$j$$.

Будем считать, что либо падающий поток нейтронов «не поляризован» (т. е. спины нейтронов в нём ориентированы полностью беспорядочным образом), либо же «не поляризованы» ядерные спины в облучаемом веществе (либо то и другое вместе). Всего имеется ($$2i + 1$$) ($$2s + 1$$) возможных ориентаций пары спинов $$i$$, $$s$$. Из них данному значению $$j$$ суммарного момента соответствует $$2j + 1$$ ориентаций. Считая все ориентации равновероятными, найдем, что вероятность данного значения $$j$$ равна:

$$\frac{2j + 1}{(2s + 1)(2i + 1)} = \frac{2j + 1}{2(2i + 1)}.$$
Потому эффективное сечение неупругого рассеяния имеет вид:

$$\sigma_{\text{неуп}} = \frac{(2j + 1)}{(2l + 1)} \frac{2\pi}{k^2} \frac{\Gamma_e \Gamma_{\nu}}{(E - E_0)^2 + \Gamma^2}. \quad (119,26)$$

В упругом рассеении надо учесть, во-первых, что резонансное рассеяние имеет место лишь при определённом значении \(j \) и, во-вторых, что амплитуда потенциального рассеяния \(\beta \) тоже зависит от \(j \). Полное эффективное сечение упругого рассеяния равно

$$\sigma_{\text{уп}} = \sum \frac{(2j + 1)}{(2s + 1)(2l + 1)} \sigma^{(j)}_{\text{уп}}, \quad (119,27)$$

где \(\sigma^{(j)}_{\text{уп}} \) — эффективное сечение рассеяния с данным значением \(j \). В члене суммы с \(j \), соответствующим резонансному уровню, надо подставить выражение (119,23), а при другом \(j \) рассеяние чисто потенциальное, т. е. \(\sigma^{(j)}_{\text{уп}} = \sigma^{(j)}_0 = 4\pi\beta^2_j \). Таким образом найдём

$$\sigma_{\text{уп}} = \sigma_0 + \left(\frac{2j + 1}{2l + 1}\right) \frac{2\pi}{k^2} \frac{\Gamma_e^2 - k}{(E - E_0)^2 + \Gamma^2} \frac{\left(\frac{\sigma^{(j)}_0}{\pi}\right)^{1/2}}{(E - E_0)^2 + \Gamma^2}, \quad (119,28)$$

где

$$\sigma_0 = \sum \frac{2j + 1}{(2s + 1)(2l + 1)} \sigma^{(j)}_0 = \frac{l + 1}{2l + 1} \sigma_0 \left(\epsilon + \frac{1}{2}\right) +$$

$$+ \frac{l}{2l + 1} \sigma_0 \left(\epsilon - \frac{1}{2}\right) \quad (119,29)$$

есть полное сечение потенциального рассеяния.

§ 120. Неупругие столкновения быстрых электронов с атомами

Метод, аналогичный применённому к упругому рассеянию, может быть использован также и для вычисления эффективного сечения неупр гих столкновений быстрых электронов с атомами. Условие применимости боровского приближения к неупругим столкновениям по-прежнему требует, чтобы скорость падающего электрона была велика по сравнению со скоростями атомных электронов\(^1\)).

Неупругое столкновение сопровождается изменением внутреннего состояния атома. Атом может перейти из нормального состояния

\(^1\) Что касается потери энергии при столкновении, то она может быть любой. Если электрон теряет при столкновении значительную часть своей энергии, то это приводит к ионизации атома, причём энергия передаётся одному из его электронов. Но мы всегда можем считать рассеянным тот из обоих электронов, который имеет после столкновения большую скорость, и, таким образом, при большей скорости падающего электрона будет велика также и скорость рассеянного.
в возбуждённое состояние дискретного или непрерывного спектра; в последнем случае это означает ионизацию атома. При выводе общих формул эти два случая можно рассматривать вместе.

Исходя (как и в § 110) из общей формулы для вероятности перезхода между состояниями непрерывного спектра, применяем её к системе, состоящей из падающего электрона и атома. Пусть \(p, p' \) — импульсы падающего электрона, а \(E_0, E_n \) — энергии атома соответственно до и после столкновения. Для вероятности перехода имеем вместо (110,3) выражение

\[
d\omega_n = \frac{2\pi}{h} \left| U_{E_0 p', E_n p} \right|^2 \delta \left(\frac{p'^2 - p^2}{2\mu} + E_n - E_0 \right) dp_x dp_y dp_z, \quad (120,1)
\]

где \(U_{E_0 p', E_n p} \) есть матричный элемент от энергии взаимодействия падающего электрона с атомом

\[
U = \frac{Ze^2}{r} \sum_{a=1}^{Z} \frac{e^2}{|r - r_a|}
\]

(\(r \) — радиус-вектор падающего электрона, \(r_a \) — атомных электронов, начало координат выбрано в ядре атома, \(\mu \) — масса электрона).

Волновые функции \(\psi_p, \psi_{p'} \) электрона определяются прежними формулами (110,4—5); тогда \(d\omega \) есть эффективное сечение \(d\sigma \) столкновения. Волновые функции атома в исходном и конечном состояниях обозначим посредством \(\psi_0, \psi_n \). Если конечное состояние атома относится к дискретному спектру, то \(\psi_n \) (как и \(\psi_0 \)) нормирована обычным образом на единицу. Если же атом переходит в состояние непрерывного спектра, то волновая функция нормируется на \(\delta \)-функцию от параметров \(\nu \), определяющих эти состояния (эти параметрами могут быть, например, энергия атома, компоненты импульса вылетевшего из атома при ионизации электрона). Получающиеся в результате эффективные сечения определяют вероятность столкновения с перезходом атома в состояние непрерывного спектра, лежащие в интервале значений параметров между \(\nu \) и \(\nu + d\nu \).

Интегрирование в (120,1) по абсолютной величине \(p' \) даёт:

\[
d\sigma_n = \frac{2\pi \nu p'}{h} \left| U_{np'} \right|^2 d\nu,
\]

где \(p' \) определяется из закона сохранения энергии:

\[
\frac{p'^2 - p^2}{2\mu} = E_n - E_0. \quad (120,2)
\]

Подставляя в матричный элемент \(U_{np'} \), волновые функции электрона из (110,4—5), получим:

\[
d\sigma_n = \frac{\mu^2}{4\pi^2 h^2} \frac{p'}{p} \left| \int \int U e^{iqr} \psi_n^* \psi_0 \, d\tau dV \right|^2 d\nu \quad (120,3)
\]
(dτ = dV₁ dV₂...dVₖ — элемент конфигурационного пространства Z электронов атома, штрих у do опускаем). В таком виде это есть общая формула теории возмущений, применимая не только к столкновениям электронов с атомом, но и к любым неупругим столкновениям двух частиц, определяющая эффективное сечение рассеяния в системе координат, в которой покоятся центр инерции частиц (μ есть тогдо приведённая масса обеих частиц). При n = 0 и p = p' (120.3) переходит в формулу для эффективного сечения упругого рассеяния.

При столкновениях атома с электронами систему координат, в которой покоятся центр инерции, можно считать, как уже указывалось, совпадающей с системой, в которой покоятся атом; ниже мы будем говорить именно об этой последней системе.

В силу ортогональности функций ψₙ и ψ₀ член в U, содержащий взаимодействие Zₑ² / r с ядром, исчезает при интегрировании по dτ, и, таким образом, имеем для неупругих столкновений:

\[
dσₙ = \frac{μ²}{4πℏ²} \frac{p'}{p} | \int \int \frac{e^{iqr}}{|r - r_a|} \psiₙ \psi₀ dτdV |^2 do. \tag{120,3a}
\]

Интегрирование по dV может быть произведено подобно тому, как это делалось в § 115. Интеграл

\[
ψₙ(r_a) = \int \frac{e^{iqr}}{|r - r_a|} dV
\]

совпадает формально с потенциалом, создаваемым в точке rᵣ зарядами, распределёнными в пространстве с плотностью pₐ(r). Поэтому он удовлетворяет уравнению Пуассона

\[
Δψₙ(r) = - 4πεᵢqr,
\]

откуда непосредственно заключаем, что

\[
ψₙ(r_a) = \int \frac{e^{iqr}}{|r - r_a|} dV = \frac{4π}{q²} e^{iqr_a}. \tag{120,4}
\]

Подставляя это выражение в (120,3a), приходим окончательно к следующему общему выражению для эффективного сечения неупругих столкновений¹):

\[
dσₙ = \left(\frac{e²μ}{ℏ²} \right)^² \frac{4k'}{kq²} | \int \sum_a e^{iqr_a} ψₙ*ψ₀ dτ |^2 do. \tag{120,5}
\]

(мы ввели вместо импульсов p', p волновые векторы k' = p'/ℏ, k = p/ℏ, более удобные в дальнейших вычислениях). Эта формула

¹) Эта, как и большинство дальнейших формул в §§ 120 — 122, была получена Бете (1930).
определяет вероятность столкновения, при котором электрон рассеивается в элемент телесного угла $d\theta$, а атом переходит в n-е возбуждённое состояние. Вектор \mathbf{h} представляет собой импульс, передаваемый электроном атому при столкновении.

При вычислениях бывает удобнее относить эффективное сечение не к элементу телесного угла, а к элементу dq абсолютных значений вектора q. Вектор q определяется, как $q = k - k'$; для его абсолютного значения имеем:

$$q^2 = k^2 + k'^2 - 2kk' \cos \theta. \quad (120,6)$$

Отсюда, при заданных k, k', т. э. при заданной потере энергии электроном:

$$qdq = kk' \sin \theta dq = \frac{kk'}{2\pi} do. \quad (120,7)$$

Подставляя в формулу (120,5) $do = 2\pi (qdq/kk')$, получим её в виде:

$$d\sigma_n = 8\pi \left(\frac{e^2}{\hbar \nu}\right)^2 \frac{dq}{q^3} \left| \sum_a e^{i q r_a} \psi_n^* \psi_0 d\tau \right|^2. \quad (120,8)$$

Вектор q играет существенную роль во всех дальнейших вычислениях. Рассмотрим подробнее его связь с углом рассеяния θ и передаваемой при столкновении энергией $E_n - E_0$. Мы увидим ниже, что основную роль играют столкновения, вызывающие рассеяние на малые углы ($\theta \ll 1$) с передачей энергии, малой по сравнению с энергией $E = \mu \nu^2/2$ падающего электрона: $E_n - E_0 \ll E$. Разность $k - k'$ абсолютных значений волновых векторов падающего и рассеянного электронов в этом случае тоже мала ($k - k' \ll k$), и, написав

$$E_n - E_0 = \frac{h^2}{2m} \left(k^2 - k'^2 \right) \ll \frac{h^2}{\mu} \mu (k - k'),$$

находим, что

$$k - k' \approx \frac{\mu (E_n - E_0)}{h^2 k} = \frac{E_n - E_0}{\hbar \nu}. \quad (120,9)$$

В силу малости θ имеем из (120,6)

$$q^2 \approx (k - k')^2 + kk' \theta^2$$

и окончательно:

$$q^2 = \sqrt{\left(\frac{E_n - E_0}{\hbar \nu}\right)^2 + (k\theta)^2}. \quad (120,9)$$

Примем общую формулу (120,8) к случаю малых $q (qa_0 \ll 1)$. Это условие означает, как это видно из (120,9), малые углы отклонения

$$\theta \ll \frac{\nu_0}{\nu}.$$
и не слишком большие энергии возбуждения атома \(^1\) \((a_0, \nu_0 — веьлинины порядка атомных размеров и скорости атомных электронов). В этом случае можно разложить экспоненциальные множители \(e^{iqr_a}\) в ряд по степеням \(q:\)

\[
e^{iqr_a} \approx 1 + iq x_a
\]

(выбираем систему координат с осью \(x\) вдоль вектора \(q\)). При подстановке этого разложения в \((120,8)\) члены с \(1\) дают нуль в силу ортогональности волновых функций \(\psi_0\) и \(\psi_n\), и мы получим

\[
d\sigma_n = 8\pi \left(\frac{e}{\hbar v} \right)^2 dq \left| (d_x)_{0n} \right|^2 = \left(\frac{2e}{h v} \right)^2 \left| (d_x)_{0n} \right|^2 \frac{d_0}{\overline{y^2}}, \tag{120,10}\]

где \(d_x = e \sum a x_a\) есть \(x\)-компонента дипольного момента атома. Мы видим, что эффективное сечение (при малых \(q)\) определяется квадратом модуля матричного элемента дипольного момента для перехода, соответствующего изменению состояния атома \(^2\).)

Может, однако, оказаться, что матричный элемент дипольного момента для данного перехода тождественно исчезает в силу правил отбора («запрещённый переход»). Тогда разложение \(e^{iqr_a}\) надо продолжить до следующего члена \(^3\), и мы получим:

\[
d\sigma_n = 2\pi \left(\frac{e^2}{\hbar v} \right)^2 \left| \sum a x_a^2 \right|^2 q dq. \tag{120,11}\]

Рассмотрим теперь противоположный предельный случай больших \(q (qa_0 \gg 1)\). Большие \(q\) означают, что атому передаётся импульс, большой по сравнению с собственным первоначальным импульсом атомных электронов. Из физических соображений заранее очевидно, что в этом случае можно рассматривать атомные электроны как свободные, а столкновение с атомом — как упругое столкновение падающего электрона с первоначально покоявшимся атомными электронами. Это видно также и из общей формулы \((120,8)\). При больших \(q\) подинтегральное выражение содержится быстро оциллировать множители \(e^{iqr_a}\), и интеграл близок к нулю, если только \(\psi_n\) не содержит такого же множителя. Такая функция \(\psi_n\) соответствует ионизированному атому с электроном, вылетевшим из него с импульсом \(h q = p — p'\), т. е. с импульсом, определяющимся просто законом сохранения импульса, как это было бы при столкновении двух свободных электронов.

\(^1\) Именно, необходимо, чтобы было \(E_n — E_0 \ll \nu v_0.\)

\(^2\) Физический интерваль представляет эффективное сечение \(d\sigma_n\), просуммированное по всем направлениям момента атома в конечном состоянии и усреднённое по направлениям момента в начальном состоянии. После такого суммирования и усреднения квадрат \(\left| (d_x)_{0n} \right|^2\) уже не зависит от направления оси \(x.\)

\(^3\) Вообще, до первого неисчисляемого члена.
Про столкновении с большой передачей импульса оба электрона (падающий и атомный) могут в результате приобрести сравнимые по величине скорости. В связи с этим становится существенным не принятый во внимание в общей формуле (120,8) обменный эффект, связанный с тождественностью сталкивающихся частиц. Эффективное сечение рассеяния быстрых электронов с учётом обмена определяется формулой (114,6) (косинус последнего члена при этом приравнивается единице); эта формула относится к системе координат, в которой один из электронов до столкновения покоялся.

Умножая на число Z электронов в атоме, получим эффективное сечение столкновения электрона с атомом в виде:

\[d\sigma = 4Z \left(\frac{e^2}{\mu \vartheta^2} \right)^2 \left[\frac{1}{\sin^2 \vartheta} + \frac{1}{\cos^4 \vartheta} - \frac{1}{\sin^3 \vartheta \cos^2 \vartheta} \right] \cos \vartheta \, d\vartheta. \quad (120,12) \]

В этой формуле удобно выразить угол рассеяния через энергию, приобретаемую электронами после столкновения. Как известно, при столкновении частицы с энергией \(E = \mu v^2/2 \) с покоящейся частицей той же массы энергия частиц после столкновения равна:

\[\varepsilon = E \sin^2 \vartheta, \quad E - \varepsilon = E \cos^2 \vartheta. \]

Для того чтобы получить эффективное сечение, отнесенное к интервалу \(d\varepsilon \), выражаем \(d\sigma \) через \(d\varepsilon \) согласно соотношению \(d\sigma = 2\pi \sin \vartheta \, d\vartheta = (\pi/E) \, d\varepsilon \). Подстановка в (120,12) приводит к окончательной формуле

\[d\sigma = \pi Z e^4 \left[\frac{1}{\varepsilon^2} + \frac{1}{(E - \varepsilon)^2} - \frac{1}{\varepsilon (E - \varepsilon)} \right] \frac{d\varepsilon}{E}. \quad (120,13) \]

Если одна из энергий \(\varepsilon \) или \(E - \varepsilon \) мала по сравнению с другой, то из трёх членов в этой формуле существенен лишь один (первый или второй). Так и должно было быть, поскольку при большой разнице в энергиях обоих электронов обменный эффект становится несущественным, и мы должны вернуться к обычной формуле Резерфорда 1).

Интегрирование дифференциального эффективного сечения по всем углам (или, что то же, по \(dq \)) даёт полное эффективное сечение \(\sigma_n \) столкновения с возбуждением данного состояния атома. Зависимость \(\sigma_n \) от скорости падающего электрона существенно связана с наличием или отсутствием матричного элемента дипольного момента атома для соответствующего перехода. Предположим сначала, что этот матричный элемент отпущен от нуля. Тогда при малых \(q \) \(d\sigma_n \) определяется формулой (120,10), и мы видим, что с уменьшением \(q \) интеграл

1) Для столкновения позитрона с атомом обменный эффект вообще отсутствует, и формула Резерфорда

\[d\sigma = \frac{\pi Z e^4}{E} \frac{d\varepsilon}{\varepsilon^2} \]

имеет место при всех \(q \gg 1/a_0 \).
по dq логарифмически расходится. В области же больших q эффективное сечение (при заданной передаче энергии $E_n - E_0$) экспоненциально убывает с увеличением q в связи с уже отмечавшимся наличием в подинтегральном выражении в (120,8) быстро осциллирующего множителя. Таким образом основную роль в интеграле по dq играет область малых q, и мы можем ограничиться интегрированием от минимального значения

$$q_{\text{min}} = \frac{E_n - E_0}{\hbar v}$$

(формула (120,9) с $\theta = 0$) до некоторого значения порядка $1/a_0$.

В результате получаем

$$\sigma_n = 8 \pi \left(\frac{e}{\hbar v}\right)^2 |(d_\omega)_{2n}|^2 \ln \left(\frac{\beta_n}{\frac{\nu h}{\epsilon_0}}\right),$$

(120,14)

где β_n — безразмерная постоянная, которая не может быть вычислена в общем виде 1.

Если же матричный элемент дипольного момента обращается для данного перехода в нуль, то интеграл по dq быстро сходится как при малых (как это видно из (120,11)), так и при больших q. Основной для интеграла является в этом случае область $q \sim 1/a_0$. Общая количественная формула типа (120,14) здесь не может быть получена, и мы можем лишь заключить, что σ_n будет обратно пропорционально квадрату скорости:

$$\sigma_n = \frac{\text{const.}}{\nu^2}.$$

(120,15)

Это следует непосредственно из общей формулы (120,8), согласно которой $d\sigma_n$ при $q \sim 1/a_0$ пропорционально $1/\nu^2$.

Определим эффективное сечение $d\sigma_{\text{нейп}}$ неупругого рассеяния в данный элемент телесного угла вне зависимости от того, в какое состояние переходит атом. Для этого надо просуммировать выражение (120,8) по всем $n \neq 0$, т. е. по всем состояниям атома (как дискретного, так и непрерывного спектра), за исключением нормального. Мы исключим из рассмотрения область как больших, так и совсем малых углов и будем считать, что $1 \gg \theta \gg (\nu/\nu_0)^2$. Тогда, согласно (120,9), имеем $q \equiv \nu \theta \hbar/\epsilon_0$ ($\gg \nu_0/a_0 \nu$, т. е. q не зависит от величины передаваемой энергии 2).

\footnote{1} Мы считаем, что $E_n - E_0$ порядка энергии атомных электронов ϵ_0. При больших передачах энергии ($E_n - E_0 \sim E \gg \epsilon_0$) формулы (120,10) (120,14) всё равно неприменимы, так как матричный элемент дипольного момента становится очень малым и нельзя ограничивать первым членом разложения по q.

\footnote{2} При этом предполагается, что $E_n - E_0 \sim \epsilon_0$, так что первым членом под корнем в (120,9) можно пренебречь по сравнению со вторым. Фактически суммирование в (120,16) происходит и по состояниям с $E_n - E_0 \gg \epsilon_0$. Однако для переходов с большие передачей энергии эффективное сечение сравнительно мало, и эти члены играют малую роль в сумме. Условие $\theta \ll 1$ малается для того, чтобы не надо было учитывать обменных эффектов.
Последнее обстоятельство позволяет легко вычислить сумму

$$d\sigma_{\text{нейт}} = d\sigma_n = 8\pi \sum_{n \neq 0} \left(\frac{e^2}{\hbar c} \right)^2 \sum_a \left(\sum e^{i\mathbf{q}\cdot\mathbf{r}_a} \right)_n \left| \frac{d}{d\mathbf{q}} \right|^2 =$$

$$= \frac{2e^2}{\mu v^2} \left| \sum_{n \neq 0} \left(\sum_a e^{i\mathbf{q}\cdot\mathbf{r}_a} \right)_n \right|^2 \frac{d\mathbf{q}}{d\mathbf{q}}. \tag{120,16}$$

Для этого замечаем, что для всякой величины f имеем по правилу умножения матриц:

$$\sum_n |f_{0n}|^2 = \sum_n f_{0n}^* f_{0n} = \sum_n f_{0n} (f^*)_{n0} = (ff^*)_{00}. \tag{120,17}$$

Суммирование производится здесь по всем n, включая $n = 0$. Поэтому

$$\sum_{n \neq 0} |f_{0n}|^2 = \sum_n |f_{0n}|^2 - |f_{00}|^2 = (ff^*)_{00} - |f_{00}|^2. \tag{120,17}$$

Применяя это соотношение к $f = \sum e^{i\mathbf{q}\cdot\mathbf{r}_a}$, получим

$$d\sigma_{\text{нейт}} = \frac{2e^2}{\mu v^2} \left(\left| \sum_a e^{i\mathbf{q}\cdot\mathbf{r}_a} \right|^2 - \left| \sum_a e^{i\mathbf{q}\cdot\mathbf{r}_a} \right|^2 \right) \frac{d\mathbf{q}}{d\mathbf{q}}, \tag{120,18}$$

где черта означает усреднение по нормальному состоянию атома (т. е. взятие диагонального матричного элемента 00). Среднее значение $\left\langle \sum_a e^{i\mathbf{q}\cdot\mathbf{r}_a} \right\rangle$ есть, по определению, атомный фактор $F(q)$ атома в нормальном состоянии. В первом же члене в фигурных скобках можно написать:

$$\left| \sum_{a=1}^{Z} e^{i\mathbf{q}\cdot\mathbf{r}_a} \right|^2 = Z + \sum_{a \neq b} e^{i\mathbf{q}\cdot(r_a - r_b)}. \tag{120,19}$$

Таким образом находим общую формулу

$$d\sigma = \left(\frac{2e^2}{\mu v^2} \right)^2 \left(Z - F^2(q) + \sum_{a \neq b} e^{i\mathbf{q}\cdot(r_a - r_b)} \right) \frac{d\mathbf{q}}{d\mathbf{q}}. \tag{120,19}$$

Эта формула сильно упрощается при малых q, когда можно произвести разложение по степеням $q (v_0/a_0 v \ll q \ll 1/a_0$, что соответствует углам $(v_0/q)^2 \ll q \ll v_0/q)$. Вместо того чтобы производить разложение по формуле (120,19), удобнее заново произвести суммирование по n, воспользовавшись для $d\sigma_n$ выражением (120,10). Суммируя с помощью соотношения (120,17) с $f = d_x$ и помня, что $d_x = 0$, получим:

$$d\sigma_{\text{нейт}} = \left(\frac{2e^2}{\hbar c} \right)^2 d_x \frac{d\mathbf{q}}{d\mathbf{q}}. \tag{120,20}$$

Интересно сравнить это выражение с эффективным сечением (115,4) упругого рассеяния при малых углах; в то время как по-
следнее не зависит от \(\Theta \), эффективное сечение неупругого рассеяния в элемент телесного угла \(d\Omega \) растёт с уменьшением \(\Theta \) как \(\frac{1}{\Theta^2} \).

При углах \(1 \gg \Theta \gg \nu_0/\nu \) (так что \(qa_0 \gg 1 \)) второй и третий члены в фигурных скобках в (120,19) малы, и мы имеем просто

\[
d\sigma_{\text{неу}} = Z^2 \left(\frac{2\pi^2}{\nu^2} \right)^2 \frac{d\nu}{d\Theta^2}.
\]

(120,21)

Как и следовало, мы получили резерфордовское рассеяние на \(Z \) атомных электронах (без учёта обмена). Напомним, что для упругого рассеяния получался результат (115,5), отличающийся лишь тем, что дифференциальное сечение было пропорционально \(Z^2 \), а не \(Z \).

Наконец, интегрируя по углам, мы получим полное эффективное сечение \(\sigma_{\text{неу}} \) неупругого рассеяния под всеми углами и со всеми возбуждениями атома. В точности таким же образом, как и при вычислении \(\sigma_n \) (120,14), получим:

\[
\sigma_{\text{неу}} = 8\pi \left(\frac{e}{\hbar \nu} \right)^2 \frac{d\nu}{d\Theta} \ln \left(\frac{\nu h}{e^2} \right).
\]

(120,22)

З а д а ч и

1. Определить распределение по углам неупругого рассеяния быстрых электронов атомом водорода (в нормальном состоянии).

Решение. Для атома водорода третий член в фигурных скобках в (120,19) отсутствует, а атомный фактор \(F(q) \) был вычислен в задаче к § 115. Подставляя его, получим 1):

\[
d\sigma_{\text{неу}} = \frac{4}{q^2} \frac{d\nu}{d\Theta^2}.
\]

2. Определить дифференциальное эффективное сечение для стоккновений электронов с атомом водорода в нормальном состоянии, сопровождающихся возбуждением \(n \)-го уровня дискретного спектра (\(n \) — главное квантовое число).

Решение. Вычисление матричных элементов удобно производить в параболических координатах. Выбираем ось \(z \) вдоль направления вектора \(q \), тогда \(e^{iqr} = e^{i\xi z} = e^{i\xi (\xi - \eta)/2} \). Волновая функция нормального состояния имеет вид \(\psi_{\infty} = \pi^{-1/2}e^{-\xi/2} \). Матричные элементы отличны от нуля только для переходов в состояния с \(m = 0 \). Волновыми функциями этих состояний являются функции

\[
\psi_{n_1n_20} = \frac{1}{\sqrt{\pi n^2}} e^{-\xi/2n} F\left(-n_1, 1, \frac{\xi}{n}\right) F\left(-n_2, 1, \frac{\eta}{n}\right)
\]

(\(n = n_1 + n_2 + 1 \)). Искомые матричные элементы суть интегралы

\[
(e^{iqr})^{000}_{n_1n_20} = \int_0^\infty \int_0^\infty e^{i\frac{q}{2}(\xi - \eta)} \psi_{0000} \psi_{n_1n_20} (\xi + \eta) 2\pi d\xi d\eta.
\]

1) Во всех задачах пользуйся атомными единицами.
Интегрирование производится непосредственно с помощью формулы §1 математического дополниения. В результате вычисления получается:

\[(e^{iqr})^{000}_{n_pq_0} = 2^{n_p} q^{2n} \left[\frac{(n-1)^2 + (qn)^2}{(n+1)^2 + (qn)^2} \right]^{n-3} \left[\frac{(n_1 - n_2)^2 + (qn)^2}{(n_1 + n_2)^2 + (qn)^2} \right].\]

Все состояния с одинаковыми \(n_1 + n_2 = n - 1 \) обладают одинаковой энергией. Суммируя по всем возможным значениям \(n_1 - n_2 \) при данном \(n \) и подставляя результат в (120, 8), получим искомое эффективное сечение:

\[d\sigma_n = 2^{n_p} \pi \left(\frac{e^2}{h\nu} \right)^2 n^2 \left\| \frac{n^2 - 1}{3} + (qn)^2 \right\|^n \left[\frac{(n-1)^2 + (qn)^2}{(n+1)^2 + (qn)^2} \right]^{n-3} \frac{dq}{q}.\]

3. Определить полное эффективное сечение для возбуждения первого возбуждённого состояния атома водорода 1).

Решение. Надо проинтегрировать

\[d\sigma_2 = 2^{n_p} \pi \left(\frac{e^2}{h\nu} \right)^2 \frac{dq}{q \left(q^2 + \frac{9}{4} \right)^{n/2}},\]

по всем \(q \) от \(q_{min} = (E_2 - E_1)/\nu = 3/8\nu \) до \(q_{max} = 2\nu \), причём должны быть сохранены только члены наибольшей степени по \(q \). Интегрирование производится элементарно; результатом будет:

\[\sigma_2 = \frac{2^{18} \pi}{3^{n_p/2}} \left(\ln 4\nu + \frac{25}{24} \right).\]

4. Определить эффективное сечение для ионизации атома водорода (в нормальном состоянии) с вылетом вторичного электрона в определённом направлении (Мэсс и Мор, 1933).

Решение. Волновая функция атома в начальном состоянии есть \(\psi_0 = \pi^{-1/2}e^{-r} \). В конечном состоянии атом ионизирован, и вылетевший из него вторичный электрон имеет волновой вектор, который мы обозначим посредством \(\xi \) (и энергию \(\xi = \xi^2/2 \)). Это состояние описывается функцией \(\psi_+ \) (113,9), в которой «выходящая» часть состоя (на бесконечности) только из распространяющейся в направлении \(\xi \) плоской волны. Функция \(\psi_+ \) нормирована на \(3\)-функцию в \(\xi\)-пространстве; поэтому вычисленное с её помощью эффективное сечение будет отнесено к \(dx_{xy} dx_{x}, dx_{y} \) или к \(\xi^2 dx_{x} do_{x}, \) где \(do_{x} \) — элемент телесного угла для направления вторичного электрона. Таким образом

\[d\sigma = \frac{4k^{3n_p}}{kq^4} \left| (e^{iqr})_{0x} \right|^2 \ do_{d} do_{x} \ dv.\]

1) Оно может быть вычислено и для произвольного \(n \). Численным вычислением можно получить также и полное эффективное сечение неупругого рассеяния атома водорода:

\[\sigma_{\text{нейн}} = 4\pi \ln \frac{\nu^2}{0,160}.\]

В том числе на стокообновении с возбуждением состояний дискретного спектра и с ионизацией приходится соответственно:

\[\sigma_{\text{возб}} = 4\pi \cdot 0,715 \ln \frac{\nu^2}{0,45} \quad \sigma_{\text{ион}} = 4\pi \cdot 0,285 \ln \frac{\nu^2}{0,012}.\]
(do — элемент телесного угла для рассеянного электрона), где

\[
(e^{iqr})_0 = \int \psi^*_x e^{iqr} \psi_0 \, dV = \frac{e^{\pi/2} \Gamma \left(1 - \frac{i}{\nu} \right)}{2^{3/2} \pi^3} I,
\]

\[
I = \frac{1}{2} \left\{ - \frac{\partial}{\partial \lambda} \int e^{iqr - ixr - \lambda r} F \left(\frac{i}{\nu}, 1, i (x r + xr) \right) \, dV \right\}_{\lambda = 1}.
\]

Интегрирование производим в параболических координатах с осью \(z\) вдоль направления \(x\) и углом \(\varphi\), отсчитываемым от плоскости (q, \(\xi\)):

\[
I = \left\{ - \frac{1}{2} \frac{\partial}{\partial \lambda} \int_0^\infty \int_0^\infty \exp \left\{ \frac{i}{2} \left(q (\xi - \eta) \cos \gamma + \frac{i}{2} q \sqrt{\xi \eta} \sin \gamma \cos \varphi - \frac{\lambda}{2} (\xi + \eta) - \frac{i}{2} (\xi - \eta) \right) \right\} \times \right.
\]

\[
\times F \left(\frac{i}{\nu}, 1, ix^2 \right) \, d\xi \, d\eta \right\}_{\lambda = 1}.
\]

(\(\gamma\) — угол между \(x\) и q). Интегрирование по \(d\varphi\, d\eta\) легко производится путем подстановки \(V_\gamma \cos \varphi = u, \sqrt{\nu} \sin \varphi = v\), после чего получается:

\[
I = - \frac{1}{2\pi} \int_0^\infty \exp \left\{ \frac{-q^2 \sin^2 \gamma + 4\lambda^2 + 4(\nu - q \cos \gamma)^2}{8 i (\nu - q \cos \gamma - \lambda)} \xi \right\} \times F \left(\frac{i}{\nu}, 1, ix^2 \right) \, d\xi \right\}_{\lambda = 1}.
\]

Стоящий здесь интеграл берется по формуле

\[
\int_0^\infty e^{-\lambda t} F(a, 1,kt) \, dt = \lambda^{a - 1} (\lambda - k)^a
\]

(см. §1 математического дополнения). Дальнейшие вычисления длины, но элементарны, и дают в результате следующее выражение для эффективного сечения:

\[
ds = \frac{28k' \nu [q^2 - 2q \nu \cos \gamma + (\nu^2 + 1) \cos^2 \gamma]}{\pi k q^2 [q^2 - 2q \nu \cos \gamma + 1 + x^2]^4 [(q + x)^2 + 1] [(q - x)^2 + 1] \left(1 - e^{-2\pi/q} \right) \times}
\]

\[
\times e^{-\frac{2}{x} \arctg {\frac{2x}{q^2 - x^2 + 1}}} \, do \, dx.
\]

Интегрирование по всем углам испускания вторичного электрона производится элементарно и даёт распределение рассеяния по направлениям при данной энергии \(x^2/2\) испущенного электрона:

\[
ds = \frac{210k' \nu}{k q^2} \left[q^2 + \frac{1}{3} (1 + x^2) \right] e^{-\frac{2}{x} \arctg {\frac{2x}{q^2 - x^2 + 1}}} do \, dx.
\]
При \(q \gg 1 \) это выражение имеет острый максимум при \(\chi \approx q \); вблизи максимума

\[
\frac{d\sigma}{3\pi x^4} \frac{d\chi do}{[1 + (q - \chi)^2]^3}.
\]

Интегрируя по \(do = 2\pi q dq/k^2 \approx (2\pi/k) d(q - \chi) \), получим выражение

\[
8\pi dx/k^2, \quad \text{совпадающее, как то и следовало, с первым членом в формуле (120, 13).}
\]

§ 121. Эффективное торможение

В применениях теории столкновений большое значение имеет вычисление средней потери энергии сталкивающейся частицей. Эту потерю удобно характеризовать величиной

\[
dx = \sum_n (E_n - E_0) \, d\sigma_n,
\]

(121,1)

которую мы будем называть «эффективным торможением» (дифференциальным); суммирование производится, разумеется, по состояниям как дискретного, так и непрерывного спектров. \(dx \) отнесено к рассеянию в данный элемент телесного угла \(^1\).

Общая формула для эффективного торможения быстрых электронов имеет вид:

\[
dx = 8\pi \left(\frac{e^2}{\hbar\nu}\right)^2 \sum_n (E_n - E_0) \left| \sum_a e^{iqa} \right|_0 \left| \sum_a \right| \left(\frac{d\sigma}{q^3} \right) (121,2)
\]

(\(d\sigma_n \) из (120, 8)). Исключим, как и при выводе (120, 19), из рассмотрения область совсем малых углов и будем считать, что \(1 \ll \delta \gg \left(v_0 / c \right)^2 \). Тогда \(q \approx \nu \phi \) и не зависит от величины передаваемой энергии, благодаря чему сумма по \(n \) может быть вычислена в общем виде.

Сумма вычисляется с помощью теоремы суммирования, которая выводится следующим образом. Матричные элементы от некоторой величины \(f \) и её производной по времени \(\dot{f} \) связаны друг с другом посредством формулы

\[
(f)_{0n} = -i \frac{\hbar}{\hbar} (E_n - E_0) \, f_{0n}.
\]

Поскольку с учётом (11,9) имеем:

\[
\sum_n (E_n - E_0) \, f_{0n} \, \frac{\hbar}{\hbar} = \sum_n (E_n - E_0) \, f_{0n} f^*_{0n} = \sum_n (E_n - E_0) \, f_{0n} (f^*)_{n0} = i\hbar \sum_n (f)_{0n} (f^*)_{n0} = i\hbar (\dot{f}^*)_{00}.
\]

\(^1\) Если электрон проходит через газ, рассеяние на различных атомах происходит независимо и величина \(Ndx \) (\(N \) — число атомов в единице объёма газа) есть энергия, теряемая электроном на единице его пути при столкновениях, отклоняющих его в данный элемент телесного угла.
Волновые функции стационарных состояний атома можно выбрать действительными. Тогда \((f_{on})^* = (f^*)_{on}\), и мы можем написать рассматриваемую сумму также и в виде:

\[
\sum_n (E_n - E_0) |f_{on}|^2 = \sum_n (E_n - E_0) f^*_n f_{on} = \sum_n (E_n - E_0) (f^*)_{on} f_{n0} = -i\hbar \sum_n (f^*)_{on} (\dot{f})_{n0} = -i\hbar (f^* \dot{f})_{00}.
\]

Взяв полусумму обоих равенств, получим искомую теорему

\[
\sum_n (E_n - E_0) |f_{on}|^2 = \frac{i\hbar}{2} (\dot{f} f^* - f^* \dot{f})_{00}. \tag{121,3}
\]

Применим её к величине

\[
f = \sum_a e^{iqr_a}.
\]

Согласно (17,2) её производная во времени изображается оператором

\[
f^* \hat{\mathbf{f}} = \frac{\hbar}{2\mu} \sum_a [e^{iqr_a} (q \nabla_a) + (q \nabla_a) e^{iqr_a}].
\]

Результат коммутатора \(\hat{f} \hat{f}^* \) легко вычислить непосредственно:

\[
\hat{f} \hat{f}^* - \hat{f}^* \hat{f} = -\frac{i\hbar}{\mu} q^2 Z.
\]

Подставляя в (121,3), получим формулу

\[
\sum_n \frac{2\mu}{\hbar^2 q^2} (E_n - E_0) \left| \left(\sum_a e^{iqr_a} \right)_{0n} \right|^2 = Z, \tag{121,4}
\]

которая и осуществляет нужное нам суммирование 1).

Таким образом для дифференциального эффективного торможения находим формулу

\[
d\chi = 4\pi \frac{Ze^4}{\mu v^2} \frac{dq}{q} = \frac{2Ze^4}{\mu v^2} \frac{d\theta}{\theta^2}. \tag{121,5}
\]

Область её применимости даётся неравенством \((v_0/v)^2 \ll \theta \ll 1\), т. е. \(v_0/v \ll \dot{a}_0 \theta \ll \theta/v_0\).

1) При выводе этого соотношения мы нигде не использовали тот факт, что состояние, отмеченное индексом 0, есть нормальное состояние атома. Поэтому оно имеет место для любого начального состояния.
Далее, определим полное эффективное торможение $\chi(q_1)$ для всех столкновений, сопровождающихся переносом импульса, не превышающих некоторого значения q_1, такого, что $v_0/v \ll a_0 q_1 \ll v/v_0$:

$$
\chi(q_1) = \sum_{n}^{q_1} \int_{q_{\text{min}}}^{E_n - E_0} d\sigma_n;
$$

(121.6)

$q_{\text{min}} = (E_n - E_0)/\hbar v$ есть наименьшее возможное при данном $E_n - E_0$ значение q. Знак интеграла нельзя вынести из-под знака суммы, так как q_{min} зависит от n.

Разобьём область интегрирования на две части — от q_{min} до q_0 и от q_0 до q_1, где q_0 есть некоторое значение q, такое, что $v_0/v \ll a_0 q_0 \ll 1$. Тогда во всей области интегрирования от q_{min} до q_0 можно воспользоваться для $d\sigma_n$ выражением (120.10):

$$
\chi(q_0) = 8\pi \left(\frac{e}{\hbar v}\right)^2 \sum_{n} |(d_x)_{0n}|^2 (E_n - E_0) \int_{q_{\text{min}}}^{q_0} \frac{dq}{q},
$$

откуда

$$
\chi(q_0) = 8\pi \left(\frac{e}{\hbar v}\right)^2 \sum_{n} |(d_x)_{0n}|^2 (E_n - E_0) \ln \frac{q_0 \hbar v}{E_n - E_0}.
$$

(121.7)

В области же от q_0 до q_1 можно произвести сначала суммирование по n, приводящее для dx к выражению (121.5), которое при интегрировании по dq даёт:

$$
\chi(q_1) - \chi(q_0) = 4\pi \frac{Ze^4}{\mu v^2} \ln \frac{q_1}{q_0}.
$$

(121.8)

Для преобразования полученных выражений воспользуемся теоремой суммирования, получающейся из формулы (121.3), если положить в ней

$$
\hat{f} = \frac{dx}{e} = \sum_{a} x_a \hat{a}, \hat{f} = \frac{1}{\mu} \sum_{a} \hat{p}_{xa}.
$$

Коммутирование $\hat{f}^+ \hat{f}$ даёт ($\hat{f}^+ \text{ в данном случае совпадает с } \hat{f}$)

$$
\hat{f}^+ \hat{f} - \hat{f} \hat{f} = -\frac{i\hbar}{\mu} Z,
$$

так что 1):

$$
\sum_{n} N_{0n} \equiv \sum_{n} \frac{2\mu}{(\hbar e)^2} (E_n - E_0) |(d_x)_{0n}|^2 = Z.
$$

(121.9)

1) К этому соотношению относится то же замечание, которое было сделано по поводу (121.4).
Мы ввели особое обозначение N_{0n} для величины, стоящей под знаком суммы, имея в виду, что ею часто приходится пользоваться. Величины N_{0n} называют силами осцилляторов для соответствующих переходов.

Введём некоторую среднюю атомную энергию I, определяемую посредством формулы

$$\ln I = \frac{\sum N_{cn} \ln (E_n - E_0)}{\sum N_{0n}} = \frac{1}{Z} \sum N_{0n} \ln (E_n - E_0).$$ (121,10)

Тогда, используя теорему суммирования (121,9), формулу (121,7) можно переписать в виде:

$$x(q_0) = \frac{4\pi Z e^4}{\mu v^2} \ln \frac{q_0 hv}{I}.$$ (121,11)

Складывая с (121,8), окончательно получаем:

$$x(q_1) = \frac{4\pi Z e^4}{\mu v^2} \ln \frac{q_1 hv}{I}.$$ (121,11)

В эту формулу входит всего одна характерная для данного атома постоянная 1.

Выражая q_1 через угол рассеяния θ_1 согласно $q_1 = \mu v \theta_1 / h$, получим эффективное торможение при рассеянии на все углы $\theta \leq \theta_1$:

$$x(\theta_1) = \frac{4\pi Z e^4}{\mu v^2} \ln \frac{\mu v^2 \theta_1}{I}.$$ (121,12)

Если $q_1 a_0 \gg 1$ (т. е. $\theta_1 \gg v_0 / v$), то можно выразить x в виде функции от наиболее передаваемой падающим электроном атому энергии. В предыдущем параграфе было указано, что при $q a_0 \gg 1$ происходит ионизация атома, причём практически весь импульс hq и энергия передаются одному атомному электрону. Поэтому hq и ε связаны друг с другом, как импульс и энергия электрона, т. е. $\varepsilon = h^2 q^2 / 2 \mu$. Подставляя в (121,11), $q_1^2 = 2 \mu \varepsilon / h^2$, получим эффективное торможение при столкновениях, сопровождающихся передачей энергии $\varepsilon \leq \varepsilon_1$:

$$x(\varepsilon_1) = \frac{2 \pi Z e^4}{\mu v^2} \ln \frac{2 \mu v^2 \varepsilon_1}{I^2}.$$ (121,13)

Для тяжёлых атомов можно ожидать хорошей точности, если вычислить постоянную I с помощью метода Томаса-Ферми. Это вычисление не было ещё никем произведено. Однако уже из общих соображений легко установить, как будут зависеть вычисленные таким образом значения I от Z. В квазиклассической модели Томаса-Ферми

1) Для водорода $I = 0.55 \mu e^4 / h^2 = 14.9$ eV (по вычислению Бете).
разностям уровней энергии соответствуют собственные частоты системы зарядов. Средняя собственная частота атома порядка величины \(v_0/a_0 \); поэтому мы можем заключить, что \(I \sim h v_0/a_0 \). Скорости атомных электронов в модели Томаса-Ферми зависят от \(Z \), как \(Z^{3/4} \), а размеры атома — как \(Z^{-1/2} \). Таким образом находим, что \(I \) должно быть пропорционально \(Z \):

\[
I = \text{const.} \ Z.
\]

В заключение сделаем следующее замечание. Уровни энергии дискретного спектра атома связаны в основном с возбуждениями одного (внешнего) электрона; уже возбуждение двух электронов связано обычно с энергией, достаточной для ионизации атома. Поэтому в сумме интенсивностей оцифриторов переходы в состоянии дискретного спектра составляют лишь долью порядка единицы; переходы же с ионизацией — порядка \(Z \). Отсюда следует, что основную роль в торможении (тяжёлыми атомами) играют столновения, сопровождающиеся ионизацией.

Задача

Определить полное эффективное торможение электрона атомом водорода \((I = 0.55 \text{ ат. единиц})\); при больших передачах энергии более быстрый из обоих сталкивающихся электронов принимается за первичный.

Решение. Когда первичный и вторичный электроны приобретают после столкновения сравнимые энергии, надо учитывать обменный эффект. Поэтому для торможения с передачей энергии от некоторого значения \(\varepsilon_1 \) \((1 \ll \varepsilon_1 \ll v^2)\) до наибольшего \(\varepsilon_{\text{max}} = E/2 = v^2/4 \) (принято нами определение первичного электрона) надо пользоваться эффективным сечением (120,13):

\[
\chi(\varepsilon_{\text{max}}) = \chi(\varepsilon_1) = \int_{\varepsilon_1}^{E/2} \frac{1}{\varepsilon_1} \left(\frac{1}{\varepsilon_1} + \frac{1}{(E-\varepsilon)^2} - \frac{1}{\varepsilon (E-\varepsilon)} \right) d\varepsilon = \ln \frac{E}{8\varepsilon_1} + 1.
\]

Складывая со (121,13), получим 2):

\[
\chi = \frac{4\pi}{v^2} \ln \left(\frac{v^2}{2} \sqrt{\varepsilon/2} \right) = \frac{4\pi}{v^2} \ln \frac{v^2}{1.3}.\]

§ 122. Неупругие столкновения тяжёлых частиц с атомами

Условие применимости борновского приближения к столкновениям тяжёлых частиц с атомами, выраженное через скорость частицы, остаётся тем же, что и для электронов: \(\nu \gg v_0 \). Это непосредственно

1) Из экспериментальных данных можно заключить, что const. порядка величины 10eV.
2) Для столкновений позитрона с атомом водорода обменный эффект отсутствует, и полное торможение получается просто подстановкой в (121,13) \(\varepsilon_{\text{max}} = E = v^2/2 \) вместо \(\varepsilon_1 \):

\[
\chi = \frac{4\pi}{v^2} \ln \frac{v^2}{0.55}.
\]
следует из общего условия (110,2) применимости теории возмущений, \(Ua_0/\hbar \omega \ll 1 \), если заметить, что масса частицы в него вообще не входит, а \(Ua_0/\hbar \) есть величина порядка скорости атомных электронов.

В системе координат, в которой покоятся центр инерции атома и частицы, эффективное сечение определяется общей формулой (120,3) (в которой \(\gamma \) есть приведённая масса частиц и атома). Удобнее, однако, рассматривать столкновение в системе координат, в которой покоятся (до столкновения) рассеивающий атом. Для этого начинаем с формулы (120,1); в системе координат, в которой покоялся атом до столкновения, аргумент у \(\delta \)-функции, выражающий закон сохранения энергии, имеет вид:

\[
\frac{p'^2}{2M} - \frac{p^2}{2M} + \frac{(p' - p)^2}{2M_a} + E_n - E_0,
\]

где \(M \) — масса падающей частицы, \(M_a \) — масса атома; третий член представляет собой кинетическую энергию «отдачи» атома (которой при столкновении с электроном можно было полностью пренебречь).

При столкновении быстрой тяжёлой частицы с атомом изменение импульса частицы почти всегда мало по сравнению с её первоначальным импульсом. Если это условие выполняется, то в аргументе у \(\delta \)-функции можно пренебречь энергией отдачи атома, после чего мы вернёмся в точность к формуле (120,1), в которой только надо заменить \(\mu \) на массу \(M \) падающей частицы (не на приведённую массу частицы и атома!). Таким образом для эффективного сечения в системе координат, в которой атом до столкновения покоятся, получим снова формулу (120,3) с \(\gamma \), заменённой на \(M \); имея в виду, что передача импульса предполагается малой по сравнению с первоначальным импульсом, полагаем \(p = p' \):

\[
d\sigma_n = \frac{M^2}{4\pi^2\hbar^2} \left| \int \int U e^{iqr} \psi_n^* \psi_0 d\omega d\mathbf{V} \right|^2 \, d\omega.
\]

Учитывая, что заряд частицы может отличаться от заряда электрона, пишем \(ze^2 \) вместо \(e^2 \), где \(ze \) есть заряд падающей частицы. Общая формула для неупругого рассеяния, написанная в форме (120,8):

\[
d\sigma_n = 8\pi \left(\frac{ze^2}{\hbar\omega} \right)^2 \left| \left(\Sigma e^{iaq}a \right)_{on} \right|^2 \frac{dq}{q^3}
\]

не содержит массу частицы. Отсюда следует, что и все получающиеся из неё формулы остаются непосредственно применимым и к столкновениям тяжёлых частиц, если только эти формулы выражены через \(\nu \) и \(q \).

Легко сообразить, как должны быть видоизменены формулы, выраженные через угол рассеяния \(\Theta \) (угол отклонения сталкивающейся с атомом тяжёлой частицы). Для этого предварительно замечаем, что при неупругом столкновении тяжёлой частицы угол \(\Theta \) всегда мал. Действительно, при большой (по сравнению с импульсами атомных
§ 122] НЕУПРУГИЕ СТОЛКНОВЕНИЯ ТЯЖЁЛЫХ ЧАСТИЦ С АТОМАМИ 525

...электронов) передаче импульса можно рассматривать неупругое столкновение с атомом как упругое столкновение со свободными электронами; но при столкновении тяжёлой частицы с лёгкой (электроном) тяжёлая частица почти не отклоняется. Другими словами, передача импульса от тяжёлой частицы атому малая по сравнению с первоначальным импульсом частицы (исключение составляет упругое рассеяние на большие углы, которое, однако, крайне маловероятно).

Таким образом во всей области углов можно положить:

$$p = \frac{1}{h} \sqrt{\left(\frac{E_n - E_0}{v}\right)^2 + (M\nu\theta)^2}$$ \hspace{1cm} (122,4)

(что фактически сводится к

$$q\rho \cong M\nu\theta$$ \hspace{1cm} (122,5)

везде, за исключением только самых малых углов). С другой стороны, рассматривая столкновения электронов с атомом, мы писали (для малых углов):

$$q = \frac{1}{h} \sqrt{\left(\frac{E_n - E_0}{\hbar v}\right)^2 + (\mu \nu \theta)^2}.$$ \hspace{1cm}

Отсюда мы можем заключить, что формулы, полученные нами для столкновений электронов с атомами, выраженные через скорость и угол отклонения, переводятся в формулы для столкновения тяжёлых частиц заменой везде (в том числе в элементе телесного угла $d\theta = 2\pi \sin \theta d\theta \equiv 2\pi \theta d\theta$):

$$v \rightarrow \nu, \quad \theta \rightarrow \frac{M\nu}{\mu}. \hspace{1cm} (122,6)$$

Качественно это означает, что вся картина рассеяния на малые углы оказывается (при заданной скорости) суженной в отношении ν/M.

Полученные правила относятся также и к упругому рассеянию на малые углы. Произведя преобразование (122,6) в формуле (115,3) с $\theta \ll 1$, получим эффективное сечение

$$d\sigma_{yn} = 8\pi \left(\frac{ze^2}{M\nu^2}\right)^2 \left[Z - F(M\nu\theta)\right] \frac{d\theta}{\delta^3}. \hspace{1cm} (122,7)$$

Что касается упругого рассеяния тяжёлых частиц на углы $\theta \sim 1$, то оно сводится к резерфордовскому рассеянию на ядре атома.

Особого рассмотрения требует неупругое рассеяние с ионизацией атома при большой передаче импульса. В отличие от того, что мы имели при ионизации электроном, здесь никаких обменных эффектов, разумеется, нет. Для тяжёлых частиц характерно, что большая передача импульса ($q\rho \gg 1$) отнюдь не означает отклонения на большой угол; θ всегда остаётся малым. Эффективное сечение для ионизации с испусканием электрона с энергией между ε и $\varepsilon + d\varepsilon$ получится
непосредственно из формулы (120,21), которую мы пишем в виде:

$$d\sigma_{\text{нейл}} = 8\pi \left(\frac{Ze^2}{\hbar v} \right)^2 Z \frac{dq}{q^3},$$

и полагаем $\hbar^2 q^2/2\mu = \varepsilon$ (весь импульс hq передаётся одному атомному электрону). Это даёт:

$$d\sigma = \frac{2\pi Z^2 e^4}{\mu v^2} \frac{d\varepsilon}{\varepsilon^2}. \quad (122,8)$$

При столкновениях тяжёлых частиц с атомами особый интерес представляют интегральные эффективные сечения и торможения. Полное эффективное сечение неупругого рассеяния определяется прежней формулой (120,22). Полное эффективное торможение получается подстановкой в (121,11) вместо q_1 максимального возможного переноса импульса q_{max}. Последний легко выразить через скорость частицы следующим образом. Поскольку hq_{max} всё ещё мало по сравнению с первоначальным импульсом Mv частицы, то изменение её энергии связано с изменением импульса посредством соотношения $\Delta E = v \cdot hq$. С другой стороны, при большой передаче импульса вся эта энергия передаётся в основном одному атомному электрону, так что мы можем написать:

$$\varepsilon = \frac{\hbar^2 q^2}{2\mu} = hvq \leq hvq.$$

Отсюда имеем $hq \leq 2\mu v$, т. е.

$$hq_{\text{max}} = 2\mu v, \quad \varepsilon_{\text{max}} = 2\mu v^2. \quad (122,9)$$

Отметим, что наибольший угол отклонения частицы при неупругом рассеянии $\theta_{\text{max}} = q_{\text{max}}/Mv$ равен:

$$\theta_{\text{max}} = \frac{2\mu}{M}.$$

Подставляя (122,9) в (121,11), получим полное эффективное торможение тяжёлой частицы:

$$x = \frac{4\pi Z^2 e^4}{\mu v^2} \ln \frac{2\mu v^2}{I}. \quad (122,10)$$

§ 128. Столкновения с молекулами

Задача о рассеянии молекулами в некоторых случаях может быть сведена к задачам о рассеянии отдельными атомами, входящими в состав молекулы. Одним из таких случаев являются столкновения быстрых заряженных частиц (электронов, протонов и т. д.) с молекулами, состоящими из тяжёлых (см. ниже) атомов.

Общая теория рассеяния быстрых частиц молекулами даётся, по существу, теми же формулами, что и рассеяние атомами. Мы остановимся здесь более подробно на столкновениях, сопровождающихся
возбуждением вращательных и колебательных уровней при неизменном электронном состоянии молекулы. Ввиду небольшой величины энергии возбуждения этих уровней можно считать — даже при столкновениях с электронами, — что абсолютная величина импульса не меняется.

Пусть \(U \) есть энергия взаимодействия падающей частицы с молекулой, усреднённая по электронной волновой функции молекулы; \(U \) является функцией координат падающей частицы и ядер молекулы. Пусть далее \(\psi_0 \) и \(\psi_n \) — начальная и конечная волновые функции ядерного (колебательного и вращательного) движения. Тогда в полной аналогии с формулой (120,3) имеем:

\[
\sigma_n = \frac{M^2}{4\pi^2\hbar^4} \left| \int \int U e^{iqr} \psi_n^* \psi_0 d^2dV \right|^2 \, d\omega.
\]

(123,1)

Здесь \(dt \) — элемент конфигурационного пространства ядер, \(M \) — масса падающей частицы; мы пользуемся системой координат, в которой молекула до столкновения покоятся. Эта формула относится как к неупругому, так и к упругому (\(n = 0 \)) рассеянию.

Если все атомы в молекуле достаточно тяжелы, то большинство рассеивающих электронов относится к внутренним оболочкам атомов. С другой стороны, движение внутренних электронов мало меняется при соединении атомов в молекулу (о внешних электронах этого, вообще говоря, сказать нельзя). Поэтому «рассеивающее поле» \(U \) можно с достаточной точностью написать в виде суммы \(U = \sum_a U_a \), где \(U_a \) — энергия взаимодействия падающей частицы с \(a \)-м атомом (усреднённая по его электронному состоянию); \(U_a \) является функцией относительных координат частицы и \(a \)-го ядра.

Подставляя в (123,1)

\[
U = \sum_a U_a = \sum_a U_a e^{-iR_a} e^{iR_a}
\]

(\(R_a \) — радиус-векторы ядер), мы можем представить эффективное сечение в виде:

\[
\sigma_n = \left| \sum_a A_a(q) (e^{iR_a})_{0n} \right|^2 \, d\omega,
\]

(123,2)

где матричный элемент выражения, стоящего в скобках, берётся с помощью ядерных волновых функции \(\psi_0 \), \(\psi_n \), а величины \(A_a(q) \) определяются посредством формулы

\[
A_a(q) = \frac{M}{2\pi\hbar^2} \int U_a e^{i(q-r-R_a)} dV.
\]

(123,3)

Эти величины имеют простой физический смысл. Они представляют собой амплитуды рассеяния отдельными атомами, именно

\[
\sigma_{a\text{ин}} = |A_a(q)|^2 \, d\omega
\]

(123,4)
есть эффективное сечение упругого рассеяния отдельным (свободным) атомом в системе координат, в которой перед столкновением атом покоятся. Полученная формула в принципе решает поставленный вопрос.

Далее рассмотрим столкновение нейтрона с молекулой (не обла- дающей магнитным моментом)\(^1\). Электроны практически не рассе- явают нейтронов, так что всё рассеяние фактически происходит на ядрах. Мы будем считать, что рассеяние слабо в том смысле, что амплитуда волны, рассеянной одним из ядер в молекуле, становится малой уже в точках нахождения других ядер; это условие, по су- ществу, сводится к требованию малости эффективных сечений рассеяния отдельными атомами по сравнению с квадратом междукомнных расстояний. При выполнении этого условия амплитуда рассеяния молекулы определяется суммой амплитуд рассеяния отдельными атомами.

Однако теория возмущений всё же не может быть непосредственно применена к такому столкновению. Силы взаимодействия ядра с ней- троном хотя и имеют небольшой радиус действия, но в пределах этого радиуса очень велики, что и приводит к неприменимости тео- рии возмущений. Поэтому амплитуды рассеяния отдельными атомами являются, вообще говоря, функциями от обоих импульсов \(p \) и \(p' \) до и после столкновения, а не только от их разности \(q \), как это полу- чается при применении теории возмущений.

Существует, однако, случай, когда рассеяние нейтронов описы- вается формулами, которые получились бы и при формальном при- менении теории возмущений (Ферми, 1936). Это — случай медленных нейтронов, когда амплитуда (а с нею и эффективное сечение) рас- сеяния отдельным атомом не зависит вовсе от скорости.

Пусть \(A_a \) есть (постоянная) амплитуда рассеяния нейтронов от- дельным атомом, так что

\[
\sigma_{\text{анл}} = 4\pi A_a^2
\]

(123,5)

есть эффективное сечение упругого рассеяния (в системе координат, в которой покоятся центр инерции нейтрона и атома).

Выражение (123,5) может быть формально получено из теории возмущений (из формулы Борна), если формально описывать взаимо- действие нейтрона с ядром потенциальной энергией

\[
U_a(r) = \frac{M_a + M}{M aM} 2\pi \hbar^2 A_a \delta(r - R_a)
\]

\((M_a — масса атома, M — масса нейтрона). Соответственно этому

\(^{1}\) В противном случае имеется ещё специфический эффект рассеяния, связанного со взаимодействием магнитного момента нейтрона с магнитным моментом молекулы.
будем описывать взаимодействие нейтрона с молекулой потенциальной энергией

\[U(r) = \frac{2\pi\hbar^2}{M} \sum_a \frac{M_a + M}{M_a} A_a \delta(r - R). \]

(123,6)

Подставив это выражение в (120,3), найдем следующую формулу для эффективного сечения рассеяния нейтронов молекулой в системе координат, в которой покоятся центр инерции нейтрона и молекулы

\[d\sigma_n = \left(\frac{M_m}{M + M_m'} \right)^2 \frac{p'}{p} \left| \sum_a \frac{M_a + M}{M_a} A_a (e^{i q R_a})_{on} \right|^2 d\phi \]

(123,7)

(\(M_m = \sum_a M_a \) — масса молекулы). Эта формула устанавливает связь между рассеянием медленных нейтронов молекулой и отдельными атомами.

В предыдущих формулах не учитывалось наличие у нейтронов и ядер спина. В действительности амплитуда рассеяния \(A_a \) зависит от суммарного момента \(j_a \) системы ядро — нейтрон (предполагаем, что спин ядра отличен от нуля; в противном случае, предыдущие формулы не меняются).

Поскольку рассеяние медленных нейтронов происходит с орбитальным моментом \(l = 0 \), то \(j \) получается в результате сложения спина нейтрона \((s = \frac{1}{2}) \) и спина \(i_a \) ядра, т. е. может иметь два значения \(j = i_a + \frac{1}{2} \) и \(j = i_a - \frac{1}{2} \). Обозначим посредством \(A^+ \) и \(A^- \) амплитуды рассеяния при этих двух значениях \(j_a \). Если, как это обычно имеет место, в падающем пучке нейтронов имеются нейтроны с различными направлениями спинов (или в облучаемом веществе ядра имеют различные направления спинов), то эффективное сечение рассеяния должно быть соответствующим образом усреднено.

Это усреднение удобно производить с помощью следующего формального приёма. Составим выражение, зависящее от \(j \), которое при \(j = i + \frac{1}{2} \) было бы равно соответственно \(A^+ \) и \(A^- \). Легко проверить, что таковым является:

\[A = a + bis, \]

(123,8)

где

\[a = \frac{1}{2i + 1} \left\{ (i + 1) A^+ + i A^- \right\}, \]

\[b = \frac{2}{2i + 1} \left\{ A^+ - A^- \right\}, \]

(123,9)

а \(is \) обозначает собственное значение оператора \(\hat{s} \), равное при заданном значении \(j \):

\[is = \frac{1}{2} \left[j(j + 1) - i(i + 1) - \frac{3}{4} \right]. \]
Будем считать, что направления спина нейтронов и спинов ядер распределены полностью беспорядочным образом, т. е. все возможные их направления равновероятны. При усреднении квадрата

\[\left| \sum_{a} \frac{M_a + M}{M_a} (a_a + b_a s_i a) (e^{i q R_a})_{0n} \right|^2 \]

надо иметь в виду, что усреднения по направлениям спинов нейтронов и ядер независимы, а каждый из них при усреднении даёт нуль. Поэтому средние значения произведений $i_a s$ равны нулю. Поскольку непосредственное взаимодействие ядерных спинов друг с другом совершенно ничтожно, то независимы также и направления спинов различных ядер в молекуле, — если только молекула не содержит одинаковых атомов; в противном случае независимость нарушается необходимостью определённой симметрии волновой функции молекулы (обменное взаимодействие). Рассматривая молекулы, в которых все атомы различны, найдём, следовательно, что обращаются при усреднении в нуль также и произведения вида $(s_i a) (s_i a)$. Таким образом останётся:

\[\left| \sum_{a} \frac{M_a + M}{M_a} a_a (e^{i q R_a})_{0n} \right|^2 + \sum_{a} \left| \frac{M_a + M}{M_a} b_a (e^{i q R_a})_{0n} \right|^2 (s_i a)^2 . \]

Оставшиеся здесь средние значения от выражений вида $s_i a$ вычисляются очень легко:

\[(s_i a)^3 = \frac{s^2 i^2}{3} = \frac{s (s + 1) i (i + 1)}{3} = \frac{i (i + 1)}{4} . \]

В результате получаем следующее выражение для эффективного сечения:

\[d\sigma_n = \left(\frac{M_m}{M + M_x} \right)^2 \frac{p'}{p} \left\{ \left| \sum_{a} \frac{M_a + M}{M_a} a_a (e^{i q R_a})_{0n} \right|^2 + \right. \]

\[+ \frac{1}{4} \sum_{a} \left(\frac{M_a + M}{M_a} \right)^2 i_a (l_a + 1) b_a^2 \left| (e^{i q R_a})_{0n} \right|^2 \right\} . \quad (123,10) \]

На случае молекул, содержащих одинаковые атомы, мы здесь останавливаться не будем.
ГЛАВА XVI

ДВИЖЕНИЕ В МАГНИТНОМ ПОЛЕ

§ 124. Уравнение Шредингера в магнитном поле

В нерелятивистской теории магнитное поле может рассматриваться только в качестве внешнего поля. Магнитное взаимодействие частиц друг с другом является релятивистским эффектом, и его учёт требует последовательной релятивистской теории.

Гамильтониан системы частиц, находящейся в магнитном поле, может быть получен из классического выражения для соответствующей функции Гамильтона. Как известно из электродинамики, эта функция имеет вид:

\[H = \sum_a \left(p_a - \frac{e}{c} A_a \right)^2 \mp \frac{1}{\gamma \mu_a} + U(x, y, z), \]

где \(p_a \) — обобщённый импульс \(a \)-й частицы, \(A_a \) — векторный потенциал магнитного поля в точке нахождения этой частицы \(U(x, y, z) \) — потенциальная энергия взаимодействия частиц (или их энергия во внешнем электрическом поле) ¹). Мы будем для краткости писать ниже все формулы для одной частицы:

\[H = \left(p - \frac{e}{c} A \right)^2 \mp \frac{1}{\mu} + U(x, y, z). \]

Если частица не обладает спином, то переход к квантовой механике может быть произведён обычным образом: импульс \(p \) надо заменить оператором \(\hat{p} = -i\hbar \nabla \), и мы получим гамильтониан

\[\hat{H} = \left(\hat{p} - \frac{e}{c} A \right)^2 \mp \frac{1}{2\mu} + U(x, y, z). \] (124,1)

Если же частица обладает спином, то такая операция оказывается недостаточной. Это связано с тем, что спин непосредственно взаимодействует с магнитным полем. В классической функции Гамильтона это взаимодействие вообще отсутствует, поскольку самый спин, будучи чисто квантовым эффектом, исчезает при переходе к классическому представлению.

¹) См., например, «Теория поля», 1-е изд. § 23, 2-е изд. § 14. Мы обозначаем здесь обобщённый импульс посредством \(p \), а не \(P \).
ческой механике. Частице со спином можно приписать также и собственный магнитный момент; из соображений симметрии очевидно, что этот момент параллелен или антипараллелен спину. Поэтому его оператор имеет вид $\beta \hat{s}$, где \hat{s} — оператор спина, а β — характерная для частицы постоянная. Правильное выражение для гамильтониана получится путём введения в (124,1) дополнительного члена ($-\beta \hat{s} \mathcal{H}$), соответствующего энергии магнитного момента βs в поле \mathcal{H}. Таким образом гамильтониан частицы, обладающей спином и находящейся в магнитном поле, имеет вид:

$$ \hat{H} = \frac{1}{2 \mu} \left(\hat{p} - \frac{e}{c} A \right)^2 - \beta s \mathcal{H} + U(x, y, z). $$ (124,2)

При раскрытии квадрата $\left(\hat{p} - \frac{e}{c} A \right)^2$ надо иметь в виду, что \hat{p}, вообще говоря, не коммутирует с вектором $A(x, y, z)$, являющимся функцией координат. Поэтому надо писать:

$$ \hat{H} = \frac{\hat{p}^2}{2\mu} - \frac{e}{2\mu c} (\hat{A} \hat{p} + \hat{p} \hat{A}) + \frac{e^2}{2\mu c^2} A^2 - \beta \hat{s} \mathcal{H} + U. $$ (124,3)

Согласно общему правилу коммутации (14,4) оператора импульса с любой функцией координат имеем:

$$ \hat{p} A = A \hat{p} = -i\hbar \text{div} A. $$ (124,4)

Таким образом \hat{p} и A коммутативны, если $\text{div} A \equiv 0$. Это, в частности, имеет место для однородного поля, если выбрать его векторный потенциал в виде:

$$ A = \frac{1}{2} [\mathcal{H} r]. $$ (124,5)

Уравнение $\hat{H} \psi = E \psi$ для собственных значений оператора (124,2) представляет собой обобщение уравнения Шредингера на случай наличия магнитного поля. Свойства оператора \hat{s} были подробно рассмотрены нами в главе VIII. Волновые функции, на которые действует оператор (124,2), суть симметрические спиноры ранга $2s$.

Волновые функции стационарных состояний частицы в магнитном поле обладают своеобразной неоднозначностью, связанной с неоднозначностью в выборе векторного потенциала. Если произвести замену

$$ A \to A + \nabla f(x, y, z), $$ (124,6)

где f — произвольная функция координат 1), то на магнитном поле \mathcal{H} это не отразится; другими словами, векторный потенциал определён лишь с точностью до градиента произвольной функции. Ясно поэтому, что преобразование (124,6) не должно существенно изменить собст-

1) В преобразовании (124,6) произвольная функция f может зависеть также и от времени. Тогда для приведения уравнения Шредингера к исход-
венные функции оператора (124,2); в частности, квадрат модуля \(|\psi|^2 \) должен оставаться неизменным. Действительно, легко убедиться в том, что, произведя одновременно с заменой (124,6) подстановку
\[
\psi \rightarrow \psi e^{-\frac{i}{\hbar c} \mathbf{F}(x, y, z)} ,
\]
мы вернёмся к исходному уравнению. Таким образом фазы волновых функций стационарных состояний определены лишь с точностью до произвольной функции координат. Эта неоднозначность, однако, не сказывается ни на какой имеющей физический смысл величине (в определение которой не входит явным образом векторный потенциал).

В классической механике обобщённый импульс частицы связан с её скоростью соотношением
\[
\mu v = p - \frac{e}{c} \mathbf{A}.
\]
Для того чтобы найти оператор \(\hat{v} \) в квантовой механике, надо продумать вектор \(\mathbf{r} \) с гамильтонианом. Простое вычисление при водит к результату
\[
\mu \hat{v} = \hat{p} - \frac{e}{c} \mathbf{A} ,
\]
в точности аналогичному классическому. Для операторов компонент скорости имеют место правила коммутации:
\[
\{ \hat{v}_x, \hat{v}_y \} = -i \frac{e}{\mu^* c} \mathcal{H}_z , \quad \{ \hat{v}_y, \hat{v}_z \} = -i \frac{e}{\mu^* c} \mathcal{H}_x , \quad \{ \hat{v}_z, \hat{v}_x \} = -i \frac{e}{\mu^* c} \mathcal{H}_y ,
\]
которые легко проверить непосредственным вычислением. Мы видим, что в магнитном поле операторы трёх компонент скорости частицы (заряженной) оказываются некоммутативными. Это значит, что частица не может иметь одновременно определённых значений скорости по всем трём направлениям.

Постоянная \(\beta/\hbar \) определяет отношение собственного магнитного момента частицы к механическому моменту \(\hbar s \). Как известно ¹),

ному виду одновременно с преобразованием (124,6—7) надо произвести также замену потенциальной энергии
\[
U \rightarrow U - \frac{1}{c^2} \frac{\partial f}{\partial \varepsilon} .
\]
Укажем также, что если речь идёт о системе из нескольких частиц, то преобразование волновой функции имеет (вместо (124,7)) вид
\[
\psi \rightarrow \psi e^{\frac{-i}{\hbar c} \sum_a e^a f(x_a, y_a, z_a)} ,
\]
(суммирование в показателе по частицам системы).

¹) См., например, «Теория поля», 1-е изд. § 44, 2-е изд. § 43.
для обычного (орбитального) момента это отношение равно \(e/2\mu c \). Коэффициент же пропорциональности между собственным магнитным моментом и спином частицы оказывается иным. Для электрона он равен

\[
\frac{\beta}{\hbar} = -\frac{|e|}{\mu c},
\]

(124,10)

t. е. вдвое больше обычного значения 1). Собственный магнитный момент электрона (спин \(\frac{1}{2} \)) равен, следовательно:

\[
\frac{|e|\hbar}{2\mu c} = 0,927 \cdot 10^{-20} \text{ эрг/гаусс.}
\]

Эту величину называют магнитоном Бора. Магнитный же момент тяжёлых частиц принято измерять в «ядерных магнетонах», определяемых, как \(e\hbar/2\mu c \) с массой протона в качестве \(\mu \). Эксперимент даёт для собственного магнитного момента протона значение в 2,78 ядерного магнетона, причём момент направлен по спину. У нейтрона магнитный момент направлен противоположно спину и равен 1,93 ядерного магнетона.

§ 125. Движение в однородном магнитном поле

Применим гамильтонаиан (124,2) к определению уровней энергии частицы в постоянном однородном магнитном поле (Л. Ландау, 1930). Векторный потенциал однородного магнитного поля удобно выбрать здесь не в виде (124,5), а в следующей форме:

\[
A_x = -\mathcal{H} y, \quad A_y = A_z = 0
\]

(125,1)

(ось \(z \) выбрана в направлении поля).

Гамильтонаиан (124,2) приобретает вид:

\[
\hat{\mathcal{H}} = \frac{1}{2\mu} \left(\hat{p}_x + \frac{eH}{c} y \right)^2 + \frac{\hat{p}_y^2}{2\mu} + \frac{\hat{p}_z^2}{2\mu} - \beta \hat{s}_z \mathcal{H}.
\]

(125,2)

Прежде всего замечаем, что оператор \(\hat{s}_z \) коммутирует с \(\hat{\mathcal{H}} \), а коэффициент при \(\hat{s}_z \) в (125,2) есть не зависящая от координат постоянная. Из первого обстоятельства следует, что \(s_z \) сохраняется, а из второго — что в уравнении Шредингера спиновые и координатные переменные разделяются. Другими словами, собственные функции могут быть представлены в виде произведений координатных функций на спиновые, соответствующие определённым значениям \(s_z \)-компонеты спина (\(s = -s, \ldots, s \)). Для координатной функции \(\psi \) имеем уравнение

\[
\left[\frac{1}{2\mu} \left(\hat{p}_x + \frac{eH}{c} y \right)^2 + \frac{\hat{p}_y^2}{2\mu} + \frac{\hat{p}_z^2}{2\mu} - \beta \hat{s}_z \mathcal{H} \right] \psi = E\psi.
\]

(125,3)

1) Такое значение \(\beta \) может быть получено теоретически из релятивистского волнового уравнения Дирака.
Оператор (125,2) не содержит явно координат x и z. Поэтому операторы \hat{p}_x и \hat{p}_z коммутируют с \hat{H}, т. е. y- и z-компоненты обобщённого импульса сохраняются. Соответственно этому вишу ψ в виде:

$$\psi = e^{\frac{i}{\hbar}(p_xx + p_zz)} \chi(y).$$

(125,4)

Собственные значения p_x и p_z пробегают все значения от $-\infty$ до $+\infty$. Импульс p_z связан со скоростью посредством равенства $p_x = \mu v_x$ (см. (124,8)). Таким образом скорость частицы в направлении поля может иметь произвольное значение; можно сказать, что движение вдоль оси z «не квантуется». Физический смысл p_x выяснится ниже.

Подставляя (125,4) в (125,3), получим следующее уравнение для функции $\chi(y)$:

$$\chi'' - \frac{2\mu}{\hbar^2} \left(\frac{p_x^2}{\mu^2} - \frac{\mu (e\hbar/c)^2}{2} (v - y_0)^2 \right) \chi = 0,$$

где введено обозначение

$$y_0 = -\frac{cp_x}{e\hbar}.$$

Это уравнение формально совпадает с уравнением Шредингера (21,6) для линейного осциллятора, колеблющегося с частотой $\omega = |e|\hbar/\mu c$ около точки $y = y_0$. Поэтому мы сразу можем заключить, что постоянная $E = \beta \hbar - p_x^2/2\mu$, играющая роль энергии осциллятора, может принимать значения $(n + 1/2)\hbar\omega$, где n — целые числа.

Таким образом получаем следующее выражение для уровней энергии частицы в однородном магнитном поле:

$$E = \left(n + \frac{1}{2}\right)\frac{|e|}{\mu c} \hbar + \frac{p_x^2}{2\mu} - \beta \hbar.$$

(125,5)

Соответствующие волновые функции равны (с точностью до нормировочной постоянной):

$$\psi = e^{\frac{i}{\hbar}(p_xx + p_zz)} e^{-\frac{|e|\hbar}{2e\hbar} (y - y_0)^2} H_n \left[\sqrt{\frac{|e|\hbar}{ch}} (y - y_0) \right]$$

(125,6)

(H_n — полиномы Эрмита).

Энергия, изображаемая первым членом в (125,5), соответствует движению в плоскости x, y. В классической механике это есть движение по окружности с неподвижным центром. Сохраняющаяся величина y_0 соответствует классической y-координате центра окружности. Наряду с ней сохраняется также величина $x_0 = (cp_y/e\hbar) + x$ (легко убедиться в том, что оператор $x + (cp_y/e\hbar)$ коммутирует с гамильтонианом (125,2)). Эта величина соответствует классической x-коорди-
ната центра окружности 1). Однако операторы \(\hat{x}_0 \) и \(\hat{y}_0 \) не коммутируют друг с другом. Другими словами, координаты \(x_0 \) и \(y_0 \) не могут иметь одновременно определённых значений.

Каждый уровень энергии (125,5) при заданном значении \(p_z \) выражён \(\infty \)-кратно соответственно тому, что величина \(y_0 \) может иметь произвольные значения. Для электрона имеет место ещё дополнительное выражение: полагая в (125,5) \(\beta = \frac{e}{\hbar} \sqrt{E^2 - \frac{p_z^2}{2m}} \), получим

\[
E = (n + \frac{1}{2} + \sigma) \frac{e}{\mu c} \sqrt{\frac{\hbar^2}{2m} + \frac{p_z^2}{2m}}, \tag{125,7}
\]

где \(\sigma = \pm \frac{1}{2} \); очевидно, что уровни с \(n, \sigma = \frac{1}{2} \) и \(n + 1, \sigma = -\frac{1}{2} \) совпадают.

§ 126. Эффект Зеемана

Рассмотрим атом, находящийся в однородном магнитном поле. Его гамильтониан имеет вид:

\[
\hat{H} = \frac{1}{2\mu} \sum_a \left(\hat{p}_a + \frac{e}{c} A_a \right)^2 + U(x, y, z) + \frac{e}{\mu c} \hbar \sum_a \hat{s}_a,
\]

где суммирование производится по всем электронам, а \(U(x, y, z) \) есть энергия взаимодействия электронов с ядром и друг с другом 2). Сумма \(\sum_a \hat{s}_a \) есть оператор \(\hat{S} \) полного спина атома. Обозначая посредством \(\hat{H}_0 \) гамильтониан атома в отсутствии поля

\[
\hat{H}_0 = \frac{1}{2\mu} \sum_a \hat{p}_a^2 + U(x, y, z),
\]

мы можем переписать \(\hat{H} \) в виде:

\[
\hat{H} = \hat{H}_0 + \frac{e}{\mu c} \sum_a A_a \hat{p}_a + \frac{e^2}{2\mu c^2} \sum_{a \neq b} A_a A_b + \frac{e \hbar}{\mu c} \hat{S}, \tag{126,1}
\]

(напоминаем, что в однородном поле с векторным потенциалом (124,5) \(\hat{p}_a \) и \(A_a \) коммутативны).

1) Действительно, для классического движения по окружности радиуса \(c_1 \nu_1 / e \hbar \) (\(\nu_1 \) — проекция скорости на плоскость \(x, y \) ; см. «Теория поля») имеем:

\[
y_0 = -\frac{c_1 \nu_1}{e \hbar} \nu_x = -\frac{c_1}{e \hbar} \nu_x + y.
\]

Из этого выражения очевидно, что \(y_0 \) есть координата центра окружности. Другой координатой будет:

\[
x_0 = \frac{c_1}{e \hbar} \nu_y + x = \frac{c_1 \nu y}{e \hbar} + x.
\]

2) Заряд электрона мы обозначаем в этом параграфе как — \(e \).
Подставляя $A = 1/2 \{HL\}$ в (126,1) и воспользовавшись тождеством $[HL] p = HL [rp]$, получим:

$$\hat{H} = \hat{H}_0 + \frac{e}{2\mu c} \hat{H} \sum_a [r_a p_a] + \frac{e^2}{2\mu c^2} \sum_a [HLr_a]^2 + \frac{eh}{\mu c} \hat{H} S.$$

Но векторное произведение $[r_a p_a]$ есть не что иное, как оператор орбитального момента электрона, а суммирование по всем электронам даёт оператор HL полного орбитального момента атома. Таким образом

$$\hat{H} = \hat{H}_0 + \beta_0 (\hat{L} + 2\hat{S}) \hat{H} + \frac{e^2}{2\mu c^2} \sum_a [HLr_a]^2, \quad (126,2)$$

где мы ввели обозначение $\beta_0 = eh/2\mu c$ для магнетона Бора.

Предположим, что магнитное поле настолько слабо, что $\beta_0 \hat{H}$ мало по сравнению с расстояниями между уровнями энергии атома, в том числе по сравнению с интервалами тонкой структуры уровней. Тогда второй и третий члены в (126,2) можно рассматривать как возмущение, причём невозмущёнными уровнями являются отдельные компоненты мультиплетов. В течении приближения третьим членом, квадратичным по полю, можно пренебречь по сравнению с линейным вторым членом.

Магнитное поле, выделяя собой определённое направление в пространстве, снимает вырождение уровней по направлению полного момента J атома. В силу аксиальной симметрии полю проекции полного момента на направление поля сохраняется, а различные компоненты расщеплённого терма характеризуются значениями M_J этой проекции. Энергия ΔE расщепления определяется средними значениями возмущения в состояниях с заданными квантовыми числами J, L, S и различными значениями M_J:

$$\Delta E = \beta_0 (L + 2S) \hat{H} = \beta_0 (J + S) \hat{H}.$$

Если выбрать направление магнитного поля в качестве оси z, то

$$\Delta E = \beta_0 \hat{H} (\hat{J}_z + \hat{S}_z). \quad (126,3)$$

Оператор $-\beta_0 (\hat{L} + 2\hat{S})$ можно рассматривать как оператор «собственного» магнитного момента атома, которым он обладает в отсутствии поля.

Для сохраняющегося (в невозмущённом состоянии) вектора J мы имеем просто $J_z = M$. Что же касается среднего значения S_z, то его можно было бы найти непосредственно с помощью общих формул § 31 для матричных элементов при сложении моментов. Мы приведём, однако, здесь ещё и другой, более наглядный вывод. Из соображе-

1) Мы предполагаем, что для атомных термов имеет место рассель-саундеровский случай связи.
Движение в магнитном поле

нений симметрии заранее очевидно, что среднее значение \vec{S} есть вектор, направленный вдоль единственного сохраняющегося вектора \vec{J}. Поэтому можно написать $\vec{S} = \text{const.} \vec{J}$. Умножая это равенство с обеих сторон на \vec{J}, получим $\vec{JS} = \vec{JS} = \text{const.} \vec{J^2}$, откуда определяется const. Таким образом

$$
\vec{S} = \frac{J(\vec{JS})}{\vec{J^2}}
$$

или

$$
\vec{S}_x = M_J \frac{J(\vec{JS})}{\vec{J^2}}
$$

(мы опустили знак среднего над \vec{JS}, так как это произведение имеет в расселль-сэндеровском приближении определённое значение). Здесь $\vec{J^2}$ равно своему собственному значению $J(J+1)$, а собственное значение \vec{JS} равно (см. (30,3)):

$$
\vec{JS} = \frac{1}{2} \left\{ J(J+1) - L(L+1) + S(S+1) \right\}.
$$

Собирая все полученные выражения и подставляя в (126.3), находим следующее окончательное выражение для энергии расщепления:

$$
\Delta E = \tilde{\beta} \gamma M_J \hbar, \quad M_J = -J, -J+1, \ldots, J,
$$

где

$$
g = 1 + \frac{J(J+1) - L(L+1) + S(S+1)}{2J(J+1)}
$$

есть так называемый множитель Ланде. Расщепление уровней в магнитном поле называют эффектом Зеемана. Мы видим, что магнитное поле снимает выражение полностью (если только $g \neq 0$), причём величина расщепления пропорциональна полю.

Множитель Ланде для различных компонент мультиплета пробегает значения, лежащие между значениями, соответствующими $J = L \pm S$ (если $L \gg S$):

$$
\frac{L+2S}{L+S} \gg g \gg \frac{L-2S+1}{L-S+1},
$$

или между значениями, соответствующими $J = S \pm L$ (если $L \ll S$):

$$
\frac{L+2S}{L+S} \gg g \gg \frac{2S+2-L}{S-L+1}.
$$

Если спин отсутствует ($S = 0$, $J = L$), то g обращается просто в единицу 1); если же $L = 0$, то $g = 2$. При $J = 0$ (что возможно лишь при $S = L$) выражение (126.6) становится неопределённым, но эффект, разумеется, отсутствует, поскольку при $J = 0$, конечно, и $M_J = 0$. Для некоторых термов с $J \neq 0$ (например, $^4D_{5/2}$, $^6F_{1/2}$, $^6G_{5/2}$) $g = 0$ и линейное по полю расщепление отсутствует.

1) Расщепление, описываемое общей формулой (126.5 — 6), часто называют аномальным эффектом Зеемана. Это неудачное название возникло исторически в связи с тем, что до открытия спина электрона считался нормальным эффект, описываемый формулой (126.5) с $g = 1$.
§ 126] ЭФФЕКТ ЗЕМЕНА

Производная \(- \frac{\partial \Delta E}{\partial \mathcal{H}}\) есть среднее значение магнитного момента атома \(^1\). Мы видим, что атом, находящийся в состоянии с определённым значением \(M_J\) компоненты полного момента в некотором направлении, обладает средним магнитным моментом \(- \beta_0 g M_J\) в этом направлении.

Если атом не обладает ни спином, ни орбитальным моментом \((S = L = 0)\), то второй член в (126,2) не даёт смещения уровня ни в первом, ни более высоких приближениях (так как все матричные элементы от \(L\) и \(S\) исчезают). Поэтому весь эффект связан в этом случае с третьим членом в (126,2) и в первом приближении теории возмущений смещение уровня равно среднему значению

\[
\Delta E = \frac{e^2}{8 \mu c^2} \sum_a \left[\mathcal{H} r_a \right]^2. \tag{126,7}
\]

Написав \([\mathcal{H} r_a]^2 = \mathcal{H} r_a^2 \sin^2 \theta\), где \(\theta\) — угол между \(r_a\) и \(\mathcal{H}\), и усредняя по направлением \(r_a\), получим \(\overline{\sin^2 \theta} = 1 - \overline{\cos^2 \theta} = \frac{2}{3}\) (имея в виду, что волновая функция состояния с \(L = S = 0\) сферически симметрична). Таким образом

\[
\Delta E = \frac{e^2}{12 \mu c^2} \mathcal{H} \sum_a \overline{r_a^2}. \tag{126,8}
\]

Производная \(- \frac{\partial \Delta E}{\partial \mathcal{H}}\) есть магнитный момент атома, приобретаемый им в магнитном поле. Написав его в виде \(\chi \mathcal{H}\), мы можем рассматривать величину

\[
\chi = -\frac{e^2}{6 \mu c^2} \sum_a \overline{r_a^2} \tag{126,9}
\]

как магнитную восприимчивость атома. Она отрицательна, т. е. атом с \(L = S = 0\) диамагнитен \(^2\).

Если же \(J = 0\), но \(S = L \neq 0\), то линейное по полю смещение уровня тоже отсутствует, но квадратичный эффект второго приближения от возмущения \(\beta_0 \mathcal{H}(L_z + 2 \hat{S}_z)\) превышает эффект (126,7) \(^3\). Это связано с тем, что, согласно общей формуле (38,9), поправка к собственному значению энергии во втором приближении определяется суммой выражений, в знаменателе которых стоят разности

\(^1\) См. вывод, приведённый в конце § 72 (формула (72,2)).

\(^2\) Упоминаем, что для вычисления среднего квадрата расстояния электронов от ядра нельзя пользоваться моделью Томаса-Ферми. Хотя интеграл \(\int nr^2 dr\) с плотностью Томаса-Ферми \(n\) \((r)\) и сходится, но слишком медленно, в связи с чем получающиеся значения сильно отличаются от эмпирических.

\(^3\) При \(S = L \neq 0\) недиагональные матричные элементы от \(L_z, S_z\) для переходов \(S, L, J \rightarrow S, L, J \pm 1\), вообще говоря, отличны от нуля.
нервозмущённых уровней энергии — в данном случае интервалы тонкой структуры уровня, являющиеся мелкими величинами. В § 38 было отмечено, что поправка второго приближения к нормальному уровню всегда отрицательна. Поэтому магнитный момент в нормальном состоянии будет величиной положительной, т. е. атом, находящийся в нормальном состоянии с \(J = 0, L = S \neq 0 \) парамагнитен.

В сильных магнитных полях, когда \(\beta_0 H \) сравнимо с интервалами тонкой структуры или превышает их, расщепление уровней отключается от предсказываемого формулой (126,5 — 6); это явление называют эффектом Пауэна-Бака.

Вычисление энергии расщепления весьма просто в случае, когда зеемановское расщепление велико по сравнению с интервалами тонкой структуры, но, конечно, попрежнему мало по сравнению с расстояниями между различными мультиплетами (так что в гамильтониане (126,2) можно попрежнему пренебречь третьим членом по сравнению со вторым). Другими словами, энергия в магнитном поле значительно превышает взаимодействие спин-орбита. Поэтому в первом приближении можно этим воздействием пренебречь. Тогда сохраняется не только проекция полного момента на ось \(z \), но и проекции \(M_L \) и \(M_S \) орбитального момента и спина. Оператор возмущения

\[\beta_0 \mathcal{H} (\hat{L}_z + \hat{2} S_z) \]

приводится к диагональному виду одновременно с \(\hat{L}_z \) и \(\hat{S}_z \), так что расщепление определяется формулой

\[\Delta E = \beta_0 \mathcal{H} (M_L + 2M_S). \quad (126,10) \]

Мультиплетное расщепление накладывается на расщепление в магнитном поле. Оно определяется средним значением оператора \(\hat{A} \hat{L} \hat{S} \) (67,2) по состоянию с данными \(M_L, M_S \) (мы гессетризуем мультиплетное расщепление, связанное со взаимодействием спин-орбиты). При заданном значении одной из компонент момента средние значения двух других равны нулю. Поэтому \(\hat{L} \hat{S} = M_L M_S \), так что в следующем приближении энергия уровней определяется формулой

\[\Delta E = \beta_0 \mathcal{H} (M_L + 2M_S) + A M_L M_S. \quad (126,11) \]

Вычисление зеемановского расщепления в общем случае произвольного (не рассель-саундерсовского) типа связи невозможно. Можно лишь утверждать, что расщепление (в слабом поле) линейно по полю и пропорционально проекции \(M_J \) полного момента, т. е. имеет вид:

\[\Delta E = \beta_0 g_{nJ} \mathcal{H} M_J, \quad (126,12) \]

где \(g_{nJ} \) — некоторые коэффициенты, характерные для данного терма (посредством \(n \) обозначаем совокупность квантовых чисел, кроме \(J \),

1) Для промежуточных случаев, когда влияние магнитного поля сравнимо со взаимодействием спин-орбиты, вычисление расщепления в общем виде невозможно (для случая \(S = \frac{1}{2} \) рассчёт приведён в задаче 1).
характеризующих терм). Хотя эти коэффициенты, каждый в отдельности, и не могут быть вычислены, оказывается возможным получить полезную в применениях формулу, определяющую сумму \(\sum_{n} g_{nj} M_j \)
взятую по всем возможным состояниям атома с данной электронной конфигурацией и данным полным моментом.

Величины \(g_{nj} M_j \) являются диагональными матричными элементами оператора \(L_z + 2S_z \), вычисленными с помощью волновых функций \(\phi_{nj M_j} \). Величины же \(g_{sLJ} M_j \) (где \(g_{sLJ} \) есть рассель-саундеровский множитель Ланде (126,6)) являются диагональными матричными элементами того же оператора, вычисленными с помощью функций \(\phi_{sLJ M_j} \). Функции \(\phi_{nj M_j} \) с данными \(J, M_j \) можно представить в виде взаимно-ортогональных линейных комбинаций функций \(\phi_{sLJ M_j} \) с теми же \(J, M_j \).

Линейное преобразование одной ортогональной совокупности функций в другую ортогональную совокупность унитарно (см. § 91). Но унитарное преобразование функций базиса оставляет неизменной сумму диагональных элементов матрицы \(^1\)). Поэтому заключаем, что

\[
\sum_{n} g_{nj} M_j = \sum_{sL} g_{sLJ} M_j,
\]

или, сокращая на \(M_j \) (имея в виду, что \(g_{nj} \) и \(g_{sLJ} \) от \(M_j \) не зависят):

\[
\sum_{n} g_{nj} = \sum_{sL} g_{sLJ}.
\] (126,13)

Суммирование производится по всем состояниям с данным значением \(J \), которые возможны для данной электронной конфигурации. Это и есть искомое соотношение.

Задачи

1. Определить расщепление терма с \(S = 1/2 \) при эффекте Паэчено-Бака.

Решение Магнитное поле и взаимодействие спин-орбита должны учитываться в теории возбуждений одновременно, т. е. оператор возбуждения имеет вид \(^2\)):

\[
\hat{V} = A \hat{L} \hat{S} + \beta_0 (\hat{L}_z + 2\hat{S}_z) \hat{N}.
\]

В качестве исходных волновых функций нулевого приближения мы выберем функции, соответствующие состояниям с определёнными значениями

\(^1\) Доказательство было приведено в § 91, где речь шла о характерах матриц представлений групп.

\(^2\) Мы не пишем в \(\hat{V} \) члена, пропорционального \((\hat{L} \hat{S})^2 \) (взаимодействие спин-спин). Надо, однако, иметь в виду, что для спина \(S = 1/2 \) выражение \((\hat{L} \hat{S})^2 \) в силу специфических свойств матриц Паули (см. (54,4) вводится, как легко убедиться, к выражению \(\hat{L} \hat{S} \), и поэтому включено в написанную для \(\hat{V} \) формулу.
ДВИЖЕНИЕ В МАГНИТНОМ ПОЛЕ

\(L, S = 1/2, M_L, M_S (L \text{ задано, } M_L = -L, \ldots, L; M_S = \pm \frac{1}{2}) \). В возмущённых состояниях сохраняется лишь сумма \(M_J = M_L + M_S \) (\(\hat{V} \) коммутирует с \(\hat{J}_z \)), так что компонентам расщеплённого терма можно приписать определённые значения \(M_J \).

Значения \(M_J = L + \frac{1}{2} \) и \(M_J = -(L + \frac{1}{2}) \) могут быть осуществлены лишь одним способом, — соответственно с \(M_L = L, M_S = \frac{1}{2} \) и \(M_L = -L, M_S = -\frac{1}{2} \). Поэтому поправки к энергии состояний с этими \(M_J \) равны просто диагональным матричным элементам \(V_{M_L M_S}^{M_J} \) с указанными значениями \(M_L \) и \(M_S \). Остальные значения \(M_J \) могут быть осуществлены двумя способами: \(M_L = M_J - \frac{1}{2}, M_S = \frac{1}{2} \) и \(M_L = M_J + \frac{1}{2}, M_S = -\frac{1}{2} \). Каждому \(M_J \) соответствуют здесь два различных значения энергии, определяющихся из секулярного уравнения, составленного из матричных элементов для переходов между этими двумя состояниями. Матричные элементы от \(LS \) вычисляются непосредственным перемножением матриц \(L_{M_L}^{M_J}, S_{M_S}^{M_J} \) и равны:

\[
(\text{LS})_{M_L M_S}^{M_J} = M_L M_S,
\]

\[
(\text{LS})_{M_L M_S}^{M_J + \frac{1}{2}, -\frac{1}{2}} = (\text{LS})_{M_L M_S}^{M_J - \frac{1}{2}, \frac{1}{2}} = \frac{1}{2} \sqrt{(L + M + \frac{1}{2}) (L - M + \frac{1}{2})}.
\]

В отсутствии магнитного поля терм представляет собой дублет с расстоянием между компонентами \(\epsilon = A (L + \frac{1}{2}) \) (см. (67,3)). Гибем низший из этих уровней в качестве начала отсчёта энергии. Тогда окончательные формулы для уровней \(E_{M_J} \) в магнитном поле имеют вид:

\[
E_{L + \frac{1}{2}} = \epsilon + \beta_0 \mathcal{H} (L + 1),
\]

\[
E_{-(L + \frac{1}{2})} = \epsilon - \beta_0 \mathcal{H} (L + 1),
\]

\[
E_{M_J} = \frac{\epsilon}{2} + \beta_0 \mathcal{H} M_J \pm \sqrt{\frac{1}{4} (\epsilon^2 + \beta_0^2 \mathcal{H}^2) + \frac{\beta_0 \mathcal{H} M_J \epsilon}{2L + 1}}, (M_J = L - \frac{1}{2}, \ldots, -(L - \frac{1}{2})�дная энергия \(\epsilon_{M_J} \) получается

\[
E_{M_J}^\pm = \beta_0 \mathcal{H} M_J \frac{2L + 1}{2L + 1}, \quad E_{M_J}^- = \beta_0 \mathcal{H} M_J \frac{2L}{2L + 1},
\]

в согласии с формулами (126, 5—6) (в которых надо положить \(S = \frac{1}{2}, J = L \pm \frac{1}{2} \)). При больших \(\beta_0 \mathcal{H}/\epsilon \) получается

\[
E_{M_J}^\pm = \beta_0 \mathcal{H} (M_J \pm \frac{1}{2}),
\]

в согласии с (126,10).

2. Определить зеемановское расщепление термов двухатомной молекулы в случае \(a \).

Ре ш е н и е. Магнитный момент, происходящий от движения ядер, очень мал по сравнению с магнитным моментом электронов. Поэтому возмущение от магнитного поля для молекулы надо писать, как для системы электронов, т. е. попрежнему в виде \(\hat{V} = \beta_0 \mathcal{H} (L + 2S) \), где \(L, S \) — электронные орбитальный и спиновый моменты.

Усредняя возмущение по электронному состоянию, получим в случае \(a \):

\[
\beta_0 \mathcal{H} n_z (\Lambda + 2\Sigma) = \beta_0 \mathcal{H} n_z (2\Omega - \Lambda).
\]
Среднее значение от \(n_z \) по вращению молекулы есть диагональный матричный элемент \((n_z)_{JM,J}^{JM,J} \), равный \(M_J n^J_J \), где \(n^J_J \) определяется формулой (84,1) (с \(J, \Omega \) вместо \(K, \Lambda \)). Таким образом искомое расщепление равно:

\[
\Delta E = \beta_0 \frac{\Omega (2\Omega - \Lambda)}{J (J + 1)} M_J \mathcal{K}.
\]

3. То же в случае \(b \).

Решение. Диагональные матричные элементы \(V^K_{\Lambda K} \), определяющие искомое расщепление, можно было бы вычислить по общим правилам, изложенными в § 84. Однако проще произвести вычисление более наглядным образом. Усредняя оператор возмущения по орбитальному и электронному состояниям, получим:

\[
\beta_0 \mathcal{K} (\Lambda n_z + 2 S_z)
\]

(оператор спина этим усреднением не затрагивается). Далее, усредняем по вращению молекулы; среднее значение от \(n_z \) определяется формулой (84,1)

\[
\beta_0 \mathcal{K} \left(\frac{\Lambda^2}{K (K + 1)} \hat{K}_z + 2 S_z \right).
\]

Наконец, усредняем по спиновой волновой функции; после полного усреднения средние значения векторов могут быть направлены лишь по единственному сохраняющемуся вектору полного момента \(J \). Поэтому получаем (ср. (126,4))

\[
\frac{\beta_0 \mathcal{K}}{J (J + 1)} \left[\frac{\Lambda^2}{K (K + 1)} (KJ) + 2 (SJ) \right] M_J
\]

или окончательно:

\[
\Delta E = \frac{\beta_0}{J (J + 1)} \left\{ \frac{\Lambda^2}{2K (K + 1)} \left[J (J + 1) + K (K + 1) - S (S + 1) \right] + \\
+ \left[J (J + 1) - K (K + 1) + S (S + 1) \right] \right\} \mathcal{K} M_J.
\]

4. Определить зеемановское расщепление компонент сверхтонкой структуры атомного терма.

Решение. Ввиду малости магнитного момента ядра по сравнению с электронным моментом, в выражении энергии возмущения первым можно пренебречь, так что исходим из прежней формулы (126,3) (мы предполагаем поле настолько слабым, что вызываемое им расщепление мало по сравнению с интервалами сверхтонкой структуры). Однако усреднение должно производиться не только по электронному состоянию, но и по направлениям ядерного спина. В результате первого усреднения получается \(\Delta E = \beta_0 g_J \mathcal{K} \) с прежним \(g \) (126,6). Второе усреднение даёт, аналогично (126,4)

\[
\overline{J}_z = \frac{(JF)}{F^2} M_F,
\]

где \(F = J + i \) — полный сохраняющийся момент атома. Таким образом окончательно имеем:

\[
\Delta E = \beta_0 g \frac{F(F + 1) + J (J + 1) - i (i + 1)}{2F (F^2 + 1)} M_F.
\]
§ 127. Нейтральная частица в магнитном поле

Рассмотрим электрически нейтральную частицу, обладающую магнитным моментом и находящуюся в однородном, но переменном (во времени) магнитном поле. Речь может итти как об элементарной (нейтрон), так и о сложной (атом) частице. Магнитное поле предполагается настолько слабым, что магнитная энергия частицы в поле мала по сравнению с интервалами между её уровнями энергии. Тогда можно рассматривать движение частицы как целого при заданном её внутреннем состоянии.

Пусть \(\hat{s} \) есть оператор «собственного» момента частицы — спина для элементарной частицы или полного момента количества движения \(\mathbf{J} \) для атома. Оператор магнитного момента представляется в виде \(\beta \hat{s} \). Гамильтоныан для движения нейтральной частицы как целого, очевидно, записывается в форме\(^1\):

\[
\hat{H} = -\beta \hat{s} \mathcal{H}.
\]
\((127,1)\)

В однородном поле\(^2\) этот оператор не содержит явно координат. Поэтому волновая функция частицы распадается на произведение координатной и спиновой функций. Из них первая есть просто волновая функция свободного движения; нас интересует ниже только спиновая часть. Покажем, что задача о частице с произвольным моментом \(s \) может быть сведена к более простой задаче о движении частицы со спином \(1/2 \) (Майборача). Для этого достаточно воспользоваться приёмом, которым мы уже применили в § 47. Именно, вместо одной частицы со спином \(s \) можно формально ввести систему из \(2s \) «частиц» со спином \(1/2 \). Оператор \(\hat{s} \) при этом представляется в виде суммы \(\sum \hat{s}_a \), операторов спина этих «частиц», а волновая функция — в виде произведения \(2s \) спиноров 1-го ранга. Гамильтоныан \((127,1)\) распадается тогда на сумму \(2s \) независимых гамильтоныанов:

\[
H = \sum_a \hat{H}_a, \quad \hat{H}_a = -\beta \mathcal{H} \hat{s}_a, \quad (127,2)
\]

так что движение каждой из \(2s \) «частиц» определяется независимо от других. После того как это сделано, достаточно снова ввести компоненты произвольного симметричного спинора ранга \(2s \) вместо произведений компонент \(2s \) спиноров 1-го ранга.

\(^1\) Мы выписываем лишь ту часть гамильтоныана, которая зависит от спина.

\(^2\) Эти рассуждения можно применить также и к случаю, когда какая-либо частица (в том числе и заряженная) движется в неоднородном магнитном поле, причём её движение можно считать квазиklassическим. Тогда магнитное поле, меняющееся по мере передвижения частицы вдоль её траектории, можно рассматривать просто как функцию времени и применить к изменению спиновой волновой функции те же уравнения.
ЗАДАЧИ

1. Определить спиновую волновую функцию нейтральной частицы со спином $\frac{1}{2}$, находящейся в однородном магнитном поле, постоянном по направлению, но меняющемся по абсолютной величине по произвольному закону $\mathcal{H} = \mathcal{H}(t)$.

Решение. Волновой функцией будет спинор ψ, удовлетворяющий волновому уравнению

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\beta}{2} \mathcal{H} \hat{s}_z \psi,$$

(направление поля выбрано в качестве оси z), или в спинорных компонентах (согласно (54,3)):

$$i\hbar \frac{\partial \psi^1}{\partial t} = -\frac{\beta}{2} \mathcal{H} \psi^1, \quad i\hbar \frac{\partial \psi^2}{\partial t} = \frac{\beta}{2} \mathcal{H} \psi^2.$$

Отсюда

$$\psi^1 = c_1 e^{i\beta \mathcal{H} t}, \quad \psi^2 = c_2 e^{i\beta \mathcal{H} t}.$$

Постоянные c_1, c_2 должны быть определены из начальных условий и условия нормировки $|c_1|^2 + |c_2|^2 = 1$.

2. То же в однородном магнитном поле, постоянном по абсолютной величине, но с направлением, равномерно вращающимся в плоскости с угловой скоростью ω.

Решение. Выбираем плоскость x, y в плоскости вращения поля; тогда $\mathcal{H}_x = \mathcal{H} \cos \omega t$, $\mathcal{H}_y = \mathcal{H} \sin \omega t$, $\mathcal{H}_z = 0$. Волновое уравнение имеет вид:

$$i\hbar \frac{\partial \psi}{\partial t} = -\beta \mathcal{H}(\cos \omega t \cdot \hat{s}_x + \sin \omega t \cdot \hat{s}_y) \psi,$$

или, согласно (54,3):

$$i\hbar \frac{\partial \psi^1}{\partial t} + \frac{\beta}{2} \mathcal{H} e^{-i\omega t} \psi^2 = 0, \quad i\hbar \frac{\partial \psi^2}{\partial t} + \frac{\beta}{2} \mathcal{H} e^{i\omega t} \psi^1 = 0.$$

Делая подстановку

$$\psi^1 e^{\frac{i\omega t}{2}} = \varphi^1, \quad \psi^2 e^{-\frac{i\omega t}{2}} = \varphi^2,$$

получим систему линейных уравнений с постоянными коэффициентами:

$$i\hbar \frac{\partial \varphi^1}{\partial t} + \frac{\omega \hbar}{2} \varphi^1 + \frac{\beta}{2} \mathcal{H} \varphi^2 = 0,$$

$$i\hbar \frac{\partial \varphi^2}{\partial t} - \frac{\omega \hbar}{2} \varphi^2 + \frac{\beta}{2} \mathcal{H} \varphi^1 = 0.$$

Решая их, получим в результате:

$$\varphi^1 = e^{-\frac{i\omega t}{2}} \left(ae^{\frac{i\Omega t}{2}} + be^{-\frac{i\Omega t}{2}} \right),$$

$$\varphi^2 = \frac{\beta \mathcal{H}}{\hbar} e^{-\frac{i\omega t}{2}} \left(\frac{a}{\omega + \Omega} e^{\frac{i\Omega t}{2}} + \frac{b}{\omega - \Omega} e^{-\frac{i\Omega t}{2}} \right), \quad h\Omega = \sqrt{\beta^2 \mathcal{H}^2 + \omega^2}.$$

Постоянные a и b связаны соотношением

$$\frac{|a|^2}{\Omega + \omega} + \frac{|b|^2}{\Omega - \omega} = \frac{1}{2\Omega},$$

вытекающим из условия нормировки: $|\varphi^1|^2 + |\varphi^2|^2 = 1$.
§ 128. Плотность тока в магнитном поле

Выведем квантово-механическое выражение для плотности тока при движении заряженных частиц в магнитном поле.

Будем исходить из известной из классической электродинамики формулы

$$\delta H = -\frac{1}{c} \int j \delta A dV$$ \hspace{1cm} (128,1)

(j — плотность тока), определяющей изменение функции Гамильтона распределённых в пространстве зарядов при варьировании векторного потенциала 1). В квантовой механике её надо применять к среднему значению гамильтиона заряженной частицы:

$$\overline{H} = \int \Psi^* \left[\frac{1}{2\mu} \left(\hat{p} - \frac{e}{c} A \right)^2 + \beta \hat{H} \right] \Psi dV.$$

(128,2)

Производя варьирование и имея в виду, что $\delta \hat{H} = \text{rot} \delta A$, находим:

$$\delta \overline{H} = \int \Psi^* \left[-\frac{e}{2\mu c} (\hat{p} \delta A + \delta A \hat{p}) + \frac{e^2}{\mu c^2} A \delta A \right] \Psi dV +$$

$$+ \beta \int \text{rot} \delta A \cdot \Psi^* \hat{\Psi} dV.$$ \hspace{1cm} (128,3)

Член с $\hat{p} \delta A$ преобразуем, производя интегрирование по частям:

$$\int \Psi^* \hat{p} \delta A \Psi dV = -i\hbar \int \Psi^* \nabla (\delta A \Psi) dV = i\hbar \int \delta A \Psi \nabla \Psi^* dV$$

(интеграл по бесконечно удалённой поверхности, как обычно, исчезает). Интегрирование по частям производим также и в последнем члене в (128,3), воспользовавшись известной формулой векторного анализа:

$$a \cdot \text{rot} b = \text{div} \left[ab \right] - b \cdot \text{rot} a.$$

Интеграл от члена с div исчезает, так что остаётся:

$$\int \Psi^* \hat{\Psi} \text{rot} \delta A dV = \int \delta A \text{rot} (\Psi^* \hat{\Psi}) dV$$

1) Функция Лагранжа для заряда в магнитном поле содержит член $\frac{e}{c} v A$, или, представляя заряд распределённым по пространству, $\frac{1}{c} \int j A dV$ (см. «Теория поля», § 14). Изменение функции Лагранжа при варьировании A, следовательно, равно:

$$\delta L = \frac{1}{c} \int j \delta A dV.$$

Бесконечно же малое изменение функции Гамильтона равно взятому с обратным знаком изменению функции Лагранжа (см. «Теория поля», примечание в § 65).
§ 128] ПЛОТНОСТЬ ТОКА В МАГНИТНОМ ПОЛЕ

В результате окончательно получаем:

\[\delta H = -\frac{i e \hbar}{2 \mu c} \int \delta A (\nabla \Psi^* - \Psi^* \nabla) dV + \frac{e^2}{\mu c} \int \delta A \nabla \Psi^* dV + \beta \int \delta A \nabla \Psi^* \hat{s} \Psi dV. \]

Сравнивая это выражение с (128.1), находим следующее выражение для плотности тока:

\[j = \frac{i e \hbar}{2 \mu} (\nabla \Psi^* - \Psi^* \nabla) - \frac{e^2}{\mu c} \nabla \Psi^* + \beta \nabla \times (\Psi^* \hat{s} \Psi). \] (128,4)

Подчеркнём, что хотя это выражение и содержит в явном виде векторный потенциал, но, тем не менее, оно, как то и следовало, вполне однозначно. В этом легко убедиться непосредственным вычислением, помня, что одновременно с преобразованием (124,6) векторного потенциала надо произвести также и преобразование (124,7) волновой функции.

Выражение (128,4) представляет собой среднее значение тока. Его можно рассматривать как диагональный матричный элемент некоторого оператора — оператора плотности тока. Тогда можно определить и недиагональные матричные элементы этого оператора. Мы не станем выписывать здесь явного выражения для самого оператора, которым редко приходится пользоваться, и напишем лишь матричные элементы, имеющие, очевидно, вид:

\[j_{nm} = \frac{i e \hbar}{2 \mu} (\nabla \Psi^* - \Psi^* \nabla) - \frac{e^2}{\mu c} \nabla \Psi^* + \beta \nabla \times (\Psi^* \hat{s} \Psi). \] (128,5)

ЗАДАЧА

Определить энергию сверхтонкой структуры уровня для атома, содержащего вне замкнутых оболочек всего один электрон, находящийся в состоянии. Этот электрон описывается волновой функцией \(\psi(r) \) движения в самосогласованном поле остальных электронов и ядра (Ферми, 1930).

Решение. Вычисление энергии расщепления непосредственно как среднего значения динапольного взаимодействия магнитных моментов электрона и ядра приводит к сумме интегралов, из которых каждый в отдельности расходится; поэтому такой метод не удобен для вычисления. Вместо этого вычисляем энергию расщепления, как энергию \(E = -\beta i \mathcal{E} \) магнитного момента ядра \(\beta \hbar \) (и — спин ядра) в магнитном поле \(\mathcal{E} \), создаваемом (в начале координат) электроном. Согласно известной формуле классической электродинамики, имеем

\[\mathcal{E} = \frac{1}{c} \int \left[\frac{1}{r} \mathbf{j} \right] dV. \]

где \(\mathbf{j} = 2 \beta \nabla \times (\mathbf{\psi} \hat{s} \mathbf{\psi}) \) — плотность тока, создаваемого электронным моментом (спином). Выделяем в интеграле (1) малую сферу радиуса \(r_0 \) вокруг начала координат и интегрируем по пространству между этой сферой и
бесконечно удалённой поверхностью. При интегрировании по частям интеграл по бесконечно удалённой поверхности исчезает. С помощью известных формул векторного анализа получаем (вводим временно обозначение $F = 2\beta_0 |\psi|^2 S$):

$$
\int \left[\nabla \frac{1}{r} \cdot \text{rot} F \right] dV = -\int (F \nabla) \frac{1}{r} \cdot dV - \int \left[\nabla \frac{1}{r} [\nabla F] \right] df,
$$

(2)

где второй интеграл в правой части берётся по поверхности малой сферы (\hat{n} — единичный вектор в направлении радиуса-вектора). Поскольку волновая функция s-состояния центрально-симметрична, то вектор F имеет постоянное направление. Раскрывая выражение $(F \nabla) \frac{1}{r}$ и производя в первом интеграле правой части в (2) интегрирование по углам, легко убедиться, что этот член тождественно исчезает. В интеграле по поверхности пишем $df = r_0^2 \, d\phi$ и переходим к пределу $r_0 \to 0$. В результате интегрирования по углам получим $\mathcal{K} = -(8\pi/3c) F(0)$ или

$$
\mathcal{K} = -\frac{16\pi^2 \beta_0}{3c} |\psi(0)|^2 S.
$$

Отсюда непосредственно находим энергию:

$$
E = -\frac{16\pi^2 \beta_0}{3}\frac{1}{3} |\psi(0)|^2 = -\frac{8\pi^2 \beta_0}{3c} \left[F(F + 1) - i(i + 1) - \frac{3}{4} \right] |\psi(0)|^2.
$$

Расстояние ΔE между двумя уровнями ($F = i \pm 1/2$) дублета сверхтонкой структуры равно:

$$
\Delta E = \frac{8\pi^2 \beta_0^2}{3c} (2i + 1) |\psi(0)|^2.
$$

МАТЕМАТИЧЕСКИЕ ДОПОЛНЕНИЯ

§ a. Полиномы Эрмита

Уравнение

\[y'' - 2xy' + 2ny = 0 \] \hspace{1cm} (a.1)

относится к типу уравнений, которые могут быть решены с помощью так называемого метода Лапласа.

Метод Лапласа \(^1\) применим вообще к линейным уравнениям вида:

\[\sum_{m=0}^{n} (a_m + b_m x) \frac{d^m y}{dx^m} = 0, \]

коэффициенты которого не выше первой степени по \(x \), и заключается в следующем. Составляем полиномы

\[P(t) = \sum_{m=0}^{n} a_m t^m, \quad Q(t) = \sum_{m=0}^{n} b_m t^m \]

и с их помощью функцию

\[Z(t) = \frac{1}{Q} e^{\int Q(t) dt}, \]

определяющую с точностью до постоянного множителя. Тогда решение рассматриваемого уравнения может быть выражено в виде комплексного интеграла

\[y = \oint C Z(t) e^{\nu t} dt, \]

где путь интегрирования \(C \) выбран так, чтобы интеграл имел значение конечное и отличное от нуля, причём функция

\[V = e^{\nu t} Q Z \]

должна возвращаться к своему начальному значению, после того как \(\omega \) описывает всю линию \(C \) (контур \(C \) может быть как замкнутым, так и незамкнутым).

\(^1\) Cм., например, Г у р с а, Курс математического анализа, т. II. Б. И. С м и р н о в, Курс вышей математики, т. III.
В случае уравнения (а,1) имеем

\[P = t^2 + 2t, \quad Q = -2t, \quad Z = \frac{1}{m+1} e^{-\frac{t^2}{4}}, \]

так что его решение имеет вид:

\[y = \int e^{\frac{xt-t^2}{4}} \frac{dt}{t^{n+1}}. \] \hspace{1cm} (а,2)

Для физических применений достаточно ограничиться рассмотрением значений \(n > -\frac{1}{2} \). Для таких \(n \) можно выбрать в качестве пути интегрирования \(C_1 \) или \(C_2 \) (рис. 47), удовлетворяющие необходимым условиям, поскольку на их концах \(t = +\infty \) или \(t = -\infty \) функция \(V = \text{const.} \) \(t^{-n} e^{\frac{xt-t^2}{4}} \) обращается в нуль 1).

Выведем, при каких значениях параметра \(n \) уравнение (а,1) имеет решения, конечные при всех конечных значениях \(x \) и стремящихся при \(x \to \pm\infty \) к бесконечности не быстрее конечной степени \(x \).

Рассмотрим сначала ненулевые значения \(n \). Интегралы (а,2) по \(C_1 \) и \(C_2 \) дают здесь два независимых решения уравнения (а,1). Преобразуем интеграл по \(C_1 \), введя переменную \(u \) согласно \(t = 2(x-u) \). Нахо- дим, опуская постоянный множитель:

\[y = e^{a^2} \int_{C_1} \frac{e^{-u^2}}{(u-x)^{n+1}} \, du, \] \hspace{1cm} (а,3)

где интегрирование производится по контуру \(C_1' \) в плоскости комплексного переменного \(u \), изображённому на рис. 48.

При \(x \to \pm\infty \) весь путь интегрирования \(C_1' \) сводится на бесконечность, и интеграл в формуле (а,3) стремится к нулю, как \(e^{-u^2} \). Но при \(x \to -\infty \) путь интегрирования про- стривается вдоль всей действительной оси, и интеграл в (а,3) не стремится к нулю экспоненциально, так что функция \(y(x) \) обращается в бесконечность в основном, как \(e^{a^2} \). Аналогично легко убедиться в том, что интеграл (а,2) по контуру \(C_2' \) расходится экспоненциально при \(x \to \pm\infty \).

При целых же положительных значениях \(n \) (включая значение нуль) интегралы вдоль прямолинейных участков пути интегрирования взаимно сокращаются, и оба интеграла (а,3) — по \(C_1' \) и \(C_2' \) — сводятся

1) Эти пути непригодны при целых отрицательных \(n \), поскольку при таких \(n \) интеграл (а,2) вдоль них обратился бы тождественно в нуль.
к интегралу по замкнутому пути вокруг точки \(u = x \). Таким образом мы получим решение

\[
y(x) = e^{ax} \int \frac{e^{-u^2}}{(u-x)^{n+1}} \, du,
\]

удовлетворяющее поставленным условиям. Согласно известной формуле Коши для производных от аналитической функции,

\[
f^{(n)}(x) = \frac{n!}{2\pi i} \oint \frac{f(t)}{(t-x)^{n+1}} \, dt.
\]

Это есть, с точностью до постоянного множителя, так называемый полином Эрмита:

\[
H_n(x) = (-1)^n e^{ax^2} \frac{d^n}{dx^n} e^{-x^2}.
\]

(а,4)

В раскрытом виде полином \(H_n \), расположенный по убывающим степеням \(x \), имеет вид:

\[
H_n(x) = (2x)^n - \frac{n(n-1)}{1} (2x)^{n-2} + \frac{n(n-1)(n-2)(n-3)}{1\cdot 2} (2x)^{n-4} - \ldots
\]

(а,5)

Он содержит только степени \(x \) той же чётности, что и число \(n \).

Выпишем несколько первых полиномов Эрмита:

\[
H_0 = 1, \quad H_1 = 2x, \quad H_2 = 4x^2 - 2, \quad H_3 = 8x^3 - 12x, \quad H_4 = 16x^4 - 48x^2 + 12.
\]

(а,6)

Для вычисления нормировочного интеграла

\[
\int_{-\infty}^{+\infty} e^{-x^2} H_n^2(x) \, dx
\]

заменяем \(e^{-x^2} H_n \) его выражением, согласно (а,3), и, интегрируя \(n \) раз по частям, получим:

\[
\int_{-\infty}^{+\infty} e^{-x^2} H_n^2(x) \, dx = \int_{-\infty}^{+\infty} (-1)^n H_n(x) \frac{d^n}{dx^n} e^{-x^2} \, dx =
\]

\[
= \int_{-\infty}^{+\infty} e^{-x^2} \frac{d^n H_n}{dx^n} \, dx.
\]

Но \(\frac{d^n H_n}{dx^n} \) есть постоянная, равная \(2^n n! \). Таким образом

\[
\int_{-\infty}^{+\infty} e^{-x^2} H_n^2(x) \, dx = 2^n n! \int_{-\infty}^{+\infty} e^{-x^2} \, dx
\]

или

\[
\int_{-\infty}^{+\infty} e^{-x^2} H_n^2(x) \, dx = 2^n n! \sqrt{\pi}.
\]

(а,7)
§ b. Функции Эйри

Уравнение

\[y'' - xy = 0 \]

относится к типу Лапласа (см. § a). Следуя общему методу, составляем функции

\[P = t^2, \quad Q = -1, \quad Z = -e^{-\frac{t^2}{3}} \]

так что решение может быть представлено в виде:

\[y(x) = \text{const.} \int_c e^{xt - \frac{t^2}{3}} \, dt. \]

Путь интегрирования \(C \) должен быть выбран так, чтобы на обоих его концах функция \(V = e^{xt - \frac{t^2}{3}} \) обращалась в нуль. Для этого надо, чтобы эти концы уходили на бесконечность в тех областях плоскости комплексного переменного \(t \), в которых \(\text{Re} \left(t^2 \right) > 0 \) (на рис. 49 эти области заштрихованы).

Решение, конечное при всех \(x \), получим, выбрав путь \(C \) так, как это изображено на рисунке. Он может быть смешён произвольным образом, при условии только, чтобы его концы уходили на бесконечность в тех же двух заштрихованных секторах (I и III на рис. 49). Заметим, что, выбрав путь, проходящий, например, в секторах II и II, мы получили бы решение, обращающееся при \(x \to \infty \) в бесконечность.

Смещая путь \(C \) так, чтобы он совпал с мнимой осью, получаем функцию (b,2) в виде (делаем подстановку \(t = iu \)):

\[\Phi(x) = \frac{1}{\sqrt{\pi}} \int_0^\infty \cos \left(ux + \frac{u^3}{3} \right) du. \]

Постоянную const. в (b,2) мы положили равной \(-i/2\sqrt{\pi} \) и обозна-
Чили определённую таким образом функцию посредством $\Phi(x)$; её называют функцией Эйри 1).

Асимптотическое выражение для $\Phi(x)$ при больших значениях x удобно получить, вычисляя интеграл (b,2) «методом перевала». При $x > 0$ показатель степени в подинтегральном выражении имеет экстремум при $t = \pm \sqrt{x}$, а направление его «наиболее круто го спада» параллельно нимой оси. Соответственно этому, для получения асимптотического выражения для больших положительных значений x разлагаем показатель по степеням $t = \sqrt{x}$ и интегрируем вдоль прямой C_1 (рис. 49), параллельной нимой оси (расстояние $OA = \sqrt{x}$). Делая подстановку $t = -\sqrt{x} + iu$, получаем

$$\Phi(x) \approx -\frac{i}{2\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-\frac{2}{3} x^{3/2} - \sqrt{x} u^2} du,$$

откуда

$$\Phi(x) \approx \frac{1}{2x^{1/4}} e^{-\frac{2}{3} x^{3/2}}.$$ \hspace{1cm} (b,4)

Таким образом при больших положительных x функция $\Phi(x)$ затухает экспоненциально.

Для получения асимптотического выражения при больших отрицательных значениях x заменяем, что n и $x < 0$ показатель степени имеет экстремумы при $t = i\sqrt{|x|}$ и $t = -i\sqrt{|x|}$, а направление «наиболее круто го спада» в этих точках — соответственно вдоль прямых под углами $-\pi/4$ и $\pi/4$ к действительной оси. Выбирая в качестве пути интегрирования ломаную линию C_8 (расстояние $OB = \sqrt{|x|}$), получим после простых преобразований:

$$\Phi(x) = \frac{1}{|x|^{3/4}} \sin\left(\frac{2}{3} |x|^{3/2} + \frac{\pi}{4}\right).$$ \hspace{1cm} (b,5)

Таким образом в области больших отрицательных x функция $\Phi(x)$ имеет осциллирующий характер. Укажем, что первый (наибольший) максимум функции $\Phi(x)$ есть $\Phi(-1.02) = 0.95$.

Функция Эйри может быть выражена посредством бесселевых функций порядка 1/3. Уравнение (b,1), как легко убедиться, имеет решение

$$\sqrt{x} Z_{1/3}\left(\frac{2}{3} x^{3/2}\right),$$

1) Мы следуем определению, предложенному В. А. Фоком; см. его книгу «Таблицы функций Эйри», содержащую сводку формул и численные таблицы (функция $\Phi(x)$ — одна из двух введённых Фоком функции и обозначается им посредством $v(x)$).
где $Z_{i/3}(x)$ — любое решение уравнения Бесселя порядка $1/3$. Решение, совпадающее с (b,3), есть:

$$
\Phi(x) = \frac{\sqrt{\pi x}}{3} \left\{ I_{-i/3} \left(\frac{2}{3} x^{i/3} \right) - I_{i/3} \left(\frac{2}{3} x^{i/3} \right) \right\} \text{ при } x > 0, \tag{b,6}
$$

$$
\Phi(x) = \frac{\sqrt{\pi x}}{3} \left\{ J_{-i/3} \left(\frac{2}{3} x^{i/3} \right) + J_{i/3} \left(\frac{2}{3} x^{i/3} \right) \right\} \text{ при } x < 0,
$$

где $I_n(x) = i^{-n} J_n(ix)$. Коэффициент здесь проще всего можно получить из сравнения асимптотического выражения (b,5) с известным асимптотическим выражением бесселевых функций:

$$
J_n(x) \approx \sqrt{\frac{2}{\pi x}} \sin \left(x - \frac{\pi n}{2} + \frac{\pi}{4} \right).
$$

§ 3. Полиномы Лежандра

Полиномы Лежанда $P_n(\cos \theta)$ определяются формулой

$$
P_n(\cos \theta) = \frac{1}{2^n n!} \frac{d^n}{(d \cos \theta)^n} (\cos^2 \theta - 1)^n, \tag{c,1}
$$

или в раскрытом виде:

$$
P_n(\cos \theta) = \frac{(2n)!}{2^n (n!)^2} \left[\cos^n \theta - \frac{n(n-1)}{2(2n-1)} \cos^{n-2} \theta + \cdots + \frac{n(n-1)(n-2)(n-3)}{2 \cdot 4 \cdot (2n-1)(2n-3)} \cos^{n-4} \theta - \ldots \right]. \tag{c,2}
$$

Они удовлетворяют дифференциальному уравнению

$$
\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial P_n}{\partial \theta} \right) + n(n+1) P_n = 0. \tag{c,3}
$$

Так называемые присоединённые полиномы Лежанда определяются формулой

$$
P_n^m(\cos \theta) = \sin^m \theta \frac{d^m P_n(\cos \theta)}{(d \cos \theta)^m} = \frac{1}{2^n n!} \sin^m \theta \frac{d^{m+n}}{(d \cos \theta)^{m+n}} (\cos^2 \theta - 1)^n \tag{c,4}
$$

($m = 0, 1, \ldots, n$). Эквивалентное этому определение есть

$$
P_n^m(\cos \theta) = (-1)^m \frac{(n+m)!}{(n-m)! 2^m n!} \sin^m \theta \frac{d^{n-m}}{(d \cos \theta)^{n-m}} (\cos^2 \theta - 1)^n, \tag{c,5}
$$

или в раскрытом виде:

$$
P_n^m(\cos \theta) = \frac{(2n)!}{2^n n! (n-m)!} \sin^m \theta \left\{ \cos^{n-m} \theta - \frac{(n-m)(n-m-1)}{2(2n-1)} \cos^{n-m-2} \theta + \cdots \right. \left. + \frac{(n-m)(n-m-1)(n-m-2)(n-m-3)}{2 \cdot 4 \cdot (2n-1)(2n-3)} \cos^{n-m-4} \theta - \ldots \right\}. \tag{c,6}
$$
Присоединённые полиномы Лежандра удовлетворяют уравнению
\[
\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial P_n^m}{\partial \theta} \right) + \left[n(n+1) - \frac{m^2}{\sin^2 \theta} \right] P_n^m = 0.
\] (c,7)

Для полиномов Лежандра имеет место следующая «теорема сложения»\(^1\). Пусть \(\gamma\) есть угол между двумя направлениями, определяемыми сферическими углами \(\theta, \varphi\) и \(\theta', \varphi'\):
\[
\cos \gamma = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos (\varphi - \varphi').
\]
Тогда
\[
P_n (\cos \gamma) = P_n (\cos \theta) P_n (\cos \theta') +
\sum_{m=1}^{n} 2 \frac{(n-m)!}{(n+m)!} P_n^m (\cos \theta) P_n^m (\cos \theta') \cos m (\varphi - \varphi').
\] (c,8)

Покажем, как вычисляется нормировочный интеграл для полиномов Лежандра
\[
\int_0^\pi P_n^2 (\cos \theta) \sin \theta \, d\theta = \int_{-1}^{1} P_n^2 (\mu) \, d\mu
\]
(\(\mu = \cos \theta\)). Подставляя для \(P_n (\mu)\) выражение (c,1) и интегрируя по частям \(n\) раз, имеем
\[
\int_{-1}^{1} P_n^2 (\mu) \, d\mu = \frac{1}{2^{2n} (n!)^2} \int_{-1}^{1} d^n \mu^n (\mu^2 - 1)^n \, d\mu \, d\mu =
\]
\[
= \frac{(-1)^n}{2^{2n} (n!)^2} \int_{-1}^{1} (\mu^2 - 1)^n \frac{d^{2n}}{d\mu^{2n}} (\mu^2 - 1)^n \, d\mu =
\]
\[
= \frac{(2n)!}{2^{2n} (n!)^2} \int_{-1}^{1} (1 - \mu^2)^n \, d\mu = 2 \frac{(2n)!}{(n!)^2} \int_{0}^{1} u^n (1 - u)^n \, du
\]
\[u = (1 - \mu)/2, \quad \text{откуда}
\]
\[
\int_{-1}^{1} P_n^2 (\mu) \, d\mu = \frac{2}{2n+1}.
\] (c,9)

\(^1\) В математической литературе есть много хороших изложений теории сферических функций. Здесь мы приводим для справок лишь некоторые основные соотношения, совершенно не занимаясь систематическим изложением теории этих функций.
Аналогичным образом легко убедиться в том, что функции $P_n(\mu)$ с различными n взаимно ортогональны:

$$\int_{-1}^{1} P_n(\mu) P_m(\mu) \, d\mu = 0 \quad (n \neq m). \quad (c,10)$$

Вычисление нормировочного интеграла для присоединённых полиномов Леженда легко произвести аналогичным способом. Пишем $[P_n^m(\mu)]^2$ в виде произведения выражений (c,4) и (c,5) и интегрируем $n - m$ раз по частям:

$$\int_{-1}^{1} [P_n^m(\mu)]^2 \, d\mu =$$

$$= (-1)^m \frac{(n + m)!}{2^n (n!^2) (n - m)!} \int_{-1}^{1} \frac{d^{n+m}}{d\mu^{n+m}} (\mu^2 - 1)^{d^n - m} d\mu =$$

$$= \frac{(n + m)! (2m)!}{2^n (n!^2) (n - m)!} \int_{-1}^{1} (1 - \mu^2)^n d\mu,$$

или

$$\int_{-1}^{1} [P_n^m(\mu)]^2 \, d\mu = \frac{2}{2n + 1} \frac{(n + m)!}{(n - m)!}. \quad (c,11)$$

Легко убедиться (комбинируя (c,4) и (c,5)) в том, что функции P_n^m с различными n (и одинаковыми m) взаимно ортогональны:

$$\int_{-1}^{1} P_n^m(\mu) P_k^m(\mu) \, d\mu = 0 \quad (n \neq k). \quad (c,12)$$

Вычисление интегралов от произведений трёх полиномов Леженда значительно сложнее\(^1\). Приведём здесь результат, получающийся для интеграла от произведения $L_l^u P_m^v P_n^w$, причём один из параметров u, v, w равен сумме двух других:

$$u = v + w.$$

Интеграл оказывается отличным от нуля только при условии, что сумма $l + m + n$ есть чётное число, а каждое из чисел l, m, n больше (или равно) разности и меньше (или равно) суммы двух других\(^2\):

$$l + m + n = 2p, \quad l + n \geq m \geq |l - n|, \quad l + m \geq n. \quad (c,13)$$

\(^1\) См. G a u n t, Phil. Tans. of the Roy. Soc. A, 228, 192 (1929); H o b s o n, Spherical Harmonics, 1930, стр. 87.

\(^2\) При нечётной сумме $l + m + n$ подинтегральное выражение есть нечётная функция от μ, и потому интеграл обращается в нуль. Остальные правила можно получить, например, следующим образом. Пишем $P_l^m + w$ в виде
В этом случае
\[
\int_{-1}^{1} P_1^{\nu+w} P_0^\nu P_n^w \, d\mu = (-1)^{n-m-w} 2 \frac{(m+v)! (n+w)! (l+m-n)! p!}{(m-v)! (p-l)! (p-m)! (p-n)! (2p+1)!} \times \sum_k (-1)^{k} \frac{(l+v+w+k)! (m+n-v-w-k)!}{(l-v-w-k)! (m-n+v+w+k)! (n-w-k)!}.
\]
(с, 14)

Суммирование производится по всем значениям \(k \), при которых факто-
риалы в знаменателях имеют смысл. Сумма может быть вычислена:
в общем виде (хотя и не простым образом) лишь в некоторых
частных случаях, из которых мы приведём следующие три:

\[
\int_{-1}^{1} P_{m+n}^\nu P_m^\nu P_n^w \, d\mu = 2 \frac{(m+n+v+w)! (m+n)! (2m)! (2n)!}{(m-v)! (n-w)! (2m+2n+1)! m! n!},
\]
(с, 15)

\[
\int_{-1}^{1} P_{l+m}^\nu P_l^\nu P_m^w \, d\mu = (-1)^{m} 2 \frac{(l+m+w)! (l+m)! (2l)! (2m)!}{(l-v-w)! (m-v)! (2l+2m+1)! l! m!},
\]
(с, 16)

\[
\int_{-1}^{1} P_1 P_m^\nu P_n^w \, d\mu = 2 \frac{(n)! (m+n-l)! (n+l-m)! (l+m-n)!}{(p+1)! (p-l)! (p-m)! (p-n)!}.
\]
(с, 17)

§ d. Вырожденная гипергеометрическая функция

Вырожденная гипергеометрическая функция определяется рядом

\[
F(\alpha, \gamma, z) = 1 + \frac{\alpha}{\gamma} \frac{z}{1!} + \frac{\alpha(\alpha+1)}{\gamma(\gamma+1)} \frac{z^2}{2!} + \ldots,
\]
(д, 1)

сходящимся при всех конечных \(z \); параметр \(\alpha \) произволен, а пара-
метр \(\gamma \) предполагается не равным нулю или целому отрицательному
числу. Если \(\alpha \) есть целое отрицательное число (или нуль),
то \(F(\alpha, \gamma, z) \) сводится к полиному \(|\alpha|-й степени.

Функция \(F(\alpha, \gamma, z) \) удовлетворяет дифференциальному уравнению

\[
z u'' + (\gamma - z) u' - \alpha u = 0,
\]
(д, 2)

(с, 5), а \(P_m^\nu \) и \(P_n^w \) в виде (с, 4). В интеграле

\[
\int \frac{d^{l-v-w}}{d\mu_{l-v-w}} (\mu^2 - 1)^l \frac{d^{m+v}}{d\mu_{m+v}} (\mu^2 - 1)^m \frac{d^{n+w}}{d\mu_{n+w}} (\mu^2 - 1)^n \, d\mu,
\]
производим \((l-v-w) \)-кратное интегрирование по частям, после чего по-
лучим интеграл вида:

\[
\int \frac{d^{l-v-w}}{d\mu_{l-v-w}} \left\{ \frac{d^{m+v}}{d\mu_{m+v}} (\mu^2 - 1)^m \frac{d^{n+w}}{d\mu_{n+w}} (\mu^2 - 1)^n \right\} \, d\mu,
\]

равный нулю, если \(l-v-w > |2m-(m+v)| + |2n-(n+w)| \), т.е. \(l > m + n \).
в чём легко убедиться непосредственной проверкой 1). Подстановкой у = z^{1-\gamma}u_1 это уравнение преобразуется в уравнение того же вида:

\[zu_1'' + (2 - \gamma - z) u_1' - (a - \gamma + 1) u_1 = 0. \] \hspace{1cm} (d,3)

Отсюда видно, что при нецелом \(\gamma \) уравнение (d,2) имеет также частный интеграл \(z^{1-\gamma}F(a - \gamma + 1, 2 - \gamma, z) \), линейно независимый от (d,1), так что общее решение уравнения (d,2) имеет вид:

\[u = c_1 F(a, \gamma, z) + c_2 z^{1-\gamma}F(a - \gamma + 1, 2 - \gamma, z). \] \hspace{1cm} (d,4)

Второй член, в противоположность первому, имеет при \(z = 0 \) особую точку.

Уравнение (d,2) относится к типу Лапласа, и его решения могут быть представлены в виде контурных интегралов. Следуя общему методу, составляем функции

\[P(t) = \gamma t - a, \quad Q(t) = t(t - 1), \quad Z(t) = t^{a-1}(t - 1)^{1-a-1}, \]

так что

\[u = \int e^{tz}t^{a-1}(t - 1)^{1-a-1} dt. \] \hspace{1cm} (d,5)

Путь интегрирования должен быть выбран таким образом, чтобы после его прохождения функция \(V(t) = e^{tz}t^{a-1}(t - 1)^{1-a} \) возвращалась к исходному значению. Применяя тот же метод к уравнению (d,3), можно получить для \(u \) контурный интеграл другого вида:

\[u = z^{1-\gamma}\int e^{tz}t^{a-\gamma}(t - 1)^{-a} dt. \]

В этом интеграле удобно сделать подстановку \(tz \to t \), приводящую его к виду:

\[u(z) = \int e^{t}(t - z)^{-a}t^{a-\gamma} dt, \] \hspace{1cm} (d,6)

(причём функция

\[V(t) = e^{tz}(t - 1)^{1-a}. \]

Подинтегральное выражение в (d,6) имеет, вообще говоря, две особые точки — при \(t = z \) и при \(t = 0 \). Выберем контур интегрирования \(C \), приходящий из бесконечности (\(\text{Re}(t) \to -\infty \)), обходящий обе особые точки в положительном направлении и уходящий снова на бесконечность (рис. 50). Этот контур удовлетворяет требуемым условиям, так как на его концах функция \(V(t) \) обращается в нуль. Интеграл (d,6), взятый по контуру \(C \), не имеет особой точки при \(z = 0 \); поэтому он должен совпадать, с точностью до постоянного

1) Уравнение (d,2) с целым отрицательным значением \(\gamma \) не нуждается в особом рассмотрении, так как может быть сведено (преобразованием к уравнению (d,3)) к случаю целых положительных \(\gamma \).
нажителя, с не имеющей особенностей функцией $F(\alpha, \gamma, z)$. При $z = 0$ обе особые точки подинтегрального выражения совпадают; согласно известной формуле теории Г-функций

$$\frac{1}{2\pi i} \int_C e^{i(t-\gamma)} \, dt = \frac{1}{\Gamma(\gamma)}. \quad (d,7)$$

Поскольку $F(\alpha, \gamma, 0) = 1$, то очевидно, что

$$F(\alpha, \gamma, z) = \frac{\Gamma(\gamma)}{2\pi i} \int_C e^t (t-z)^{-\alpha-1} \, dt. \quad (d,8)$$

В (d,5) подинтегральное выражение имеет особые точки $t = 0$ и $t = 1$. Если $\Re(\gamma - \alpha) > 0$, а α — не целое положительное число, то в качестве пути интегрирования можно выбрать контур C', выходящий из точки $t = 1$, обходящий в положительном направлении точку $t = 0$ и возвращающи-ся в $t = 1$ (рис. 51); при $\Re(\gamma - \alpha) > 0$ в результате обхода вдоль такого контура функция $V(t)$ возвращается к исходному значению нуль. Определённый таким образом интеграл тоже не имеет особенностей при $z = 0$ и связан с $F(\alpha, \gamma, z)$ посредством

$$F(\alpha, \gamma, z) = \frac{1}{\Gamma(\gamma - \alpha)} \frac{\Gamma(1 - \alpha) \Gamma(\gamma)}{\Gamma(\gamma - \alpha)} \int_{C'} e^{tz} (-t)^{\alpha-1} (1-t)^{\gamma-\alpha-1} \, dt. \quad (d,9)$$

По поводу интегралов (d,8—9) надо сделать следующее замечание. При нецелых α и γ подинтегральные выражения в них являются неоднозначными функциями. Их значения в каждой точке предполагаются выбранными условно, что возводимая в степень комплексная величина берётся с наименьшим по абсолютной величине значением аргумента.

Отметим полезное соотношение

$$F(\alpha, \gamma, z) = e^z F(\gamma - \alpha, \gamma, -z), \quad (d,10)$$

которое получается непосредственно, если сделать в интеграле (d,8) подстановку $t \rightarrow t + z$.

Мы уже упоминали, что если $\alpha = -n$, где n — целое положительное число, то функция $F(\alpha, \gamma, z)$ сводится к полиному. Для этих полиномов можно получить короткую формулу. Делая в интеграле (d,9) подстановку $t \rightarrow 1 - (t/z)$ и применяя к получившемуся

1) См., например, Уиттекер и Ватсон, Курс современного анализа, § 12, 22.
2) Если γ — целое положительное число, то в качестве C' можно выбрать любой контур, обходящий обе точки $t = 0$ и $t = 1$.

Рис. 51.
интегралу формулу Коши, найдём следующую формулу:

\[F(-n, \gamma, z) = \frac{1}{\Gamma(1+n-1)...(1+n-1)} z^{1-1/3} e^{n} \frac{d^{n-1}}{dz^{n-1}} (e^{-z} z^{1+n-1}). \quad (d,11) \]

Если к тому же \(\gamma = m \), где \(m \) — целое положительное число, то имеет место также и формула

\[F(-n, m, z) = \frac{(-1)^{m-1}}{m(m+1)...(m+n-1)} e^{n} \frac{d^{m+n-1}}{dz^{m+n-1}} (e^{-z} z^{n}). \quad (d,12) \]

Эта формула получается применением формулы Коши к интегралу, получающемуся из (d,8) подстановкой \(t \to z = t \).

Полиномы \(F(-n, m, z), 0 \leq m \leq n \) совпадают, с точностью до постоянного множителя, с так называемыми обобщёнными полиномами Лагерра, определяемыми посредством

\[L_{m}^{n}(z) = (-1)^{m} \frac{(n!)^{2}}{m!(n-m)!} F(-n-m, m+1, z) = \]
\[= \frac{n!}{(n-m)!} e^{n} \frac{d^{n}}{dz^{n}} e^{-z} z^{n-1} = \]
\[= (-1)^{m} \frac{n!}{(n-m)!} e^{n} \frac{d^{n}}{dz^{n}} e^{-z} z^{n}. \quad (d,13) \]

Полиномы \(L_{m}^{n} \) при \(m = 0 \) обозначают, как \(L_{n}(z) \), и называют просто полиномами Лагерра; согласно (d,11), имеем:

\[L_{n}(z) = e^{n} \frac{d^{n}}{dz^{n}} (e^{-z} z^{n}). \]

Интегральное представление (d,8) удобно для получения асимптотического разложения вырожденной гипергеометрической функции при больших \(z \). Деформируем контур так, что он превращается в два контура \(C_{1} \) и \(C_{2} \) (рис. 50), обходящих соответственно точки \(t = 0 \) и \(t = z \); нижнюю ветвь пути \(C_{2} \) и верхнюю ветвь \(C_{1} \) надо представлять себе смыкающимися на бесконечности. Имея в виду получить разложение по обратным степеням \(z \), выносим в подинтегральном выражении \((- z)^{-z} \) за скобку. В интеграле по контуру \(C_{2} \) делаем подстановку \(t \to t + z \); тем самым мы преобразуем контур \(C_{2} \) в контур \(C_{1} \). В результате представляем формулу (d,8) в виде:

\[F(\alpha, \gamma, z) = \frac{\Gamma(\gamma)}{\Gamma(\gamma-\alpha)} (-z)^{-z} G(\alpha, \alpha - \gamma + 1, -z) + \]
\[+ \frac{\Gamma(\gamma)}{\Gamma(\alpha)} e^{z} z^{-\gamma} G(\gamma - \alpha, 1 - \alpha, z), \quad (d,14) \]

где мы ввели обозначение

\[G(\alpha, \beta, z) = \frac{\Gamma(1-\beta)}{2 \pi i} \int_{C_{1}} (1 - \frac{t}{z})^{-z} t^{\beta-1} e^{t} dt. \quad (d,15) \]
§ d] ВЫРОЖДЕННАЯ ГИПЕРГЕОМЕТРИЧЕСКАЯ ФУНКЦИЯ 561

При возведении в степень в формуле (d,14) — z и z должны браться с наименьшим по абсолютной величине значением аргумента. Наконец, разлагая в подинтегральном выражении \(\left(1 - \frac{t}{z} \right)^{-\alpha} \) по степеням \(\frac{t}{z} \) и применяя формулу (d,7), получим в результате для \(G(\alpha, \beta, z) \) асимптотический ряд

\[
G(\alpha, \beta, z) = 1 + \frac{\alpha \beta}{\Gamma(z)} + \frac{\alpha(\alpha + 1) \beta(\beta + 1)}{2! \Gamma(z^2)} + \ldots \quad (d,16)
\]

Формулами (d,14) и (d,16) определяется асимптотическое разложение функции \(F(\alpha, \gamma, z) \).

При целом положительном \(\gamma \) второй член в общем решении (d,4) уравнения (d,2) либо совпадает с первым (если \(\gamma = 1 \)), либо теряет вовсе смысл (если \(\gamma > 1 \)). В качестве системы двух линейно независимых решений можно в этом случае выбрать два слагаемых в формуле (d,14), т. е. интегралы (d,8), взятые по контурам \(C_1 \) и \(C_2 \) (эти контуры, как и контур \(C \), удовлетворяют требуемым условиям, так что интегралы вдоль них тождественно равны решения уравнения (d,2)). Асимптотический вид этих решений определяется уже полученными формулами; остаётся найти их разложение по восходящим степеням \(z \). Для этого исходим из равенства (d,14) и аналогичного равенства для функции \(z^{\gamma-1} F(\alpha - \gamma + 1, 2 - \gamma, z) \). Из этих двух равенств выразим \(G(\alpha, \alpha - \gamma + 1, -z) \) через \(F(\alpha, \gamma, z) \) и \(F(\alpha - \gamma + 1, 2 - \gamma, z) \), после чего полагаем \(\gamma = p - \varepsilon \) (\(p \) — целое положительное число) и переходим к пределу \(\varepsilon \to 0 \), раскрывая неопределённости по правилу Лопиталя. В результате довольно длинного вычисления получается следующее разложение:

\[
G(\alpha, \alpha - p + 1, -z) = -\frac{\Gamma(p - \alpha)}{\Gamma(p)} \frac{\sin \pi \alpha}{\pi} F(\alpha, z) + \left\{ \ln z \cdot F(\alpha, p, z) + \sum_{s=0}^{\infty} \frac{\Gamma(p) \Gamma(\alpha + s)}{\Gamma(\alpha) \Gamma(s + p) \Gamma(s + 1)} \left\{ \psi(\alpha + s) - \psi(p + s) - \psi(s + 1) \right\} z^s + \sum_{s=1}^{p-1} (-1)^{s+1} \frac{\Gamma(p) \Gamma(\alpha - s)}{\Gamma(\alpha) \Gamma(\alpha - s) \Gamma(p - s)} z^{-s} \right\}, \quad (d,17)
\]

где \(\psi \) обозначает логарифмическую производную от \(\Gamma \)-функции: \(\psi(\alpha) = \Gamma'/(\alpha) \).

§ e. Гипергеометрическая функция

Гипергеометрическая функция определяется внутри круга \(|z| < 1 \) рядом

\[
F(\alpha, \beta, \gamma, z) = 1 + \frac{\alpha \beta}{\Gamma(\gamma)} z + \frac{\alpha(\alpha + 1) \beta(\beta + 1)}{\Gamma(\gamma + 1)} \frac{z^2}{2!} + \ldots, \quad (e,1)
\]

Экз. 8337. Ландау и Лифшиц, т. V, ч. I.
а при $|z| > 1$ получается аналитическим продолжением этого ряда. Гипергеометрическая функция является одним из частных интегралов дифференциального уравнения

$$z(1 - z)u'' + [\gamma - (\alpha + \beta + 1)z]u' - \alpha \beta zu = 0.$$ (e,2)

Параметры α и β произвольны, а $\gamma \neq 0, -1, -2, \ldots$. Функция $F(\alpha, \beta, \gamma, z)$, очевидно, симметрична по параметрам α и β.

Мы приведём здесь для справочніх целей ряд соотношений, которыми удовлетворяет гипергеометрическая функция.

Функция $F(\alpha, \beta, \gamma, z)$ может быть представлена при всех z, если $\text{Re} (\gamma - \alpha) > 0$ 2), в виде интеграла

$$F(\alpha, \beta, \gamma, z) = - \frac{1}{2\pi i} \frac{\Gamma(1 - \alpha)\Gamma(\gamma)}{\Gamma(\gamma - \alpha)} \int_{C'} (-t)^{\gamma - 1}(1 - t)^{1 - \alpha - 1}(1 - tz)^{-\beta} \, dt,$$ (e,3)

взятого по контуру C', изображённому на рис. 51. В том, что этот интеграл действительно удовлетворяет уравнению (e,2), легко убедиться непосредственно подстановкой; постоянный множитель подобран так, чтобы при $z = 0$ получилась единица.

Подстановка $u := (1 - z)^{1 - \alpha - \beta}u_1$ в уравнении (e,2) приводит к уравнению того же вида с параметрами $\gamma - \alpha, \gamma - \beta, \gamma$ соответственно вместо α, β, γ. Отсюда следует равенство

$$F(\alpha, \beta, \gamma, z) = (1 - z)^{1 - \alpha - \beta}F(\gamma - \alpha, \gamma - \beta, \gamma, z)$$ (e,4)

(обе стороны равенства удовлетворяют одному и тому же уравнению и их значения при $z = 0$ совпадают).

Подстановка $t \to t/(1 - z + zt)$ в интеграле (e,3) приводит к следующему соотношению между гипергеометрическими функциями от переменных z и $z/(z - 1)$:

$$F(\alpha, \beta, \gamma, z) = (1 - z)^{-\alpha}F\left(\alpha, \gamma - \beta, \gamma, \frac{z}{z - 1}\right).$$ (e,5)

Значение многозначного выражения $(1 - z)^{-\alpha}$ в этой формуле (и аналогичных выражений во всех следующих ниже формулках) определяется условием, что возводимая в степень комплексная величина берётся с наименьшим по абсолютной величине значением аргумента.

1) Выраженная гипергеометрическая функция получается из $F(\alpha, \beta, \gamma, z)$ предельным переходом

$$F(\alpha, \gamma, z) = \lim_{\beta \to \infty} F\left(\alpha, \beta, \gamma, \frac{z}{\beta}\right).$$

2) Во всех случаях, встречающихся в физических применениях, это неравенство имеет место.
Далее, приведём без вывода важную формулу, связывающую гипергеометрические функции от переменных z и $1/z$:

$$F(a, b, \gamma, z) = \frac{\Gamma(\gamma) \Gamma(b - a)}{\Gamma(b) \Gamma(\gamma - a)} (-z)^{-a} F(a, a + 1 - \gamma, a + 1 - b, \frac{1}{z}) +$$
$$+ \frac{\Gamma(\gamma) \Gamma(a - b)}{\Gamma(a) \Gamma(\gamma - b)} (-z)^{-b} F(b, \beta + 1 - \gamma, \beta + 1 - a, \frac{1}{z}). \quad (e,6)$$

Эта формула выражает $F(a, b, \gamma, z)$ в виде ряда; сходящегося при $|z| > 1$, т. е. представляет собой аналитическое продолжение исходного ряда (e,1).

Формула

$$F(a, b, \gamma, z) = \frac{\Gamma(\gamma) \Gamma(\gamma - a - \beta)}{\Gamma(\gamma - a) \Gamma(\gamma - b)} F(a, b, a + \beta + 1 - \gamma, 1 - z) +$$
$$+ \frac{\Gamma(\gamma) \Gamma(a + \beta - \gamma)}{\Gamma(a) \Gamma(\beta)} (1 - z)^{-a - \beta} F(\gamma - a, \gamma - b, 1 - a - \beta, 1 - z) \quad (e,7)$$

связывает гипергеометрические функции от z и $1 - z$ (её вывод аналогичен выводу формулы (e,6)). Комбинируя (e,7) и (e,5) с (e,6), получим соотношения

$$F(a, b, \gamma, z) = \frac{\Gamma(\gamma) \Gamma(\beta - a)}{\Gamma(\beta) \Gamma(\gamma - a)} (1 - z)^{-a} F(a, \gamma - b, a + 1 - \beta, \frac{1}{1 - z}) +$$
$$+ \frac{\Gamma(\gamma) \Gamma(a - \beta)}{\Gamma(a) \Gamma(\gamma - \beta)} (1 - z)^{-\beta} F(\beta, \gamma - a, \beta + 1 - a, \frac{1}{1 - z}), \quad (e,8)$$

$$F(a, b, \gamma, z) = \frac{\Gamma(\gamma) \Gamma(\gamma - a - \beta)}{\Gamma(\gamma - b) \Gamma(\gamma - a)} \times$$
$$\times z^{-a} F(a, a + 1 - \gamma, a + \beta + 1 - \gamma, \frac{z - 1}{z}) + \frac{\Gamma(\gamma) \Gamma(a + \beta - \gamma)}{\Gamma(a) \Gamma(\beta)} \times$$
$$\times (1 - z)^{-a - \beta} z^{-\gamma} F(1 - a, \gamma - a, \gamma + 1 - a - \beta, \frac{z - 1}{z}) \quad (e,9)$$

Каждый из членов сумм в правых сторонах равенств (e, 6 — 9) представляет сам по себе некоторое решение гипергеометрического уравнения.

Если α (или β) есть целое отрицательное число (или ноль), $a = -n$, то гипергеометрическая функция сводится к полиному n-й степени и может быть представлена в виде:

$$F(-n, \beta, \gamma, z) = \frac{z^{1 - \gamma}(1 - z)^{\gamma + n - \beta}}{\gamma(\gamma + 1) \ldots (\gamma + n - 1)} d^n \left[z^{\gamma + n - 1} (1 - z)^{\beta - 1} \right]. \quad (e,10)$$

$F(a, b, \gamma, z)$ сводится к полиному также и при $\alpha = \gamma + n$ и при $a = n, \gamma = m + 1$ (n, m — целые положительные, $n \leq m$). Явные выражения для этих полиномов могут быть получены в первом случае комбинированием (e,10) с (e,5), а во втором случае — с (e,9).
§ 5. Вычисление интегралов
с выражениями гипергеометрическими функциями

Рассмотрим интеграл вида:

\[J_{\alpha, \gamma}^\prime = \int_0^\infty e^{-\lambda z} z^\gamma F(\alpha, \gamma, k z) \, dz. \] \hspace{1cm} (f,1)

Предполагается, что он сходится. Для этого должно быть
\[\text{Re} \nu > -1 \text{ и Re} \lambda > |\text{Re} \, k| ; \] если \(\alpha \) есть целое отрицательное
число, то вместо второго условия достаточно потребовать, чтобы
было \(\text{Re} \lambda > 0 \).

Интеграл (f,1) легко вычислить, вос пользуясь формулой для \(F(\alpha, \gamma, k z) \)
интегральным представлением (d,9) и производя интегрирование
по \(dz \) под знаком контурного интегрирования:

\[
J_{\alpha, \gamma}^\prime = -\frac{1}{2\pi i} \frac{\Gamma(1-\alpha)\Gamma(\gamma)}{\Gamma(1-\alpha)} \int_{\gamma}^\infty \int_0^\infty e^{-(\lambda-kz)z^\gamma}(-t)^{\alpha-1}(1-t)^{\gamma-1}dt \, dz = \\
= -\frac{1}{2\pi i} \frac{\Gamma(1-\alpha)\Gamma(\gamma)}{\Gamma(1-\alpha)} \lambda^{-\gamma-1} \Gamma(\nu+1) \times \\
\times \int_{\gamma}^\infty (-t)^{\alpha-1}(1-t)^{\gamma-1}(1-k \lambda)^{-\gamma-1}dt.
\]

Учитывая (e,3), находим окончательно:

\[J_{\alpha, \gamma}^\prime = \Gamma(\nu+1) \lambda^{-\gamma-1} F\left(\alpha, \nu+1, \gamma, \frac{k}{\lambda}\right). \] \hspace{1cm} (f,2)

В случаях, когда функция \(F\left(\alpha, \nu+1, \gamma, \frac{k}{\lambda}\right) \) сводится к полиномам, по-
лучаем соответственно и для интеграла \(J_{\alpha, \gamma}^\prime \) выражения через элемен-
tарные функции:

\[
J_{\alpha, \gamma}^{n-1} = (-1)^n \Gamma(\gamma) \frac{d^n}{d\lambda^n} \left[\lambda^{\gamma-\gamma}(\lambda-k)^{-\alpha} \right], \] \hspace{1cm} (f,3)

\[
J_{\alpha, \gamma}^n = (-1)^n \frac{\Gamma(\nu+1)(\lambda-k)^{\gamma+n-\gamma-1}}{\gamma(\gamma+1)\ldots(\gamma+n-1)} \frac{d^n}{d\lambda^n} \left[\lambda^{-\gamma-1}(\lambda-k)^{\gamma+1} \right], \] \hspace{1cm} (f,4)

\[
J_{\alpha, \gamma}^m = \frac{(-1)^{m-n}}{2k^{m-n-1}(1-a)(2-a)\ldots(m-1-a)} \times \\
\times \left\{ -(m-1)! \frac{d^n}{d\lambda^n} \left[\lambda^{\gamma-\gamma}(\lambda-k)^{m-a-1} \right] + \\
+ n!(m-n-1)\ldots(m-1)\lambda^{\gamma-n-1}(\lambda-k)^{-1+m+n-a} \times \\
\times \lambda^{m-a-1}(\lambda-k)^{a-1} \right\} \] \hspace{1cm} (f,5)

(\(m, n \) — целые числа, \(0 \leq n \leq m - 2 \).
§ 1] ВЫЧИСЛЕНИЕ ИНТЕГРАЛОВ С ВЫРОЖДЕННЫМИ ФУНКЦИЯМИ 565

Далее, вычислим интеграл

\[J_y = \int_0^\infty e^{-kz} z^{\gamma-1} [F(-n, \gamma, kz)]^2 \, dz \] \hspace{5mm} (f_6)

(\(n\) — целое положительное, \(Re \gamma > 0\)). Для вычисления исходим из более общего интеграла, содержащего в подинтегральном выражении \(e^{-kz}\) вместо \(e^{-kz}\). Одну из функций \(F(-n, \gamma, k, z)\) пишем в виде контурного интеграла, после чего производим интегрирование по \(dz\) с помощью формулы (f_3):

\[
\int_0^\infty e^{-kz} z^{\gamma-1} [F(-n, \gamma, kz)]^2 \, dz = - \frac{1}{2\pi i} \frac{\Gamma(1+n)\Gamma(\gamma)}{\Gamma(\gamma+n)} \times
\]

\[
\times \oint_C (-t)^{-n-1} (1-t)^{\gamma+n-1} e^{-(t-k)t} \, dt \, dz =
\]

\[
= \frac{1}{2\pi i} \frac{(-1)^n \Gamma(1+n)\Gamma(\gamma)\Gamma(\nu)}{\Gamma^2(\gamma+n)} \times
\]

\[
\times \oint_C \left(\lambda^{-k} e^{-kt} \right)^{\gamma+n-1} (1-t)^{-n-1} (1-t)^{\gamma+n-1} \times
\]

\[
\times \frac{d^n}{dt^n} \left[\frac{1}{\lambda^{\gamma+n} - (\lambda - k)^n} \right] \, dt.
\]

Производную \(n\)-го порядка по \(\lambda\) можно, очевидно, заменить, выразив через производную того же порядка по \(t\); сделав это, полагаем \(\lambda = k\), возвращаясь, таким образом, к интегралу \(J_y\):

\[J_y = \frac{1}{2\pi i} \frac{\Gamma(n+1)\Gamma(\nu)\Gamma^2(\gamma)}{\Gamma^2(\gamma+n) k^\nu} \times
\]

\[
\times \oint_C (-t)^{-n-1} (1-t)^{\gamma+n-1} \frac{d^n}{dt^n} [-(1-t)^{-\gamma}(1-t)^{\gamma+n-1}] \, dt.
\]

Посредством \(n\)-кратного интегрирования по частям переносим операцию \(\frac{d^n}{dt^n}\) на выражение \((-t)^{-n-1}(1-t)^{\gamma+n-1}\) и раскрывая производную по формуле Лейбница. В результате получим сумму интегралов, каждый из которых сводится к известному интегралу Эйлера. Окончательно получается следующее выражение для искомого интеграла:

\[
J_y = \frac{\Gamma(\nu) n!}{k^\nu (\gamma+1) \ldots (\gamma+n-1)} \{ 1 + \frac{n (\gamma-\nu - 1)(\gamma-\nu)}{12 \cdot \gamma} +
\]

\[
+ \frac{n (n - 1)(\gamma-\nu - 2)(\gamma-\nu - 1)(\gamma-\nu) (\gamma - \nu + 1)}{12 \cdot 2^2 \cdot \gamma (\gamma+1)} + \ldots +
\]

\[
+ \frac{n (n - 1) \ldots 1 (\gamma-\nu - n) \ldots (\gamma-\nu + n - 1)}{12 \ldots n^2 \cdot \gamma (\gamma+1) \ldots (\gamma+n-1)} \}.
\] \hspace{5mm} (f_9 T)
Легко вилять, что между интегралами \(J_\nu \) имеет место следующее соотношение:

\[
J_{\gamma+p} = (\gamma - p - 1)(\gamma - p) \ldots (\gamma + p - 1) \frac{k^p+1}{k^{2p+1}} J_{\gamma-1-p}, \tag{1,8}
\]

(\(p \) — целое число).

Аналогичным образом вычисляется интеграл

\[
J = \int_0^\infty e^{-\lambda z} z^{\gamma-1} F(a, \gamma, k\lambda) F(a', \gamma, k'\lambda) \, dz. \tag{1,9}
\]

Представляем функцию \(F(a', \gamma, k'\lambda) \) в виде контурного интеграла и интегрируем по \(dz \) с помощью формулы (1,3) (с \(n = 0 \)):

\[
J = \frac{1}{2\pi i} \frac{\Gamma(1-a')}{\Gamma(\gamma-a')} \int_\gamma \int_\gamma (-t)^{a'-1}(1-t)^{\gamma-a'-1}z^{\gamma-1}e^{-z(\lambda-k't)} F(a, \gamma, k\lambda) \, dz \, dt = \]

\[= \frac{1}{2\pi i} \frac{\Gamma(1-a')}{\Gamma(\gamma-a')} \int_\gamma \int_\gamma (-t)^{a'-1}(1-t)^{\gamma-a'-1}(\lambda-k't)^{\alpha-1}(\lambda-k')^{-\alpha} \, dt.
\]

Подстановкой \(t \to \frac{\lambda t}{a't+k'-\lambda-k'} \) этот интеграл приводится к виду (e, 3), давая в результате

\[
J = \Gamma(\gamma) \lambda^{a'+\gamma}(\lambda-k)^{-\alpha}(\lambda-k')^{-\alpha'} F(a, a', \gamma, \frac{k'k}{(\lambda-k)(\lambda-k')}). \tag{1,10}
\]

Если \(\alpha \) (или \(\alpha' \)) есть целое отрицательное число \(\alpha = -n \), то с помощью соотношения (e, 7) это выражение может быть переписано в виде:

\[
J = \frac{\Gamma^2(\gamma) \Gamma(\gamma+n-a')}{\Gamma(\gamma+n) \Gamma(\gamma-a')} \lambda^{-n+a'-\gamma}(\lambda-k)^{n}(\lambda-k')^{-\alpha'} \times
\]

\[
\times F(-n, a', -n+a'+1-\gamma, \lambda(\lambda-k)(\lambda-k')). \tag{1,11}
\]

Наконец, рассмотрим интегралы вида:

\[
j^{sp}_\gamma(a, a') = \int_0^\infty e^{-\frac{k+k'}{2}z} z^{\gamma-1+s} F(a, \gamma, k\lambda) F(a', \gamma-p, k'\lambda) \, dz. \tag{1,12}
\]

Значения параметров предполагаются такими, что интеграл сходится абсолютно; \(s, p \) — целые положительные числа. Простейший из этих
интегралов $J^0_1(\alpha, \alpha')$ равен, согласно (f,10):

$$J^0_1(\alpha, \alpha') = 2\Gamma(\gamma)(k + k')^a + a - \gamma(k' - k)^{-a} (k - k')^{-a'} F\left(\alpha, \alpha', \gamma, \frac{4kk'}{(k' - k)^2}\right),$$

(f,13)

а если α (или α') — целое отрицательное число, $\alpha = -n$, то, согласно (f,11), можно также написать:

$$J^0_1(-n, \alpha') = 2\Gamma(\gamma)(\gamma - a)(\gamma - a' + 1) \ldots (\gamma - a' + n - 1) \times$$

$$\times (-1)^n (k + k')^{-n + a' - \gamma(k - k')^n - a'} \times$$

$$\times F\left(-n, \alpha', \alpha' + 1 - n - \gamma, \frac{(k + k')^2}{(k - k')^2}\right).$$

(f,14)

Общая формула для $J^{sp}_1(\alpha, \alpha')$ может быть выведена, но она настолько сложна, что ею неудобно пользоваться. Удобнее пользоваться рекуррентными формулами, позволяющими свести интегралы $J^{sp}_1(\alpha, \alpha')$ к интегралу с $s = p = 0$. Мы приведём здесь их без вывода 1). Формула

$$J^{sp}_1(\alpha, \alpha') = \frac{\gamma - 1}{k} \{J^{s,p-1}_1(\alpha, \alpha') - J^{s,p-1}_1(\alpha - 1, \alpha')\}$$

(f,15)

dает возможность свести $J^{sp}_1(\alpha, \alpha')$ к интегралу с $p = 0$. После этого формула

$$J^{s+1,0}_1(\alpha, \alpha') = \frac{4}{k^2 - k'^2} \left\{\left[\frac{1}{2}(k - k') - ka + k'\alpha' - k's\right] J^{s,0}_1(\alpha, \alpha') +

\right. + s(\gamma - 1 + s - 2\alpha') J^{s-1,0}_1(\alpha, \alpha') + 2\alpha' s J^{s-1,0}_1(\alpha, \alpha' + 1)\right\}$$

(f,16)

позволяет произвести окончательное приведение к интегралу с $s = p = 0$.

1) Вывод можно найти в работе W. Gordon, Ann. d. Phys. 2, 1031, 1929