Д. А. РАЙКОВ

ВЕКТОРНЫЕ ПРОСТРАНСТВА

ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО
ФИЗИКО-МАТЕМАТИЧЕСКОЙ ЛИТЕРАТУРЫ
МОСКВА 1962
АННОТАЦИЯ

Эта монография не только излагает общую теорию векторных пространств и необходимые для ее понимания разделы математики, недостаточно освещенные в университете курсе (упорядоченные множества и др.), но и является алгебраическим введением в изучение топологических линейных пространств. С этой целью особое внимание уделяется таким вопросам, как дуальные пары векторных пространств, выпуккие множества, продолжение линейных функций и др.

Книга представляет интерес для специалистов в разных областях математики и написана так, что будет доступна студентам-математикам.
ОГЛАВЛЕНИЕ

Предисловие .. 5

Глава I. Предварительные сведения об упорядоченных множествах и о группах ... 7

§ 1. Об упорядоченных множествах 7
 1. Понятие упорядоченного множества 7
 2. Совершенно упорядоченные множества 10
 3. Вполне упорядоченные множества. Принцип выбора 12
 4. Принцип максимального элемента 13

§ 2. О группах ... 18
 1. Понятие группы ... 18
 2. Коммутативные группы 23
 3. Факторгруппы коммутативной группы 26
 4. Суммы и произведения коммутативных групп 28
 5. Понятие поля .. 31

Глава II. Общая теория векторных пространств 32

§ 3. Основные понятия ... 32
 1. Понятие векторного пространства 32
 2. Подпространства ... 38
 3. Аффинные многообразия 40
 4. Факторпространства. Дополнительные подпространства. Произведение и сумма семейства векторных пространств 44
 5. Линейная зависимость и независимость 48
 6. Понятие базиса ... 53
 7. Конечномерные векторные пространства 55
 8. Базисы и размерность произвольных векторных пространств ... 60

§ 4. Линейные отображения 62
 1. Понятие линейного отображения 62
 2. Разложения линейных отображений 66
 3. Действия над линейными отображениями 69
 4. Проекторы .. 70

§ 5. Линейные функции ... 73
 1. Понятие линейной функции 73
 2. Векторное сопряженное к конечномерному векторному пространству .. 77
 3. Линейные функции и гиперподпространства 78
 4. Системы линейных уравнений 80
§ 6. Дуальные пары векторных пространств 85
 1. Понятие дуальной пары ... 85
 2. Анннляторы .. 90
 3. Биортогональные системы .. 94

§ 7. Выпуклые множества .. 97
 1. Понятие выпуклого множества 97
 2. Абсолютно выпуклые множества 102
 3. Выпуклая оболочка .. 104
 4. Конусы .. 107
 5. Окружённые точки .. 109
 6. Функционал Минковского ... 113
 7. Преднормы и нормы ... 118

§ 8. Продолжение линейных функций 121
 1. Сублинейные функции ... 121
 2. Теоремы продолжения (алгебраическое изложение) 123
 3. Теоремы продолжения (геометрическое изложение) 126

Глава III. L-пространства ... 133

§ 9. Основные понятия .. 133
 1. Понятие L-пространства ... 133
 2. L-отображения .. 136
 3. Конечномерные L-отображения 139
 4. L-структуры, определяемые линейными отображениями 141
 5. Замкнутые подпространства L-пространства 144
 6. L-подпространства ... 146
 7. Гомоморфизм L-пространств 147
 8. Факторпространства L-пространства 151
 9. Произведения и суммы L-пространств 153
 10. Разложение L-пространства в прямую сумму его L-подпространств .. 158

§ 10. Двойственность ... 161
 1. Сопряженное L-пространство 161
 2. Сопряженное L-отображение 163
 3. Сопряженные к L-подпространству, факторпространству L-пространства и прямой сумме L-подпространств 171
 4. Сопряженные к произведению и сумме семейства L-пространств .. 174
 5. Связки гиперплоскостей 178

§ 11. L-пространства над R и C 182
 1. Регулярно выпуклые множества 182
 2. Поляры .. 189
 3. L-ограниченные множества 195
 4. Совершенно выпуклые множества. Теорема Крейна — Мильмана .. 199

Указатель ... 208
ПРЕДИСЛОВИЕ

Эту книгу следует рассматривать как алгебраическое введение в теорию топологических линейных пространств. Она содержит как сведения о векторных пространствах, на каждом шагу используемые при изучении топологических линейных пространств, так и те разделы теории топологических линейных пространств, которые, хотя и излагаются обычно в топологической форме, на самом деле носят алгебраический характер.

В главе I изложены необходимые для дальнейшего введения об упорядоченных множествах (включая вывод из принципа выбора так называемой леммы Цорна) и о группах (главным образом коммутативных).

Особенностью главы II, посвященной общей теории векторных пространств, является то, что, за исключением нескольких мест, рассматриваемые в ней пространства не предполагаются конечно-мерными. Вслед за основными понятиями и фактами, относящимися к векторным пространствам и их линейным отображениям, подробно рассмотрены темы, представляющие специальный интерес для теории топологических линейных пространств, такие, как двуальные пары векторных пространств, выпуклые множества, продолжение линейных функций.

Особых пояснений требует глава III. Как известно, различные локально выпуклые топологии в векторном пространстве могут порождать один и тот же запас замкнутых гиперподпространств (или, что то же, один и тот же запас непрерывных линейных функционалов). Но многие свойства локально выпуклых пространств определяются только этим запасом, а последний может быть охарактеризован в чисто алгебраических терминах. Это и привело автора книги к понятию «L-пространства», т. е. векторного пространства с алгебраически заданной системой «замкнутых» гиперподпространств. Это понятие равнообъемно с введенным ранее
Макки понятием «линейной системы», т. е. векторного пространства с заданным сопряжённым пространством линейных функций; но по форме оно оказалось более приспособленным для систематического построения теории. Читатель, знакомый с основами теории топологических линейных пространств, заметит, что в главе III содержится значительная часть теории двойственности локально выпуклых пространств, включая всю теорию слабой двойственности. Разумеется, вместо топологических понятий здесь выступают их алгебраические эквиваленты. Это особенно относится к последнему параграфу, завершающемуся доказательством алгебраического эквивалента известной теоремы Крейна и Мильмана об экстремальных точках бикомпактных выпуклых множеств. «L-ограниченные совершенно выпуклые множества» здесь не что иное как выпуклые множества, бикомпактные в слабейшей из топологий, порождающих заданный запас замкнутых гиперпространств, а «регулярно выпуклая оболочка» множества — его замкнутая в любой такой топологии выпуклая оболочка; но эти понятия определяются чисто алгебраически и соответственно этому также все доказательства проводятся алгебраическими способами.

Топологические аспекты всех этих вопросов будут освещены в книге автора, посвященной теории топологических линейных пространств.

Настоящая книга написана так, чтобы ее мог прочесть студент-математик, знакомый с теорией множеств (собственно — только с действиями над множествами и понятием мощности).

Для удобства ссылок нами принята сквозная нумерация параграфов, не зависящая от разбиения книги на главы. Параграфы разбиты на разделы, помеченные номерами, а эти разделы — на пункты, помеченные прописными буквами русского алфавита. Для определений и теорем принята сквозная нумерация в пределах каждого параграфа, не зависящая от его разбиения на разделы и пункты. При ссылке на пункт, находящийся в том же разделе, указывается только озаглавливающая этот пункт буква (например: см. Д). При ссылке на пункт, находящийся в другом разделе того же параграфа, ставится сначала номер раздела (например: см. 4. Е). Наконец, при ссылке на пункт, находящийся в другом параграфе, указывается вначале еще номер параграфа (например: см. 5.1. Б).
ГЛАВА I
ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ
ОБ УПОРЯДОЧЕННЫХ МНОЖЕСТВАХ И О ГРУППАХ

§ 1. ОБ УПОРЯДОЧЕННЫХ МНОЖЕСТВАХ

1. Понятие упорядоченного множества

Определение 1. Отношением порядка в непустом множестве\(A \) называют отношение, определенное для некоторых пар элементов этого множества, и в общем случае обозначаемое далее символом \(\preceq \), — удовлетворяющее следующим требованиям:
1. \(a \preceq a \) для всех \(a \in A \).
2. Если \(a \preceq b \) и \(b \preceq c \), то \(a \preceq c \).
3. Если \(a \preceq b \) и \(b \preceq a \), то \(a = b \).

Если множество \(A \) наделено отношением порядка \(\preceq \), то говорят, что \(A \) упорядочено отношением \(\preceq \), и называют \(A \) упорядоченным множеством.

Примеры. 1. Любое непустое множество \(A \) подмножеств произвольного множества упорядочено отношением включения \(\subseteq \).
2. Любое непустое множество \(A \) вещественных чисел упорядочено отношением \(\leq \).
3. Очевидно, всякое одноточечное множество — упорядоченное.

А. Пусть \(\preceq \) — отношение порядка в множестве \(A \). Вместо \(a \preceq b \) пишут также \(b \succeq a \). Таким образом, \(\succeq \) есть отношение, обратное \(\preceq \), т. е. такое, что \(x \succeq y \) тогда и только тогда, когда \(y \preceq x \). Легко видеть, что вместе \(c \preceq u \succeq \) является отношением порядка в \(A \).
Так, множества примеров 1 и 2 упорядочены не только указанными отношениями, но и соответственно отношениями \supseteq и \succ (упорядоченность по убыванию).

В. Если $b \succeq a$, то будем говорить, что b мажорирует a (или a мажорируется элементом b); если же $a \preceq b$ и $a \neq b$, то будем говорить, что a предшествует b или b следует за a, и писать $a \prec b$ (или $b \succ a$). Отношение \prec обладает следующими свойствами:

1'. Если $a \prec b$ и $b \prec c$, то $a \prec c$.
2'. Если $a \prec b$, то $a \neq b$.

Обратно, если дано отношение \prec, обладающее этими двумя свойствами, то, как легко видеть, отношение \preceq, определяемое как \prec или \equiv, удовлетворяет всем трем требованиям определения 1.

В. Пусть B — подмножество или семейство элементов упорядоченного множества A. Элемент $a \in A$ будем называть мажорантой, или верхней границей множества (семейства) B, если он мажорирует все $b \in B$, и минорантой, или нижней границей, если он мажорируется всеми $b \in B$. Пустое подмножество множества A, по определению, имеет своей мажорантой любой элемент $a \in A$. $B \subseteq A$ будем называть ограниченным сверху (снизу), если оно обладает по крайней мере одной мажорантой (минорантой), и просто ограниченным, если оно ограничено и сверху и снизу. Наименьшим (наибольшим) элементом в B называют элемент $b \in B$, служащий для B мажорантой (мажорантой); он обозначается $\min B$ (max B). Элемент $a \in A$ называют верхней границей множества (семейства) B и обозначают $\sup B$, если он служит для B наименьшей мажорантой (т. е. наименьшим элементом множества всех мажорант). Аналогично, нижней гранью $\inf B$ множества (семейства) B называют элемент множества A, служащий для B наименьшей минорантой (т. е. наибольшим элементом множества всех минорант). Если в B имеется наименьший (наибольший) элемент, то он служит для B также нижней (верхней) гранью. Очевидно, если $B_1 \subseteq B_2$, то $\sup B_1 \leq \sup B_2$ и $\inf B_1 \geq \inf B_2$.

Г. Упорядоченное множество, каждая пара точек a_1, a_2, которого обладает верхней и нижней гранями $a_1 \vee a_2 = \sup \{a_1, a_2\}$ и $a_1 \wedge a_2 = \inf \{a_1, a_2\}$, называют решеткой (или структурой). Индукцией по числу значений индекса легко доказывается, что каждое непустое конечное семей-
§ 1] об упорядоченных множествах 9

Множество точек решетки обладает верхней и нижней границами. Упорядоченное множество, каждое непустое семейство элементов которого обладает верхней и нижней границами, называют полной решеткой (или полной структурой).

Так, натуральный ряд, упорядоченный отношением $m \mid n$, означающим, что m — делитель n, является решеткой; в ней $m \wedge n$ — наибольший общий делитель, а $m \vee n$ — наименьшее общее кратное чисел m и n.

В множестве $\mathbb{B}(E)$ всех подмножеств произвольного множества E, упорядоченным по возрастанию, всякое непустое семейство $(M_a)_{a \in \Lambda}$ обладает нижней и верхней границами; ими служат, соответственно, $\bigcap_{a \in \Lambda} M_a$ и $\bigcup_{a \in \Lambda} M_a$. Таким образом, $\mathbb{B}(E)$ — полная решетка.

Д. Пусть A — упорядоченное множество и B — его непустое подмножество. Отношение, индуцируемое в B отношением порядка, заданным в A, очевидно, является отношением порядка в B. Множество B, наделенное этим индуцированным отношением порядка, мы будем называть упорядоченным подмножеством упорядоченного множества A. Рассматривая подмножества упорядоченного множества как упорядоченные множества, мы всегда будем считать их наделенными индуцированным отношением порядка.

Е. Множества A_1 и A_2, упорядоченные соответственно отношениями порядка \preceq_1 и \preceq_2, называют подобными, если существует взаимно однозначное отображение f множества A_1 на A_2 такое, что $a \preceq_1 b$ влечет $f(a) \preceq_2 f(b)$. При этом f называют отображением подобия A_1 на A_2, а f^{-1} есть тогда отображение подобия A_2 на A_1.

Так, $x \to x$ есть отображение подобия $\hat{\mathbb{R}}$ на $\hat{\mathbb{R}}$, где $\hat{\mathbb{R}}$ есть множество всех вещественных чисел \mathbb{R}, упорядоченное по возрастанию, а $\hat{\mathbb{R}}$ — это же множество, упорядоченное по убыванию. $\hat{\mathbb{R}}$ доказано также множеству всех вещественных чисел > 0, упорядоченному по возрастанию: отображением подобия служит здесь, например, $x \to 2^x$.

Ж. Пусть $(E_a)_{a \in \Lambda}$ — семейство упорядоченных множеств и $E = \prod_{a \in \Lambda} E_a$. Легко видеть, что отношение \preceq в E, для которого $(a_a)_{a \in \Lambda} \preceq (b_a)_{a \in \Lambda}$ означает, что $a_a \preceq b_a$ для всех $a \in \Lambda$, есть отношение порядка. Наделенное этим отношением порядка, E называется произведением семейства упорядоченных множеств $(E_a)_{a \in \Lambda}$.
2. Совершенно упорядоченные множества

Определение 2. Два элемента упорядоченного множества, один из которых мажорируется другим, называются сравнимыми. Упорядоченное множество, любые два элемента которого сравнимы, называется совершенно упорядоченным.

Так, всякое непустое множество вещественных чисел, упорядоченное по возрастанию (или убыванию), совершенно упорядочено.

А. Очевидно, совершенно упорядоченное множество — это решетка, в которой каждое двухточечное (а значит, и каждое конечное) подмножество обладает наибольшим и наименьшим элементами.

Б. Сечением в совершенно упорядоченном множестве называют всякое разбиение этого множества на два непустых подмножества, каждый элемент одного из которых предшествует каждому элементу другого. Первое из этих подмножеств называют нижним, а второе — верхним классом сечения.

Возможны следующие типы сечений.
1° В нижнем классе есть наибольший элемент, а в верхнем — наименьший. Такое сечение называется скачком.
2° В нижнем классе нет наибольшего, а в верхнем — наименьшего элемента. Такое сечение называется щелью.
3° В нижнем классе есть наибольший элемент, а в верхнем нет наименьшего, либо в нижнем классе нет наибольшего элемента, но в верхнем есть наименьший. Такое сечение называется дедекиндовым, а наибольший элемент его нижнего класса или наименьший элемент верхнего — рубежом этого сечения.

Совершенно упорядоченное множество, в котором все сечения — дедекиндовы, называется непрерывным. Так, множество \mathbb{R} всех вещественных чисел, упорядоченное по возрастанию (или убыванию), непрерывно (Дедекинд).

В. В непрерывном совершенно упорядоченном множестве C*) каждое ограниченное сверху (снизу) непустое подмножество M обладает верхней (нижней) гранью: ею служит рубеж сечения в C, имеющего своим верхним (ниж-

*) Как и вообще во всяком совершенно упорядоченном множестве без щелей.
§ 11. ОБ УПОРЯДОЧЕННЫХ МНОЖЕСТВАХ

ним) классом совокупность всех верхних (нижних) границ множества М.

В частности, каждое непустое множество $M \subseteq \mathbb{R}$, ограниченнее сверху (снизу), обладает верхней (нижней) гранью. Неограниченность множества $M \subseteq \mathbb{R}$ сверху (снизу) часто выражают записью $\sup M = +\infty$ ($\inf M = -\infty$); здесь M рассматривается уже как подмножество упорядоченного множества \mathbb{R}, получаемого путем присоединения к \mathbb{R} «бесконечно удаленных точек» $-\infty$ и $+\infty$, на которые отношение порядка распространяется условиями $-\infty < x < +\infty$ для всех $x \in \mathbb{R}$ и $-\infty < +\infty$. Так как пустое множество \emptyset содержится во всяком, то естественно считать $\sup \emptyset = -\infty$ и $\inf \emptyset = +\infty$ (в нарушение свойства $\inf M \leq \sup M$).

Г. Интервалом в совершенно упорядоченном множестве C называется всякое его подмножество, которое вместе с любыми двумя различными своими точками содержит и все точки, лежащие между ними, т. е. следующие за одной из них и предшествующие другой. Очевидно, все множества вида

\[[a, b] = \{ x \in C : a \leq x \leq b \}, \quad (a, b) = \{ x \in C : a < x < b \}, \]
\[[a, b) = \{ x \in C : a \leq x < b \}, \quad (a, b) = \{ x \in C : a < x \leq b \}, \]
\[[a, +\infty) = \{ x \in C : a \leq x \}, \quad (a, +\infty) = \{ x \in C : a < x \}, \]
\[(-\infty, a] = \{ x \in C : x \leq a \}, \quad (-\infty, a) = \{ x \in C : x < a \}, \]
\[(-\infty, -\infty) = C, \]

где $a \leq b$, являются в C интервалами. При обращении порядка в C меняются лишь их обозначения: $[a, b]$ на $[b, a]$, $[a, b]$ на (b, a), (a, \rightarrow) на (\leftarrow, a) и аналогично в других случаях.

При $C = \mathbb{R}$ вместо $[a, \rightarrow)$, (a, \rightarrow), (\leftarrow, a), (\leftarrow, a) и $(\leftarrow, \rightarrow)$ пишут соответственно $[a, +\infty)$, $(a, +\infty)$, $(-\infty, a)$, $(-\infty, a)$ и $(-\infty, +\infty)$ (см. В).

$[a, b]$ называют отрезком, или замкнутым интервалом, (a, b) — промежутком, или открытым интервалом, $a [a, b)$ и $(a, b] — полупрерывными интервалами, с концами a и b. Точку, входящую в интервал вместе с некоторым содержащим ее промежутком (c, d), называют внутренней точкой этого интервала. Так, на \mathbb{R} все точки интервала $[a, b]$, за исключением a и b, — внутренние.
Д. Всякий интервал \(I \subset \mathbb{R} \) есть множество одного из девяти видов, указанных в \(\Gamma \). Действительно, пусть \(a = \inf I \), \(b = \sup I \) (где \(a = -\infty \), если \(I \) неограничен снизу, и \(b = +\infty \), если \(I \) неограничен сверху). Для каждого \(x \in (a, b) \) существуют \(a', b' \in I \) такие, что \(a \leq a' < x < b' \leq b \), откуда \(x \in I \). Таким образом, \((a, b) \subset I \), и так как \(I \) не содержит чисел \(x \), удовлетворяющих неравенствам \(x \leq a \) или \(b \leq x \), то заключаем, что \(I \) есть либо \((a, b) \), либо \([a, b)\), либо \((a, b]\), причем вторая и четвертая возможности исключаются, если \(a = -\infty \), а третья и четвертая — если \(b = +\infty \). Тем самым утверждение доказано \(^*\).

3. Вполне упорядоченные множества.
Принцип выбора

Определение 3. Вполне упорядоченным множеством называют упорядоченное множество, каждое непустое подмножество которого обладает наименьшим элементом.

А. Вполне упорядоченное множество совершенно упорядочено. Действительно, в его подмножестве, образованном любыми двумя элементами, один из этих элементов — наименьший, и значит, они сравнимы.

Б. Так называемый принцип полной математической индукции представляет собой лишь другую формулировку того, что натуральный ряд упорядоченный отношением \(\leq \), есть вполне упорядоченное множество. Распространением этого принципа на произвольные вполне упорядоченные множества является (непосредственно вытекающий из их определения)

Принцип трансфинитной индукции. Если некоторое утверждение, относящееся к элементам вполне упорядоченного множества \(A \), справедливо для наименьшего элемента этого множества и если, каков бы ни был элемент \(x \in A \), из справедливости утверждения для всех элементов, предшествующих \(x \), вытекает его справедливость для \(x \), то это утверждение справедливо для каждого элемента множества \(A \).

В. Широкие возможности применения этого принципа открылись после того как Э. Цермело доказал в 1904 г. следующее предложение (справедливость которого давно уже предполагалась Г. Кантором) \(^{**}\):

\(^*\) Оно справедливо для произвольного совершенно упорядоченного множества без щелей.

Теорема Цермело. Каждое множество может быть вполне упорядочено (т. е. наделено отношением порядка, превращающим его во вполне упорядоченное множество).

При доказательстве этой теоремы Цермело впервые явно использовал принцип теории множеств, который можно сформулировать следующим образом:

Принцип выбора. Каковы бы ни были множество \(E \) и непустое множество \(P \) его непустых подмножеств, существует отображение \(\omega \) множества \(P \) в \(E \) такое, что \(\omega(P) \in P \) для каждого \(P \in \mathcal{P} \).

Иными словами, в \(E \) существует подмножество, «набранное» по элементу \(\omega(P) \) из каждого \(P \in \mathcal{P} \).

Мы будем называть \(\omega \) функцией Цермело на \(P \).

Классический математический анализ существенно опирается на применение принципа выбора, по крайней мере к конечным и счетным множествам. Общий же функциональный анализ немыслим в настоящее время без принятия принципа выбора (или какого-либо его эквивалента) во всей общности; это относится, в частности, и к общей теории линейных пространств.

4. Принцип максимального элемента

Определение 4. Элемент \(a \) упорядоченного множества \(A \) называют максимальным элементом этого множества, если в \(A \) нет элементов, следующих за \(a \).

Упорядоченное множество может обладать бесконечным множеством максимальных элементов. Так, в множестве \(A \) целых чисел, больших 1, «\(a \) делится на \(b \)» есть отношение порядка, и в \(A \), упорядоченном этим отношением, максимальные элементы — это все простые числа.

Теорема 1. Если каждое вполне упорядоченное подмножество упорядоченного множества \(A \) ограниченно, то любой элемент \(a \in A \) максимируется по крайней мере одним максимальным элементом.

Доказательство*). Через \(M^* \), где \(M \subset A \), будем обозначать совокупность тех \(z \in A \), которые следуют за всеми \(t \in M \); через \(M_x \), где \(x \in A \), — совокупность всех \(t \in M \), предшествующих \(x \). Очевидно, \(x \in M_x^* \). Отрезком вполне упорядоченного множества \(H \subset A \) будем называть само \(H \)

*) Т. Селе, On Zorn's lemma, Publicationes Mathematicae, т 1, вып. 1, Debrecen, 1949, 254—256.
и все множества вида \(H_h \), где \(h \in H \). Легко видеть, что \(H_g \) — отрезок \(H \) для всех \(g \in A \), а именно, если \(H_g \neq H \), то

\[
H_g = H_{\min (H \setminus H_g)}.
\]

(1)

В самом деле, пусть \(h = \min (H \setminus H_g) \). Если \(x \in H_g \), то \(x \in H_h \), т. е. \(x < h \), ибо иначе мы имели бы \(h \leq x < g \), откуда следовало бы, что \(h \in H_g \). Обратно, если \(x \in H_h \), то \(x \in H_g \); ибо иначе мы имели бы \(x \in H \setminus H_g \), а так как \(x < h \), то \(h \) не было бы наименьшим элементом множества \(H \setminus H_g \).

Согласно принципу выбора, на множестве \(A \) всех непустых подмножеств множества \(A \) существует функция Цермело, т. е. отображение \(\omega \) множества \(A \) в \(A \), обладающее тем свойством, что \(\omega (M) \in M \) для всех \(M \in A \). При этом, так как \(a \in A \), можно считать, что \(\omega (A) = a \): иначе мы просто переправили бы значение \(\omega (A) \) на \(a \). Обозначим через \(\mathcal{H} \) совокупность всех множеств \(H \in A \), удовлетворяющих следующим требованиям:

а) \(H \) вполне упорядочено;

б) \(x = \omega (H_x^*) \) для всех \(x \in H \). Тогда:

1. \(\mathcal{H} \) не пусто. Действительно, \(H = \{a\} \in \mathcal{H} \), ибо \(\omega (H_a^*) = \omega (\phi^*) = \omega (A) = a \) (см. 1.В).

2. \(a = \min H \) для каждого \(H \in \mathcal{H} \). Действительно, в силу а) и б), \(\min H \) существует и равен \(\omega (H_{\min H}^*) = \omega (\phi^*) = \omega (A) = a \).

3. Если \(H \in \mathcal{H} \) и \(H^* \neq \phi \), то множество \(G = H \cup \{g\} \), где \(g = \omega (H^*) \), содержит \(H \) как правильную часть и принадлежит \(\mathcal{H} \). В самом деле, так как \(\omega (H^*) \in H^* \), то \(g \) следует за всеми \(h \in H \); при этом \(\omega (G_g^*) = \omega (H^*) = g \).

4. Очевидно, всякий непустой отрезок множества из \(\mathcal{H} \) есть множество из \(\mathcal{H} \).

5. Если \(H, G \in \mathcal{H} \) и \(H \subseteq G \), то \(H \) — отрезок \(G \). Действительно, если \(H \neq G \), то пусть \(g = \min (G \setminus H) \). Так как тогда \(G_g \subseteq H \), то \(G_g \subseteq H_g^* \). С другой стороны, так как \(H \subseteq G \), то \(H_g \subseteq G_g \). Следовательно, \(H_g = G_g \), и остается показать, что \(H = H_g \). Но в противном случае, в силу (1), мы имели бы \(H_g = H_h \), где \(h = \min (H \setminus H_g) \), откуда следовало бы, что \(h = \omega (H_h^*) = \omega (H_g^*) = \omega (G_g^*) = g \), а это невозможно, поскольку \(h \in H \), тогда как \(g \notin H \).
§ 1] Об упорядоченных множествах

6. Из любых двух множеств $H, G \in \mathcal{H}$ одно какое-нибудь является отрезком другого. В самом деле, если $H \neq G$, то, скажем, $G \setminus H \neq \emptyset$. Пусть $g = \min (G \setminus H)$. Так как, по 2, $a \in G \cap H$, то $g \geq a$ и потому $G_g \neq \emptyset$. Так как при этом $G_g \subset H$, то, в силу 4 и 5, G_g — отрезок H. Однако, как показано в 5, равенство $G_g = H_h$, где $h \in H$, невозможно. Следовательно, $G_g = H$, т. е. H — отрезок G.

Положим $Z = \bigcup_{H \in \mathcal{H}} H$.

7. Если $h \in H$, где $H \in \mathcal{H}$, то всякий элемент $h' \in Z$, предшествующий h, принадлежит H. Действительно, $h' \in G$, где $G \in \mathcal{H}$. В случае, когда G — отрезок H, справедливость утверждения очевидна. В противном же случае в силу 6 $H = G_k$, где $g \in G$; поэтому $h < g$, а тогда и $h' < g$, откуда $h' \in H$.

8. Z совершенно упорядочено. В самом деле, пусть $h, g \in Z$, так что $h \in H$, $g \in G$, где $H, G \in \mathcal{H}$. В силу 6, скажем, $H \subset G$; и так как G совершенно упорядочено, а $h, g \in G$, то h и g сравнимы.

9. Z вполне упорядочено. Действительно, пусть $M \subset Z$ и $m \in M$, так что $m \in H$, где $H \in \mathcal{H}$. Тогда в силу 7 все элементы из M, мажорируемые элементом m, принадлежат H и потому среди них есть наименьший, а в силу 8, он будет наименьшим и во всем M.

10. $Z \in \mathcal{H}$. В самом деле, требование а) выполнено по 9. Если же $x \in Z$, так что $x \in H$, где $H \in \mathcal{H}$, то, в силу 7, $H_x = Z_x$ и потому $x = \omega(H_x^*) = \omega(Z_x^*)$, т. е. выполнено и требование б).

11. $Z^* = \emptyset$. Действительно, в противном случае, в силу 10 и 3, Z содержалось бы как правильная часть в множестве $Z \cup \omega(Z^*) \in \mathcal{H}$, вопреки своему определению.

В силу 9 и предположения теоремы, Z обладает мажорантовой z. Но тогда из 11 и 2 следует, что z — максимальный элемент множества A, мажорирующий a, и теорема доказана.

Определение 5. Совершенно упорядоченные подмножества упорядоченного множества будут называться цепями.

Упорядоченное множество, в котором каждая цепь обладает верхней гранью, будет называться индуктивным.
А. Из теоремы 1 непосредственно следует
При_цип максима_льного элемента. Каждый элемент индуктивного упорядоченного множества мажори-руется по крайней мере одним максимальным элементом.

Б. В свою очередь принцип выбора, а с ним и теорема 1, являются следствием принципа максимального элемента. Дей-ствительно, пусть \mathcal{P} — непустое множество непустых подмножеств множества E и Φ — совокупность всех функций Цермело на мно-жествах $\mathcal{D} \subseteq \mathcal{P}$. Если $\mathcal{A} \subseteq \mathcal{P}$, то существует $a \in \mathcal{A}$, и функция ψ на $\mathcal{A} = \{a\} \subseteq \mathcal{P}$, относящая множеству A его эле-мент a, принадлежит Φ. Отношение $\psi < \varphi$, означающее, что ψ есть сужение φ, очевидно, является отношением порядка в Φ. Упорядоченное этим отношением Φ индуктивно. А именно, верхней гранью φ в Φ, очевидно, служит наименьшее общее продолжение ψ всех $\varphi \in \Psi$, т. е. отображение множества $\mathcal{P}_\varphi = \bigcup_{\psi \in \Psi} \mathcal{D}_\psi$ (где \mathcal{D}_ψ — об-ласть определения функции $\chi \in \Phi$, совпадающее на каждом \mathcal{D}_ψ (в Ψ)
с φ. По принципу максимального элемента, Φ содержит хотя бы одну максимальную функцию Цермело ω. Но тогда $\mathcal{D}_\omega = \mathcal{P}$, т. е. ω—функция Цермело на \mathcal{P}. Действительно, если бы существовало $M \in \mathcal{P} \setminus \mathcal{D}_\omega$, то мы могли бы продолжить ω на $\mathcal{D}_\omega \cup \{M\}$, положив $\omega(M) = m$ (где $m \in M$), так что продолженная функция также была бы функцией Цермело, в противоречие с максимальностью ω.

Б. В дальнейшем нам понадобится еще одна форма при-нципа максимального элемента.

Определение 6. Свойство множеств называют свой-ством конечного характера, если множество обладает этим свойством тогда и только тогда, когда им обладают все его непустые конечные подмножества.

Теорема Тюки — Тайхмюллера*). Пусть S — свойство конечного характера, определённое для под-множеств множества E. Всякое множество $A \subseteq E$, обладающее свойством S, содержится в максимальном мно-жестве $Z \subseteq E$, обладающем этим свойством.

Доказательство. В силу принципа максимального элемента достаточно доказать, что множество \mathcal{E} всех мно-жеств $M \subseteq E$, обладающих свойством S, упорядоченное по возрастанию, индуктивно. Но верхней гранью всей цепи $\mathcal{M} \subseteq \mathcal{E}$ служит объединение M всех множеств, образующих эту цепь. Действительно, так как S — свойство конечного

характера, то нужно лишь показать, что всякое конечное множество $K = \{x_1, \ldots, x_n\} \subset \mathcal{M}$ обладает свойством S. Каждое x_k принадлежит некоторому множеству $M_k \in \mathcal{M}$, и так как \mathcal{M} — цепь, то по 2.А одно из этих множеств, скажем, M_n, содержит остальные; а тогда $K \subset M_n$ и, следовательно, K обладает свойством S.

Г. Центрированной системой множеств называют всякую систему множеств, обладающую тем свойством, что каждое непустое конечное семейство множеств системы имеет непустое пересечение (свойство конечного пересечения). Так как это свойство — конечного характера, то в силу теоремы Тьюки — Тайхмюллера всякая центрированная система множеств, принадлежащих некоторому множеству множеств \mathcal{M}, содержится в максимальной центрированной системе множеств, принадлежащих \mathcal{M}.

Г'. Центрированная система множеств называется мультипликативной, если она содержит пересечение каждого конечного семейства входящих в нее множеств. Очевидно, если множество множеств \mathcal{M} мультипликативно, то и всякая максимальная центрированная система \mathcal{G} множеств из \mathcal{M} мультипликативна. В самом деле, если $G_1, \ldots, G_n \in \mathcal{G}$, то по условию $G = \bigcap_{k=1}^{n} G_k \in \mathcal{M}$ и поэтому $G \in \mathcal{G}$, ибо иначе G можно было бы присоединить к \mathcal{G} без нарушения центрированности, в противоречие с максимальностью \mathcal{G}.

Д. Из теоремы Тьюки — Тайхмюллера непосредственно вытекает следующая теорема Хаусдорфа *) . Всякая цепь в произвольном упорядоченном множестве содержится хотя бы в одной максимальной цепи.

Действительно, свойство подмножества упорядоченного множества быть цепью есть свойство конечного характера.

В свою очередь из теоремы Хаусдорфа вытекает принцип максимального элемента, притом в следующей, на вид усиленной формулировке:

Если в упорядоченном множестве A каждая цепь ограничена сверху, то всякий элемент $a \in A$ мажорируется хотя бы одним максимальным элементом.

В самом деле, $\{a\}$ есть цепь и потому, в силу теоремы Хаусдорфа, содержится в некоторой максимальной цепи; ее верхняя

гранична в силу максимальности этой цепи будет максимальным элементом множества \(A \), очевидно, мажорирующим \(a \).

Таким образом, теорема Тьютки — Тайхмюллера (как и теорема Хаусдорфа) действительно является лишь другой формой принципа максимального элемента.

Замечание. Принцип максимального элемента называют часто леммой (или теоремой) Цорна (сформулировавшего этот принцип в 1935 г. *) применительно к множествам подмножеств, упорядоченным по возрастанию). С точки зрения приоритета это неправильно, поскольку тот же принцип (тоже применительно к множествам подмножеств и притом в несколько более сильной на вид форме) был установлен в 1922 г. Куратовским **), и кроме того, как мы видели, этот принцип является лишь другой формой теоремы Хаусдорфа, опубликованной еще в 1914 г. Но Цорн был первым, кто сделал принцип максимального элемента рабочим орудием математика. В настоящее время этот принцип широко применяется в качестве замены трансфинитной индукции; он удобен тем, что не требует налажения рассматриваемых, обычно уже естественно упорядоченных множеств еще вторым отношением порядка, никак не связанным с имеющимся и нужным только для того, чтобы сделать множество вполне упорядоченным.

§ 2. О ГРУППАХ

1. Понятие группы

Определение 1. Группой называют непустое множество \(G \), каждой паре \(g, h \) элементов которого отнесен некий элемент \(k \in G \), в общем случае называемый далее композицией элементов \(g, h \) и обозначаемый \(g \cdot h \), причем выполнены следующие требования (аксиомы группы):

G1. Для любых элементов \(g, h \in G \) справедливо равенство \((g \cdot h) \cdot k = g \cdot (h \cdot k) \) (ассоциативность композиции).

G2'. Каковы бы ни были элементы \(g, h \in G \), уравнение \(g \cdot x = h \) имеет, и притом только одно, решение \(x \in G \).

G2''. Каковы бы ни были элементы \(g, h \in G \), уравнение \(y \cdot g = h \) имеет, и притом только одно, решение \(y \in G \).

**) Kuratowski C., Une méthode d'élimination des nombres transfinis des raisonnements mathématiques. Fundamenta Mathematicae, III (1922), 76—108.
Операция образования композиции элементов группы будет называться компонированием.

П р и м е р ы. 1. Взаимно однозначное отображение непустого множества E на себя называют его подстановкой, или преобразованием. Совокупность всех преобразований множества E становится группой, если за компонирование принять последовательное выполнение (суперпозицию) преобразований.

2. Множества \mathbb{Z} всех целых, \mathbb{Q} всех рациональных, \mathbb{R} всех вещественных и \mathbb{C} всех комплексных чисел становятся группами, если за компонирование принять сложение; их называют тогда аддитивными группами, соответственно целых, рациональных, вещественных и комплексных чисел.

3. Множества \mathbb{R}_+ всех положительных, \mathbb{R} всех ненулевых вещественных, \mathbb{C}^* всех ненулевых комплексных чисел и \mathbb{K} всех комплексных чисел с модулем, равным 1, становятся группами, если за компонирование принять умножение; их называют тогда мультипликативными группами чисел указанного вида.

А. Пусть G — группа, g и h — произвольные ее элементы, $g * e_g = g$ (G2''), и $e_h * h = h$ (G2''). Так как $g * h = (g * e_g) * h = g * (e_g * h)$ (G1), то $e_g * h = h$ (G2') и, значит, $e_g = e_h$ (G2'') для любых g, $h \in G$. Тем самым в G существует элемент e (равный e_g и e_h для всех $g \in G$), такой, что

$$g * e = e * g = g \text{ для каждого } g \in G.$$

e называют нейтральным элементом группы G.

Б. Пусть $g \in G$ и $g * h = e$ (G2'). Так как тогда (G1)

$$g * (h * g) = (g * h) * g = e * g = g,$$

то и $h * g = e$ (G2'). h называют элементом, обратным к g, и обозначают g^{-1}. Таким образом,

$$g * g^{-1} = g^{-1} * g = e \text{ для каждого } g \in G,$$

откуда видно также, что

$$(g^{-1})^{-1} = g \text{ для каждого } g \in G.$$

В. Понятие композиции распространяется на любое конечное число элементов группы. А именно, композицию

$$\prod_{k=1}^{n} g_k \text{ конечной последовательности } g_1, \ldots, g_n \text{ элементов}$$

$$2^*$$
Предварительные сведения

Группы G определяют индукцией по n, полагая $\frac{1}{k=1} g_k = g_1$ и $\frac{1}{k=1} \prod_{k=1}^{n} g_k = \left(\prod_{k=1}^{n-1} g_k\right) \cdot g_n \quad (n > 1). \tag{1}$

Так что, в частности, $\frac{2}{k=1} g_k = g_1 \cdot g_2$ и $\frac{3}{k=1} g_k = (g_1 \cdot g_2) \cdot g_3$.

Если закон композиции \ast записывается аддитивно (с помощью знака $+$) или мультипликативно (с помощью знака \cdot или \times, либо просто путем последовательного приписывания сомножителей), то вместо $\frac{n}{k=1} g_k$ пишут соответственно $\sum_{k=1}^{n} g_k$ или $\prod_{k=1}^{n} g_k$.

Формула (1) остается справедливой и при $n=1$, если положить $\frac{0}{k=1} g_k = e$, т. е. считать, что композицией пустой последовательности элементов группы служит нейтральный элемент.

Г. Вместо $\frac{n}{k=1} g_k$ пишут также $g_1 \ast g_2 \ast \ldots \ast g_n$. Согласно G_1,

$$g_1 \ast g_2 \ast g_3 = (g_1 \ast g_2) \ast g_3 = g_1 \ast (g_2 \ast g_3).$$

Эта независимость композиции от «расстановки скобок», т. е. способа сведения компонирования нескольких элементов к последовательному компонированию по два (не нарушающему общего порядка следования элементов), распространяется по индукции на композиции любого конечного числа элементов группы. Так, если $g, h, k, l \in G$, то

$$g \ast h \ast k \ast l = [(g \ast h) \ast k] \ast l = (g \ast h) \ast (k \ast l) = g \ast [(h \ast (k \ast l)] = g \ast (h \ast k) \ast l.$$
Определение 2. Подгруппой группы G называют всякое множество $H \subseteq G$, являющееся группой относительно того же компонирования, что и в G, но рассматриваемого только для элементов из H.

Примеры. 1. Очевидно, вся группа G, а также множество, образованное одним ее нейтральным элементом, являются подгруппами группы G.

2. В примерах 2 и 3 к определению 1 первые три из групп \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} и первые две из групп \mathbb{R}^+, \mathbb{R}^*, \mathbb{C}^* являются подгруппами каждой следующей за ними группы, а K — подгруппой группы \mathbb{C}^*.

Е. Для того чтобы непустое множество $H \subseteq G$ было подгруппой группы G, необходимо и достаточно, чтобы $g \cdot h^{-1} \in H$, когда бы ни были $g, h \in H$. В самом деле, из проведенного в А рассуждения видно, что нейтральный элемент подгруппы H группы G совпадает с нейтральным элементом группы; поэтому из Б вытекает, что элемент h^{-1}, обратный к элементу $h \in H$, совпадает с обратным к h в H и, значит, содержится в H; а тогда, поскольку H — группа, $g \cdot h^{-1} \in H$ для всех $g, h \in H$. Обратно, пусть это условие выполнено. Беря $g \in H$, получаем, что $e = g \cdot g^{-1} \in H$, значит, $h^{-1} = e \cdot h^{-1} \in H$ для любого $h \in H$ и, следовательно, H вместе с любыми своими элементами g, h содержит их композицию $g \cdot (h^{-1})^{-1}$. Тогда выполнение аксиомы $G1$ в H вытекает из выполнения ее в G. Выполнение же аксиом $G2'$ и $G2''$ в H следует из того, что решениями уравнений $g \cdot x = h$ и $y \cdot g = h$ служат $x = g^{-1} \cdot h$ и $y = h \cdot g^{-1}$.

Легко видеть также, что для того чтобы непустое множество $H \subseteq G$ было подгруппой группы G, необходимо и достаточно, чтобы $g \in H$ и $g^{-1} \in H$, когда бы ни были $g, h \in H$.

Из Е следует, в частности, что всякое непустое множество чисел или функций, содержащее вместе с любыми своими элементами g, h их разность $g - h$, является группой относительно сложения.

Определение 3. Гомоморфизмом группы G в группу G' называют отображение $\varphi: G \rightarrow G'$, переводящее композицию любых элементов $g, h \in G$ в композицию их образов $\varphi(g)$,
Взаимно однозначный гомоморфизм φ на G' называют изоморфизмом группы G на группу G'.

Пример 1. Отображение, относящее каждому элементу группы G нейтральный элемент группы G', очевидно, есть гомоморфизм G в G'.

2. Отображение, относящее каждому элементу подгруппы H группы G этот же элемент в G, очевидно, есть гомоморфизм группы H в G.

Ж. При гомоморфизме φ группы G в группу G' нейтральный элемент e группа G переходит в нейтральный элемент e' группы G' и элемент, обратный к $g \in G$, переходит в элемент, обратный к $\varphi(g)$. Действительно,

$$\varphi(e) = \varphi(e \cdot e) = \varphi(e) \cdot \varphi(e),$$
откуда $\varphi(e) = e'$,

и

$$\varphi(g) \cdot \varphi(g^{-1}) = \varphi(g \cdot g^{-1}) = \varphi(e) = e',$$

откуда

$$\varphi(g^{-1}) = [\varphi(g)]^{-1}.$$
§ 2] о группах

П р и м е р. \(z \to e^{2\pi iz} \) есть гомоморфизм аддитивной группы \(\mathbb{C} \) комплексных чисел на мультипликативную группу \(\mathbb{C}^* \) ненулевых комплексных чисел. Ядром его служит группа \(\mathbb{Z} \).

К. Суперпозиция \(\psi \circ \varphi \) гомоморфизма \(\varphi \) группы \(G \) в \(H \) и гомоморфизма \(\psi \) группы \(H \) в \(K \) есть гомоморфизм \(G \) в \(K \). В самом деле,

\[
\psi(\varphi(g \ast h)) = \psi(\varphi(g) \ast \varphi(h)) = \psi(\varphi(g)) \ast \psi(\varphi(h)).
\]

Л. Для указания того, что существует изоморфизм группы \(G \) на группу \(G' \), мы будем пользоваться записью \(G \sim G' \). Отношение \(\sim \) обладает следующими свойствами:

1° \(G \sim G \) (рефлексивность). Действительно, тождественное отображение \(G \) на себя есть изоморфизм.

2° Если \(G \sim H \), то \(H \sim G \) (симметричность). В самом деле, если \(\varphi \) — изоморфизм \(G \) на \(H \), то \(\varphi^{-1} \) — изоморфизм \(H \) на \(G \), ибо \(\varphi^{-1} \) — взаимно однозначное отображение \(H \) на \(G \) и для любых \(g, h \in H \) имеем

\[
\varphi^{-1}(g \ast \varphi^{-1}(h)) = \varphi(\varphi^{-1}(g)) \ast \varphi(\varphi^{-1}(h)) = g \ast h,
\]

откуда

\[
\varphi^{-1}(g \ast h) = \varphi^{-1}(g) \ast \varphi^{-1}(h).
\]

3° Если \(G \sim H \) и \(H \sim K \), то \(G \sim K \) (транзитивность). Действительно, из \(K \) следует, что если \(\varphi \) — изоморфизм \(G \) на \(H \), а \(\psi \) — изоморфизм \(H \) на \(K \), то \(\chi = \psi \circ \varphi \) — изоморфизм \(G \) на \(K \).

Группы \(G \) и \(H \), для которых существует изоморфизм \(G \) на \(H \), а значит, согласно 2°, и изоморфизм \(H \) на \(G \), называют изоморфными.

Так, группы \(\mathbb{R} \) и \(\mathbb{R}_+ \) изоморфны; изоморфизм \(R \) на \(R_+ \) осуществляется потенцированием, а \(R_+ \) на \(R \) — логарифмированием.

2. Коммутативные группы

О п р е д е л е н и е 4. Коммутативной группой называют группу \(G \), удовлетворяющую аксиоме

G3. Для любых двух элементов \(g, h \in G \) справедливо равенство \(g \ast h = h \ast g \) (коммутативность композиции).

Так, все аддитивные и мультипликативные числовые группы (т. е. группы чисел относительно сложения или умножения) коммутативны. Группа всех подстановок множества, содержащего более двух элементов, не коммутативна.
А. При общем рассмотрении коммутативных групп обычно пользуются аддитивными терминами и обозначениями: закон композиции называют сложением и обозначают символом \(+\); нейтральный элемент группы называют нулем и обозначают символом \(0\); элемент, обратный к \(a\), называют противоположным \(a\) и обозначают \(-a\); решение \((-a)+b\) уравнения \(a+x=b\) называют разностью элементов \(b\) и \(a\) и обозначают \(b-a\); сумму \(n\) слагаемых, каждое из которых равно \(a\), обозначают \(na\), и это обозначение распространяют на все целые \(n\), полагая \(1a=a, 0a=0\) (где 0 слева — число, а справа — нуль группы) и \(na=-(n)a=-(n)(-a)\), если \(n<0\); при этом сохраняются обычные правила «действий над одночленами»:

\[
(mn)a=m(na), \quad (m+n)a=ma+na, \quad n(a+b)=na+nb.
\]

Определение 4'. Аддитивной группой называют коммутативную группу с аддитивной записью закона композиции. Подгруппа аддитивной группы, образованная одним нулевым элементом, называется нулевой подгруппой этой группы.

В дальнейшем мы почти всегда будем рассматривать коммутативные группы как аддитивные, часто не оговаривая этого.

Б. Так как \(G2''\) есть следствие \(G2'\) и \(G3\), то для коммутативных групп аксиомы \(G2'\) и \(G2''\) сводятся к одной аксиоме

\[
G2. \text{ Каковы бы ни были элементы } g, h \in G, \text{ уравнение } g+x=h \text{ имеет, и притом только одно, решение } x \in G.
\]

В. Пусть \(G\) — аддитивная группа. Под суммой \(A+B\) множеств \(A, B \subseteq G\) понимают множество, образованное всеми возможными суммами \(a+b\), где \(a \in A, b \in B\). В частности, \(A+B=\emptyset\) тогда и только тогда, когда \(A=\emptyset\) или \(B=\emptyset\). Аналогично определяется разность \(A-B\). Очевидно,

\[
(A+B)+C=A+(B+C) \quad \text{и} \quad A+B=B+A,
\]

т. е. сложение множеств ассоциативно и коммутативно.

Г. Под \(-A\) понимают множество, образованное элементами \(-a\), противоположными всевозможным элементам \(a \in A\). В частности, \(-\emptyset=\emptyset\). Очевидно,

\[
A-B=A+(-B) \quad \text{и} \quad -(A+B)=(-A)+(-B).
\]
Если \(-A = A\), то \(A\) называют симметричным множеством. Очевидно, \(A \cup (\neg A)\) и \(A \cap (\neg A)\) симметричны, каково бы ни было множество \(A \subset G\). Отображение \(x \rightarrow \neg x\) группы \(G\) на себя называют симметрией.

Д. Из 1.E следует, что для того чтобы множество \(H\) элементов коммутативной группы \(G\) было ее подгруппой, необходимо и достаточно, чтобы \(H - H = H\); и тогда \(H - H = H\), поскольку, с другой стороны, \(H = H - \{0\} \subset c H - H\). Так как подгруппа \(H\) симметрична, то для нее также \(H + H = H - H = H\); но выполнения одного равенства \(H + H = H\) еще недостаточно, чтобы множество \(H \subset G\) было подгруппой.

Е. Из В, Г и Д следует, что сумма \(H = H_1 + H_2\) подгрупп \(H_1\) и \(H_2\) коммутативной группы \(G\) также является подгруппой этой группы. Действительно,

\[
H - H = (H_1 + H_2) - (H_1 + H_2) =
\]

\[
= H_1 + H_2 + (\neg H_1) + (\neg H_2) =
\]

\[
= [H_1 + (\neg H_1)] + [H_2 + (\neg H_2)] = H_1 + H_2 = H.
\]

Ж. Каждый элемент \(a\) коммутативной группы \(G\) порождает ее отображение \(x \rightarrow x + a\) на себя, называемое переносом (или сдвигом) на \(a\). Очевидно, переносы образуют подгруппу группы всех преобразований множества \(G\) (см. пример 1 к определению 1), изоморфную группе \(G\). Результат переноса множества \(A \subset G\) на \(a\) мы будем обозначать \(A + a\); очевидно, \(A + a = A + \{a\}\). Под \(A - a\) будет пониматься \(A + (\neg a)\).

З. Пусть \(G\) и \(G'\) — аддитивные группы. Если \(\varphi — гомоморфизм\ G в G', то, очевидно,

\[
\varphi(A + B) = \varphi(A) + \varphi(B), \quad \varphi(-A) = -\varphi(A)
\]

и

\[
\varphi(A + a) = \varphi(A) + \varphi(a)
\]

dля любых \(A, B \subset G\) и \(a \in G\).

И. Пусть \(G\) и \(G'\) — аддитивные группы. Если \(\varphi — гомоморфизм\ G в G', то

\[
\varphi^{-1}(\varphi(A) + B) = A + \varphi^{-1}(B).
\]

Действительно, так как \(\varphi(A + \varphi^{-1}(B)) = \varphi(A) + \varphi(\varphi^{-1}(B)) \subset \varphi(A) + B\), то \(A + \varphi^{-1}(B) \subset \varphi^{-1}(\varphi(A) + B)\). С другой
А. При общем рассмотрении коммутативных групп обычно пользуются аддитивными терминами и обозначениями: закон композиции называют сложением и обозначают символом $+; нейтральный элемент группы называют нулем и обозначают символом 0; элемент, обратный к a, называют противоположным a и обозначают $-a$; решение $(-a)+b$ уравнения $a+x=b$ называют разностью элементов b и a и обозначают $b-a$; сумму n слагаемых, каждое из которых равно a, обозначают na, и это обозначение распространяют на все целые n, полагая $1a=a$, $0a=0$ (где 0 слева — число, а справа — нуль группы) и $na=-(n)a=-(n)(-a)$, если $n<0$; при этом сохраняются обычные правила «действий, над одночленами»:

$$(mn)a=m(na), \ (m+n)a=ma+na, \ n(a+b)=na+nb.$$

Определение 4'. Аддитивной группой называют коммутивную группу с аддитивной записью закона композиции. Подгруппа аддитивной группы, образованная одним нулевым элементом, называется нулевой подгруппой этой группы.

В дальнейшем мы почти всегда будем рассматривать коммутативные группы как аддитивные, часто не оговаривая этого.

Б. Так как G^2 есть следствие G^2 и G^3, то для коммутативных групп аксиомы G^2 и G^2 сводятся к одной аксиоме G^2. Каковы бы ни были элементы $g, h \in G$, уравнение $g+x=h$ имеет, и притом только одно, решение $x \in G$.

В. Пусть G — аддитивная группа. Под суммой $A+B$ множеств $A, B \subseteq G$ понимают множество, образованное всем возможными суммами $a+b$, где $a \in A, b \in B$. В частности, $A+B=\phi$ тогда и только тогда, когда $A=\phi$ или $B=\phi$. Аналогично определяется разность $A-B$. Очевидно,

$$(A+B)\cdot C=A+(B+C) \text{ и } A+B=B+A,$$

t. е. сложение множеств ассоциативно и коммутативно.

Г. Под $-A$ понимают множество, образованное элементами $-a$, противоположными всем возможным элементам $a \in A$. В частности, $-\phi=\phi$. Очевидно,

$$A-B=A+(-B) \text{ и } -(A+B)=(-A)+(-B).$$
Если $-A = A$, то A называют симметричным множеством. Очевидно, $A \cup (-A)$ и $A \cap (-A)$ симметричны, каково бы ни было множество $A \subset G$. Отображение $x \rightarrow -x$ группы G на себя называют симметрией.

Д. Из 1.6 следует, что для того чтобы множество H элементов коммутативной группы G было ее подгруппой, необходимо и достаточно, чтобы $H - H \subset H$; и тогда $H - H = H$, поскольку, с другой стороны, $H = H - \{0\} \subset H - H$. Так как подгруппа H симметрична, то для нее также $H + H = H - H = H$; но выполнения одного равенства $H + H = H$ еще недостаточно, чтобы множество $H \subset G$ было подгруппой.

Е. Из В. Г и Д следует, что сумма $H = H_1 + H_2$ подгрупп H_1 и H_2 коммутативной группы G также является подгруппой этой группы. Действительно,

$$H - H = (H_1 + H_2) - (H_1 + H_2) =$$
$$= H_1 + H_2 + (-H_1) + (-H_2) =$$
$$=[H_1 + (-H_1)] + [H_2 + (-H_2)] = H_1 + H_2 = H.$$

Ж. Каждый элемент a коммутативной группы G порождает ее отображение $x \rightarrow x + a$ на себя, называемое переносом (или сдвигом) на a. Очевидно, переносы образуют подгруппу группы всех преобразований множества G (см. пример 1 к определению 1), изоморфную группе G. Результат переноса множества $A \subset G$ на a мы будем обозначать $A + a$; очевидно, $A + a = A + \{a\}$. Под $A - a$ будет пониматься $A + (-a)$.

З. Пусть G и G' — аддитивные группы. Если φ — гомоморфизм G в G', то, очевидно,

$$\varphi(A + B) = \varphi(A) + \varphi(B), \quad \varphi(-A) = -\varphi(A)$$

и

$$\varphi(A + a) = \varphi(A) + \varphi(a)$$

dля любых $A, B \subset G$ и $a \in G$.

И. Пусть G и G' — аддитивные группы. Если φ — гомоморфизм G в G' и $A \subset G$, $B \subset G'$, то

$$\varphi^{-1}(\varphi(A) + B) = A + \varphi^{-1}(B).$$

Действительно, так как $\varphi(A + \varphi^{-1}(B)) = \varphi(A) + \varphi^{-1}(B) \subset \varphi(A) + B$, то $A + \varphi^{-1}(B) \subset \varphi^{-1}(\varphi(A) + B)$. С другой
стороны, если \(x \in \varphi^{-1}(\varphi(a) + B) \), то \(\varphi(x) = \varphi(a) + b \), где \(a \in A, b \in B \); поэтому \(\varphi(x - a) = \varphi(x) - \varphi(a) \in B \) и, значит, \(x - a \in \varphi^{-1}(B) \), откуда \(x \in A + \varphi^{-1}(B) \); тем самым \(\varphi^{-1}(\varphi(A) + B) \subset A + \varphi^{-1}(B) \).

И'. Беря в И, в частности, \(B = \{0\} \), получаем, что
\[
\varphi^{-1}(\varphi(A)) = A + K_{\varphi}.
\]

3. Факторгруппы коммутативной группы

А. Образы \(H + a \) подгруппы \(H \) коммутативной группы \(G \) при переносах на все возможные элементы \(a \in G \) называют смежными классами (или просто классами) \(G \) по \(H \).

Классы \(H + a \) и \(H + b \) совпадают, если \(a - b \in H \), и не пересекаются, если \(a - b \notin H \). Действительно, если \(a - b \in H \), то \(a \in H + b \), откуда \(H + a \subset H + b \subset H + b \); а так как \(a - b \in H \) влечет \(b - a \in H \), то, совершенно так же, \(H + b \subset H + a \); таким образом, если \(a - b \in H \), то \(H + a = H + b \). С другой стороны, если \(c \in (H + a) \cap (H + b) \), то \(c - a \in H \) и \(c - b \in H \), следовательно, по доказанному, \(H + a = H + c = H + b \) и, значит, \(a - b \in H - H \subset H \); таким образом, если \(a - b \notin H \), то классы \(H + a \) и \(H + b \) не пересекаются.

Так как каждый элемент \(a \in G \) принадлежит некоторому классу \(G \) по \(H \), а именно \(H + a \), то заключаем, что смежные классы \(G \) по \(H \) образуют разбиение группы \(G \).

Теорема 1. Смежные классы коммутативной группы \(G \) по ее подгруппе \(H \) образуют коммутативную группу относительно операции сложения множеств.

Доказательство. Прежде всего (в силу 2.В. Д. Ж)
\[
(H + a) + (H + b) = H + (a + b), \quad (1)
\]
так что сумма двух классов \(G \) по \(H \) есть снова класс \(G \) по \(H \). Далее, аксиомы Г1 и Г3 выполнены в силу 2.В. Наконец, каковы бы ни были классы \(A \) и \(B \) группы \(G \) по \(H \), существует, и притом только один, класс \(X \), удовлетворяющий уравнению \(A + X = B \), а именно, \(X = H + x \), где \(x \) — разность любого \(b \in B \) с любым \(a \in A \); в самом деле, так как, в силу А, \(A = H + a \) и \(B = H + b \), то \(A + X = \)
\[
= (H + a) + (H + (b - a)) = H + b = B; \quad \text{c другой стороны,}
\]

так что сумма двух классов \(G \) по \(H \) есть снова класс \(G \) по \(H \). Далее, аксиомы Г1 и Г3 выполнены в силу 2.В. Наконец, каковы бы ни были классы \(A \) и \(B \) группы \(G \) по \(H \), существует, и притом только один, класс \(X \), удовлетворяющий уравнению \(A + X = B \), а именно, \(X = H + x \), где \(x \) — разность любого \(b \in B \) с любым \(a \in A \); в самом деле, так как, в силу А, \(A = H + a \) и \(B = H + b \), то \(A + X = \)
\[
= (H + a) + (H + (b - a)) = H + b = B; \quad \text{c другой стороны,}
\]
$\xi \div X = B$ влечет $X \subseteq B \Rightarrow A = H + (b - a)$, откуда в силу $X = H + (b - a)$; таким образом, выполнена и аксиома G2.

Определение 5. Группу смежных классов коммутативной группы G по ее подгруппе H называют факторгрупой группы G по H и обозначают G/H. Отображение G на G/H, относящее каждому элементу $x \in G$ содержащий его класс $H + x$, называют каноническим отображением G на G/H.

Б. Из равенства (1) следует, что нулем факторгруппы G/H служит класс H и каноническое отображение G на G/H есть гомоморфизм. Так как при этом $H + a = H$ означает, что $a = 0 + a \in H$, то ядром гомоморфизма φ служит H: $\varphi^{-1}(\{H\}) = H$.

В. Очевидно, каноническое отображение группы G на ее факторгруппу $G/\{0\}$ по нулевой подгруппе (относящее каждому элементу $x \in G$ образованный им класс $\{x\}$ по $\{0\}$) есть изоморфизм.

Г. Пусть G и G' — коммутативные группы, φ — гомоморфизм G в G', K — его ядро и F — подгруппа группы G. $F = \varphi^{-1}(\varphi(F))$ тогда и только тогда, когда $F \supseteq K$. Действительно, согласно 2.Н', $\varphi^{-1}(\varphi(F)) = K + F$. Но если $K + F = F$, то $K = K + \{0\} \subseteq F$. Обратно, если $K \subseteq F$, то в силу 2.Д $F \subseteq \{0\} + F \subseteq K + F \subseteq F$, и следовательно, $K + F = F$.

Д. Пусть G и G' — коммутативные группы, φ — гомоморфизм G в G', K — его ядро и F — подгруппа группы G, содержащая K. Тогда отображение

$$F + x \rightarrow \varphi(F + x),$$

относящее каждому классу $F + x$ группы G по F класс $\varphi(F + x) = \varphi(F) + \varphi(x)$ группы $\varphi(G)$ по $\varphi(F)$, есть изоморфизм G/F на $\varphi(G)/\varphi(F)$. Действительно, так как $\varphi(x)$ пробегает $\varphi(G)$, когда x пробегает G, то (2) есть отображение G/F на всё $\varphi(G)/\varphi(F)$. Далее, так как

$$\varphi((F + x) + (F + y)) = \varphi(F + x) + \varphi(F + y),$$

то (2) — гомоморфизм G/F на $\varphi(G)/\varphi(F)$. Наконец, если $\varphi(F + x_1) = \varphi(F + x_2)$, т. е. $\varphi(F) + \varphi(x_1) = \varphi(F) + \varphi(x_2)$, то в силу 2.Д $\varphi(x_1 - x_2) = \varphi(x_1) - \varphi(x_2) \in \varphi(F) - \varphi(F) = \varphi(F)$.
следовательно, по Г, \(x_1 - x_2 \in \phi^{-1}(\phi(F)) = F \), откуда, по А, \(F + x_1 = F + x_2 \); тем самым (2) взаимно однозначно.

Е. Если \(\phi \) — гомоморфизм \(G \) на \(G' \) и \(K \) — его ядро, то

\[
K + x \rightarrow \phi(x)
\]

(3)

есть изоморфизм \(G/K \) на \(G' \). Действительно, это сразу следует из Д, если взять там \(F = K \) и заметить, что (3) есть суперпозиция изоморфизма \(K + x \rightarrow \phi(K + x) = \{ \phi(x) \} \) на \(G'/\{0\} \) и изоморфизма \(\{ \phi(x) \} \rightarrow \phi(x) \) \(G'/\{0\} \) на \(G' \).

Ж. Если \(K \) и \(F \) — подгруппы коммутативной группы \(G \), причем \(K \subseteq F \), то отображение

\[
K + x \rightarrow \omega_{F, K}(K + x) = F + x,
\]

относящее каждому классу \(K + x \) группы \(G \) по \(K \) содержащий его класс \(F + x \) по \(F \), есть гомоморфизм \(G/K \) на \(G/F \), ядром этого гомоморфизма служит \(F/K \). Действительно, очевидно, \(\omega_{F, K} \) есть отображение \(G/K \) на всё \(G/F \). Далее, в силу 2.Д

\[
\omega_{F, K}((K + x) + (K + y) = \omega_{F, K}(K + x + y) = F + x + y = (F + x) + (F + y) = \omega_{F, K}(K + x) + \omega_{F, K}(K + y),
\]

так что \(\omega_{F, K} \) — гомоморфизм \(G/K \) на \(G/F \). Наконец, \(K + x \) принадлежит ядру этого гомоморфизма, т. е. \(\omega_{F, K}(K + x) = F \), тогда и только тогда, когда \(K + x \subseteq F \), т. е. \(K + x \in F/K \).

Заметим, что если \(\omega_K \) и \(\omega_F \) — канонические отображения группы \(G \) соответственно на её факторгруппы \(G/K \) и \(G/F \), то

\[
\omega_F = \omega_{F, K} \circ \omega_K.
\]

(4)

3. Из Ж и Е следует, что если \(K \) и \(F \) — подгруппы коммутативной группы \(G \), причем \(K \subseteq F \), то

\[
G/F \sim (G/K)/(F/K).
\]

4. Суммы и произведения коммутативных групп

Определение 6. Коммутативную группу \(G \) называют прямой суммой ее подгрупп \(H_1, \ldots, H_n \) и пишут

\[
G = H_1 \oplus \ldots \oplus H_n,
\]

если каждый элемент \(x \in G \) однозначно представим в виде

\[
x = x_1 + \ldots + x_n, \text{ где } x_1 \in H_1, \ldots, x_n \in H_n.
\]
Если G есть прямая сумма своих подгрупп H_1 и H_2, то каждую из них называют алгебраическим дополнением другой.

A. Для того чтобы $G = H_1 \oplus H_2$, необходимо и достаточно, чтобы $H_1 + H_2 = G$ и $H_1 \cap H_2 = \{0\}$. Действительно, пусть $G = H_1 \oplus H_2$. Так как тогда каждый элемент $x \in G$ представим в виде

$$ x = x_1 + x_2, \text{ где } x_1 \in H_1, \ x_2 \in H_2, $$

то $G = H_1 + H_2$. При этом, если $x \in H_1 \cap H_2$, то, положив $x_1 = x$, $x_2 = 0$ или $x_1 = 0$, $x_2 = x$, мы в обоих случаях получим представление x в виде (1); поскольку такое представление единственно, заключаем, что $x = 0$, так что $H_1 \cap H_2 = \{0\}$. Обратно, пусть $H_1 + H_2 = G$ и $H_1 \cap H_2 = \{0\}$. В силу первого из этих условий, каждый элемент $x \in G$ представим в виде (1). Если одновременно $x = x_1' + x_2'$, где $x_1' \in H_1, \ x_2' \in H_2$, то, вычитая из (1), получим $x_1 - x_1' = x_2' - x_2$, но левая часть принадлежит H_1, а правая H_2. Следовательно, $x_1 - x_1' \in H_1 \cap H_2$, а тогда из второго условия следует, что $x_1 - x_1' = 0$, т. е. $x_1' = x_1$, и так же $x_2' = x_2$, тем самым $G = H_1 \oplus H_2$.

B. Если $G = H_1 \oplus H_2$, то отображение φ, относящее каждому элементу $x_2 \in H_2$ класс $H_1 + x_2$ группы G по H_1, есть изоморфизм H_2 на G/H_1. В самом деле, так как $H_1 + H_2 = G$, то φ есть отображение H_2 на G/H_1. Далее, в силу 2.Д

$$ \varphi(x_2' + x_2'') = H_1 + x_2' + x_2'' = (H + x_2') + (H + x_2'') = $$

$$ = \varphi(x_2') + \varphi(x_2''), $$

tак что φ — гомоморфизм H_2 на G/H_1. Наконец, если $\varphi(x_2') = \varphi(x_2'')$, то в силу 2.Д $x_2' = x_2'' \in H_1$, и так как, с другой стороны, $x_2' - x_2'' \in H_2$, то $x_2' = x_2''$, таким образом φ взаимно однозначно.

B. Понятие прямой суммы подгрупп тесно связано с понятием прямой суммы групп. Пусть G_1, \ldots, G_n — коммутативные группы. Произведение $\prod_{k=1}^{n} C_k$ множеств G_1, \ldots, G_n
является группой относительно сложения по правилу

\[(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n)\]

("покоординатного" сложения). Элементы этой группы \(G = \prod_{k=1}^{n} G_k \), все координаты которых, кроме \(k \)-й, равны нулю, а \(k \)-я пробегает \(G_k \), образуют подгруппу \(\tilde{G}_k \), изоморфную \(G_k \), и, очевидно, \(G = \tilde{G}_1 \oplus \ldots \oplus \tilde{G}_n \). Обратно, если \(G = H_1 \oplus \ldots \oplus H_n \), то отображение, относящее каждому элементу

\[(x_1, \ldots, x_n) \in \prod_{k=1}^{n} H_k \]

элемент \(x = x_1 + \ldots + x_n \in G \), есть, очевидно, изоморфизм группы \(\prod_{k=1}^{n} H_k \) на \(G \). В связи с этим группу \(G = \prod_{k=1}^{n} G_k \) называют прямой суммой групп \(G_1, \ldots, G_n \).

При переходе к произвольным (вообще бесконечным) семействам групп это понятие раздваивается.

Определение 7. Прямыми произведением семейства коммутиативных групп \((G_a)_{a \in A} \) называют произведение \(G = \prod_{a \in A} G_a \) семейства множеств \((G_a)_{a \in A} \), наделенное покоординатным сложением

\[(x_a)_{a \in A} + (y_a)_{a \in A} = (x_a + y_a)_{a \in A},\]

очевидно превращающим \(G \) в группу. Прямыми суммой семейства групп \((G_a)_{a \in A} \) называют подгруппу \(\sum_{a \in A} G_a \) группы \(G \), образованную теми элементами из \(G \), у которых лишь конечное число координат отлично от нуля.

Замечание. Таким образом, \(\prod_{a \in A} G_a = \sum_{a \in A} G_a \) тогда и только тогда, когда множество индексов \(A \) конечно.

Г. Очевидно, совокупность \(G^A \) всех функций на непустом множестве \(A \) со значениями в аддитивной группе \(G \) является аддитивной группой относительно «поточечного» сложения, изоморфной произведению \(\prod_{a \in A} G_a \), где все \(G_a = G \).
Д. Очевидно, проектирование прямого произведения $G = \prod_{a \in A} G_a$ семейства групп $(G_a)_{a \in A}$ на каждую из групп G_a, относящее каждой точке $x = (x_a)_{a \in A} \in G$ ее координату или проекцию $\text{pr}_a(x) = x_a$ в G_a, есть гомоморфизм G на G_a.

5. Понятие поля

Определение 8. Полям называют множество K, в котором определены операции сложения и умножения, причем выполнены следующие условия:

1. K — коммутативная группа относительно операции сложения.

2. $K^* = K \setminus \{0\}$ — коммутативная группа относительно операции умножения.

3. Умножение дистрибутивно относительно сложения, т. е.

$$\gamma (\alpha + \beta) = \gamma \alpha + \gamma \beta$$

для всех $\alpha, \beta, \gamma \in K$.

Нейтральный элемент мультипликативной группы K^* называется единицей поля K и обозначается 1.

Так, R и C — поля (относительно обычных операций сложения и умножения чисел); R называют полем вещественных чисел, C — полем комплексных чисел.

В дальнейшем K будет всюду обозначать поле.

A. Из условия 2 следует, что $K \neq \{0\}$ (см. определение 1) и $1 \neq 0$. Таким образом, каждое поле содержит по крайней мере два различных элемента 0 и 1.

Б. $\lambda \cdot 0 = 0$ для всех $\lambda \in K$. Действительно, в силу условия 3, $\lambda \cdot 0 + \lambda \cdot 0 = \lambda \cdot (0 + 0) = \lambda \cdot 0$, откуда $\lambda \cdot 0 = 0$.

В. $(\lambda \mu) \nu = \lambda (\mu \nu)$ для всех $\lambda, \mu, \nu \in K$. В самом деле, если λ, μ и ν отличны от 0, то это следует из условия 2, если же хотя бы одно из них равно нулю, то $(\lambda \mu) \nu = 0 = \lambda (\mu \nu)$ в силу Б.

Г. $1 \cdot \lambda = \lambda$ для всех $\lambda \in K$. Действительно, при $\lambda \neq 0$ это следует из условия 2, а при $\lambda = 0$ — из Б.

Д. $(-1) \cdot \lambda = -\lambda$ для всех $\lambda \in K$. Действительно, в силу Г и Б $(-1) \cdot \lambda + \lambda = (-1) \cdot 1 \cdot \lambda + 1 \cdot \lambda = [(-1) + 1] \cdot \lambda = 0 \cdot \lambda = 0$.

Е. Из Д следует, что $\mu - \lambda = \mu + (-1) \lambda$ для всех $\lambda, \mu \in K$.

\[\]
ГЛАВА II

ОБЩАЯ ТЕОРИЯ ВЕКТОРНЫХ ПРОСТРАНСТВ

§ 3. ОСНОВНЫЕ ПОНЯТИЯ

1. Понятие векторного пространства

Определение 1. Векторным пространством над полем K называют аддитивную группу E, для которой определено отображение $(x, \lambda) \mapsto \lambda x$ произведения $E \times K$ в E, удовлетворяющее следующим условиям:

1. $(\lambda \mu) x = \lambda (\mu x)$ для всех $\lambda, \mu \in K$ и $x \in E$;
2. $1 x = x$ для всех $x \in E$;
3. $\lambda (x + y) = \lambda x + \lambda y$ для всех $\lambda \in K$ и $x, y \in E$;
4. $(\lambda + \mu) x = \lambda x + \mu x$ для всех $\lambda, \mu \in K$ и $x \in E$.

Элементы векторного пространства над K называются его точками или векторами, а элементы поля K — скалярами. Отображение E в E, при котором все векторы $x \in E$ умножаются на один и тот же скаляр $\lambda \neq 0$, называется гомотетией с коэффициентом гомотетии λ.

Вещественным (комплексным) векторным пространством называют векторное пространство над R (над C). Вещественное векторное пространство, получающееся, если в комплексном векторном пространстве E рассматривать умножение лишь на вещественные скаляры, называется вещественным векторным пространством, ассоциированным с комплексным векторным пространством E, и обозначается E_R.

Замечание. В дальнейшем, рассматривая свойства, общие векторным пространствам над произвольными полями K, мы будем для краткости слова «над K» часто опускать и говорить просто «векторное пространство»; если же речь будет идти о каком-нибудь определенном векторном про-
странстве, то мы будем опускать слово «векторное», т. е. говорить просто «пространство».

Примеры. 1. Совокупность всех направленных отрезков на плоскости с началом в некоторой фиксированной точке \(O \) есть вещественное векторное пространство при обычном определении сложения направленных отрезков и умножения их на вещественные числа.

2. Та же совокупность становится комплексным векторным пространством, если сложение и умножение на вещественные числа определены по-старому, а умножение на \(i = \sqrt{-1} \) определено как поворот в плоскости на \(90^\circ \) против часовой стрелки.

3. В силу 2.5.В, \(\Gamma, K^a (n \geq 1) \) есть векторное пространство над \(K \), если сложение и умножение на скаляры \(\lambda \in K \) определены формулами

\[
(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n)
\]

и

\[
\lambda(x_1, \ldots, x_n) = (\lambda x_1, \ldots, \lambda x_n).
\]

В частности, \(K^1 \) есть \(K \), рассматриваемое как векторное пространство над самим собой.

Рассматривая \(K^a \) как векторное пространство, мы всегда будем считать, что операции сложения и умножения на скаляры определены в нем формулами (1) и (2).

4. Непустая совокупность \(E \) функций со значениями в \(K \), определенных на некотором множестве \(A \), является векторным пространством над \(K \) относительно обычных операций сложения функций и умножения функции на скаляр, если выполнены следующие условия:

1° \(x(t) \in E, y(t) \in E \) влечет \(x(t) + y(t) \in E \) и

2° \(x(t) \in E, \lambda \in K \) влечет \(\lambda x(t) \in E \).

Действительно, тогда \(x(t) \in E, y(t) \in E \) влечет \(x(t) - y(t) = x(t) + (-1) y(t) \in E \), так что в силу 2.4.Г и 2.1.Е \(E \) — аддитивная группа; выполнение же условий 1—4 определения 1 очевидно (см. 2.5).

5. Так, совокупность \(C(l) \) всех непрерывных комплексных функций на интервале \(I \subset \textbf{R} \) есть комплексное векторное пространство; то же верно и для совокупностей \(C^a(I) \) и \(C^\infty(I) \) всех комплексных функций на \(I \), обладающих соответственно непрерывной \(n \)-й производной или производными всех порядков. Под \(C^0(I) \) будет пониматься \(C(I) \).
6. Пусть \(p \) — фиксированное число \(> 0 \). Совокупность \(L^p \) всех комплексных числовых последовательностей \((\xi_n) \), для которых \(\sum_{n=1}^{\infty} |\xi_n|^p < \infty \), удовлетворяет условиям 1° — 2° примера 4. Действительно, будучи непрерывной положительной функцией на замкнутом интервале \(0 \leq t \leq 1 \), \(t^p + (1 - t)^p \) достигает на нем наименьшего значения \(c_p > 0 \), и потому при \(\alpha \geq 0 \), \(\beta \geq 0 \), \(\alpha + \beta > 0 \) имеем

\[
\alpha^p + \beta^p = \left[\left(\frac{\alpha}{\alpha + \beta} \right)^p + \left(\frac{\beta}{\alpha + \beta} \right)^p \right] (\alpha + \beta)^p \geq c_p (\alpha + \beta)^p,
\]

откуда

\[
(\alpha + \beta)^p \leq c_p^{-1} (\alpha^p + \beta^p).
\]

Полученное неравенство справедливо и при \(\alpha + \beta = 0 \). Следовательно, если \(x = (\xi_n) \in L^p \) и \(y = (\eta_n) \in L^p \), то

\[
\sum_{n=1}^{\infty} |\xi_n + \eta_n|^p \leq \sum_{n=1}^{\infty} (|\xi_n| + |\eta_n|)^p \leq c_p^{-1} \left(\sum_{n=1}^{\infty} |\xi_n|^p + \sum_{n=1}^{\infty} |\eta_n|^p \right) < \infty,
\]

t. е. и \(x + y = (\xi_n + \eta_n) \in L^p \). Таким образом, \(L^p \) удовлетворяет условию 1° примера 4. Выполнение же условия 2° очевидно. Тем самым \(L^p \) — векторное пространство над \(\mathbb{C} \).

Совершенно так же убедимся в том, что совокупность \(L^p_R \) всех вещественных числовых последовательностей \((\alpha_n) \), для которых \(\sum_{n=1}^{\infty} |\alpha_n|^p < \infty \), есть векторное пространство над \(\mathbb{R} \).

7. Аналогично устанавливается, что совокупность \(L^p(I) \) \((L^p_R(I)) \) всех измеримых комплексных (вещественных) функций \(f(t) \) на интервале \(I \subseteq \mathbb{R} \), для которых \(\int_I |f(t)|^p \, dt < \infty \), есть векторное пространство над \(\mathbb{C} \) \(\text{над} \mathbb{R} \).

8. Совокупность \(L^\infty \) \((L^\infty_R) \) всех ограниченных комплексных (вещественных) числовых последовательностей, очевидно, также является векторным пространством над \(\mathbb{C} \) \(\text{над} \mathbb{R} \).

А. Отметим некоторые простые свойства векторных пространств, непосредственно вытекающие из условий 1) — 4) определения 1.
§ 3

Основные понятия

1° $\lambda (x - y) = \lambda x - \lambda y$ для всех векторов x, y и скаляров λ.

Действительно, в силу условия 3, $\lambda x = \lambda [(x - y) + y] = \lambda (x - y) + \lambda y$.

Совершенно так же, на основании условия 4, доказывается свойство

2° $(\lambda - \mu) x = \lambda x - \mu x$ для всех векторов x и скаляров λ, μ.

Из 1° следует, в частности,

3° $\lambda \cdot 0 = 0$ для всех скаляров λ.

В самом деле, $\lambda \cdot 0 = \lambda (x - x)$.

Аналогично, из 2° следует

4° $0 \cdot x = 0$ для всех векторов x.

Имеет место и свойство, обратное свойствам 3°—4°:

5° Если $\lambda x = 0$, то $\lambda = 0$ или $x = 0$.

Действительно, при $\lambda \neq 0$ в силу условий 2 и 1 и свойства 3° имеем: $x = 1x = (\lambda^{-1})\lambda x = \lambda^{-1} (\lambda x) = \lambda^{-1} 0 = 0$.

6° $(-1) x = -x$ для всех векторов x.

В самом деле, в силу условий 2 и 4 и свойства 4°

$x + (-1) x = 1x + (-1) x = [1 + (-1)] x = 0x = 0$.

7° $nx = x + \ldots + x$ для всех векторов x и натуральных чисел n.

Действительно, при $n = 1$ это — условие 2, а при $n > 1$ применяем индукцию.

$8° \sum_{k=1}^{n} \lambda_{k} \sum_{l=1}^{m} x_{l} = \sum_{k=1}^{n} \sum_{l=1}^{m} \lambda_{k} x_{l}$ для любых конечных наборов скаляров $\lambda_{1}, \ldots, \lambda_{n}$ и векторов x_{1}, \ldots, x_{m}.

В самом деле, это получается индукцией по m и n из условий 3 и 4 определения 1.

Б. Пусть A — множество в векторном пространстве E над K и $\lambda \in K$. Под λA понимают множество всех векторов λx, где x пробегает A. В частности, $\lambda \phi = \phi$. Из условий 1—4 определения 1 следует, что

1° $(\lambda \mu) A = \lambda (\mu A)$ для всех λ, $\mu \in K$ и $A \subset E$;

2° $1 A = A$ для всех $A \subset E$;

*) 0 слева означает нуль поля скаляров, а справа — нулевой вектор.
3'. \(\lambda(A + B) = \lambda A + \lambda B \) для всех \(\lambda \in \mathbb{K} \) и \(A, B \in E \);
4'. \((\lambda + \mu) A + \lambda A + \mu A \) для всех \(\lambda, \mu \in \mathbb{K} \) и \(A \in E \).

Определение 2. Пусть \(E \) — векторное пространство над \(\mathbb{K} \). Линейной комбинацией семейства векторов \((x_a)_{a \in A} \) из \(E \) (или линейной комбинацией векторов \(x_a \) \((a \in A) \)) называется любой вектор \(x \in E \), представимый в виде

\[
x = \sum_{a \in A} \lambda_a x_a,
\]

где \((\lambda_a)_{a \in A} \) — семейство скаляров из \(\mathbb{K} \), в котором \(\lambda_a \neq 0 \) лишь для конечного числа индексов \(a \), а под \(\sum_{a \in A} \lambda_a x_a \) понимается сумма \(\sum_{a \in A'} \lambda_a x_a \), распространенная на (любое) конечное множество индексов \(A' \), вне которого все \(\lambda_a = 0 \). Скаляры \(\lambda_a \) называются коэффициентами линейной комбинации (3).

В частности, линейные комбинации конечного семейства векторов \((x_k)_{1 \leq k \leq n} \) — это все возможные суммы вида

\[
x = \sum_{k=1}^{n} \lambda_k x_k,
\]

где \(\lambda_1, \ldots, \lambda_n \in \mathbb{K} \).

Нулевой вектор считается, по определению, (единственной) линейной комбинацией пустого семейства векторов.

Замечание. Очевидно, линейная комбинация \(\sum_{l=1}^{m} \lambda_{k_l} x_{k_l} \) всякого подсемейства \((x_{k_l})_{1 \leq l \leq m} \) семейства \((x_k)_{1 \leq k \leq n} \) может быть представлена в виде линейной комбинации (4) всего семейства, в которой \(\lambda_k = 0 \) при \(k \notin \{k_1, \ldots, k_m\} \). Смысл определения 2 заключается в том, что линейную комбинацию всякого конечного подсемейства семейства \((x_a)_{a \in A}\) можно представить в виде формальной линейной комбинации всех векторов семейства, даже если множество индексов его бесконечно.

Так как суммы (3) фактически конечны, то с ними можно оперировать по обычным правилам действий над многочленами.

Определение 3. Пусть \(E \) и \(F \) — векторные пространства над одним и тем же полем \(\mathbb{K} \). Отображение \(\varphi \) про-
страпанства E в F называют изоморфизмом E на F, если оно взаимно однозначно, $\varphi(E) = F$ и

$$\varphi(x + y) = \varphi(x) + \varphi(y), \quad \varphi(\lambda x) = \lambda \varphi(x)$$

(5)

для всех $x, y \in E$ и $\lambda \in K$. Если существует изоморфизм E на F, то говорят, что E изоморфно F; мы будем выражать это записью $E \sim F$.

Примеры. 1. Введя на плоскости декартовы координаты с началом O и отнеси каждому направленному отрезку \overrightarrow{OM} упорядоченную пару его координат (x, y), получим изоморфизм пространства примера 1 к определению 1 на \mathbb{R}^2.

Аналогично, отнеси отрезку \overrightarrow{OM} число $x + iy$, получим изоморфизм пространства примера 2 к определению 1 на \mathbb{C}^1.

2. Всякая гомотетия в векторном пространстве E есть изоморфизм E на себя.

3. Можно показать, что векторные пространства примеров 5—8 к определению 1 изоморфны.

В. Очевидно, изоморфизм φ векторного пространства E на векторное пространство F есть также изоморфизм аддитивной группы E на аддитивную группу F. В частности, $\varphi(0) = 0$.

Г. Из условий (5) следует, что изоморфизм E на F переводит каждую линейную комбинацию $\sum_{\alpha \in A} \lambda_{\alpha} x_{\alpha}$ семейства векторов $(x_{\alpha})_{\alpha \in A}$ из E в такую же линейную комбинацию $\sum_{\alpha \in A} \lambda_{\alpha} y_{\alpha}$ семейства $(y_{\alpha})_{\alpha \in A}$ их образов в F.

Д. Совершенно так же, как в 2.1.Л для изоморфизма групп, можно установить, что отношение изоморфизма векторных пространств рефлексивно, симметрично и транзитивно; при этом, если φ — изоморфизм E на F, то φ^{-1} — изоморфизм F на E. Векторные пространства E и F, для которых существует изоморфизм E на F (а значит, и изоморфизм F на E), называют изоморфными.

Так, вещественное векторное пространство, ассоциированное с \mathbb{C}^n, изоморфно \mathbb{R}^{2n}; изоморфизм осуществляется, например, отнесением каждой точке $(z_1, \ldots, z_n) \in \mathbb{C}^n$ точки $(x_1, \ldots, x_n, y_1, \ldots, y_n) \in \mathbb{R}^{2n}$, где $x_k = Re z_k$, $y_k = Im z_k$ ($k = 1, \ldots, n$).
2. Подпространства

Определение 4. Пусть E — векторное пространство над K. Всякое множество $F \subseteq E$, являющееся векторным пространством над K относительно индуцированных из E операций сложения и умножения на скаляры, называют векторным подпространством или просто подпространством векторного пространства E. Для обозначения того, что F есть подпространство векторного пространства E, мы будем пользоваться записью $F \subseteq E$.

Пример. Совокупность $C^\infty(I)$ всех бесконечно дифференцируемых комплексных функций на интервале $I \subseteq \mathbb{R}$, которые вместе с каждой своей производной стремятся к нулю при стремлении аргумента к (возможно, бесконечно удаленным) концам этого интервала, есть подпространство пространства $C^\infty(I)$.

А. К числу подпространств векторного пространства E, очевидно, относятся само E и $\{0\}$. E называется несобственным подпространством, а $\{0\}$ — нулевым. Подпространства, отличные от E, называются собственными.

Б. Очевидно, для того чтобы $F \subseteq E$, (необходимо и) достаточно, чтобы F было подгруппой аддитивной группы E, инвариантной относительно гомотетий, т. е. такой, что $\lambda F = F$ для всех скаляров $\lambda \neq 0$.

В. Для того чтобы $F \subseteq E$, (необходимо и) достаточно, чтобы были выполнены следующие условия:

1° $F \neq \Phi$,

2° если $x, y \in F$, то $x + y \in F$,

3° если $x \in F$, то $\lambda x \in F$ для всех скаляров λ.

Действительно, для доказательства нужно лишь повторить сказанное при рассмотрении примера 4 п. 1.

В'. Из В следует, что $F \subseteq E$ тогда и только тогда, когда F вместе со всевким семейством своих векторов $(x_a)_{a \in A}$ содержит любую его линейную комбинацию $\sum_{a \in A} \lambda_a x_a$.

Г. Если $E_1, E_2 \subseteq E$, то и $E_1 + E_2 \subseteq E$. В самом деле, согласно 2.2, $E_1 + E_2$ — подгруппа аддитивной группы E; при этом $\lambda (E_1 + E_2) = \lambda E_1 + \lambda E_2 = E_1 + E_2$ для любого скаляра $\lambda \neq 0$, и остается применить Б.

Д. Пересечение любого семейства подпространств векторного пространства E также является подпро-
страницом пространства E. Действительно, оно не пусто, поскольку во всяком случае содержит нулевой вектор; так же легко проверяется выполнение и остальных двух условий из В.

Е. Пусть A — произвольное множество в векторном пространстве E. A содержится по крайней мере в одном подпространстве: самом E. Пересечение \mathcal{E}_A всех подпространств, содержащих A (являющееся, по Д, подпространством), называется подпространством, порожденным множеством A. Это — наименьшее подпространство в E, содержащее A.

Так как ϕ содержится во всех подпространствах, то

$$\mathcal{E}_\phi = \{0\}.$$
стно \((F_a)_{a \in \Lambda}\) подпространств пространства \(E\) обладает в этом множестве нижней и верхней гранями. А именно, очевидно
\[
\inf_{a \in \Lambda} F_a = \bigcap_{a \in \Lambda} F_a
\]
и
\[
\sup_{a \in \Lambda} F_a = \bigcup_{a \in \Lambda} F_a.
\]

Определение 5. Подпространство \(F\) векторного пространства \(E\), не содержащееся ни в каком отличном от \(F\) собственном подпространстве, будет называться гиперподпространством.

И. Очевидно, векторное пространство \(E\) является своим гиперподпространством.

К. Пусть \(E\) — произвольное векторное пространство над \(K\), образованное функциями, определенными на некотором множестве \(M\) и принимающими значения из \(K\). Пусть, далее, \(t_0\) — произвольная фиксированная точка из \(M\). Совокупность \(H\) всех \(x \in E\), для которых \(x(t_0) = 0\), удовлетворяет условиям \(\Lambda\) и тем самым является в \(E\) подпространством. Покажем, что \(H\) — гиперподпространство. В самом деле, пусть \(H \subset G \subset \subset E\). Если \(x_0 \in G \setminus H\), так что \(x_0(t_0) \neq 0\), то для произвольного \(x \in E\) имеем \(x - \frac{x(t_0)}{x_0(t_0)} x_0 \in H\). Откуда \(x \in H + \frac{x(t_0)}{x_0(t_0)} x_0 \subset G\) и, следовательно, \(G = E\). \(H\) будет собственным гиперподпространством, если в \(E\) действительно имеется функция \(x_0(t)\), для которой \(x_0(t_0) \neq 0\).

3. Аффинные многообразия

Определение 6. Пусть \(E\) — векторное пространство и \(F \subset \subset E\). Множества \(F + a\), получающиеся из \(F\) с помощью переносов на всевозможные векторы \(a \in E\), называются аффинными многообразиями, параллельными \(F\) (и друг другу). Аффинные многообразия, содержащие нулевой вектор, называются однородными.

А. Очевидно, каждое подпространство векторного пространства \(E\) является вместе с тем аффинным многообразием. Мы будем называть \(E\) несобственным аффинным многообразием, а аффинные многообразия, отличные от \(E\), — собственными.
§ 31

Основные понятия

Б. По определению Б, аффинные многообразия векторного пространства E — это смежные классы E по его подпространствам, рассматриваемым как подгруппы адутивной группы E (см. 2.3.А). Отсюда вытекают, в частности, следующие свойства аффинных многообразий:

1° Аффинное многообразие однородно тогда и только тогда, когда оно является подпространством.

2° Если L — аффинное многообразие, параллельное подпространству F, то $F = L - x$, где x — любой вектор из L, и потому также $F = L - L$.

3° Через каждую точку $x_0 \in E$ проходит однозначно определенное аффинное многообразие, параллельное заданному подпространству F, а именно, представимое в виде $F + x_0$.

В. Пересечение семейства аффинных многообразий $(L_\alpha)_{\alpha \in \Lambda}$ либо пусто, либо есть аффинное многообразие, параллельное подпространству $F = \bigcap_{\alpha \in \Lambda} F_\alpha$, где F_α — подпространство $L_\alpha - L_\alpha$, параллельное L_α. Действительно, если $a \in \bigcap_{\alpha \in \Lambda} L_\alpha$, то, по $\text{Б} 2^°$, $L_\alpha - a = F_\alpha$ для каждого $\alpha \in \Lambda$ и, значит, $\bigcap_{\alpha \in \Lambda} L_\alpha = \bigcap_{\alpha \in \Lambda} (F_\alpha + a) = \bigcap_{\alpha \in \Lambda} F_\alpha + a$.

Г. Непустое подмножество A векторного пространства E содержит по крайней мере в одном аффинном многообразии: самом E. Пересечение L_A всех аффинных многообразий, содержащих A (являющееся, по В, аффинным многообразием), называется аффинным многообразием, порожденным множеством A. Это — наименьшее аффинное многообразие, содержащее A.

Г′. Аффинное многообразие L_A, порожденное множеством A, можно определить как совокупность всевозможных линейных комбинаций $\lambda_0 a_0 + \lambda_1 a_1 + \ldots + \lambda_n a_n$, где $a_0, a_1, \ldots, a_n \in A$ и $\lambda_0 + \lambda_1 + \ldots + \lambda_n = 1$; при этом один из векторов a_0, a_1, \ldots, a_n, скажем, a_0, можно считать фиксированным. Действительно, в силу Б

$$L_A = \mathbf{E}_A - a + a_0, \quad (1)$$

а так как в силу 2.Ж $\mathbf{E}_A - a_0$ — совокупность всевозможных линейных комбинаций вида $\lambda_1 (a_1 - a_0) + \ldots + \lambda_n (a_n - a_0)$, где $a_1, \ldots, a_n \in A$, то L_A — совокупность всевозможных...
линейных комбинаций вида \(\lambda_0 a_0 + \lambda_1 a_1 + \ldots + \lambda_n a_n \), где
\(\lambda_0 = 1 - \lambda_1 - \ldots - \lambda_n \) и, значит,
\(\lambda_0 + \lambda_1 + \ldots + \lambda_n = 1 \).

Отсюда легко следует, что аффинные многообразия в \(E \) можно охарактеризовать как непустые множества \(L \subset E \), которые вместе с каждым конечным семейством своих векторов \((a_k)_{0 \leq k < n} \) содержат любую линейную комбинацию \(\lambda_0 a_0 + \ldots + \lambda_n a_n \), в которой \(\lambda_0 + \ldots + \lambda_n = 1 \).

Д. Аффинным многообразием \(\mathcal{L}_A \), порожденным непустым семейством векторов \(A = (a_a)_{a \in \Lambda} \), называется аффинное многообразие, порожденное множеством \(A \) векторов этого семейства. Из \(\Gamma \) следует, что \(\mathcal{L}_A \) можно охарактеризовать как совокупность всевозможных линейных комбинаций \(\sum_{a \in \Lambda} \lambda_a a_a \), удовлетворяющих условию
\(\sum_{a \in \Lambda} \lambda_a = 1 \).

Е. Сумма \(L_1 + L_2 \) аффинных многообразий \(L_1, L_2 \) векторного пространства \(E \) также есть аффинное многообразие. Действительно, \(L_1 = F_1 + a_1, L_2 = F_2 + a_2 \), где
\(F_1, F_2 \subset \subset E \) и \(a_1, a_2 \in E \). Поэтому \(L_1 + L_2 = (F_1 + F_2) \) + \((a_1 + a_2) \), и остается принять во внимание 2.Г.

Определение 7. Аффинное многообразие \(L \) векторного пространства \(E \), не содержащееся ни в каком отличном от \(L \) собственном аффинном многообразии, будет называться гиперплоскостью.

Ж. Очевидно, векторное пространство \(E \) является своей гиперплоскостью.

З. Гиперплоскости можно определить как аффинные многообразия, параллельные гиперподпространствам. Действительно, пусть \(L \) — аффинное многообразие, параллельное подпространству \(F \), так что \(L = F + a \), где \(a \in L \), и пусть \(L' \) и \(F' \) — аффинное многообразие и подпространство, содержащие соответственно \(L \) и \(F \) как собственное подмножество. По Б 2.0, \(L' - a \) — подпространство; оно содержит \(F \) как собственное подмножество; поэтому, если \(F \) — гиперподпространство, то \(L' - a = E \), откуда \(L' = E + a = E \) и, значит, \(L \) — гиперплоскость. Обратно, \(F' + a \) есть аффинное многообразие, содержащее \(L \) как собственное подмножество, так что если \(L \) — гиперплоскость, то \(F' + a = E \), откуда \(F' = E \) и, следовательно, \(F \) — гиперподпространство.
§ 3] ОСНОВНЫЕ ПОНЯТИЯ 43

3'. Из 3 и B1° следует, что гиперплоскость однородна тогда и только тогда, когда она является гиперпоздпространством.

Определение 8. Пряма в векторном пространстве называется всякое аффинное многообразие, параллельное подпространству \mathfrak{E}_t, порожденному каким-либо ненулевым вектором t (называемым направляющим вектором прямой). В частности (см. B1°), однородные прямые — это сами подпространства \mathfrak{E}_t.

И. Пусть E — векторное пространство над K. Из B3° следует, что через каждую точку $x_0 \in E$ проходит однозначно определенная прямая l с заданным направляющим вектором t, а именно, $l = \mathfrak{E}_t + x_0$, так что точки прямой l — это точки, представимые в виде

$$x = x_0 + \lambda t,$$

где λ пробегает K. Отсюда следует также, что через каждые две различные точки $x_0, x_1 \in E$ проходит однозначно определенная прямая, а именно, представимая уравнением

$$x = (1 - \lambda) x_0 + \lambda x_1,$$

где λ пробегает K. Действительно, совокупность l всех точек $x \in E$, удовлетворяющих уравнению (3), т. е. уравнению $x = x_0 + \lambda(x_1 - x_0)$, есть, по доказанному, прямая, проходящая через x_0; подставляя $\lambda = 1$, видим, что она проходит также через x_1. Обратно, если l — прямая, проходящая через x_0 и x_1, то, по доказанному, она представима уравнением вида $x = x_0 + \mu t$; в частности, $x_1 = x_0 + \mu_1 t$ (где $\mu_1 \neq 0$), откуда $t = \mu_1^{-1}(x_1 - x_0)$ и, значит, l представима уравнением $x = x_0 + \lambda(x_1 - x_0)$ или (3), где $\lambda = \mu \mu_1^{-1}$ вместе с μ пробегает K.

Уравнения (2) и (3) называются параметрическими уравнениями прямой (определяемой точкой и направляющим вектором или соответственно двумя точками), а λ — параметром точки на прямой.

К. Из Γ' следует, что прямая (3), проходящая через точки x_0 и $x_1 \neq x_0$ аффинного многообразия L, целиком содержится в L и является наименьшим аффинным многообразием, содержащим точки x_0 и x_1.
Можно показать, что подмножество векторного пространства есть аффинное многообразие тогда и только тогда, когда оно не пусто и вместе с любым двумя своими различными точками содержит всю проходящую через них прямую.

4. Факторпространства. Дополнительные подпространства. Произведение и сумма семейства векторных пространств

А. Пусть \(F \subset E \). Факторгруппа \(E/F \) аддитивной группы \(E \) по ее подгруппе \(F \) является векторным пространством, если умножение на скаляры определено в \(E/F \) формулой

\[
\lambda \cdot (F + a) = F + \lambda a. \tag{1}
\]

Действительно, если \(F + a = F + a' \), т.е. \(a' - a \in F \), то

\[
\lambda \cdot (F + a') = F + \lambda a' = F + \lambda (a' - a) + \lambda a = \]

\[
= F + \lambda a = \lambda \cdot (F + a),
\]

так что определение умножения на скаляры в \(E/F \) формуле (1) однозначно. При этом

а) \((\lambda \mu) \cdot (F + a) = F + (\lambda \mu) a = F + \lambda (\mu a) = \lambda \cdot (F + \mu a) = \)

\[
= \lambda \cdot [\mu \cdot (F + a)];
\]

б) \(1 \cdot (F + a) = F + 1a = F + a; \)

в) \(\lambda \cdot [(F + a) + (F + b)] = \lambda \cdot [F + (a + b)] = F + \)

\[
+ \lambda (a + b) = (F + \lambda a) + (F + \lambda b) = \lambda \cdot (F + a) + \lambda \cdot (F + b);
\]

г) \((\lambda + \mu) \cdot (F + a) = F + (\lambda + \mu) a = (F + \lambda a) + (F + \mu a) = \)

\[
= \lambda \cdot (F + a) + \mu \cdot (F + a).
\]

Тем самым выполнены все условия определения 1.

Замечание. Легко проверить, что \(\lambda \cdot (F + a) = \lambda (F + a) \) для всех \(\lambda \neq 0 \); но \(0 \cdot (F + a) = F, \) а \(0 (F + a) = \{0\}, \) так что \(0 \cdot (F + a) \neq 0 (F + a), \) если \(F \neq \{0\}. \)

Определение 9. Пусть \(F \subset \subset E \). Векторное пространство, получающееся, если факторгруппу аддитивной группы \(E \) по ее подгруппе \(F \) наделять умножением на скаляры по формуле (1), называют факторпространством \(E \) по \(F \) и обозначают по-прежнему \(E/F \).

Б. Для того чтобы собственное подпространство \(H \) векторного пространства \(E \) над \(K \) было гиперподпространством, необходимо и достаточно, чтобы \(E/H \) было изоморфно \(K^1 \), т.е. совпадало со своим подпространством, порожденным каким-нибудь классом \(A = H + a \), где \(a \notin H \). Действительно, в силу 2.Г \(H + \mathfrak{a} \) есть подпро-

§ 3] основные понятия

Пространство в E, очевидно, содержащее H как собственное подмножество. Следовательно, если H — гиперподпространство, то $H + \mathbb{S}_a = E$ и потому $E/H = \{ H + \lambda a : \lambda \in K \} = \{ \lambda \cdot (H + a) : \lambda \in K \} = \mathbb{S}_a$, где $A = \{ H + a \}$. Обратно, если $E/H = \mathbb{S}_a$, то для каждого $x \in E$ существует $\lambda_x \in K$ такое, что $H + x = H + \lambda_x a$, откуда $x = h_x + \lambda_x a$, где $h_x \in H$. Пусть G — подпространство в E, содержащее H как собственное подмножество, и $x_0 = h_{x_0} + \lambda_x a$ — фиксированный вектор из $G \setminus H$. Тогда для любого $x \in E$ имеем

$$ x = \frac{\lambda_x}{\lambda_{x_0}} x_0 + \left(h_x - \frac{\lambda_x}{\lambda_{x_0}} h_{x_0} \right) \in G,$$

так что $G = E$ и, значит, H — гиперподпространство.

Определение 10. Говорят, что векторное пространство E есть прямая сумма подпространств E_1, \ldots, E_n, и пишут

$$ E = E_1 \oplus \ldots \oplus E_n,$$

если аддитивная группа E есть прямая сумма своих подгрупп E_1, \ldots, E_n. Если $E = E_1 \oplus E_2$, то каждое из подпространств E_1, E_2 называют дополнительным к другому.

В. Согласно 2.4 А, для того чтобы E было прямой суммой своих подпространств E_1, E_2, необходимо и достаточно, чтобы $E = E_1 + E_2$ и $E_1 \cap E_2 = \{ 0 \}$.

Г. Если $E = E_1 \oplus E_2$, то $E/E_1 \sim E_2$ (и также $E/E_2 \sim E_1$). Изоморфизм E_2 на E/E_1 осуществляется отображением φ, относящим каждому вектору $x_2 \in E_2$ класс $E_1 + x_2 \in E/E_1$. Действительно, в силу 2.4.Б φ есть изоморфизм подгруппы E_2 на факторгруппу E/E_1; с другой стороны,

$$ \varphi (\lambda x_2) = E_1 + \lambda x_2 = \lambda \cdot (E_1 + x_2) = \lambda \varphi (x_2).$$

φ называется каноническим изоморфизмом E_2 на E/E_1.

Д. Если H — собственное гиперподпространство векторного пространства E, то $E = H \oplus \mathbb{S}_a$, где a — произвольный фиксированный вектор из $E \setminus H$. Действительно, мы уже видели в Б, что $E = H + \mathbb{S}_a$; с другой стороны, очевидно, $H \cap \mathbb{S}_a = \{ 0 \}$, и остается применить В. При этом всякое подпространство F, дополнительное к собственному гиперподпространству H, имеет вид \mathbb{S}_a, где $a \notin H$. В самом деле, по Г, $F \sim E/H$. Но согласно Б $E/H \sim K^1$. Следовательно (1.Д), $F \sim K^1$, и остаётся применить 2.Ж'.
Е. Обратно, если \(E = H \oplus \mathcal{E}_a \), где \(a \neq 0 \), то \(H \) — собственное гиперподпространство. Действительно, согласно \(\Gamma \) \(E/\mathcal{H} \sim \mathcal{E}_a \), и остается применить В.

Теорема 1. Всякое подпространство \(F \) векторного пространства \(E \), имеющее нулевое пересечение с заданным подпространством \(E_1 \), содержит в некотором подпространстве \(E_2 \), дополнительном к \(E_1 \).

Доказательство. Пусть \(\mathcal{F} \) — множество всех подпространств \(E \), содержащих \(F \) и имеющих нулевое пересечение с \(E_1 \). Упорядоченное по возрастанию, \(\mathcal{F} \) индуктивно, а именно, верхней гранью в \(\mathcal{F} \) всякой цепи \(C \subset \mathcal{F} \) служит объединение \(G \) всех образующих ее подпространств. Действительно, очевидно, \(C \cap E_1 = \{0\} \) и нужно лишь показать, что \(G \) — подпространство. Но это следует из 2.В. В самом деле, если \(x, y \in G \), то \(x \in F_1 \), \(y \in F_2 \), где \(F_1, F_2 \in C \). Так как \(C \) — цепь, то, скажем, \(F_1 \subset F_2 \). Но тогда \(x + y \in F_2 \) и, следовательно, \(x + y \in G \). Совершенно так же \(\lambda x \in G \) для любого скаляра \(\lambda \). Из индуктивности множества \(\mathcal{F} \), в силу принципа максимального элемента, следует, что в \(E \) существует подпространство \(E_2 \), удовлетворяющее условию \(E_1 \cap E_2 = \{0\} \) и не содержащееся ни в каком другом таком подпространстве. Для завершения доказательства остается показать, что \(E = E_1 + E_2 \) (см. 2.В).

Пусть \(E \neq E_1 + E_2 \), \(x_0 \in E \setminus (E_1 + E_2) \) и \(z \in E_1 \cap (E_2 + \mathcal{E}_{x_0}) \), так что \(z = x = y + \lambda x_0 \), где \(x \in E_1 \) и \(y \in E_2 \). Если \(\lambda \neq 0 \), то \(x_0 = \frac{x - y}{\lambda} \in E_1 + E_2 \), что противоречит условию. Следовательно, \(\lambda = 0 \), так что \(z = x = y \in E_1 \cap E_2 \), откуда \(z = 0 \).

Таким образом, \(E_1 \cap (E_2 + \mathcal{E}_{x_0}) = \{0\} \). Однако, поскольку \(x_0 \notin E_2 \), это противоречит максимальности \(E_2 \), и теорема доказана.

Следствие 1. Всякое подпространство \(E_1 \) векторного пространства \(E \) обладает дополнительным подпространством.

Доказательство. Достаточно взять в теореме 1 \(F = \{0\} \).

Следствие 2. Каждое подпространство \(F \) пространства \(E \), не содержащее заданного ненулевого вектора \(x_0 \in E \), содержит в гиперподпространстве, обладающем тем же свойством (и, значит, каждое аффинное много-
образе, не содержащее заданного вектора \(z_0 \), содержится в гиперплоскости, не содержащей \(z_0 \).

Доказательство. В силу предположения, \(F \cap \mathcal{E}_{x_0} = \{0\} \). Следовательно, по теореме 1, существует подпространство \(H \supseteq F \), дополнительное к \(\mathcal{E}_{x_0} \). Согласно Е \(H \) — гиперподпространство, и, очевидно, \(x_0 \notin H \).

Следствие 3. Для каждого ненулевого вектора \(x_0 \in E \) существует не содержащее его собственное гиперподпространство.

Доказательство. Достаточно взять в следствии 2 \(F = \{0\} \).

Следствие 4. Всякое подпространство пространства \(E \) является пересечением гиперподпространств (и, значит, каждое аффинное многообразие — пересечением гиперплоскостей). В частности, нулевое подпространство есть пересечение множества всех гиперподпространств.

Доказательство непосредственно вытекает из следствия 2.

Ж. Из следствия 2 теоремы 1 вытекает, что каждое собственное подпространство векторного пространства содержится в собственном гиперподпространстве.

Определение 11. Пусть \((E_a)_{a \in \Lambda} \) — семейство векторных пространств над одним и тем же полем \(K \). Прямое произведение (прямая сумма) аддитивных групп \(E_a \), очевидно, превращается в векторное пространство, если умножение на скаляры \(\lambda \in K \) определено формулой

\[
\lambda \left((x_a)_{a \in \Lambda} \right) = (\lambda x_a)_{a \in \Lambda},
\]

т. е. выполняется покoordинатно. Это векторное пространство называется произведением (суммой) семейства векторных пространств \((E_a)_{a \in \Lambda} \) и обозначается по-прежнему \(\Pi_{a \in \Lambda} E_a \) (\(\sum_{a \in \Lambda} E_a \)).

Если все \(E_a \) совпадают с одним и тем же векторным пространством \(E \), то вместо \(\Pi_{a \in \Lambda} E_a \) и \(\sum_{a \in \Lambda} E_a \) пишут соответственно \(E^\Lambda \) и \(E^{(\Lambda)} \); а поскольку пространства \(E^\Lambda \) и \(E^{(\Lambda)} \), равно как \(E^{(\Lambda')} \) и \(E^{(\Lambda')} \), с равномощными множествами индексов \(\Lambda \) и \(\Lambda' \), очевидно, изоморфны, обозначения \(E^\Lambda \) и \(E^{(\Lambda)} \) заменяют
иногда на E^a и $E^{(a)}$, где a — мощность множества A. Так, пространство K^n есть не что иное, как произведение n экземпляров пространства K.

3. Очевидно, $\sum_{a \in A} E_a \subset \prod_{a \in A} E_a$ (ср. определение 7 § 2). Отображение, относящее каждому элементу $(x_a)_{a \in A} \in \sum_{a \in A} E_a$ этот же элемент в $\prod_{a \in A} E_a$, будет называться каноническим вложением $\sum_{a \in A} E_a$ в $\prod_{a \in A} E_a$.

5. Линейная зависимость и независимость

Определение 12. Пусть E — векторное пространство, $a \in E$ и $A \subset E$. Смотря по тому, будет ли $a \in E_A$ или $a \notin E_A$, мы будем говорить, что a зависит или соответственно не зависит линейно от A (или от векторов множества A). Линейной зависимостью между векторами множества A будет называться всякое соотношение вида

$$\sum_{a \in A} \lambda_a a = 0,$$

в котором по крайней мере один из коэффициентов $\lambda_a \neq 0$. A будет называться линейно зависимым, если между его векторами имеется линейная зависимость, и линейно независимым, или репером, — в противном случае.

A. Пустое множество является репером. Действительно, в силу самого определения линейно зависимое множество не пусто.

B. Из определения 12 непосредственно следует, что непустое множество A является репером тогда и только тогда, когда равенство $\sum_{a \in A} \lambda_a a = 0$ имеет место лишь при условии, что все коэффициенты $\lambda_a = 0$.

В. Множество $A = \{a\}$ является репером тогда и только тогда, когда $a \neq 0$. В самом деле, $\lambda a = 0$ влечет $\lambda = 0$, лишь если $a \neq 0 (1, A5)$.

Г. Всякое подмножество A' репера A является репером. Действительно, для $A' = \emptyset$ это уже установлено в A. A если бы между векторами непустого множества $A' \subset A$
имелась линейная зависимость $\sum_{a \in A} \lambda_a a = 0$, то, положив $\lambda_a = 0$ для всех $a \in A \setminus A'$, мы получили бы линейную зависимость (1) между векторами репера A, что невозможно.

Д. Из Γ и β следует, что все векторы репера отличны от нуля.

Е. Для того чтобы множество $A \subseteq E$ было репером, необходимо и достаточно, чтобы всякое его конечное подмножество было репером (т. е. линейная независимость множества есть свойство конечного характера). Действительно, необходимость следует из Γ, а достаточность — из того, что всякая линейная зависимость между векторами множества является линейной зависимостью между векторами некоторого его конечного подмножества.

Ж. Нулевой вектор зависит линейно от любого множества $A \subseteq E$. В самом деле, $0 \notin \mathcal{E}_A$.

З. Множество $A \subseteq E$ линейно зависит тогда и только тогда, когда некоторый вектор $a_0 \in A$ зависит линейно от $A \setminus \{a_0\}$. Действительно, если $A = \{a_0\}$, то это следует из β, Ж и того, что $\mathcal{E}_\Phi = \{0\}$. Пусть A не одноточечно. Если его векторы связаны линейной зависимостью (1), где, скажем, $\lambda_{a_0} \neq 0$, то $a_0 = - \sum_{a \in A \setminus \{a_0\}} \lambda_a a \in \mathcal{E}_{A \setminus \{a_0\}}$, т. е. a_0 зависит линейно от $A \setminus \{a_0\}$. Обратно, если некоторый вектор $a_0 \in A$ зависит линейно от $A \setminus \{a_0\}$, так что $a_0 = \sum_{a \in A \setminus \{a_0\}} \lambda_a a$, то, положив $\lambda_{a_0} = -1$, получим соотношение (1), в котором $\lambda_{a_0} \neq 0$, т. е. линейную зависимость между векторами множества A.

И. Вектор а репера A не зависит линейно ни от какого не содержащего его множества $B \subseteq A$. В самом деле, в противном случае множество $A' = B \cup \{a\} (\subseteq A)$ было бы, в силу З, линейно зависимым, что противоречит Γ.

К. Если $A = A_1 \cup A_2$ — разбиение репера A на непересекающиеся множества A_1, A_2, то $\mathcal{E}_A = \mathcal{E}_{A_1} \oplus \mathcal{E}_{A_2}$. Действительно, при $A_1 = \Phi$ или $A_2 = \Phi$ это очевидно. Пусть $A_1 \neq \Phi$ и $A_2 \neq \Phi$. Если $x \in \mathcal{E}_A$, то (2.) $x = \sum_{a \in A} \lambda_a a = \sum_{a_1 \in A_1} \lambda_{a_1} a_1 + \sum_{a_2 \in A_2} \lambda_{a_2} a_2 \in \mathcal{E}_{A_1} + \mathcal{E}_{A_2}$. Тем самым $\mathcal{E}_A = \mathcal{E}_{A_1} + \mathcal{E}_{A_2}$.

С другой стороны, если $x \in \mathcal{E}_{A_1} \cap \mathcal{E}_{A_2}$, так что $x = \sum_{a_1 \in A_1} \lambda_{a_1} a_1 =$
\[= \sum_{a_2 \in A_2} (\lambda_{a_2}) a_2, \text{ то } \sum_{a \in A} \lambda_a a = 0, \text{ откуда в силу Б все } \lambda_a = 0, \text{ т. е. } x = 0. \text{ Тем самым } \mathcal{E}_{A_1} \cap \mathcal{E}_{A_2} = \{0\}, \text{ и остается применить 4.Б.} \]

Л. Если \(A_1 \) и \(A_2 \) — реперы и \(\mathcal{E}_{A_1} \cap \mathcal{E}_{A_2} = \{0\}, \text{ то } A = A_1 \cup A_2 \text{ — репер.} \text{ Действительно, при } A_1 = \emptyset \text{ или } A_2 = \emptyset \text{ это очевидно. Пусть } A_1 \neq \emptyset \text{ и } A_2 \neq \emptyset, \text{ и } \sum_{a \in A} \lambda_a a = \sum_{a \in A_1} \lambda_a a_1 + \sum_{a_2 \in A_2} \lambda_a a_2 = 0, \text{ так что } \sum_{a_2 \in A_1} \lambda_a a_1 = \sum_{a_2 \in A_2} (\lambda_a a_2). \text{ Так как } \sum_{a_2 \in A_2} \lambda_a a_1 \in \mathcal{E}_{A_1}, \sum_{a_2 \in A_2} (\lambda_a a_2) \in \mathcal{E}_{A_2}, \text{ а } \mathcal{E}_{A_1} \cap \mathcal{E}_{A_2} = \{0\}, \text{ то } \sum_{a \in A_1} \lambda_a a_1 = \sum_{a_2 \in A_2} \lambda_a a_2 = 0. \text{ Но поскольку } A_1 \text{ и } A_2 \text{ — непустые реперы, в силу Б } \lambda_a = 0 \text{ для всех } a \in A. \text{ Значит, снова в силу Б, } A \text{ — репер.} \]

М. Если \(A_1 \) — репер и \(a_0 \) не зависит линейно от \(A_1 \), то \(A = A_1 \cup \{a_0\} \text{ — репер.} \text{ Действительно, в силу Ж и } A_2 = \{a_0\} \text{ — репер.} \text{ Так как, с другой стороны, очевидно, } \mathcal{E}_{A_1} \cap \mathcal{E}_{a_0} = \{0\}, \text{ то остается применить Л.} \]

Н. Если \(A \text{ — репер в } E \text{ и } \varphi \text{ — изоморфизм } E \text{ на } F, \text{ то } B = \varphi(A) \text{ — репер в } F. \text{ В самом деле, если } A = \emptyset, \text{ то также } B = \emptyset \text{ и } B \text{ — репер в силу } A. \text{ Пусть } A \neq \emptyset \text{ (так что и } B \neq \emptyset), \text{ и пусть } \sum_{b \in B} \mu_b b = 0. \quad (2) \]

Положим \(\lambda_a = \mu_b, \text{ где } b = \varphi(a). \text{ Так как } \varphi^{-1} \text{ — изоморфизм } F \text{ на } E \text{ (1.Д), то из (2) в силу 1.В, Г следует, что } \sum_{a \in A} \lambda_a a = \sum_{b \in B} \mu_b \varphi^{-1}(b) = \varphi^{-1} \left(\sum_{b \in B} \mu_b b \right) = 0. \text{ Но тогда, по } B, \lambda_a = 0 \text{ для всех } a \in A, \text{ т. е. } \mu_b = 0 \text{ для всех } b \in B. \text{ Тем самым } B \text{ — репер.} \]

О. Понятия, введенные в определении 12 для подмножеств векторного пространства \(E \), естественно переносятся на семейство векторов пространства. В частности, линейной зависимостью, связывающей семейство векторов \(\mathcal{A} = (a_\alpha)_{\alpha \in A}, \text{ называют всякое соотношение вида } \sum_{\alpha \in A} \lambda_\alpha a_\alpha = 0, \quad (1') \] в котором по крайней мере один из коэффициентов \(\lambda_\alpha \neq 0; \text{ если такое соотношение существует, то } \mathcal{A} \text{ называется}
линейно зависимым, в противном случае — линейно независимым. В переводе на эту терминологию линейная зависимость (независимость) множества $A \subseteq E$ означает не что иное, как линейную зависимость (независимость) семейства $\mathcal{A} = \{a_a\}_{a \in A}$, в котором $a_a = a$. Более общим образом, множество $A \subseteq E$ линейно зависимо (независимо) тогда и только тогда, когда линейно зависимо (независимо) произвольное представление его в виде семейства $\mathcal{A} = \{a_a\}_{a \in A}$, где

$$a \rightarrow a_a$$

(3)

взаимно однозначное отображение множества индексов A на множество векторов Λ. Действительно, всякая линейная зависимость между векторами множества Λ, вследствие взаимной однозначности отображения (3), влечет линейную зависимость с теми же коэффициентами, связывающую семейство \mathcal{A}, и обратно. С другой стороны, если отображение (3) множества индексов A на множество векторов Λ семейства $\mathcal{A} = \{a_a\}_{a \in A}$ не взаимно однозначно, то семейство \mathcal{A} линейно зависимо. В самом деле, если двум различным индексам a', a'' отвечает один и тот же вектор $a_{a'} = a_{a''}$, то \mathcal{A} связано линейной зависимостью (1'), в которой $\lambda_{a'} = 1$, $\lambda_{a''} = -1$ и $\lambda_a = 0$ для всех других индексов a.

Из сказанного следует, что семейство $\mathcal{A} = \{a_a\}_{a \in A}$ линейно независимо тогда и только тогда, когда отображение (3) взаимно однозначно, а множество векторов семейства является репером. Основываясь на этом, мы будем, там, где это окажется удобным, отождествлять линейно независимое семейство векторов с репером, образованным векторами семейства, или, напротив, рассматривать репер как линейно независимое семейство векторов.

П. Непустое семейство векторов $\mathcal{A} = \{a_a\}_{a \in A}$ называется аффинно независимым, если соотношения $\sum_{a \in A} \lambda_a a_a = 0$ и $\sum_{a \in A} \lambda_a = 0$ выполняются одновременно лишь когда все $\lambda_a = 0$, и аффинно зависимым — в противном случае. Согласно 3.П аффинное многообразие \mathcal{L}_A, порожденное семейством \mathcal{A}, есть совокупность всех возможных векторов, представимых в виде

$$x = \sum_{a \in A} \xi_a a_a, \quad \text{где} \quad \sum_{a \in A} \xi_a = 1.$$

(4)
Для аффинной независимости семейства \mathcal{A} необходимо, чтобы каждый вектор из $\mathcal{L}_{\mathcal{A}}$, и достаточно, чтобы хотя бы один вектор $x \in \mathcal{L}_{\mathcal{A}}$ обладал единственным представлением вида (4).

Действительно, пусть $x = \sum_{a \in A} \xi_a a_a = \sum_{a \in A} \eta_a a_a$, где $\sum_{a \in A} \xi_a = \sum_{a \in A} \eta_a = 1$.

Положим $\lambda_a = \xi_a - \eta_a$. Тогда $\sum_{a \in A} \lambda_a a_a = 0$ и $\sum_{a \in A} \lambda_a = 0$, так что, если \mathcal{A} аффинно независимо, все $\lambda_a = 0$, т. е. $\xi_a = \eta_a$. Обратно, пусть $\sum_{a \in A} \lambda_a a_a = 0$ и $\sum_{a \in A} \lambda_a = 0$. Тогда каждый вектор $x \in \mathcal{L}_{\mathcal{A}}$ наряду с представлением (4) допускает также представление $x = \sum_{a \in A} (\xi_a + \lambda_a) a_a$, где $\sum_{a \in A} (\xi_a + \lambda_a) = 1$, так что если хотя бы для одного вектора $x \in \mathcal{L}_{\mathcal{A}}$ представление (4) единственно, то $\xi_a + \lambda_a = \xi_a$, т. е. $\lambda_a = 0$, для всех $a \in A$ и, значит, \mathcal{A} аффинно независимо.

Если семейство \mathcal{A} аффинно независимо, то (4) называют барицентрическим разложением вектора $x \in \mathcal{L}_{\mathcal{A}}$ по аффинному базису \mathcal{A} аффинного многообразия $\mathcal{L}_{\mathcal{A}}$, а коэффициенты ξ_a этого разложения — барицентрическими координатами вектора x.

Для аффинной независимости семейства \mathcal{A} необходимо, чтобы каждое семейство $(a_a - a_o)_{a \in A \setminus \{a_o\}} (a_o \in A)$, и достаточно, чтобы хотя бы одно из этих семейств было линейно независимо. Действительно, пусть семейство $(a_a - a_o)_{a \in A \setminus \{a_o\}}$

линейно зависимо, так что существует соотношение $\sum_{a \neq a_o} \lambda_a (a_a - a_o) = 0$, в котором не все $\lambda_a = 0$. Положив $\lambda_{a_o} = -\sum_{a \neq a_o} \lambda_a$, получим $\sum_{a \in A} \lambda_a a_a = 0$ и $\sum_{a \in A} \lambda_a = 0$, так что \mathcal{A} будет аффинно зависимым.

Обратно, пусть \mathcal{A} аффинно зависимо, так что, по ранее доказанному, существует вектор $x \in \mathcal{L}_{\mathcal{A}}$, допускающий представления $x = \sum_{a \in A} \xi_a a_a = \sum_{a \in A} \eta_a a_a$, где $\sum_{a \in A} \xi_a = \sum_{a \in A} \eta_a = 1$ и $\xi_{a_1} = \eta_{a_1}$ для некоторого $a_1 \in A$, откуда прежде всего следует, что $A = \{a_1\}$. Взяв произвольный индекс $a_0 \in A \setminus \{a_1\}$, получим $x - a_{a_0} = \sum_{a \neq a_0} \xi_a (a_a - a_{a_0}) = \sum_{a \neq a_0} \eta_a (a_a - a_{a_0})$, откуда $\sum_{a \neq a_0} \lambda_a (a_a - a_{a_0}) = 0$, где $\lambda_a = \xi_a - \eta_a$. Так как $\lambda_{a_0} \neq 0$, это будет означать, что семейство $(a_a - a_{a_0})_{a \in A \setminus \{a_0\}}$ линейно зависимо.

Нетрудно проверить, что семейство \mathcal{A} аффинно независимо тогда и только тогда, когда ни один из его векторов a_a не принадлежит аффинному многообразию, порожденному семейством $(a_a)_{a \in A \setminus \{a_0\}}$.

6. Понятие базиса

Определение 13. Базисом векторного пространства \(E \) называют вский репер \(A \subset E \), порождающий это пространство, т. е. такой, что \(\mathcal{E}_A = E \).

Примеры. 1. Векторы

\[
\begin{align*}
e_1 &= (1, 0, 0, \ldots, 0), & e_2 &= (0, 1, 0, \ldots, 0), & \ldots
\end{align*}
\]

\[
\ldots, e_n = (0, 0, \ldots, 0, 1),
\]

t. е.

\[
e_k = (\delta_{k1}, \ldots, \delta_{kn}) \quad (k = 1, \ldots, n),
\]

образуют базис пространства \(K^n \). Действительно, для каждого вектора \(x = (x_1, \ldots, x_n) \in K^n \) имеем

\[
(x_1, \ldots, x_n) = x_1 e_1 + \ldots + x_n e_n,
\]

(1)

так что \(K^n = \mathcal{E}_{\{e_1, \ldots, e_n\}} \), а обращение правой части (1) в нуль означает, что \(x_1 = \ldots = x_n = 0 \), и потому, в силу 5.Б, \(\{e_1, \ldots, e_n\} \) — репер. Мы будем называть его каноническим базисом пространства \(K^n \).

2. Точно так же, вообще, векторы \(e_\alpha = (\delta_{\alpha \alpha})_\alpha \in A \) образуют базис пространства \(K(A) \) (называемый каноническим базисом этого пространства).

3. Полиномы

\[
P(t) = c_0 + c_1 t + \ldots + c_{n-1} t^{n-1}
\]

степени \(< n \) с вещественными (комплексными) коэффициентами образуют, очевидно, вещественное (комплексное) векторное пространство; обозначим его \(P_n \) (над \(\mathbb{R} \) или соответственно над \(\mathbb{C} \)). Множество \(A = \{1, t, \ldots, t^{n-1}\} \) является базисом этого пространства. В самом деле, очевидно, \(P_n = \mathcal{E}_A \).

С другой стороны, обращение полинома степени \(< n \) в нуль уже в \(n \) различных точках влечет обращение всех его коэффициентов в нуль; тем самым \(A \) — репер.

А. Очевидно, каждый репер является базисом порожденного им подпространства.

Б. В частности, пустое множество служит базисом нулевого векторного пространства (и только его).

В. Пусть \(E \) — непустое векторное пространство. Согласно определению 13, 2.Ж и 5.О, базис пространства \(E \) — это репер \(A \subset E \), обладающий тем свойством, что каждый
вектор $x \in E$ представим в виде линейной комбинации

$$x = \sum_{a \in A} x_a a_a,$$

где A — какое-нибудь фиксированное множество индексов, находящееся с A во взаимно однозначном соответствии $a \rightarrow a_a$. x_a называется a-й координатой вектора x относительно базиса A (при данной индексации последнего), а формула (2) — разложением вектора x по базису A.

Каждый вектор $x \in E$ обладает только одним разложением по базису A (и тем самым координаты вектора относительно базиса однозначно определены). Действительно, если

$$x = \sum_{a \in A} x_a a_a = \sum_{a \in A} x'_a a_a,$$

то $\sum_{a \in A} (x_a - x'_a) a_a = 0$, и, значит, в силу 5.Б $x'_a = x_a$ для всех $a \in A$.

Г. Если A — базис векторного пространства E и φ — изоморфизм E на F, то $B = \varphi(A)$ — базис пространства F. В самом деле, согласно 5.Н, B — репер. Если E — ненулевое, то для каждого $y \in F$ имеем $\varphi^{-1}(y) = x = \sum_{a \in A} x_a a_a$, откуда в силу 1.Г $y = \varphi(x) = \sum_{a \in A} x_a \varphi(a) = \sum_{b \in B} y_b b$, где $\varphi(a) = x_a$. Тем самым B — базис для F. Если же E — нулевое, то также F — нулевое, и справедливость утверждения следует из Б.

Д. Пусть E и F — векторные пространства над одним и тем же полем K и E имеет базис A. E изоморфно F тогда и только тогда, когда F обладает базисом B, равномощным A. Действительно, в случае, когда E — нулевое, справедливость утверждения очевидна. Пусть E — ненулевое. Если F обладает базисом B, равномощным A, то, отнеся каждому вектору $x = \sum_{a \in A} x_a a$ вектор $y = \sum_{a \in A} x_a \varphi(a)$, где φ — взаимно однозначное отображение A на B, получим, очевидно, изоморфизм E на F. Обратно, если φ — изоморфизм E на F, то, согласно Г, $B = \varphi(A)$ — базис пространства F, и так как φ взаимно однозначно, то B равномощно A.

54 ОБЩАЯ ТЕОРИЯ ВЕКТОРНЫХ ПРОСТРАНСТВ [ГЛ. II
§ 3] ОСНОВНЫЕ ПОНЯТИЯ

Е. Каждый базис A является максимальным репером. В самом деле, никакое множество $A \cup \{a\}$, где $a \in E \setminus A$, уже не является репером, поскольку $a \notin S_A$. Обратно, каждый максимальный репер R является базисом. Действительно, если бы какой-нибудь вектор $a \in E$ не зависел линейно от R (так что, в частности, $a \notin R$), то в силу 5.М $R \cup \{a\}$ было бы репером, в противоречие с максимальностью репера R.

Тем самым понятия базиса и максимального репера равносильны.

В заключение докажем следующее важное для дальнейшего предложение.

Лемма о замене. Если R — репер, R' — его правильная часть и вектор s_0 не зависит линейно от R', то существует вектор $r_0 \in R \setminus R'$ такой, что множество S, получающееся из R путем замены r_0 на s_0, также является репером.

Доказательство. Из условий леммы видно, что $R \neq \emptyset$ и ($в силу 5.Ж$) $s_0 \neq 0$. Возможны два случая:

1) s_0 зависит линейно от R, т. е.

$$s_0 = \sum_{r \in R} s_r r.$$ (3)

Так как, по предположению, s_0 не зависит линейно от R', то существует вектор $r_0 \in R \setminus R'$ такой, что $s_{r_0} \neq 0$. Но тогда s_0 не зависит линейно от $R \setminus \{r_0\}$, поскольку в противном случае существовало бы равенство вида $s_0 = \sum_{r \in R \setminus \{r_0\}} \sigma' r$, и, положив $\sigma' = 0$, мы получили бы для вектора s_0 пространства S_R разложение $s_0 = \sum_{r \in R} \sigma' r$, отличное от (3), что противоречит В. Применя 5.Г, M, заключаем, что $S = (R \setminus \{r_0\}) \cup \{s_0\}$ — репер.

2) s_0 не зависит линейно от R. В силу 5.М тогда $R \cup \{s_0\}$ — репер и, значит, согласно 5.Г также S — репер.

7. КОНЕЧНОМЕРНЫЕ ВЕКТОРНЫЕ ПРОСТРАНСТВА

A. В векторном пространстве E, обладающем конечным базисом A, состоящим из n векторов, никакой репер не может содержать более n векторов. Действительно,
пусть \(A = \{a_1, \ldots, a_n\} \). Так как каждая часть репера есть репер (5.Г), то достаточно показать, что в \(E \) не существует репера, состоящего из \(n + 1 \) вектора. Допустим, что такой репер \(R \) существует. Так как \(\{a_1\} \subseteq A \) — репер и, значит, \(a_1 \) не зависит от \(\phi \), то по лемме о замене (при \(R' = \phi \)) существует вектор \(r_1 \in R \) такой, что \((R \setminus \{r_1\}) \cup \{a_1\} \) — репер. Далее, \(\{a_1, a_2\} \subseteq A \) — репер и, значит, \(a_2 \) не зависит линейно от \(\{a_1\} \) (5.И), поэтому по лемме о замене (при \(R' = \{a_1\} \)) существует вектор \(r_2 \in R \) такой, что \((R \setminus \{r_1, r_2\}) \cup \{a_1, a_2\} \) — репер. Продолжая это рассуждение, на \(n \)-м шаге получим, что множество \(\{r_{n+1}\} \cup \{a_1, \ldots, a_n\} \), где \(r_{n+1} \) — некоторый вектор из \(R \), является репером. Но это невозможно, поскольку \(r_{n+1} \) зависит линейно от базиса \(A \).

Б. В векторном пространстве \(E \), обладающем конечным базисом, все базисы состоят из одинакового числа векторов. Действительно, пусть \(A \) и \(B \) — базисы пространства \(E \), причем \(A \) конечен и \(n \) — число его векторов. Применяя \(A \) к базису \(A \) и реперу \(B \), заключаем, что \(B \) конечен и число его векторов \(m \leq n \). Применяя затем \(A \) к базису \(B \) и реперу \(A \), получаем, что \(n \leq m \). Следовательно, \(m = n \).

Определение 14. Векторное пространство \(E \), обладающее конечным базисом, называют конечномерным; число векторов базиса (по доказанному, одинаковое для всех базисов пространства \(E \)) называют размерностью этого пространства и обозначают \(\dim E \). Конечномерные векторные пространства размерности \(n \) называют \(n \)-мерными. Векторные пространства, не обладающие конечным базисом, называют бесконечномерными. Если \(E/F \) конечномерно, то размерность \(E/F \) называют факторразмерностью подпространства \(F \) и обозначают \(\text{codim} F \), а \(F \) называют подпространством конечной факторразмерности.

Пример 1. Нулевое векторное пространство 0-мерно (и обратно, 0-мерное векторное пространство — нулевое). Пространство \(K^n \) \(n \)-мерно. \(C^n \), рассматриваемое как векторное пространство над \(R \), имеет размерность \(2n \), ибо обладает (в обозначениях примера 1 п. 6) базисом \(\{e_1, \ldots, e_n, V^{-1} e_1, \ldots, V^{-1} e_n\} \).

2. Как устанавливается в теории дифференциальных уравнений, совокупность всех решений однородного линейного
§ 3] основные понятия

dифференциального уравнения n-го порядка

\[y^{(n)} + p_1(x) y^{(n-1)} + \ldots + p_{n-1}(x) y' + p_n(x) y = 0, \]

gде \(p_1(x), \ldots, p_n(x) \) — непрерывные функции на интервале \(I \subseteq \mathbb{R} \), является \(n \)-мерным векторным пространством.

В. Если \(\mathcal{F} = (x_k)_{1 \leq k \leq n} \) — конечное семейство элементов векторного пространства, то \(\mathcal{E}_\mathcal{F} \) конечномерно, причем его размерность равна числу \(m \) элементов максимального линейно независимого подсемейства \(\mathcal{F}' \) семейства \(\mathcal{F} \). Действительно, без ограничения общности можно считать, что \(\mathcal{F}' = (x_k)_{1 \leq k \leq m} \). В силу 5.М каждый из векторов \(x_{m+1}, \ldots, x_n \) (если \(m < n \)) является линейной комбинацией векторов семейства \(\mathcal{F}' \); поэтому \(\mathcal{F} \subseteq \mathcal{E}_{\mathcal{F}'} \), откуда \(\mathcal{E}_\mathcal{F} \subseteq \mathcal{E}_{\mathcal{F}'} \) и, следовательно, \(\mathcal{E}_\mathcal{F} \neq \mathcal{E}_{\mathcal{F}'} \). Но согласно 6.А \(\{ x_1, \ldots, x_m \} \) — базис пространства \(\mathcal{E}_{\mathcal{F}'} \).

\(m \) называется рангом семейства \(\mathcal{F} \) и обозначается \(\text{rang} \mathcal{F} \).

Таким образом, \(\dim \mathcal{E}_\mathcal{F} = \text{rang} \mathcal{F} \).

Г. В силу 6.Д всякое векторное пространство, изоморфное \(n \)-мерному, \(n \)-мерно, и все \(n \)-мерные пространства над одним и тем же полем \(K \) изоморфны. В частности, все \(n \)-мерные векторные пространства над \(K \) изоморфны \(K^n \) (см. пример 1).

Д. В силу А всякое векторное пространство, содержащее рефер, образованный бесконечным множеством векторов, бесконечномерно. В частности, пространства \(K^{(A)} \) с бесконечными множествами индексов \(A \) бесконечномерны. Из сказанного при рассмотрении примера 3 п.6 следует, что множество \(\{ 1, t, t^2, \ldots, t^n, \ldots \} \) является рефером в любом содержащем его векторном пространстве вещественных или комплексных функций, определенных на бесконечном множестве точек числовой прямой. Поэтому все такие пространства, и в частности пространства \(C^n(I) \) (\(n \geq 0 \)) и \(C^\infty(I) \), бесконечномерны. То же верно и для пространств \(C^0(I) \); действительно, \(C^\infty_0(R) \) содержит рефер

\[(e^{-t^2} t^n)_{n \geq 0}, \]

\(C^\infty_0(I) \) с конечным интервалом \(I \), имеющим начало \(a \) и конец \(b \), — рефер

\[\left(e^{-\frac{1}{(t-a)^2} - \frac{1}{(b-t)^2}} t^n \right)_{n \geq 0}, \]
наконец, $C_0^\infty (I)$ с полубесконечным интервалом, имеющим конец или начало a, — репер

$$
\left(e^{-\frac{1}{(t-a)^2 + p^2}} \right)^n \quad n \geq 0.
$$

Представляем читателю установить бесконечномерность пространств L^p и $L^p (I)$.

6. Однородные прямые можно охарактеризовать как одномерные подпространства (см. определение 8). Поэтому 4.6 можно сформулировать следующим образом: для того чтобы подпространство H векторного пространства E было собственным гиперподпространством, необходимо и достаточно, чтобы $E|H$ было одномерно; а 4.7, Е означает, что $E|H$ одномерно тогда и только тогда, когда H обладает в E одномерным дополнением. Последнее предложение обобщается следующим образом:

Ж. E/F n-мерно тогда и только тогда, когда F обладает в E n-мерным дополнением; при этом всякое подпространство, дополнительное к F, n-мерно. Действительно, если $E = F \oplus G$, где G n-мерно, то E/F, будучи изоморфно G (4.Г), также n-мерно; и по той же причине тогда всякое подпространство, дополнительное к F, n-мерно. Обратно, если E/F n-мерно, то существование дополнительного к F (тоже n-мерного) подпространства можно установить, не опираясь на общие рассмотрения, проведенные в п.4 *).

В самом деле, пусть $\{X_1, ..., X_n\}$, где $X_k = F + x_k$ ($k = 1, ..., n$), — базис пространства E/F. Так как $\{F\}$ — ядро этого пространства, то из равенства

$$
\lambda_1 X_1 + \ldots + \lambda_n X_n = F + \lambda_1 x_1 + \ldots + \lambda_n x_n
$$

следует, что если $\lambda_1 x_1 + \ldots + \lambda_n x_n \in F$ (в частности, если $\lambda_1 x_1 + \ldots + \lambda_n x_n = 0$), то $\lambda_1 = \ldots = \lambda_n = 0$. Таким образом, $A = \{x_1, ..., x_n\}$ — репер (5.Б) и $F \cap \mathcal{E}_A = \{0\}$. С другой стороны, так как любой класс $F + x \in E/F$ представим в виде (1), то всякий вектор $x \in E$ содержится в $F + \mathcal{E}_A$, т. е. $E = F + \mathcal{E}_A$. Тем самым $E = F \oplus \mathcal{E}_A$ (4.В), где \mathcal{E}_A n-мерно.

*) Ср. следствие 1 теоремы 1.
З. В n-мерном векторном пространстве всякий репер, состоящий из n-векторов, является базисом. Действительно, в силу А он максимальен, и остается применить 6.Е.

И. Из А следует, что в конечном векторном пространстве E всякое множество R реперов, упорядоченное по возрастанию, содержит максимальный репер R_{max}, причем число его векторов \(\overline{R}_{max} \leq \dim E \).

В самом деле, этим свойством обладает всякий репер из R, состоящий из наибольшего возможного в R числа векторов. Отметим некоторые следствия этого замечания.

1° Всякое подпространство F конечном векторного пространства E конечном, причем \(\dim F \leq \dim E \). Действительно, нужно лишь принять за R множество всех содержащихся в F реперов; тогда R_{max} в силу 6.Е. будет служить для F базисом, причем \(\dim F = \overline{R}_{max} \leq \dim E \).

Из 3 следует, что если \(\dim F = \dim E \), то F = E.

2° Всякий репер R в конечном векторном пространстве E содержится в некотором базисе. Действительно, нужно лишь принять за R множество всех реперов в E, содержащих R; тогда R_{max} будет, очевидно, максимальным репером в E и тем самым (6.Е) базисом. В частности

3° Всякий базис подпространства F конечном векторного пространства E содержится в базисе всего пространства.

К. Следствие 1 теоремы 1 в случае конечном векторного E допускает следующее доказательство (не опирающееся на принцип максимального элемента). Пусть \(A_1 \) — базис подпространства \(E_1 \) (I1°) и \(A_1 \) — содержащий его базис пространства \(E \) (I3°). Так как \(A_2 = A \setminus A_1 \) репер (5.Г), то в силу 5.К \(E = E_1 \oplus E_2 \), где \(E_2 = \mathcal{B}_{A_2} \).

Пусть \(E_1 \) и \(E_2 \) — взаимно дополнительные подпространства конечном векторного пространства E, то

\[
\dim E_1 + \dim E_2 = \dim E. \tag{2}
\]

Действительно, пусть \(A_1, A_2 \) — базисы подпространств \(E_1, E_2 \) и \(A = A_1 \cup A_2 \). Покажем, что \(A \) — базис пространства \(E \); так как \(A_1 \cap A_2 = \phi \), то отсюда будет следовать (2). Но

*) \(\overline{R} \) означает мощность множества \(R \).
согласно 5.Л A — репер. С другой стороны, $E = E_1 + E_2 = \varepsilon_{A_1} + \varepsilon_{A_2} \subseteq \varepsilon_A$ и потому $E = \varepsilon_A$. Тем самым утверждение доказано.

М. Следствие 4 теоремы 1 в случае конечномерного E допускает следующее усиление (притом доказываемое без применения принципа максимального элемента): всякое подпространство F n-мерного векторного пространства E, имеющее размерность $m < n$, является пересечением $n - m$ собственных гиперподпространств (и, значит, всякое параллельное ему аффинное многообразие — пересечением $n - m$ собственных гиперплоскостей). Действительно, пусть B — базис подпространства F и $A = B \cup \{a_{m+1}, \ldots, a_n\}$ — содержащий его базис пространства E (1.3). Положим $A_k = A \setminus \{a_k\}$ и $H_k = \varepsilon_{A_k}$ ($k = m+1, \ldots, n$). Так как $E = H_k \oplus \varepsilon_{a_k}$ (5.K), то H_k — собственные гиперподпространства (4.E). При этом $F = \bigcap_{k=m+1}^n H_k$, ибо векторы подпространства F — это те и только те векторы из E, в разложении которых по базису A коэффициенты при векторах a_{m+1}, \ldots, a_n равны нулю.

Н. Из K, Ж и Л следует, что факторпространство E/F конечномерного векторного пространства E конечно-мерно, причем

$$\dim F + \dim (E/F) = \dim F + \operatorname{codim} F = \dim E. \quad (3)$$

В соединении с Е это показывает, в частности, что собственные гиперподпространства n-мерного векторного пространства можно охарактеризовать как его $(n - 1)$-мерные подпространства.

8. Базисы и размерность произвольных векторных пространств

Мы покажем теперь, что основные результаты предыдущего раздела распространяются на произвольные векторные пространства.

Теорема 2. Всякое векторное пространство E обладает базисом, причем каждый репер содержится в каком-нибудь базисе.

Доказательство. Так как линейная независимость множества есть свойство конечного характера (5.E), то по теореме Тьюки — Тайхмиюллера (1.4.В) каждый репер из E
содержится в некотором максимальном репере или, что то же (6.Е), — базисе. Поскольку \(E \) во всяком случае содержит репер \(\phi \), теорема тем самым полностью доказана.

Следствие. Всякий базис подпространства \(F \) векторного пространства \(E \) содержится в базисе всего пространства.

Доказательство. Всякий базис подпространства \(F \) является репером в \(E \).

Замечание. Теорема 1 также может быть получена как следствие теоремы 2.

Теорема 3. Мощность репера \(R \) в векторном пространстве \(E \) не может быть больше мощности базиса \(A \) этого пространства.

Доказательство. При \(R = \emptyset \) справедливость утверждения теоремы очевидна. Пусть \(R \neq \emptyset \). Назовем замещением всяко взаимно однозначное отображение \(\varphi \) некоторой части \(R_\varphi \) репера \(R \) в \(A \), обладающее тем свойством, что множество \(S_\varphi \), получающееся из \(R \) путем замены \(R_\varphi \) на \(A_\varphi = \varphi(R_\varphi) \), является репером. Пусть \(\Phi — множество всех замещений; в силу леммы о замене (см. конец § 6), примененной к случаю \(R' = \emptyset \), оно не пусто. Множество \(\Phi \), упорядоченное отношением продолжения отображений (т. е. отношением \(\varphi \preceq \psi \), означающим по определению, что \(R_\varphi \subseteq R_\psi \) и \(\psi \) совпадает с \(\varphi \) на \(R_\varphi \)), индуктивно. А именно, верхней границой цепи \(\Gamma \) в \(\Phi \) служит наименьшее общее продолжение \(\varphi \) всех \(\varphi \in \Gamma \), т. е. отображение множества \(R_\Psi \) для каждого \(\varphi \in \Psi \) с \(\varphi \). В самом деле, так как \(\Psi — цепь, то \(\varphi \) этим взаимно однозначно определено, и \(S_\varphi = (R \setminus R_\varphi) \cup A_\varphi \) есть репер, как объединение цепи реперов \((R \setminus R_\varphi) \cup A_\varphi \subseteq (R \setminus R_\varphi) \cup A_\varphi \); см. 5.Г). В силу принципа максимального элемента в \(\Phi \) содержится хотя бы одно максимальное замещение \(\omega \). Покажем, что \(A_\omega = R \). Предположим, что \(A_\omega \neq R \). Тогда и \(A_\omega \neq A \), и, значит, \(S_\omega = (R \setminus R_\omega) \cup A_\omega \) было бы репером, содержащим \(A \) как правильную часть, что в силу 6.Е невозможно, поскольку \(A — базис). Пусть \(a \in A \setminus A_\omega \). Так как \(a \) не зависит линейно от \(A_\omega \) (5.И), то, в силу леммы о замене, существует вектор \(r \in R \setminus R_\omega \), такой, что \(S_\omega \setminus \{r\} \cup \{a\} \) является репером. Но тогда отображение \(\omega \) множества \(R_\omega = R \cup \{r\} \) в \(A \), совпадающее на \(R_\omega \) с \(\omega \) и переводящее \(r \) в \(a \), есть замещение, поскольку \(S_\omega = (S_\omega \setminus \{r\}) \cup \{a\} \). Однако это противоречит максимальности замещения \(\omega \). Итак, \(R_\omega = R \) и тем самым \(\omega — взаимно однозначное отображение \(R \) в \(A \), откуда \(\overline{R} \leq \overline{A} \).

Теорема 4. Все базисы векторного пространства \(E \) равно мощны.

Доказательство. Пусть \(A \) и \(B — базисы пространства \(E \). Применив теорему 3 к реперу \(A \) и базису \(B \), а затем к реперу \(B \) и базису \(A \), заключаем, что \(\overline{A} \leq \overline{B} \) и \(\overline{B} \leq \overline{A} \). Но тогда \(\overline{A} = \overline{B} \).
Определение 15. Мощность базисов векторного пространства E называют размерностью этого пространства и обозначают $\dim E$. Размерность факторпространства E/F называют также факторразмерностью подпространства F и обозначают $\text{codim} F$. Размерностью (факторразмерностью) аффинного многообразия называют размерность (факторразмерность) параллельного ему подпространства.

Так, $\dim K^{(a)} = a$ (см. пример 2 п. 6). Прямые — это одномерные аффинные многообразия, а собственные гиперплоскости — аффинные многообразия факторразмерности 1 (см. 7. Е).

А. Определения 14 и 15 согласуются; а именно, для конечномерных векторных пространств и для подпространств, факторпространство по которому конечноимерно, размерности (факторразмерности), введенные этими определениями, совпадают, бесконечноимерные же векторные пространства (определение 14) — это векторные пространства бесконечной размерности (определение 15).

Б. Из теорем 2 и 4 следует, что 6.Д можно сформулировать следующим образом: векторные пространства над одним и тем же полем изоморфны тогда и только тогда, когда они имеют одинаковую размерность. В частности, всякое векторное пространство E над K изоморфно $K^{(\dim E)}$ (см. 7. Г).

В. Если E_1 и E_2 — взаимно дополнительные подпространства векторного пространства E, то

$$\dim E_1 + \dim E_2 = \dim E.$$

Действительно, доказательство этой формулы, данное в 7. И, годится и для бесконечномерного случая.

Г. Точно так же и формула 7. (3) сохраняет силу для произвольных векторных пространств:

$$\dim F + \text{codim} F = \dim E.$$

(1)

§ 4. ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ

1. Понятие линейного отображения

Определение 1. Пусть E и F — векторные пространства над одним и тем же полем K. $\varphi: E \rightarrow F$ называют линейным отображением E в F, если

$$\varphi(x + y) = \varphi(x) + \varphi(y) \quad \text{для всех } x, y \in E \quad (1)$$

(адditивность φ) и

$$\varphi(\lambda x) = \lambda \varphi(x) \quad \text{для всех } x \in E \text{ и } \lambda \in K \quad (2)$$

(однородность φ). Взаимно однозначное линейное отображение E в F мы будем называть вложением, а линейное отображение E на F — наложением. Множество всех линейных отображений E в F будет обозначаться $\mathcal{L}(E, F)$.

1
Примеры. 1. Пусть E и F — векторные пространства над одним и тем же полем. Нулевое отображение E в F (относящее каждому вектору $x \in E$ нулевой вектор пространства F), очевидно, линейно.

2. Всякий изоморфизм векторного пространства E на векторное пространство F есть линейное отображение E в F. В частности, тождественное отображение линейно.

3. Пусть $F \subset \subset E$. Отображение F в E, относящее каждому элементу $x \in F$ этот же элемент в E, очевидно, линейно и является вложением. Мы будем называть его каноническим вложением F в E.

4. Каноническое отображение φ векторного пространства E на его факторпространство E/F, относящее каждому вектору $x \in E$ содержащий его класс $F + x$, линейно. Действительно, φ есть гомоморфизм аддитивной группы E на аддитивную группу E/F (2.3 б), а (2) — в силу формулы 3.4.(1), определяющей умножение на скаляры в E/F. Мы будем называть φ каноническим наложением на E/F.

5. Если $K \subset \subset E$, $F \subset \subset E$ и $K \subset \subset F$, то каноническое отображение $\omega_{F,K}$ факторпространства E/K на факторпространство E/F, относящее каждому классу $K + x$ из E/K содержащий его класс $F + x$ в E/F, линейно. В самом деле, (1) выполняется, поскольку $\omega_{F,K}$ — гомоморфизм факторгруппы E/K на факторгруппу E/F (2.3 ж), а (2) — так как $\omega_{F,K}(K + x) = \omega_{F,K}(K + \lambda x) = \omega_{F,K}(K + x) = \lambda (\omega_{F,K}((K + x))$.

6. Пусть $(E_{a})_{a \in A}$ — семейство векторных пространств над одним и тем же полем K. Проектирование произведения $\prod_{a \in A} E_{a}$ на $E_{a_{0}}$ (где a_{0} — любой фиксированный индекс из A), относящее каждому вектору $x \in \prod_{a \in A} E_{a}$ его координату $x_{a_{0}} = \pi_{a_{0}} x$ в $E_{a_{0}}$, очевидно, является наложением.

7. С другой стороны, отображение $E_{a_{0}}$ в сумму $\sum_{a \in A} E_{a}$, относящее каждому вектору $x_{a_{0}} \in E_{a_{0}}$ вектор $x = \sum_{a \in A} x_{a} = (x_{a})_{a \in A} \in \sum_{a \in A} E_{a}$, где $x_{a_{0}} = x_{a_{0}}$ и $x_{a} = 0$ при $a \neq a_{0}$, есть, очевидно, вложение. Мы будем называть отображение π_{a} инъектированием.
8. Отображение D пространства $C^n(I)$ в $C^{n-1}(I)$ ($n \geq 1$), относящее каждой функции $x(t) \in C^n(I)$ ее производную $x'(t)$, есть, как известно, наложение. D называют оператором дифференцирования. Дифференцирование есть также линейное отображение пространства $C^\infty(I)$, как и его подпространства $C^\infty_0(I)$, в себя.

А. Согласно (1) линейное отображение φ векторного пространства E в векторное пространство F есть также гомоморфизм аддитивной группы E в аддитивную группу F. В частности, $\varphi(0) = 0$.

А'. Обратно, если E и F — векторные пространства над одним и тем же полем K, то гомоморфизм аддитивной группы E в аддитивную группу F, удовлетворяющий условию однородности (2), есть линейное отображение E в F. В частности, однородный изоморфизм аддитивной группы E на аддитивную группу F является изоморфизмом векторного пространства E на векторное пространство F.

Б. Из (1) и (2) вытекает, что линейное отображение E в F переводит каждую линейную комбинацию $\sum_{\alpha \in \Lambda} \lambda_\alpha x_\alpha$ семейства векторов $(x_\alpha)_{\alpha \in \Lambda}$ из E в такую же линейную комбинацию $\sum_{\alpha \in \Lambda} \lambda_\alpha y_\alpha$ семейства $(y_\alpha)_{\alpha \in \Lambda}$ их образов в F.

В. Если $\varphi \in \mathcal{L}(E, E_1)$, $F \subseteq E$ и $F_1 \subseteq E_1$, то $\varphi(F) \subseteq E_1$ и $\varphi^{-1}(F_1) \subseteq E$. Действительно, согласно 2.1.3, $\varphi(F)$ и $\varphi^{-1}(F_1)$ — подгруппы соответственно аддитивных групп E_1 и E. С другой стороны, в силу 3.2.Б $\lambda \varphi(F) = \varphi(\lambda F) = \varphi(F)$ и $\lambda \varphi^{-1}(F_1) = \varphi^{-1}(\lambda F_1) = \varphi^{-1}(F_1)$ для всех скаляров $\lambda \neq 0$. Следовательно, снова в силу 3.2.Б, $\varphi(F)$ и $\varphi^{-1}(F_1)$ — подпространства.

Б'. Если $\varphi \in \mathcal{L}(E, E_1)$, L — аффинное многообразие в E, параллельное подпространству F, и L_1 — аффинное многообразие в E_1, параллельное подпространству F_1, то $\varphi(L)$ — аффинное многообразие, параллельное $\varphi(F)$, а $\varphi^{-1}(L_1)$, если оно не пусто, — аффинное многообразие, параллельное $\varphi^{-1}(F_1)$. В самом деле, если $L = F + x$, то $\varphi(L) = \varphi(F) + \varphi(x)$. Далее, если $x_0 \in \varphi^{-1}(L_1)$, так что $\varphi(x_0) \in L_1$, то, по 3.3.Б, $L_1 = F_1 + \varphi(x_0)$ и потому, в силу 2.2.11, $\varphi^{-1}(L_1) = \varphi^{-1}(F_1) + x_0$.

Определение 2. Пусть $\varphi \in \mathcal{L}(E, F)$. Образ $\varphi(E)$ пространства E называется областью значений или противомножеством отображения φ и обозначается R_φ, а преобраз $\varphi^{-1}(\{0\})$ нулевого подпространства пространства F (т. е. совокупность всех векторов из E, переводимых отображением φ в 0) — нулей-пространством или ядром отображения φ и обозначается K_φ.

Г. Если $\varphi \in \mathcal{L}(E, F)$, то $K_\varphi \subseteq E$ и $R_\varphi \subseteq F$. Действительно, это непосредственно следует из В.

Если R_φ бесконечномерно (конечномерно, n-мерно), то φ называется бесконечномерным (конечномерным, n-мерным) линейным отображением.

Д. Пусть $\varphi \in \mathcal{L}(E, F)$. Согласно 2.2.И

$$
\varphi^{-1}(\varphi(x)) = K_\varphi + x
$$

для каждого $x \in E$. (3)

Это показывает, что классы E по K_φ можно охарактеризовать как «поверхности уровня» отображения φ, т. е. множества вида $\varphi^{-1}(y)$, где y — любые фиксированные значения из R_φ.

Е. $\varphi \in \mathcal{L}(E, F)$ есть вложение тогда и только тогда, когда $K_\varphi = \{0\}$. В самом деле, в силу А или Г $0 \in K_\varphi$. Поэтому, если φ взаимно однозначно, то $K_\varphi = \{0\}$. Обратно, если $K_\varphi = \{0\}$ и $\varphi(x_1) = \varphi(x_2)$, то $\varphi(x_1 - x_2) = \varphi(x_1) - \varphi(x_2) = 0$, откуда $x_1 - x_2 \in K_\varphi$ и значит, $x_1 = x_2$, так что φ взаимно однозначно.

Ж. Очевидно, линейное отображение есть изоморфизм тогда и только тогда, когда оно является однородным вложением и наложением. Принимая во внимание Е, заключаем, что $\varphi \in \mathcal{L}(E, F)$ есть изоморфизм E на F тогда и только тогда, когда $K_\varphi = \{0\}$, а $R_\varphi = F$.

З. Для того чтобы $\varphi \in \mathcal{L}(E, F)$ было изоморфизмом E на F, необходимо и достаточно, чтобы существовало $\psi \in \mathcal{L}(F, E)$ такое, что $\psi \circ \varphi = \iota_E$ и $\varphi \circ \psi = \iota_F$, где ι_E и ι_F — тождественные отображения соответственно E и F на себя. Действительно, если φ — изоморфизм E на F, то в силу 3.1.Д $\varphi^{-1} \in \mathcal{L}(F, E)$ (см. пример 2), и, положив $\psi = \varphi^{-1}$, имеем $\psi \circ \varphi = \iota_E$ и $\varphi \circ \psi = \iota_F$. Обратно, пусть существует $\psi \in \mathcal{L}(F, E)$, удовлетворяющее этим условиям. Так как $\varphi(x) = 0$ влечет $x = \psi(\varphi(x)) = 0$, то φ, согласно Е, — вложение. С другой стороны, так как
Ф(ψ(у)) = у для любого у ∈ F, то Ф — наложение. Тем самым, по Ж, Ф — изоморфизм E на F. При этом, очевидно, Ф = Ф⁻¹.

И. Пусть Ф ∈ S(E, F) и K Ф ⊆ G ⊆ E. Тогда отображение Ф, относящее каждому классу G + x ∈ E/G класс Ф(Г) + Ф(х) ∈ Ф(Е)/Ф(Г), есть изоморфизм E/G на Ф(Е)/Ф(Г).

Действительно, в силу 2.3. Ф есть изоморфизм факторгрупы E/G, т. е. аддитивной группы факторпространства E/G, на факторгруппу Ф(Е)/Ф(Г). При этом

Ф(λ · (Г + х)) = Ф(Г + λх) = Ф(Г) + Ф(λх) = Ф(Г) + λФ(х) = λ · [Ф(Г) + Ф(х)] = λФ(Г + х),

и остается применить А'.

К. Пусть Ф ∈ S(E, F) и A = (аₙ)ₙ∈A — базис пространства E*(5). Положим Ф(аₙ) = Фₙ (х ∈ A). Тогда для всякого вектора x = Σₙ аₙ xₙ ∈ E будем иметь:

Ф(x) = Σₙ аₙ Фₙ.

(4)

Таким образом, линейное отображение E в F однозначно определяется образами Фₙ векторов базиса A пространства E. При этом, очевидно, каковы бы ни были векторы Фₙ ∈ F, т. е. как бы ни отобразить A в F, отображение Ф: E → F, определяемое формулой (4), будет линейным.

Л. Аффинным отображением E в F называют всякое отображение вида x → Ф(х) + b, где Ф ∈ S(E, F), а b — фиксированный вектор из F. Вследствие В аффинное отображение переводит каждое аффинное многообразие в аффинное многообразие.

2. Разложения линейных отображений

А. Пусть Ф ∈ S(E, F). Очевидно, x → Ф(х), рассматриваемое как отображение E на Rₚ, также линейно. Оно называется приведением отображения Ф и будет обозначаться Фₚ.

Очевидно,

Ф = πₚ ∘ Фₚ,

где πₚ — каноническое вложение Rₚ в F, так что каждое

*) См. 3.5.О.
линейное отображение есть суперпозиция наложения и вложения. В частности, \(\varphi^* = \varphi \) тогда и только тогда, когда \(\varphi \) — наложение.

Б. Пусть \(\varphi \in \mathcal{L}(E, F) \). Очевидно, \(\varphi^* \) — изоморфизм тогда и только тогда, когда \(\varphi \) — вложение. В силу 3.5.1 отсюда следует, что вложение не нарушает линейной зависимости или независимости векторов.

Теорема 1. Пусть \(\varphi \in \mathcal{L}(E, F) \) и \(\psi \in \mathcal{L}(E, G) \). Если \(K_\varphi \supset K_\psi \), то существует однозначно определенное \(\chi \in \mathcal{L}(R_\psi, F) \) такое, что

\[
\varphi = \chi \circ \psi^*.
\]

При этом \(\chi \) — вложение тогда и только тогда, когда \(K_\varphi = K_\psi \), и \(\chi \) — наложение тогда и только тогда, когда \(\varphi \) — наложение.

Доказательство. Если \(\psi(x_1) = \psi(x_2) \), то \(\varphi(x_1 - x_2) = \psi(x_1) - \psi(x_2) = 0 \), т. е. \(x_1 - x_2 \in K_\varphi \); так как \(K_\psi \subset K_\varphi \), то отсюда следует, что \(x_1 - x_2 \in K_\varphi \), т. е. \(\varphi(x_1) - \varphi(x_2) = \varphi(x_1 - x_2) = 0 \), откуда \(\varphi(x_1) = \varphi(x_2) \). Таким образом, равенство \(\psi(x_1) = \psi(x_2) \) влечет равенство \(\varphi(x_1) = \varphi(x_2) \); иными словами, значение \(\varphi(x) \) вполне определяется заданием значения \(\psi(x) \). Следовательно,

\[
\varphi(x) = \chi(\psi^*(x)),
\]

где \(\chi \) — однозначно определенное отображение \(R_\psi \) в \(F \). При этом для любых \(\psi(x), \psi(y) \in R_\psi \) и любого скалярного \(\lambda \) имеем

\[
\chi(\psi(x) + \psi(y)) = \chi(\psi(x + y)) = \varphi(x + y) = \varphi(x) + \varphi(y) = \chi(\psi(x)) + \chi(\psi(y))
\]

и

\[
\chi(\lambda \psi(x)) = \chi(\psi(\lambda x)) = \varphi(\lambda x) = \lambda \varphi(x) = \lambda \chi(\psi(x)),
\]

t. е. \(\chi \) линейно. \(\chi \) есть вложение, т. е. (1.Е) \(\chi(\psi(x)) = \varphi(x) = 0 \) влечет \(\psi(x) = 0 \), тогда и только тогда, когда \(K_\varphi \subset K_\psi \), а в соединении с условием \(K_\varphi \supset K_\psi \) это означает, что \(K_\varphi = K_\psi \). Последнее же утверждение теоремы очевидно.

В. Пусть \(\varphi \in \mathcal{L}(E, F) \) и \(\varphi \) — каноническое наложение \(E \) на \(E/K_\varphi \). Так как \(K_\varphi^* = K_{\varphi^*}(= K_\varphi^*) \) и \(\varphi^* \) — наложение, то, согласно теореме 1 и 1. \(\varphi \), существует однозначно
определенный изоморфизм \(\varphi \) пространства \(R_{\varphi} := E/K_{\varphi} \) на \(R_{\varphi} \), такой, что
\[
\varphi^\circ := \varphi \circ \omega_{\varphi}.
\] (3)
Очевидно, \(\varphi \) есть отображение, относище каждому классу \(K_{\varphi} + x \in E/K_{\varphi} \) точку \(\varphi(x) \in R_{\varphi} \). Мы будем называть \(\varphi \) отображением \(E/K_{\varphi} \) на \(R_{\varphi} \), ассоциированным с \(\varphi \).

В силу 3.8.(1), изоморфизма пространств \(E/K_{\varphi} \) и \(R_{\varphi} \) и 3.8.Б имеем
\[
\dim K_{\varphi} + \dim R_{\varphi} = \dim E.
\]

Г. Пусть \(\varphi \in \mathcal{S}(E, F) \), где \(E \) и \(F \) — конечномерные векторные пространства одинаковой размерности. В силу установленного в В изоморфизма пространств \(E/K_{\varphi} \) и \(R_{\varphi} \) каждое из условий \(K_{\varphi} = \{0\} \) и \(R_{\varphi} = F \) является следствием другого (см. 3.7.Г, И 1°) и означает, что \(\varphi \) есть изоморфизм \(E \) на \(F \) (см. 1.Е).

Д. В силу (1) и (3) каждое \(\varphi \in \mathcal{S}(E, F) \) представлямо в виде
\[
\varphi = \pi_{\varphi} \circ \hat{\varphi} \circ \omega_{\varphi},
\] (4)
где \(\omega_{\varphi} \) — каноническое наложение \(E \) на \(E/K_{\varphi} \), \(\hat{\varphi} \) — отображение \(E/K_{\varphi} \) на \(R_{\varphi} \), ассоциированное с \(\varphi \), и \(\pi_{\varphi} \) — каноническое вложение \(R_{\varphi} \) в \(F \). Мы будем называть (4) каноническим разложением линейного отображения \(\varphi \).

Е. Пусть выполнены предположения теоремы 1. Пусть, далее, \(\omega_{\varphi}, \hat{\varphi} \) — каноническое наложение \(E/K_{\varphi} \) на \(E/K_{\varphi} \) (см. 2.3.Ж и пример 5 к определению 1). Так как, согласно формуле 2.3.(4),
\[
\omega_{\varphi} = \omega_{\varphi}, \hat{\varphi} \circ \omega_{\varphi},
\]
a, с другой стороны, согласно (3),
\[
\hat{\varphi}^\circ = \hat{\varphi} \circ \omega_{\varphi},
\]
то, принимая во внимание, что \(\hat{\varphi} \) — изоморфизм, имеем
\[
\omega_{\varphi} = \omega_{\varphi}, \hat{\varphi}^{-1} \circ \hat{\varphi}^\circ.
\]
Подставляя в (4), получаем
\[
\varphi = \pi_{\varphi} \circ \hat{\varphi} \circ \omega_{\varphi}, \hat{\varphi} \circ \hat{\varphi}^{-1} \circ \hat{\varphi}^\circ.
\]
Сравнение с (2) показывает, что в теореме 1
\[
\chi = \pi_{\varphi} \circ \hat{\varphi} \circ \omega_{\varphi}, \hat{\varphi} \circ \hat{\varphi}^{-1}.
\]
3. Действия над линейными отображениями

А. Если \(\varphi, \psi \in \mathcal{L}(E, F) \), то, как показывает непосредственная проверка, \(\chi: E \to F \), относящее каждому вектору \(x \in E \) вектор
\[
\chi(x) = \varphi(x) + \psi(x),
\]
линейно. \(\chi \) называют суммой \(\varphi \) и \(\psi \) и обозначают \(\varphi + \psi \).

Б. Если \(E \) и \(F \) — векторные пространства над полем \(K \), \(\varphi \in \mathcal{L}(E, F) \) и \(\gamma \in K \), то \(\omega: E \to F \), относящее каждому вектору \(x \in E \) вектор
\[
\omega(x) = \gamma \varphi(x),
\]
линейно. Действительно, аддитивность \(\omega \) очевидна, и для каждого \(\lambda \in K \) в силу коммутативности \(K \) имеем
\[
\omega(\lambda x) = \gamma \varphi(\lambda x) = \gamma \lambda \varphi(x) = \lambda \gamma \varphi(x) = \lambda \omega(x).
\]
\(\omega \) называют произведением \(\varphi \) на скаляр \(\gamma \) и обозначают \(\gamma \varphi \).

В. Сложение линейных отображений и умножение их на скаляры сводятся формулами (1) и (2) к таким же действиям над векторами. Поэтому из А и Б следует, что если \(E \) и \(F \) — векторные пространства над одним и тем же полем \(K \), то множество \(\mathcal{L}(E, F) \) всех линейных отображений \(E \) в \(F \) при указанном определении сложения и умножения на скаляры также является векторным пространством над \(K \). Нулевым вектором в \(\mathcal{L}(E, F) \) служит, очевидно, нулевое отображение \(E \) в \(F \).

Г. Если \(\varphi \in \mathcal{L}(E, F) \) и \(\psi \in \mathcal{L}(F, G) \), то \(\gamma \chi := \psi \circ \varphi \in \mathcal{L}(E, G) \) (т. е. суперпозиция линейных отображений есть линейное отображение). Действительно, согласно 2.1 К \(\chi \) есть гомоморфизм аддитивной группы \(E \) в аддитивную группу \(G \). При этом
\[
\chi(\lambda x) = \psi(\varphi(\lambda x)) = \psi(\lambda \varphi(x)) = \lambda \psi(\varphi(x)) = \lambda \chi(x)
\]
для любого \(x \in E \) и любого скаляра \(\lambda \).

Д. В силу Г в пространстве \(\mathcal{L}(E, E) \) всех линейных отображений векторного пространства \(E \) в себя определено еще одно действие: композиция (перемножение) его элементов. Оно обладает следующими легко проверяемыми свойствами:

1о. \(\varphi \circ (\psi \circ \chi) = (\varphi \circ \psi) \circ \chi \) (ассоциативность);
2о. \(\varphi \circ (\psi + \chi) = \varphi \circ \psi + \varphi \circ \chi \) и \((\psi + \chi) \circ \varphi = \psi \circ \varphi + \chi \circ \varphi \) (дистрибутивность);
3° $\lambda (\varphi \circ \psi) = (\lambda \varphi) \circ \psi = \varphi \circ (\lambda \psi)$ (перестановочность с умно-
женiem на скаляры).

Векторное пространство, в котором определено умноже-
ние элементов друг на друга, обладающее такими свойствами,
называют алгеброй. Таким образом, $\mathcal{P}(E, E)$ есть алгебра
относительно компонирования отображений. В этой алгебре
существует единица, а именно, тождественное отображение I
пространства E на себя:

4° $\varphi \circ I = I \circ \varphi = \varphi$.

Линейные отображения λ: (т. е. гомотетии и нулевое
отображение) мы будем называть скалярными и обозначать
просто λ. Тогда $\lambda \varphi = \lambda \circ \varphi$ и свойство 3° сводится к

3'' $\lambda \circ \varphi = \varphi \circ \lambda$ (перестановочность со скалярными ото-
бражениями).

Вместо $\varphi \circ \psi$ мы будем писать также $\varphi \psi$, вместо $\varphi \circ \varphi$ —
также φ^2 и т. п.

4. Проекторы

Определение 3. Пусть $F \subset E$. Проектором E
на F называется линейное отображение E в себя, перено-
сящее E в F и оставляющее все векторы из F на месте.

А. Очевидно, если φ — проектор E на F, то F есть
множество тех $x \in E$, для которых $\varphi(x) = x$.

Б. Для того чтобы $\varphi \in \mathcal{P}(E, E)$ было проектором,
необходимо и достаточно, чтобы $\varphi^2 = \varphi$. В самом деле,
пусть $\varphi(E) = F$. Согласно 1, $F \subset E$. Условие же $\varphi^2 = \varphi$
равносильно требованию, чтобы φ оставляло все векторы
из F на месте. В самом деле, если $\varphi^2 = \varphi$ и $y \in F$, так что
$y = \varphi(x)$, где $x \in E$, то $\varphi(y) = \varphi^2(x) = \varphi(x) = y$. Обратно,
если $\varphi(y) = y$ для всех $y \in F$, то, каково бы ни было $x \in E,$
$\varphi^2(x) = \varphi(\varphi(x)) = \varphi(x)$, т. е. $\varphi^2 = \varphi$.

В. Если φ — проектор, то $I - \varphi$ — также проек-
тор, причем $R_{I-\varphi} = K_\varphi$. Действительно, в силу Б и 3.Д,
$\varphi \circ (I - \varphi) = \varphi - \varphi^2 = 0$, а потому $(I - \varphi)^2 = I - \varphi - \varphi \circ (I - \varphi) =$
$= I - \varphi$ и, значит, $I - \varphi$ (в силу Б) — проектор. Так как
при этом условии $x \in R_{I-\varphi}$ (в силу А) равносильно условию
$(I - \varphi)(x) = x$, т. е. $\varphi(x) = 0$, то $R_{I-\varphi} = K_\varphi$.

По симметрии заключаем, что $R_{\varphi} = K_{I-\varphi}$.

Теорема 2. Если $E = E_1 \oplus E_2$, то отображение π
пространства E в себя, относящее каждому вектору $x \in E$
его (однозначно определенную) составляющую x_1 в раз-
ложении

\[x = x_1 + x_2 \quad (x_1 \in E_1, \ x_2 \in E_2), \quad (1) \]

является проектором \(E \) на \(E_1 \) с ядром \(K_\pi = E_2 \). Обратно, если \(\varphi \) — заданный на \(E \) проектор, то \(E = R_\varphi \oplus K_\varphi \) и \(\varphi \) относит каждому вектору \(x \in E \) его составляющую в \(R_\varphi \), определяемую этим разложением.

Доказательство. Пусть \(x, \ y \in E \), так что \(x = x_1 + x_2, \ y = y_1 + y_2 \), где \(x_1, \ y_1 \in E_1, \ x_2, \ y_2 \in E_2 \). Тогда \(x + y = (x_1 + y_1) + (x_2 + y_2) \), где \(x_1 + y_1 \in E_1, \ x_2 + y_2 \in E_2 \), и поэтому \(\pi(x + y) = x_1 + y_1 = \pi(x) + \pi(y) \). Аналогично, \(\lambda x = \lambda x_1 + \lambda x_2 \), где \(\lambda x_1 \in E_1, \ \lambda x_2 \in E_2 \), и потому \(\pi(\lambda x) = \lambda x_1 = \lambda \pi(x) \). Таким образом, \(\pi \in \mathcal{L}(E, E) \). Далее, так как разложением (1) для каждого \(x_1 \in E_1 \) служит \(x_1 = x_1 + 0 \), то \(\pi(x_1) = x_1 \) для всех \(x \in E_1 \) и \(R_\pi = E_1 \). Наконец, так как \(\pi(x) = 0 \) равносильно тому, что в разложении (1) \(x = 0 + x_2 \in E_2 \), то \(K_\pi = E_2 \).

Обратно, так как каждый вектор \(x \in E \) можно представить в виде

\[x = \varphi(x) + (1 - \varphi)(x), \quad (2) \]

tо \(E = R_\varphi + R_{1-\varphi} \) и, значит, в силу Б, \(E = R_\varphi + K_\varphi \). Далее, так как \(x \in R_\varphi \) означает, что \(x = \varphi(x) \) (A), а \(x \in K_\varphi \) означает, что \(\varphi(x) = 0 \), то \(R_\varphi \cap K_\varphi = \{0\} \). Следовательно (3.4.B), \(E = R_\varphi \oplus K_\varphi \), а тогда (2) показывает, в силу Б, что \(\varphi(x) \) есть составляющая \(x \) в \(R_\varphi \).

Замечание. Так как каждое подпространство векторного пространства обладает дополнительным подпространством (следствие 1 теоремы 1 § 3), то первой частью теоремы 2 устанавливается существование проектора пространства \(E \) на любое его подпространство \(E_1 \). Но даже в том случае, когда \(E_1 \) — (собственное) гиперподпространство, дополнительное к нему подпространство \(E_2 \) определено не однозначно (см. 3.4.Д). Так как проекторы \(\pi \) с различными ядрами \(K_\pi = E_2 \) различны, то мы видим вместе с тем, что одной своей противообластью проектор еще не определяется. Однако вторая часть теоремы 2 показывает, что проектор однозначно определяется своими противообластью и ядром. Мы будем называть проектор \(\pi \) теоремы 2 проектором \(E \) на \(E_1 \) параллельно \(E_2 \).
Теорема 2 обобщается на разложение векторного пространства в прямую сумму любого числа его подпространств.

Теорема 3. Пусть $E = E_1 \oplus \ldots \oplus E_n$ — разложение векторного пространства E в прямую сумму его подпространств E_1, \ldots, E_n, т. е. каждый вектор $x \in E$ однозначно представим в виде

$$x = \sum_{k=1}^{n} x_k, \quad \text{где} \quad x_k \in E_k \quad (k = 1, \ldots, n). \quad (3)$$

Положим

$$\pi_k(x) = x_k \quad (k = 1, \ldots, n).$$

Тогда π_k — проекторы E на E_k, причем

$$\pi_k \circ \pi_l = 0, \quad \text{если} \quad k \neq l, \quad (4)$$

и, очевидно,

$$\sum_{k=1}^{n} \pi_k = I. \quad (5)$$

Обратно, всякое разбиение (5) тождественного отображения i на сумму проекторов, удовлетворяющих условию (4), порождает разложение E в прямую сумму $E = E_1 \oplus \ldots \oplus E_n$, где $E_k = R_{\pi_k}$, причем $\pi_k(x)$ есть составляющая x_k вектора $x \in E$ в E_k, определяемая этим разложением.

Доказательство. 1. Пусть $E = E_1 \oplus \ldots \oplus E_n$. Положим $\tilde{E}_k = \sum_{l \neq k} E_l$. Очевидно, $E = E_k \oplus \tilde{E}_k$ и, значит, π_k, по теореме 2, — проектор E на E_k. Так как при этом

$$\pi_l(x) = x_l = \sum_{m=1}^{n} \delta_{lm} x_m, \quad \text{то} \quad \pi_k(\pi_l(x)) = \delta_{lk} x_k, \quad \text{а потому} \quad \pi_k \circ \pi_l = 0, \quad \text{если} \quad k \neq l.$$

2. Пусть (5) — разбиение i на сумму проекторов, удовлетворяющих условию (4). Из (5) следует, что каждый вектор $x \in E$ представим в виде $x = \sum_{k=1}^{n} \pi_k(x)$, где $\pi_k(x) \in R_{\pi_k} = E_k$. Обратно, если дано какое-либо разложение (3)
вектора x, то в силу A, B и (4)

$$x_k = \pi_k (x_k) = \pi_k^2 (x_k) = \pi_k \left(\sum_{i=1}^{n} \pi_i (x_i) \right) = \pi_k \left(\sum_{i=1}^{n} x_i \right) = \pi_k (x).$$

Таким образом, разложение (3) единственно, т. е. $E = E_1 \oplus \ldots \oplus E_n$; и при этом $\pi_k (x) = x_k$.

§ 5. ЛИНЕЙНЫЕ ФУНКЦИИ

1. Понятие линейной функции

Определение 1. Пусть E — векторное пространство над K. Линейной функцией на E называют линейное отображение E в K^1, т. е. функцию f на E со значениями в K, удовлетворяющую условиям

$$f (x + y) = f (x) + f (y) \quad \text{и} \quad f (\lambda x) = \lambda f (x)$$

для всех $x, y \in E$ и $\lambda \in K$.

Примеры. 1. Пусть E — произвольное векторное пространство числовых функций $x (t)$, определенных на некотором множестве M, и $t_0 \in M$. Тогда

$$\delta_{t_0} (x) = x (t_0),$$

очевидно, является линейной функцией на E. δ_{t_0} называют дельта-функцией, сосредоточенной в точке t_0.

2. Значение производной порядка $\leq n$ в произвольной фиксированной точке интервала I есть линейная функция на $C^n (I)$.

3.

$$I (x) = \int_{a}^{b} x (t) \, dt$$

есть линейная функция на $C ([a, b])$.

4. Пусть $p > 1$, $q > 1$ таковы, что $\frac{1}{p} + \frac{1}{q} = 1$, и $(\eta_k) —\text{ фиксированный вектор пространства } l^q$. Положив для любого вектора $x = (\xi_k) \in l^p$

$$f (x) = \sum_{k=1}^{\infty} \xi_k \eta_k,$$ (1)
получим линейную функцию на l^p. Действительно, в доказательстве нуждается лишь сходимость ряда (1) для всех $(\xi_k) \in l^p$. Рассмотрим для этого функцию $s = t^p$ ($t \geq 0$). Так как $p > 1$, то ее график обращен выпуклостью вниз. Поэтому центр тяжести (t_c, s_c) любой конечной системы его точек (t_k, t_k^p), наделенных какими-то массами $\rho_k > 0$ ($k = 1, \ldots, n$), лежит выше этого графика (или, в крайнем случае, на нем, если все точки совпадают). Это означает, что $t_k^p \leq s_c$, т. е.

$$
\left(\frac{\rho_1 t_1 + \ldots + \rho_n t_n}{\rho_1 + \ldots + \rho_n}\right)^p \leq \frac{\rho_1 t_1^p + \ldots + \rho_n t_n^p}{\rho_1 + \ldots + \rho_n}.
$$

(2)

Взяв здесь $t_k = a_k b_k^{-q/p}$, $\rho_k = b_k^q$ ($a_k \geq 0$, $b_k > 0$), получим неравенство

$$
\sum_{k=1}^{n} a_k b_k^q \leq \left(\sum_{k=1}^{n} a_k^p\right)^{1/p} \left(\sum_{k=1}^{n} b_k^q\right)^{1/q}
$$

(3)

(очевидно, справедливо и при обращении некоторых b_k в 0).

Пусть теперь (ξ_k) и (η_k) — числовые последовательности. Положив в (3) $a_k = |\xi_k|$, $b_k = |\eta_k|$ и устремив n к бесконечности, получим в пределе

$$
\sum_{k=1}^{\infty} |\xi_k \eta_k| \leq \left(\sum_{k=1}^{\infty} |\xi_k|^p\right)^{1/p} \left(\sum_{k=1}^{\infty} |\eta_k|^q\right)^{1/q}.
$$

Это показывает, что если $(\xi_k) \in l^p$ и $(\eta_k) \in l^q$ (так что правая часть полученного неравенства конечна), то ряд $\sum_{k=1}^{\infty} \xi_k \eta_k$ абсолютно сходится и

$$
\left|\sum_{k=1}^{\infty} \xi_k \eta_k\right| \leq \left(\sum_{k=1}^{\infty} |\xi_k|^p\right)^{1/p} \left(\sum_{k=1}^{\infty} |\eta_k|^q\right)^{1/q}.
$$

(4)

Тем самым $f(x)$ действительно существует для всех $x \in l^p$. Неравенство (4) называют неравенством Гельдера. При $p = q = 2$ оно обращается в неравенство Коши:

$$
\left|\sum_{k=1}^{\infty} \xi_k \eta_k\right|^2 \leq \sum_{k=1}^{\infty} |\xi_k|^2 \sum_{k=1}^{\infty} |\eta_k|^2.
$$

(5)
§ 51 ЛИНЕЙНЫЕ ФУНКЦИИ

5. Формула (1), где \((\eta_k)\) — фиксированный вектор пространства \(L^\infty (\Omega)\), а \(x=(\xi_k)\) — переменный вектор пространства \(L^1 (\Omega)\), очевидно, определяет линейную функцию \(f\) на \(L^1 (\Omega)\). То же справедливо и при замене \(L^1\) и \(L^\infty\) на \(L^1_\mathbb{R}\) и \(L^\infty_\mathbb{R}\).

А. Согласно 4.3, в совокупность \(\mathcal{L} (E, K^1)\) всех линейных функций на \(E\) образует векторное пространство над \(K\), в котором сложение линейных функций и умножение их на скаляры определены формулами

\[
(f + g)(x) = f(x) + g(x), \quad (\lambda f)(x) = \lambda f(x). \tag{6}
\]

Определение 2. Векторное пространство \(\mathcal{L} (E, K^1)\) всех линейных функций на \(E\) будет называться векторным сопряженным к \(E\) и обозначаться \(E^*\).

Б. Пусть \(E\) — векторное пространство над \(K\) с базисом \(A=(a_\alpha)_{\alpha \in \Lambda}\) (см. 3.5, О). Отображение \(\varphi: E^* \rightarrow K^A\), относящее каждой линейной функции \(f \in E^*\) семейство скаляров \((f^a)_{a \in \Lambda}\), где \(f^a = f(a_\alpha)\), есть изоморфизм \(E^*\) на \(K^A\). Действительно, из формул (6) непосредственно следует, что \((f + g)^a = f^a + g^a\) и \((\lambda f)^a = \lambda f^a\), так что \(\varphi\) линейно. Далее, для каждого \(x \in E\) имеем

\[
f(x) = f\left(\sum_{\alpha \in \Lambda} x_\alpha a_\alpha\right) = \sum_{\alpha \in \Lambda} x_\alpha f^a = \sum_{\alpha \in \Lambda} f^a x_\alpha, \tag{7}
\]

где \(x_\alpha\) — координаты вектора \(x\) относительно базиса \(A\), так что \(f\) однозначно определяется своим образом \((f^a)_{a \in \Lambda}\), т. е. \(\varphi\) — вложение. Наконец,

\[
g(x) = \sum_{\alpha \in \Lambda} \lambda_\alpha x_\alpha
\]

есть, очевидно, линейная функция от \(x\) для каждого семейства скаляров \((\lambda^a)_{a \in \Lambda}\), так что \(\varphi\) — наложение.

В. Очевидно, каждая координата \(x_\alpha\) вектора \(x \in E\) относительно базиса \(A=(a_\alpha)_{\alpha \in \Lambda}\) является линейной функцией от \(x\). Мы будем называть ее \(x\)-й координатной линейной функцией и обозначать \(a^a(x)\); таким образом,

\[
x_\alpha = a^a(x),
\]

так что формула (7) может быть записана в виде

\[
f(x) = \sum_{\alpha \in \Lambda} f^a a^a(x) = \sum_{\alpha \in \Lambda} f(a_\alpha) a^a(x). \tag{8}
\]
Г. Координатные линейные функции \(a^x (x \in \Lambda) \) образуют в \(E^* \) репер. Действительно, очевидно
\[
a^x (a_\beta) = \delta_{x\beta},
\]
(9)
и потому из \(\sum_{\alpha \in \Lambda} \lambda_\alpha a^\alpha = 0 \) следует, что \(\lambda_\beta = \sum_{\alpha \in \Lambda} \lambda_\alpha a^\alpha (a_\beta) = 0 \) для всех \(\beta \in \Lambda \) (см. 3.5.Б, О).

Д. Пусть \(E \) — векторное пространство над \(K \), \(L \) — аффинное многообразие в \(E \) и \(f \in E^* \). В силу 4.1.В' \(f (L) \) есть аффинное многообразие в \(K^1 \). Но единственными аффинными многообразиями в \(K^1 \) являются одноточечные множества и все \(K^1 \). Следовательно, на аффинном многообразии (на подпространстве) линейная функция либо постоянна (равна нулю), либо принимает все значения из \(K \). В частности, если \(f \neq 0 \), то \(R_f = K^1 \).

Е. Пусть \(E \) — комплексное векторное пространство и \(E_R \) — ассоциированное с ним вещественное векторное пространство (см. определение 1 § 3). Если \(f \in E^* \) и \(f \neq 0 \), то, по Д, \(R_f = C^1 \); точно так же, если \(g \in E_R^* \) и \(g \neq 0 \), то \(R_g = R^1 \). В соответствии с этим мы будем называть функции \(g \in E_R^* \) вещественными, а функции \(f \in E^* \), в отличие от них, — комплексными линейными функциями на \(E \).

Очевидно, если \(f \in E^* \), то \(g = \Re f \in E_R^* \). При этом \(f \) однозначно определяется своей вещественной частью \(g \). Действительно, пусть \(h = \Im f \), так что для каждого \(x \in E \) имеем
\[
f (x) = g (x) + ih (x).
\]
(10)
Умножая на \(-i \) и заменяя \(x \) на \(ix \), получаем
\[
f (x) = h (ix) - ig (ix).
\]
(11)
Сравнивая (10) и (11), видим, что \(h (x) = -g (ix) \) и, следовательно,
\[
f (x) = g (x) - ig (ix).
\]
(12)
Вместе с тем мы установили, что
\[
\Im f (x) = -\Re f (ix), \ \text{т. е.} \ \Im f = -\Re (f \circ i).
\]
(12′)
Функция \(f \), определяемая формулой (12), является комплексной линейной функцией, какова бы ни была вещественная линейная функция \(g \). Действительно, очевидно,
что \(f \) аддитивна и \(f(ax) = af(x) \) для каждого \(x \in \mathbb{R} \). А так как, кроме того,
\[
f(ix) = g(ix) = ig(-x) = if(x),
\]
tо \(f(\lambda x) = \lambda f(x) \) для всех \(\lambda \in \mathbb{C} \). Тем самым каждая вещественная линейная функция на \(E \) есть вещественная часть однозначно определенной комплексной линейной функции.

Так как, кроме того, \(\mathbb{R}(f_1 + f_2) = \mathbb{R}f_1 + \mathbb{R}f_2 \) и \(\mathbb{R}(\alpha f) = \alpha \mathbb{R}f \) для всех \(\alpha \in \mathbb{R} \), то заключаем, что \(f \in \mathbb{R}f \) есть изоморфизм \(E^*_\mathbb{R} \) на \(E^*_\mathbb{R} \).

Е'. Из \(E \), в частности, следует, что если \(f \in E^* \) и \(\mathbb{R}f = 0 \), то и \(f = 0 \).

2. Векторное сопряженное к конечномерному векторному пространству

А. Из 1.Б следует, что векторное сопряженное \(E^* \) к \(n \)-мерному векторному пространству \(E \) \(n \)-мерно.

Замечание. Если \(E \) — бесконечномерное векторное пространство над \(K \), то \(\dim E^* = \dim E^* \) (где \(\dim K^* \)). Поскольку \(\dim E \geq 2 \) (2.5.А), заключаем, что если \(E \) бесконечномерно, то \(\dim E^* > \dim E \).

Б. Из сказанного в 1.Б следует также, что формула
\[
f(x) = \sum_{k=1}^{n} f^k x_k,
\]
где \(x_1, \ldots, x_n \) — координаты вектора \(x \) относительно какого-нибудь фиксированного базиса, а \(f^1, \ldots, f^n \) — произвольные скаляры, дает общий вид линейной функции на \(n \)-мерном векторном пространстве \(E \) над \(K \), причем \(f \to (f^1, \ldots, f^n) \) есть изоморфизм \(E^* \) на \(K^n \).

В. Если \(E \) — \(n \)-мерное векторное пространство с базисом \(A = \{a_1, \ldots, a_n\} \), то координатные линейные функции \(a^1, \ldots, a^n \) (1.В) образуют в \(E^* \) базис. Действительно, по 1.Г, \(A^* = \{a^1, \ldots, a^n\} \) — репер. С другой стороны, (8) означает в рассматриваемом случае, что любая линейная

*) См. Р. Бэр, Линейная алгебра и проективная геометрия, ИЛ, М., 1955.
Функция \(f \in E^* \) представима в виде
\[
f = \sum_{k=1}^{n} f_k a^k.
\]
Базис \(A^* \) пространства \(E^* \) будет называться дуальным к \(A \).
Если \(E \) бесконечномерно, то координатные линейные функции \(a^a \) уже не образуют базиса в \(E^* \), поскольку в формуле (8) может отличаться от нуля бесконечное множество коэффициентов \(f^a \).

3. Линейные функции и гиперпространства

Между гиперпространствами векторного пространства \(E \) над \(K \) и линейными функциями \(f \in E^* \) имеется тесная связь.

А. Ядро \(K_f \) всякой линейной функции \(f \) есть гиперпространство. Действительно, если \(f = 0 \), то \(K_f = E \), т. е. \(K_f \) — несобственное гиперпространство. Пусть \(f \neq 0 \). \(E/K_f \) изоморфно \(R_f \) (4.2.В). Но \(R_f = K^1 \) (1.Д). Следовательно, \(K_f \) — (собственное) гиперпространство (3.4.Б).

Приведем другое доказательство. Если \(f \neq 0 \), то существует вектор \(a \in E \) такой, что \(f(a) \neq 0 \). Поэтому для любого \(x \in E \) имеем
\[
f \left(x - \frac{f(x)}{f(a)} a \right) = 0, \text{ т. е. } x - \frac{f(x)}{f(a)} a \in K_f.
\]
Это показывает, что \(E = K_f + \mathbb{R}a \). Так как, с другой стороны, \(K_f \cap \mathbb{R}a = \{0\} \), то \(E = K_f \oplus \mathbb{R}a \) (3.4.В) и, значит, \(K_f \) — (собственное) гиперпространство (3.4.Е).

А'. Из А следует, что поверхности уровня ненулевой линейной функции \(f \), т. е. совокупности всех решений уравнений вида \(f(x) = \lambda \), — это гиперплоскости, параллельные \(K_f \). В самом деле, в силу 4.1.Д, \(f^{-1}(\lambda) = K_f + x_0 \), где \(x_0 \) — произвольное фиксированное решение уравнения \(f(x) = \lambda \).

\(f(x) = \lambda \) называют уравнением гиперплоскости \(X = f^{-1}(\lambda) \).

Б. Обратно, каждое гиперпространство есть ядро (и, значит, каждая гиперплоскость — поверхность уровня) некоторой линейной функции. Действительно, \(E \) есть ядро нулевой линейной функции. Пусть \(H \) — собственное гиперпространство пространства \(E \), \(\varphi \) — каноническое наложение \(E \) на \(E/H \) и \(\psi \) — изоморфизм \(E/H \) на \(K^1 \) (3.4.Б). Тогда
\[
f = \psi \circ \varphi
\]
(1)
есть линейное отображение E на K^1 (4.3.Г), т. е. линейная функция, причем $K_f = \varphi^{-1}(\psi^{-1}(0)) = \varphi^{-1}([H]) = H$.

Приведем другое доказательство. $E = H \oplus G_a$, где a — произвольный фиксированный вектор из $E \setminus H$ (3.4.Д). Поэтому каждый вектор $x \in E$ однозначно представим в виде

$$x = f(x) u + h(x),$$

где $f(x) \in K$ и $h(x) \in H$. (2)

Так как $f(x) a = \pi(x)$, где π — проектор E на G_a параллельно H (теорема 2 § 4), а всякий проектор, по определению, линеен, то $f \in E^a$. При этом $x \in H$ тогда и только тогда, когда $f(x) = 0$, т. е. $H = K_f$.

В. Из 4.2.В и 1.Д следует, что всякая ненулевая линейная функция с ядром H представима в виде (1).

Г. Очевидно, $K_f = K_{\lambda f}$ для любого ненулевого $\lambda \in K$. Но этим и исчерпывается произвол в выборе линейной функции с заданным ядром. Несколько более общим образом: каждая линейная функция g, аннулирующаяся на данном гиперпосредстве H, имеет вид $g = \lambda f$, где $\lambda \in K$, а f — фиксированная линейная функция с ядром $K_f = H$. Действительно, при $g = 0$ нужно лишь взять $\lambda = 0$. Пусть $g \neq 0$, так что H — собственное и $K_g = H$. Согласно В $f = \psi \circ \varphi$, $g = \chi \circ \varphi$, где φ — каноническое наложение E на E/H, ψ и χ — изоморфизм E/H на K^1. Так как тогда $\chi \circ \psi^{-1}$ есть линейное отображение K^1 на себя и, значит, имеет вид $\lambda \psi$, где ψ — тождественное отображение, то $\chi = \lambda \psi$, значит, $g = \lambda f$.

Приведем другое доказательство. В силу (2) $g(x) = g(f(x) u + h(x)) = f(x) g(u) + g(h(x)) = 0$.

Г'. В силу А предложение, доказанное в Г, можно сформулировать следующим образом: если f, $g \in E^a$ и $f(x) = 0$ всегда влечет $g(x) = 0$, то $g = \lambda f$, где $\lambda \in K$.

Д. Из Б следует, что каждая гиперплоскость $X \subset E$ может быть задана уравнением вида $f(x) = \xi$, где $f \in E^a$. При этом Г показывает, что уравнения $f(x) = \xi$ и $g(x) = \eta$ одной и той же гиперплоскости X пропорциональны, т. е. существует скаляр λ такой, что $g = \lambda f$ и $\eta = \lambda \xi$. Действительно, так как $K_f = K_g$, то в силу Г $g = \lambda f$, а тогда, беря произвольный вектор $x_0 \in X$, получаем, что и $\eta = g(x_0) = \lambda f(x_0) = \lambda \xi$.
Е. Из Б и Г следует также, что для каждого собственного гиперпомпостранства H, вектора $x_0 \in E \setminus H$ и скаляра $\gamma_0 \neq 0$ существует однозначно определенная линейная функция $f \in E^*$ такая, что $K_f = H$ и $f(x_0) = \gamma_0$.

4. Системы линейных уравнений

Определение 3. Пусть E — векторное пространство над K. Системой линейных уравнений на E называется всякое конечное семейство уравнений относительно $x \in E$

$$f_k(x) = \gamma_k \quad (k = 1, \ldots, n),$$

где $f_1, \ldots, f_n \in E^*$, а $\gamma_1, \ldots, \gamma_n \in K$. Если $\gamma_1 = \ldots = \gamma_n = 0$, то систему (1) называют однородной. В противном случае ее называют неоднородной, а систему

$$f_k(x) = 0 \quad (k = 1, \ldots, n)$$

— соответствующей ей однородной системой. Систему (1) называют совместной, если она обладает хотя бы одним решением x (т. е. удовлетворяется хотя бы одним вектором $x \in E$), и несовместной — в противном случае. Если всякое решение совместной системы (1) удовлетворяет линейному уравнению

$$f(x) = \gamma,$$

то это уравнение называют следствием системы (1).

А. Пусть $f_1, \ldots, f_n \in E^*$. Рассмотрим отображение

$$x \rightarrow \varphi(x) = (f_1(x), \ldots, f_n(x))$$

пространства E в K^n. Очевидно, система (1) равносильна уравнению

$$\varphi(x) = c,$$

где $c = (\gamma_1, \ldots, \gamma_n)$. (5)

Так как f_1, \ldots, f_n — линейные функции, то φ — линейное отображение E в K^n. Его ядро K_φ есть множество всех решений однородной системы (2), противоположность $R_\varphi = \varphi(E)$ — множество всех «правых частей» $c = (\gamma_1, \ldots, \gamma_n)$, для которых система (1) совместна, а $\varphi^{-1}(c)$ — множество всех решений системы (1).

Б. Каждая однородная система линейных уравнений (2) совместна, ибо во всяком случае удовлетворяется нулевым вектором. В силу А и 4.1.Г множество всех ее ре-
Линейные функции

§ 5

шений является подпространством пространства E. Мы будем называть его пространством решений системы (2).

В. Если система линейных уравнений (1) совместна и x_0 — какое-нибудь ее решение, то множество всех ее решений является аффинным многообразием, получающимся путем переноса пространства решений соответствующей однородной системы (2) на x_0. Действительно, заменяя систему (1) равносильным уравнением (5), имеем $\varphi(x_0) = c$, откуда, по 4.1(3), $\varphi^{-1}(c) = K \varphi + x_0$, и остается применить A.

Г. Из В и 1.Д следует, что если система (1) совместна, то либо уравнение (3) при некотором однозначно определенном γ является следствием этой системы, либо система

$$ f_1(x) = \gamma_1, \ldots, f_n(x) = \gamma_n, f(x) = \gamma $$

совместна при любом γ.

Лемма. Пусть F — конечномерное векторное пространство. Для всякого его собственного подпространства G и вектора $c \in F \setminus G$ существует линейная функция $f \in E^*$, аннулирующаяся на всем G и отличная от нуля в c.

Доказательство. Пусть $B = \{a_1, \ldots, a_m\}$ — базис подпространства G (3.7.И19). Так как c не зависит линейно от B, то $A' = \{a_1, \ldots, a_m, a_{m+1}\}$, где $a_{m+1} = c$, — репер (3.5.М). Дополнив его до базиса $A = \{a_1, \ldots, a_n\}$ пространства F (3.7.И2). Требуемым свойством будет обладать $(m+1)$-я координатная линейная функция $f = a^{m+1}$. Действительно, согласно 1.(9), $f(c) = 1 \neq 0$, для всякого же $x = \sum_{k=1}^{m} x_k a_k \in G$ имеем $f(x) = \sum_{k=1}^{m} x_k f(a_k) = 0$.

Теорема 1. Для того чтобы система линейных уравнений (1) была совместной, необходимо и достаточно, чтобы каждое соотношение

$$ \sum_{k=1}^{n} \lambda_k f_k = 0 $$

влечь соотношение

$$ \sum_{k=1}^{n} \lambda_k \gamma_k = 0. $$

6 Зак. 2941. Д. А. Райков
Доказательство. Необходимость условия теоремы очевидна. Для доказательства его достаточности предположим, что система (1) несовместна, т. е., в обозначениях, введенных в А, $c \notin \mathbb{R}_\varphi$. Так как $R_\varphi \subseteq \mathbb{R}^n$ (4.1, Г), то, в силу леммы и 2.Б, на \mathbb{K}^n существует линейная функция $g(z) = \sum_{k=1}^{n} \lambda_k z_k$, анулирующаяся на всем R_φ и отличная от нуля в c. Иными словами, существуют скаляры $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ такие, что $\sum_{k=1}^{n} \lambda_k f_k(x) = g(\varphi(x)) = 0$ для всех $x \in E$, т. е. имеет место соотношение (7), но $\sum_{k=1}^{n} \lambda_k y_k = g(c) \neq 0$, т. е. соотношение (8) не выполняется. Следовательно, если (7) всегда влечет (8), то система (1) совместна.

Теорема 2. Для того чтобы семейство линейных функций $\mathcal{F} = (f_k)_{1 \leq k \leq n}$ на E было линейно независимым, необходимо и достаточно, чтобы система (1) была совместна при любой правой части $c = (\gamma_1, \ldots, \gamma_n)$, т. е. чтобы отображение φ пространства E в \mathbb{K}^n, определяемое этим семейством по формуле (4), было наложением.

Доказательство. Если \mathcal{F} линейно независимо, то (7) влечет (8) при любых значениях $\gamma_1, \ldots, \gamma_n$, поскольку $\lambda_1 = \ldots = \lambda_n = 0$; следовательно, по теореме 1, система (1) совместна при любой правой части $c = (\gamma_1, \ldots, \gamma_n)$. Обратно, если система (1) совместна при любой правой части $c = (\gamma_1, \ldots, \gamma_n)$, то, по теореме 1, соотношение (7) влечет соотношение (8) при произвольных значениях $\gamma_1, \ldots, \gamma_n$, что возможно лишь если $\lambda_1 = \ldots = \lambda_n = 0$; следовательно, \mathcal{F} линейно независимо.

Теорема 3. Пространство решений однородной системы линейных уравнений (2) имеет конечную факторразмерность, равную рангу семейства $\mathcal{F} = (f_k)_{1 \leq k \leq n}$, т. е. числу t элементов его максимального линейно независимого подсемейства \mathcal{F}'.

Доказательство. Согласно А пространство решений системы (2) есть не что иное, как ядро K_φ отображения φ, определяемого по формуле (4) семейством \mathcal{F}. Так как, по 4.2.В, $E/K_\varphi \sim R_\varphi$, то K_φ имеет конечную факторразмерность, равную $\dim R_\varphi (\leq n)$ (3.7, Г, И). Если $m = 0$, т. е. $f_1 = \ldots$
§ 5] линейные функции

... = f_n = 0, то \(R_\varphi = \{0\} \) и, значит, \(\text{codim} K_\varphi = 0 = m \).
Пусть \(m \neq 0 \). Без ограничения общности можно считать, что \(\mathcal{F}' = (f_k)_{1 \leq k \leq m} \). Тогда

\[
x \rightarrow \varphi'(x) = (f_1(x), \ldots, f_m(x))
\]

в силу теоремы 2 есть отображение \(E \) на всё \(K^m \). С другой стороны, так как (при \(m < n \)) каждая из функций \(f_{m+1}, \ldots, f_n \) есть линейная комбинация функций \(f_1, \ldots, f_m \), то

\[
(f_1(x), \ldots, f_m(x)) \rightarrow (f_1(x), \ldots, f_m(x))
\]

есть однозначно определенное вложение \(K^m \) в \(K^n \). Но \(\varphi \) есть суперпозиция отображений (9) и (10). Так как приведение вложения есть изоморфизм, то на основании 3.7, г заключаем, что \(\text{codim} K_\varphi = \dim R_\varphi = \dim R_{\varphi'} = m \), что и требовалось.

Замечание. Мы доказали попутно, что

\[
\dim R_\varphi = \text{rang} \mathcal{F}.
\]

В конечном слуке это равенство есть по существу не что иное, как теорема о совпадении максимального числа линейно независимых столбцов матрицы с максимальным числом линейно независимых строк, а теорема 1 — теорема Кронекера — Капелли.

Теорема 4. Для того чтобы линейное уравнение (3) было следствием системы линейных уравнений (1), необходимо и достаточно, чтобы оно было линейной комбинацией уравнений этой системы, в т. е. чтобы существовали такие скаляры \(\lambda_1, \ldots, \lambda_n \in K \), что

\[
f = \sum_{k=1}^n \lambda_k f_k
\]

и \(\gamma = \sum_{k=1}^n \lambda_k \gamma'_k \).

Доказательство. Достаточность сформулированного условия очевидна. Пусть \(\mathcal{F}' = \) максимальное линейно независимое подсемейство семейства \(\mathcal{F} = (f_k)_{1 \leq k \leq n} \). Без ограничения общности можно считать, что \(\mathcal{F}' = (f_k)_{1 \leq k \leq m} \). Для доказательства необходимости предложим, что уравнение (3) есть следствие системы (1), так что, в частности, сама эта система совместна. Но тогда, при \(m < n \), и каждая система

\[
f_1(x) = \gamma_1, \ldots, f_m(x) = \gamma_m, f_{m+i}(x) = \gamma_{m+i}
\]

настоящая.
совместна. Так как при этом \(f_{m+i} = \sum_{k=1}^{m} \lambda_{ik} f_k \), то, по теореме 1, также \(\gamma_{m+i} = \sum_{k=1}^{m} \lambda_{ik} \gamma_k \), т. е. уравнения \(f_{m+i}(x) = \gamma_{m+i} \quad (1 \leq i \leq n - m) \) являются линейными комбинациями уравнений системы

\[
f_1(x) = \gamma_1, \ldots, f_m(x) = \gamma_m, \quad (11)
\]

а тем самым и следствиями этой системы. Но в таком случае уравнение (3) есть следствие системы (11), поэтому система

\[
f_1(x) = \gamma_1, \ldots, f_m(x) = \gamma_m, \quad f(x) = \gamma'
\]

при \(\gamma' \neq \gamma \) уже несовместна, и, значит, по теореме 2, функции \(f_1, \ldots, f_m, f \) линейно зависят. Так как, с другой стороны, \(f_1, \ldots, f_m \) линейно независимы, то это означает, что \(f \) линейно зависит от \(\mathcal{F}' \) (3.5.М), а значит, и от \(\mathcal{F} \):

\[
f = \sum_{k=1}^{n} \lambda_k f_k.
\]

А поскольку система (6) совместна, отсюда следует, что и \(\gamma = \sum_{k=1}^{n} \lambda_k \gamma_k \), т. е. уравнение (3) есть линейная комбинация уравнений системы (1).

Ометим наиболее важный частный случай теоремы 4.

Теорема 4'. Для того чтобы однородное линейное уравнение

\[
f(x) = 0
\]

было следствием однородной системы линейных уравнений (2), необходимо и достаточно, чтобы оно было линейной комбинацией уравнений этой системы.

Приведем доказательство необходимости условия теоремы 4', не опирающегося на другие результаты этого раздела. При \(n = 1 \) справедливость доказываемого утверждения уже установлена в 3.Г'. Докажем, что его справедливость для \(n = 1 \) влечет справедливость для \(n \). Так как на пространстве \(F \) решений системы \(f_k(x) = 0 \quad (k = 1, \ldots, n - 1) \) уравнение (12), в силу предположения, есть следствие уравнения \(f_n(x) = 0 \), то, по уже доказанному (в применении к пространству \(F \)), существует \(\lambda_n \in \mathbb{K} \) такое, что \(f(x) = \lambda_n f_n(x) \) для всех \(x \in F \). Но это означает, что уравнение
(\(f - \lambda_n f_n\))(x) = 0 \text{ есть следствие системы } f_k(x) = 0 \ (k = 1, \ldots, n - 1); \text{ а тогда, по предположению индукции, } f - \lambda_n f_n = \sum_{k=1}^{n} \lambda_k f_k \text{ и, значит, } f = \sum_{k=1}^{n} \lambda_k f_k.

\section*{§ 6. ДУАЛЬНЫЕ ПАРЫ ВЕКТОРНЫХ ПРОСТРАНСТВ}

1. Понятие дуальной пары

Определение 1. Пусть \(E\) и \(F\) — векторные пространства над одним и тем же полем \(K\). Функцию \(u(x, y)\) со значениями в \(K\), определенную на произведении \(E \times F\), называют билинейной, если

\[u(y_0(x)) = u(x, y_0) \]

является линейной функцией на \(E\) при каждом фиксированном \(y_0 \in F\) и

\[u_{x_0}(y) = u(x_0, y) \]

— линейной функцией на \(F\) при каждом фиксированном \(x_0 \in E\), т. е.

\[
\begin{align*}
&u(x_1 + x_2, y) = u(x_1, y) + u(x_2, y), \\
&u(x, y_1 + y_2) = u(x, y_1) + u(x, y_2)
\end{align*}
\]

(1)

и

\[u(\lambda x, y) = u(x, \lambda y) = \lambda u(x, y) \]

(2)

при любых \(x, x_1, x_2 \in E\), \(y, y_1, y_2 \in F\) и \(\lambda \in K\).

Если \(u——\) билинейная функция на \(E \times F\), то функция \(u'\) на \(F \times E\), определяемая условием

\[u'(y, x) = u(x, y) \text{ для всех } (y, x) \in F \times E \]

и, очевидно, также билинейная, называется транспонированной по отношению к \(u\).

Для обозначения линейных функций \(u.y\) и \(u.x\) мы будем иногда пользоваться также символами \(u(\cdot, y)\) и \(u(x, \cdot)\).

Векторы \(x \in E\) и \(y \in F\), для которых \(u(x, y) = 0\), будут называться ортогональными.

А. Так, \(u(x, f) = f(x)\) с переменными \(x \in E\) и \(f \in E^*\), по самому определению пространства \(E^*\), есть билинейная
функция на $E \times E^*$. Мы будем обозначать ее

$$\langle x, f \rangle$$

и называть канонической билинейной функцией на $E \times E^*$.

Очевидно, для произвольной билинейной функции u на $E \times F$ имеем

$$u(x, y) = \langle x, u_y \rangle = \langle y, u_x \rangle.$$

Б. Если u — билинейная функция на $E \times F$, то $y \mapsto u_y$ есть линейное отображение F в E^* и $x \mapsto u_x$ — линейное отображение E в F^*. Действительно, это непосредственно следует из формул (1) и (2). В частности, $x \mapsto \langle x, \cdot \rangle$ есть линейное отображение E в E^{**}.

Б'. Положим

$$u_F = \{u_y : y \in F\} \quad \text{и} \quad u_E = \{u_x : x \in E\}.$$

В силу Б и 4.1, в $u_F \subset E^*$ и $u_E \subset F^*$.

Определение 2. Пусть E и F — векторные пространства над одним и тем же полем K. Если на $E \times F$ фиксирована билинейная функция $u(x, y)$, то мы будем говорить, что E и F образуют дуальную пару относительно u, при том отделимую по F, если выполнено условие

1. $u_{y_0} \neq 0$ для каждого ненулевого вектора y_0 из F, отделимую по E, если выполнено условие

2. $u_{x_0} \neq 0$ для каждого ненулевого вектора x_0 из E, и просто отделимую, если выполнены одновременно оба условия.

Дуальная пара, образуемая векторными пространствами E и F относительно билинейной функции u, будет обозначаться $(E, F; u)$. Если $F \subset E^*$, то под u будет всегда пониматься сужение канонической билинейной функции (x, f) на $E \times F$ и вместо $(E, F; u)$ мы будем писать просто (E, F).

Примеры. 1. Рассмотрение примера 4 п. 1 § 5 показывает, что пространства l^p и l^q, где $\frac{1}{p} + \frac{1}{q} = 1$, образуют отделимую дуальную пару относительно билинейной функции

$$u(x, y) = \sum_{k=1}^{\infty} \xi_k \eta_k$$

(3)
векторов \(x = (\xi_k) \in l^p \), \(y = (\eta_k) \in l^q \). То же, очевидно, верно и для пространств \(l^p_R \) и \(l^q_R \).

2. Точно так же пространства \(l^1 \) и \(l^\infty \) (\(l^1_R \) и \(l^\infty_R \)) образуют отдельную дуальную пару относительно билинейной функции (3) векторов \(x = (\xi_k) \in l^1(l^1_R) \), \(y = (\eta_k) \in l^\infty(l^\infty_R) \) (см. пример 5 п. 1 § 5).

В. В силу 4.1.Е условие I (II) определения 2 в соединении с Б означает, что дуальная пара \((E, F; u)\) отдельна по \(F(E) \) тогда и только тогда, когда \(y \rightarrow u \cdot y \) (\(x \rightarrow u \cdot x \)) есть вложение \(F \) в \(E^* \) (\(E \) в \(F^* \)).

В'. Очевидно, дуальная пара, образованная векторными пространствами \(E \) и \(F \) относительно билинейной функции \(u \), отдельна по \(E \) или \(F \) одновременно с дуальной парой, которую образуют \(F \) и \(E \) относительно транспонированной билинейной функции \(u^* \).

Г. Всякая дуальная пара \((E, E')\), где \(E' \subseteq E^* \), отдельна по \(E' \). В самом деле, пусть \(u \) — сужение канонической билинейной функции \(\langle x, f \rangle \) на \(E \times E' \); условие I определения 2 выполнено здесь просто потому, что \(u \cdot f = f \). Дуальная пара \((E, E^*)\) отдельна. Действительно, пусть \(A = (a_0, e) \subseteq A \) — базис пространства \(E \) (теорема 2 § 3) и \(x_0 \) — ненулевой вектор из \(E \). Тогда по крайней мере одна координата \(x_0 \) этого вектора относительно базиса \(A \) отлична от нуля и потому для соответствующей координатной линейной функции \(a^0 \) (5.1.В) имеем \(u \cdot x_0 \cdot (a^0) = \langle x_0, a^0 \rangle = x_0 \neq 0 \). Тем самым выполнено и условие II.

Д. Если дуальная пара \((E, F; u)\) отдельна по \(F \), то для каждой линейной функции \(g \) на \(F \) и каждого конечного набора векторов \(y_1, \ldots, y_n \in F \) существует вектор \(x \in E \), удовлетворяющий уравнениям

\[
\forall k = 1, \ldots, n.
\]

Действительно, если \(\sum_{k=1}^{n} \lambda_k u \cdot y_k(x) = u \left(x, \sum_{k=0}^{n} \lambda_k y_k \right) = 0 \) для всех \(x \in E \), то, в силу условия I определения 2, \(\sum_{k=1}^{n} \lambda_k y_k = 0 \), откуда \(\sum_{k=1}^{n} \lambda_k \langle y_k, g \rangle = 0 \). Таким образом, система линейных
уравнений (4) удовлетворяет условию теоремы 1 § 5 и тем самым разрешим.

Д'. В силу Γ заключаем из Д, что если $E' \subset \subset E^*$, то для каждой линейной функции x^* на E' и каждого конечного набора линейных функций $f_1, \ldots, f_n \in E'$ существует вектор $x \in E$, удовлетворяющий уравнениям

$$
(x, f_k) = (f_k, x^*) \quad (k = 1, \ldots, n).
$$

Впрочем, в силу В Д' есть лишь перефразировка Д. E. n-мерное векторное пространство E над K образует отдельную дуальную пару с векторным пространством F над K относительно какой-нибудь билинейной функции и тогда и только тогда, когда F n-мерно; при этом $y \to u_y$ есть изоморфизм F на E^*. В самом деле, так как $y \to u_y$, согласно B, есть вложение F в E^*, а E^* n-мерно (5.2.A), то в силу 3.7. Г, И F конечномерно и его размерность $m \leq n$. Но тогда и E^* m-мерно, а так как $x \to u_x$, по B, есть вложение E в F^*, то $n \leq m$. Следовательно, $m = n$, т. е. F n-мерно, а в таком случае образом F при вложении $y \to u_y$ служит всё E^* (см. 3.7. И 19). Обратно, пусть F произвольное n-мерное векторное пространство над K. Положим

$$
u(x, y) = \sum_{k=1}^{n} \varepsilon_k \eta_k,$$

где ε_k и $\eta_k \ (k = 1, \ldots, n)$ — координаты векторов $x \in E$ и $y \in F$ относительно каких-нибудь фиксированных базисов, Очевидно, ν — билинейная функция. Покажем, что дуальная пара $(E, F; u)$ отделима. Действительно, если $u(y) \neq 0$, так что, скажем, $\eta^{(0)}_{k_0} \neq 0$, то для $x^{(0)} = (\delta^{(0)}_{k_0}, \ldots, \delta^{(0)}_{k_0})$ имеем $u(y) (x^{(0)}) \neq 0$. Тем самым выполнено условие 1 определения 2; совершенно так же устанавливается выполнение условия II.

E'. Из E, в частности, следует, что конечномерное векторное пространство не может образовывать отделимой дуальной пары ни с одним собственным подпространством своего векторного сопряженного.

Ж. Напротив, бесконечномерное векторное пространство E образует отделимую дуальную пару с бесконечным множеством различных подпространств пространства
сства E^*. Действительно, пусть $A = \{a_\alpha\}_{\alpha \in A}$ — какой-нибудь базис пространства E и E^* — подпространство в E^*, порожденное множеством A^* всех координатных линейных функций a^α (5.1.В). E^* не содержит ни одной линейной функции $f(x) = \sum_{\alpha \in A} f^\alpha a^\alpha(x)$, у которой бесконечное множество коэффициентов f^α отлично от нуля, и потому содержит в бесконечном множестве различных подпространств пространства E^*. В то же время, так же как в E, можно убедиться в том, что E образует отделимую дуальную пару как с E^*, так, следовательно, и с любым из этих подпространств.

Определение 3. Достаточным пространством линейных функций на E будет называться всякое $E' \subseteq \subseteq E^*$, образующее с E отделимую дуальную пару, т. е. такое, что для любого ненулевого вектора $x_0 \subseteq E$ существует линейная функция $f_0 \subseteq E'$, отличная от x_0 от нуля (см. Г).

Пример. В примере 1 к определению 2 l^q, отождествленное со своим образом при вложении $u \rightarrow u, y$ в $(l^p)^*$, является достаточным пространством линейных функций на l^p. Аналогичный результат верен и для пространств l^1 и l^∞ (см. пример 2 к определению 2).

3. Из В следует, что если E' — достаточное пространство линейных функций на E, то $x \rightarrow (x, f)$, где правая часть рассматривается как функция от f на E', есть вложение E в E'^*. Рассматривая дуальные пары (E, E') с достаточным E', обычно отождествляют E с его образом в E'^* при этом каноническом вложении. В частном случае конечномерного E это будет отождествлением E с $E'^* = E^{**}$.

И. Если E' — достаточное пространство линейных функций на E, то каждая линейная функция $f_F,$ заданная на конечномерном подпространстве F пространства E, обладает продолжением на всё E, принадлежащим E', т. е. существует линейная функция $f \subseteq E'$ такая, что $(x, f) = f_F(x)$ для всех $x \subseteq F$. Действительно, пусть векторы a_1, \ldots, a_n образуют базис подпространства F. Так как они линейно независимы, а E можно рассматривать, согласно 3, как пространство линейных функций на E', то, по теореме 2 § 5, система линейных уравнений на E'

$$\langle a_k, f \rangle = f_F(a_k)$$
разрешима. Ее решение \(f \in E' \) и обладает утверждаемым свойством, ибо для любого вектора \(x = \sum_{k=1}^{n} x_k a_k \in F \) имеем

\[
(x, f) = \sum_{k=1}^{n} x_k (a_k, f) = \sum_{k=1}^{n} x_k f(a_k) = f_F(x).
\]

К. В силу 3 имеет место также предложение, «дуальное» к \(D' \): если \(E' \) — достаточное пространство линейных функций на \(E \), то для каждой линейной функции \(f^* \) на \(E \) и каждого конечного набора векторов \(x_1, \ldots, x_n \in E \) существует линейная функция \(f \in E' \) такая, что

\[
(x_k, f) = (x_k, f^*) \quad (k = 1, \ldots, n).
\]

2. Аннуляторы

Определение 4. Пусть \((E, F; u) \) — заданная дуальная пара векторных пространств (см. определение 2). Аннулятором множества \(A \subset E \) в \(F \) (относительно \(u \)) называется совокупность всех векторов \(y \in F \), ортогональных к каждому вектору \(x \in A \), т. е. множество

\[
A^\perp = \{ y \in F : u(x, y) = 0 \text{ для всех } x \in A \}.
\]

Аналогично, аннулятором множества \(B \subset F \) в \(E \) (относительно \(u \)) называется множество

\[
B^\perp = \{ x \in E : u(x, y) = 0 \text{ для всех } y \in B \}.
\]

Под \(C^\perp \) и \(C_{\perp \perp} \), где \(C \subset E \) или \(F \), понимается соответственно \((C^\perp)^\perp \) и \((C_{\perp \perp})^\perp \). \(C^\perp \) называется бианнулятором множества \(C \).

А. Очевидно, \(F^\perp \) (\(E^\perp \)) есть ядро отображения \(x \to u_x \). (\(y \to u_y \)). Таким образом, \(1 \) В можно выразить следующим образом: дуальная пара \((E, F; u) \) отделяма по \(E \) (\(F \)) тогда и только тогда, когда \(F^\perp = \{ 0 \} \) (\(E^\perp = \{ 0 \} \)).

Б. Из определения 4 непосредственно следует:

1° \(C \subset D \) влечет \(D^\perp \subset C^\perp \).

2° \(C \subset C_{\perp \perp} \).

3° \(\left(\bigcup_{\alpha \in \Lambda} C_{\alpha} \right)^\perp = \bigcap_{\alpha \in \Lambda} C_{\alpha} \).
Повторно применяя 1°, получаем:

4° $C \subseteq D$ влечет $C^\perp \subseteq D^\perp $.

В. $C^\perp \subseteq C^\perp $, каково бы ни было C. Действительно, с одной стороны, $C^\perp \subseteq C^\perp = (C^\perp)^\perp \supseteq C^\perp $ (Б 2°). С другой стороны, так как $C \subseteq C^\perp $, то $C \supseteq (C^\perp)^\perp = C^\perp \subseteq C^\perp $ (Б1°).

Г. Пусть $C \subseteq E (F)$. $C^\perp $ — наибольшее из множеств $M \subseteq E (F)$, для которых $M^\perp \supseteq C^\perp $. Действительно, с одной стороны, по В. $(C^\perp)^\perp = C^\perp $. С другой стороны, если $M^\perp \supseteq C^\perp $, то согласно Б 2° $M \subseteq M^\perp \subseteq C^\perp \perp $ (*).

Д. Если $C \subseteq E (F)$, то $C^\perp \subseteq F (E)$. В самом деле, пусть, скажем, $C \subseteq E$. Если $y_1, y_2 \in C^\perp $, то $u (x, y_1, y_2) = u (x, y_1) + u (x, y_2) = 0$ для всех $x \in C$, т. е. $y_1 + y_2 \in C^\perp $; далее, $u (x, \lambda y_1) = \lambda u (x, y_1) = 0$ для всех $x \in C$ и скаляров λ, т. е. $\lambda y_1 \in C^\perp $, и остается применить 3.2.В.

Е. Из Д следует, что если $C \subseteq E (F)$, то $C^\perp \subseteq E (F)$. Тогда $C \subseteq \mathbb{E}_C \subseteq C^\perp $ (Б 2°), откуда $C \supseteq \mathbb{E}_C \supseteq C^\perp \subseteq C^\perp \perp $ (Б 1°). На основании В заключаем, что

$$\mathbb{E}_C^\perp = C^\perp .$$

(1)

Справедливость этого, конечно, легко проверить и непосредственно.

Ж. Если $0 \in C \cap D$, то $(C + D)^\perp = C^\perp \cap D^\perp $. Действительно, это непосредственно следует из Б 3° и (1), поскольку, вследствие сделанного предположения, $\mathbb{E}_{C+D} = \mathbb{E}_C \cup D$.

З. Пусть $(E, F; u)$ — заданная дуальная пара векторных пространств. Если $K \subseteq E$ конечно-мерно, то

$$\text{codim } K^\perp \leq \dim K,$$

(2)

причем если $(E, F; u)$ отделима по E, то

$$\text{codim } K^\perp = \dim K.$$

(3)

*) Совершенно так же $C^\perp $ — наибольшее из множеств M, для которых $M^\perp \supseteq C^\perp $.
В самом деле, пусть $A = \{a_1, \ldots, a_n\}$ — базис подпространства K. В силу (1) и B^3

$$K^\perp = S_A = A^\perp = \left(\bigcup_{k=1}^{n} \{a_k\} \right)^\perp = \bigcap_{k=1}^{n} \{a_k\}^\perp.$$

Так как $\{a_k\}^\perp = K_{u_{a_k}}$, то заключаем, что K^\perp есть пространство решений однородной системы линейных уравнений на F

$$u_{a_k}(y) = 0 \quad (k = 1, \ldots, n). \quad (4)$$

В силу теоремы 3 § 5, отсюда вытекает, что $\text{codim} K^\perp \leq n = \dim K$, причем равенство имеет место, когда функции u_{a_1}, \ldots, u_{a_n} линейно независимы. Но если $(E, F; \mu)$ отделима по E, то $x \rightarrow u_x$, согласно 1.В. — вложение E в F^*, и линейная независимость функций u_{a_1}, \ldots, u_{a_n} вытекает, по 4.2.Б, из линейной независимости векторов a_1, \ldots, a_n базиса A.

И. Пусть $(E, F; \mu)$ — заданная двуальная пара векторных пространств. Будем называть $M \subset E (F)$ замкнутым по Макку *) или просто замкнутым, если оно совпадает со своим бианулятором $M^{\perp \perp}$. Для того чтобы множество M было замкнутым подпространством пространства $E (F)$, необходимо и достаточно, чтобы оно было аннулятором какого-нибудь множества $N \subset F (E)$. Действительно, если M — замкнутое подпространство, так что $M = M^{\perp \perp}$, то в качестве N можно взять M^{\perp}. Обратно, если $N \subset F (E)$, то, согласно Д, $M = N^{\perp} = \text{подпространство, и при этом, в силу В, } M^{\perp \perp} = N^{\perp \perp} = N^{\perp} = M$.

К. Из И следует, в частности, что, каково бы ни было множество $M \subset E (F)$, $M^{\perp \perp}$ есть замкнутое подпространство в $E (F)$. При этом $M^{\perp \perp}$ есть наименьшее замкнутое подпространство, содержащее M. Действительно, если N — замкнутое подпространство, содержащее M, то в силу B^3 $M^{\perp \perp} \subset N^{\perp \perp}$, т. е. $M^{\perp \perp} \subset N$.

§ 6] ДУАЛЬНЫЕ ПАРЫ ВЕКТОРНЫХ ПРОСТРАНСТВ

Л. Пусть \(M \subset \subset E (F) \). Основываясь на К, мы будем называть \(M^{\perp} \) замыканием \(M \) и обозначать также \(\overline{M} \). Согласно Б 2°, 4° и К, операция замыкания \(M \rightarrow \overline{M} \) обладает следующими свойствами: 1) \(M \subset \overline{M} \), 2) \(M \subset N \) влечет \(\overline{M} \subset \overline{N} \), 3) \(\overline{M} = \overline{\overline{M}} \).

М. Дуальная пара \((E, F; u) \) отделяма по \(E \) тогда и только тогда, когда нулевое подпространство \(N \) пространства \(E \) замкнуто. В самом деле, так как \(N^{\perp} = F \), то \(N^{\perp} = F^{\perp} \), и остается применить А.

Н. Пусть \((E, F; u) \) — заданная дуальная пара векторных пространств. Пересечение любого семейства \((M_{\alpha})_{\alpha \in \Lambda} \) замкнутых подпространств пространства \(E (F) \) есть замкнутое подпространство. Действительно, \(\bigcap_{\alpha \in \Lambda} M_{\alpha} = \bigcap_{\alpha \in \Lambda} M_{\alpha}^{\perp} = \left(\bigcup_{\alpha \in \Lambda} M_{\alpha}^{\perp} \right)^{\perp} \) (Б 3°), и остается применить И.

О. Если дуальная пара \((E, F; u) \) отделяма по \(F \) и \(G \) — замкнутое подпространство пространства \(E \), имеющее конечную faktorразмерность, то \(G^{\perp} \) конечномерно и \(\dim G^{\perp} = \operatorname{codim} G. \) (5)

В самом деле, в силу 3.7.Ж \(E = G \oplus K \), где \(K \) конечномерно. При этом в силу Ж и А \(G^{\perp} \cap K^{\perp} = (G + K)^{\perp} = E^{\perp} = \{0\} \). Отсюда следует, что каноническое наложение \(\varphi \) пространства \(F \) на \(F/K^{\perp} \) взаимно однозначно на \(G^{\perp} \), так что \(G^{\perp} \sim \varphi (G^{\perp}) \). Но согласно (2) \(K^{\perp} \) имеет конечную faktorразмерность. Принимая во внимание 3.7.Г, И 1°, заключаем, что \(G^{\perp} \) конечномерно. А тогда, в силу З (с заменой \(E \) на \(F \), \(F \) на \(E \) и \(K \) на \(G^{\perp} \)), имеем \(\operatorname{codim} G = \operatorname{codim} G^{\perp} = \dim G^{\perp} \).

П. Пусть \((E, F; u) \) — заданная дуальная пара векторных пространств. Если \(M \subset \subset E, K \subset \subset E \) и \(K \) конечномерно, то \(\overline{M} + K = \overline{M} + K \). Действительно, в силу Ж, \(\overline{M} + K = = (M + K)^{\perp} = (M^{\perp} \cap K^{\perp})^{\perp} \). Но \(x \in (M^{\perp} \cap K^{\perp})^{\perp} \) означает, что \(u_{x} (y) = 0 \) для всех \(y \in M^{\perp} \cap K^{\perp} \), т. е., по З, — для всех \(y \in M^{\perp} \), удовлетворяющих системе (4); иными словами, при \(x \in (M^{\perp} \cap K^{\perp})^{\perp} \) уравнение \(u_{x} (y) = 0 \) является на \(M^{\perp} \)
следствием системы (4). В силу теоремы 4' § 5, отсюда вытекает существование таких скаляров \(\lambda_1, \ldots, \lambda_n \), что
\[
u \left(x - \sum_{k=1}^{n} \lambda_k a_k, y \right) = u_x. (y) - \sum_{k=1}^{n} \lambda_k u_{a_k}. (y) = 0 \text{ для всех} y \in M^\perp. \]
Но это означает, что \(x - \sum_{k=1}^{n} \lambda_k a_k \in M^\perp = M, \) т. е.
\[x \in M + K. \]
Таким образом, \(M + K = (M^\perp \cap K^\perp)^\perp = M + K. \]
С другой стороны, так как \(M \) и \(K \) содержатся в \(M + K, \)
то, на основании Б 4°, \(M + K \subset M + K. \) Следовательно, \(\overline{M + K} = \overline{M + K}. \)

П'я. Из П, в частности, вытекает, что сумма замкнутого подпространства с любым конечномерным подпространством замкнута.

Р. Беря в П \(M = \{0\} \) и принимая во внимание \(M, \) получаем, что если дуальная пара \((E, F; u) \) отделима по \(E, \)
то всякое конечномерное подпространство пространства \(E \) замкнуто.

3. Биортогональные системы

Определение 5. Пусть \((E, F; u) \) — заданная дуальная пара векторных пространств. Мы будем говорить, что векторы \(x_\alpha \in E \) и \(y_\alpha \in F, \) где \(\alpha \) пробегает некоторое множество \(\Lambda, \)
образуют биортогональную систему относительно \(u, \) если
\[
u (x_\alpha, y_\beta) = \delta_{\alpha \beta} \text{ для всех } \alpha, \beta \in \Lambda. \quad (1)
\]

А. Так, 5.1.(9) показывает, что векторы \(a_\alpha \) базиса \(\{a_\alpha\} \alpha \in \Lambda \)
векторного пространства \(E \) вместе с определяемыми этим базисом координатными линейными функциями \(a^\alpha \)
образуют биортогональную систему относительно канонической билинейной функции \(\langle x, f \rangle \) на \(E \times E^*. \) Легко видеть, что \(\{a^\alpha\} \alpha \in \Lambda \) есть единственное семейство в \(E^*, \)
элементы которого образуют вместе с векторами \(a_\alpha \)
биортогональную систему относительно \(\langle x, f \rangle. \) Действительно, если \(\{a^\alpha\} \alpha \in \Lambda \) — такое семейство, то, каково бы ни было \(\beta \in \Lambda, \)
\[
\langle a_\alpha, a^\beta - a^\delta \rangle = \langle a_\alpha, a^\beta \rangle - \langle a_\alpha, a^\delta \rangle = \delta_{\alpha \beta} - \delta_{\alpha \delta} = 0
\]
для всех \(\alpha \in \Lambda, \) так что для любого вектора \(x = \sum_{\alpha \in \Lambda} x_\alpha a_\alpha \in E \)
имеем
\[\langle x, \overline{a^\beta} - a^\beta \rangle = \sum_{\alpha \in \Lambda} x_{\alpha} \langle a_{\alpha}, \overline{a^\beta} - a^\beta \rangle = 0. \]

Но это означает, что \(\overline{a^\beta} - a^\beta = 0 \), т. е. \(\overline{a^\beta} = a^\beta \) для всех \(\beta \in \Lambda \).

Б. Семейства \((x_{\alpha})_{\alpha \in \Lambda} \) и \((y_{\alpha})_{\alpha \in \Lambda} \), векторы которых образуют биортогональную систему относительно \(u \), линейно независимы. В самом деле, из \(\sum_{\alpha \in \Lambda} \lambda_{\alpha} x_{\alpha} = 0 \) в силу (1) следует, что
\[\lambda_{\beta} = \sum_{\alpha \in \Lambda} \lambda_{\alpha} u(x_{\alpha}, y_{\beta}) = u \left(\sum_{\alpha \in \Lambda} \lambda_{\alpha} x_{\alpha}, y_{\beta} \right) = 0 \]
для всех \(\beta \in \Lambda \), так что семейство \((x_{\alpha})_{\alpha \in \Lambda} \) линейно независимо (3.5.O); аналогично доказывается и линейная независимость семейства \((y_{\alpha})_{\alpha \in \Lambda} \) (ср. 5.1.Г).

Определение 5'. Пусть \((E, F; u) \) — заданная дуальная пара векторных пространств. Реперы \(A \subset E \) и \(B \subset F \), векторы которых образуют биортогональную систему относительно \(u \), мы будем называть дуальными друг другу.

В. Если дуальная пара \((E, F; u) \) отде́лена по \(F \), то для каждого конечного репера \(Y = \{ y_1, \ldots, y_n \} \subset F \) существует по крайней мере один дуальный ему репер \(X = \{ x_1, \ldots, x_n \} \subset E \). Действительно, так как векторы \(y_1, \ldots, y_n \) линейно независимы, то, в силу 1.В и 4.2.Б, и соответствующие им линейные функции \(u.y_1, \ldots, u.y_n \) линейно независимы. Поэтому в силу теоремы 2 § 5 каждая из \(n \) систем линейных уравнений
\[u.y_1(x) = u(x, y_1) = \delta_{k1}, \ldots, u.y_n(x) = u(x, y_n) = \delta_{kn} \]
\((k = 1, \ldots, n)\) совместна. Пусть \(x_k \) \((k = 1, \ldots, n)\) — решения этих систем. Так как тогда
\[u(x_k, y_l) = \delta_{kl} \quad (k, l = 1, \ldots, n), \]
то векторы \(x_1, \ldots, x_n \) и \(y_1, \ldots, y_n \) образуют относительно \(u \) биортогональную систему, т. е. \(X = \{ x_1, \ldots, x_n \} \) — репер в \(E \), дуальный реперу \(Y \).

Г. Из В, в частности, следует (см. 1.Г), что если \(E' \) — какое-либо векторное пространство линейных функций на \(E \), то для каждого конечного числа линейно
независимых линейных функций \(f_1, \ldots, f_n \) из \(E' \) существует такие векторы \(x_1, \ldots, x_n \in E \), что
\[
(x_k, f_l) = \delta_{kl} \quad (k, l = 1, \ldots, n);
\]
(2)
a если \(E' \) достаточно, то справедливо и «дуальное» предложение: для каждого конечного числа линейно независимых векторов \(x_1, \ldots, x_n \) из \(E \) существует линейные функции \(f_1, \ldots, f_n \in E' \), удовлетворяющие соотношениям (2).

Д. Для бесконечных реперов предложение, аналогичное Б, вообще говоря, уже неверно. Так, если \(E' \) — достаточное пространство линейных функций на \(E \), отличное от \(E^* \) (так что \(E \), по 1.E', бесконечномерно), то в \(E \) существует репер, не обладающий дуальным репером в \(E' \). Действительно, пусть \(a^* \in E^* \setminus E' \) и \(H \) — ядро линейной функции \(a^* \). Так как \(a^* \neq 0 \), то \(H \neq E \). Для всякого \(a \in E \setminus H \) имеем \(\langle a, a^* \rangle \neq 0 \), и потому можно выбрать вектор \(a \in E \setminus H \) так, чтобы
\[
\langle a, a^* \rangle = 1.
\]
(3)
Пусть \(B \) — базис подпространства \(H \) (теорема 2 § 3), так что \(\langle b, a^* \rangle = 0 \) для всех \(b \in B \).

В силу 5.3.A, 3.5.M и 3.4.D тогда \(A = B \cup \{a\} \) — базис пространства \(E \). Покажем, что \(A \) не обладает дуальным репером в \(E' \). В самом деле, такой репер был бы также дуальным \(A \) репером в \(E^* \). Но, будучи базисом пространства \(E \), \(A \) обладает, согласно A, единственным дуальным репером в \(E^* \), а именно образованным координатными линейными функциями. Однако одной из них, в силу (3) и (4), является \(a^* \notin E' \).

Предложение, аналогичное Б, вообще говоря, неверно для бесконечных реперов и в дуальной паре \((E, E^*)\) (с бесконечномерным \(E \)). Так, хотя каждый репер в \(E \) может быть дополнен до базиса и потому обладает дуальным репером в \(E^* \), обратное уже неверно. А именно, никакой базис \(B \) пространства \(E^* \) не обладает дуальным репером в \(E \). Действительно, \(\overline{B} \geq \dim E \) (см. замечание к 5.2.A), а \(E \) не может содержать репера большей мощности, чем \(\dim E \) (теорема 3 § 3).

Е. Однако всякая дуальная пара \((E, F; u)\) бесконечномерных векторных пространств, отделяемая по \(E \) или \(F \), содержит счетную биортогональную систему. Более
точно: пусть, скажем, пара \((E, F; u)\) отделяма по \(F\) и \((y_n')\) — произвольная линейно независимая последовательность векторов из \(F\); положим \(F_0 = \{0\}\) и \(F_n = \mathbb{E}\{y_1', \ldots, y_n'\}\) \((n = 1, 2, \ldots);\) тогда существует последовательность векторов \(y_n \in F_n \setminus F_{n-1}\) \((n = 1, 2, \ldots)\) такая, что обра-зуемый ею репер обладает дуальным репером в \(E\). Действительно, положим \(y_1 = y_1'.\) Так как \(y_1 \neq 0\) (3.5.Д), то существует вектор \(x_1 \in E\) такой, что \(u(x_1, y_1) = 1.\) Пусть уже построены векторы \(x_k \in E\) и \(y_k \in F_k \setminus F_{k-1}\) \((k = 1, \ldots, n),\) образующие относительно \(u\) биортогональную систему. В силу теоремы 3 § 5 система линейных уравнений

\[u(x_k, y) = 0 \quad (k = 1, \ldots, n) \quad (5) \]

на \((n + 1)\)-мерном пространстве \(F_{n+1}\) имеет ненулевое решение \(y_{n+1} = 1\). Однако, если вектор \(y = \sum_{k=1}^{n} \lambda_k y_n \in F_n \) удовлетво-ряет системе (5), то \(\lambda_k = u(x_k, y) = 0\) для всех \(k\) от 1 до \(n,\) т.е. \(y = 0.\) Поэтому \(y_{n+1} \in F_{n+1} \setminus F_n.\) Так как тогда векторы \(y_1, \ldots, y_{n+1},\) а значит, и порождаемые ими линейные функции \(u_y, \ldots, u_{y_{n+1}}\) на \(E\) линейно независимы (см. 1.Г и 4.2.Б), то, по теореме 2 § 5, существует вектор \(x_{n+1} \in E,\) для которого \(u(x_{n+1}, y_k) = \delta_{n+1, k} (k = 1, \ldots, n+1)\). Таким образом, последовательности \((x_n)\) и \((y_n)\) допускают индуктивное построение, и предложение доказано.

§ 7. ВЫПУКЛЫЕ МНОЖЕСТВА

В этом и следующем параграфах рассматриваются только векторные пространства над \(R\) или \(C.\) Под вещественной прямой в таком пространстве \(E\) понимается всякая прямая в \(E,\) если \(E — вещественное, и в \(E_R,\) если \(E — комплексное.\) Аналогичный смысл имеет термин вещественная линейная функция (см. 5.1.Е).

1. Понятие выпуклого множества

А. Пусть \(l — вещественная прямая в \(E\) и \(t — какой-нибудь ее направляющий вектор (определение 8 § 3). Там как \(l — смежный класс аддитивной группы \(E\) по ее подгруппе, образованной всевозможными вещественными кратными \(at\)
вектора \(t \), то для любых двух точек \(x_1, x_2 \in l \) имеем

\[
x_2 - x_1 = a t, \quad \text{где} \quad a \in \mathbb{R}.
\]

Пусть \(x_1 \preceq x_2 \) означает, что \(a > 0 \). Легко проверить, что \(\preceq \) есть отношение порядка в \(l \), а \(a \rightarrow x_0 + a t \), где \(x_0 \) — какая-нибудь фиксированная точка из \(l \), — отображение подобия множества \(\vec{R} \) на прямую \(l \), упорядоченную отношением \(\leq \) (см. 3.3.1 и 1.1.Е).

Таким образом, каждый направляющий вектор прямой \(l \) порождает в ней отношение порядка, превращающее ее в совершенно упорядоченное множество, подобное \(R \). При этом ясно, что отношения порядка, порождаемые направляющими векторами \(t_1 \) и \(t_2 = \alpha t_1 \), совпадают, если \(\alpha > 0 \), и взаимно обратны, если \(\alpha < 0 \). Тем самым на каждой вещественной прямой \(l \) естественно определены два взаимно обратных отношения порядка, или, как говорят, два противоположных направления. Если \(l \) задана своими точками \(a, b \) \((\neq a)\) и, значит, представима параметрическим уравнением \(x = a + \alpha (b - a) \) с параметром \(\alpha \), пробегающим \(\mathbb{R} \), то одно из этих направлений можно описать как направление возрастания \(\alpha \), или направление от \(a \) к \(b \), а другое — как направление убывания \(\alpha \), или направление от \(b \) к \(a \). Выбранное на \(l \) направление обычно называют положительным, а противоположное направление — отрицательным.

Определение 1. Отрезком \([a, b]\), соединяющим точки \(a \) и \(b \) векторного пространства \(E \) над \(\mathbb{R} \) или \(\mathbb{C} \), называют совокупность всех точек \(x \in E \), представимых в виде

\[
x = (1 - \rho) a + \rho b, \quad \text{где} \quad 0 \leq \rho \leq 1.
\]

Замечание. Так как вместе с \(\rho \) также \(1 - \rho \) пробегает отрезок \([0, 1]\), то \([a, b] = [b, a]\).

Б. Если \(a \neq b \), то \([a, b]\) есть не что иное, как отрезок с концами \(a \) и \(b \) вещественной прямой \(l \), проходящей через \(a \) и \(b \) и направленной от \(a \) к \(b \) (см. А и 1.2.Г). Действительно, \([a, b]\) есть образ отрезка \([0, 1]\) при отображении подобия \(\alpha \rightarrow (1 - \alpha) a + \alpha b \) множества \(\vec{R} \) на прямую \(l \), упорядоченную указанным образом.
Отрезок \([a, a]\), очевидно, сводится к одной точке \(a\) и, значит, также является отрезком (любой) вещественной прямой, проходящей через \(a\).

В. Образ отрезка \([a, b] \subseteq E\) при аффинном отображении \(x \mapsto f(x)\) пространства \(E\) в \(F\) есть отрезок \([f(a), f(b)] \subseteq F\). Действительно, по определению (4.1.1), \(f(x) = \varphi(x) + y_0\), где \(\varphi \in \mathcal{L}(E, F)\), а \(y_0\) — фиксированный вектор из \(F\). Поэтому для \(x = (1 - \rho)a + \rho b\) имеем

\[
f(x) = (1 - \rho)\varphi(a) + \rho \varphi(b) + y_0 = (1 - \rho)f(a) + \rho f(b).
\]

Определение 2. Множество \(A\) в векторном пространстве над \(\mathbb{R}\) или \(\mathbb{C}\) называют выпуклым, если

\[
(1 - \rho)A + \rho A = A \quad \text{для всех} \quad \rho \in [0, 1],
\]

или, что то же,

\[
(1 - \rho)A + \rho A \subseteq A \quad \text{для всех} \quad \rho \in (0, 1),
\]

t. е. если \(A\) вместе с каждыми двумя своими точками \(a, b\) содержит и весь соединяющий их отрезок \([a, b]\).

Г. Как показывает формула (1), пустое множество выпукло.

Д. Всякое аффинное многообразие выпукло. В самом деле, вместе со своими точками \(a, b\) оно содержит все точки вида \((1 - \lambda)a + \lambda b\) (3.3.К) и, значит, в частности, весь отрезок \([a, b]\).

Е. В силу Б выпуклые множества, лежащие на вещественной прямой \(l \subseteq E\), заданной параметрическим уравнением \(x = x_0 + \lambda t\), — это не что иное, как ее интервалы, т. е. образы

\[
[a, b], \quad (a, b), \quad [a, b], \quad (a, b), \quad [a, b], \quad (a, b) (3)
\]

интервалов

\[
[a, \beta], \quad (a, \beta), \quad [a, \beta], \quad (a, \beta),
\]

\[
[a, +\infty), \quad (a, +\infty), \quad (-\infty, a), \quad (-\infty, a), \quad (-\infty, +\infty)
\]

числовой прямой \(\mathbb{R}\) при ее отображении \(\lambda \mapsto x_0 + \lambda t\) на \(l\) (см. А и 1.2.Г, Д). При этом

\[
[a, b] = [b, a], \quad (a, b) = (b, a), \quad [a, b) = (b, a]
\]

7*
и каждый из интервалов \((a, \to), (\leftarrow, a) ([a, \to), (\leftarrow, a])\) прямой \(l\) при симметрии \(x \to 2a - x\) пространства \(E\) относительно точки \(a\) переходит в другой. Интервалы (3) называют конечными, с началом \(a\) и концом \(b\), а интервалы (4) — бесконечными.

Интервалы \((a, \to)\) и \((\leftarrow, a) ([a, \to)\) и \((\leftarrow, a])\) вещественной прямой \(l\) называют ее открытыми (закрытыми) полуинтервалами с началом \(a\). Открытые полуинтервалы мы будем для краткости называть лучами. Через каждую точку \(b \in E\), отличную от \(a\), проходит однозначно определенный луч с началом \(a\); мы будем обозначать его \(ab\). Лучи \((a, \to)\) и \((\leftarrow, a)\) одной и той же вещественной прямой называют противоположными друг другу. Очевидно, лучи \(ab\) и \(ac\) противоположны тогда и только тогда, когда \(a\) — внутренняя точка отрезка \([b, c]\).

Ж. Из Б следует, что образ и прообраз выпуклого множества относительно аффинного отображения — выпуклые множества. Действительно, пусть \(A\) и \(B\) — выпуклые множества в пространствах \(E\) и \(F\) и \(f — аффинное отображение \(E\) в \(F\). 1) Пусть \(c, d \in f(A)\), так что \(c = f(a), d = f(b)\), где \(a, b \in A\). Так как \([a, b] \subset A\), то \([c, d] = f([a, b]) \subset f(A)\). 2) Пусть \(a, b \in f^{-1}(B)\), так что \(f(a), f(b) \in B\). Так как \(f([a, b]) = [f(a), f(b)] \subset B\), то \([a, b] \subset f^{-1}(B)\).

3. В частности, если \(A — выпуклое множество в \(E\), то \(\lambda A\) и \(A + a\) выпуклы при любых \(\lambda \in \mathbb{R}\) \((\lambda \in \mathbb{C})\) и \(a \in E\).

И. Пусть \(X — собственная гиперплоскость в векторном пространстве \(E\) над \(R\) и \(f(x) = \xi\) — ее уравнение, так что \(f — линейное отображение \(E\) на \(R^1\), переводящее \(X\) в \([\xi]\). Прообразы полуинтервалов \((-\infty, \xi], [\xi, +\infty), (-\infty, \xi)\) и \((\xi, +\infty)\) числовой прямой \(R\) относительно отображения \(f\) называют полуинтервалами пространства \(E\), определяемыми гиперплоскостью \(X\). Таким образом, полуинтервалы в \(E\) — это множества вида

\[
\begin{align*}
(x \in E; f(x) \leq \xi), & \quad (x \in E; f(x) \geq \xi), \\
(x \in E; f(x) < \xi), & \quad (x \in E; f(x) > \xi),
\end{align*}
\]

где \(f \in E^*\). В силу Е и Ж, каждое полупространство выпукло.
§ 7. ВЫПУКЛЫЕ МНОЖЕСТВА

То из полупространств (6), которому принадлежит заданная точка \(a \in E \setminus X \), можно, независимо от выбора уравнения гиперплоскости \(X \), описать как совокупность всех точек \(x \in E \), для которых \([a, x] \cap X = \emptyset \). В самом деле, если \(a \) и \(x \) принадлежат одному и тому же из полупространств (6), то, будучи выпуклым, оно содержит и весь отрезок \([a, x]\), который тем самым не пересекается с \(X \). В противном же случае, т. е. когда \(f(a) < \xi \), а \(f(x) > \xi \), или \(f(a) > \xi \), а \(f(x) < \xi \), \([a, x] \) пересекает \(X \) в точке
\[
(1 - \rho) a + \rho x, \quad \text{где} \quad \rho = \frac{\xi - f(a)}{f(x) - f(a)}.
\]
Если множество \(M \subseteq E \) содержится в одном из полупространств (5) (соответственно (6)), определяемых гиперплоскостью \(X \), то говорят, что \(M \) лежит по одну сторону (строго по одну сторону) от \(X \). Так как уравнения \(f(x) = \xi \) и \(f(x) = -\xi \) равносильны, то уравнение гиперплоскости \(X \) можно выбрать так, чтобы все точки \(x \in M \) удовлетворяли неравенству \(f(x) < \xi \).

И. Всякое выпуклое множество \(A \subseteq E \), не пересекающееся с гиперплоскостью \(X \), лежит строго по одну сторону от \(X \). Действительно, если \(a \in A \), то для всех \(x \in A \) имеем \([a, x] \subseteq A \) и потому \([a, x] \cap X = \emptyset \); тем самым согласно И всё \(A \) принадлежит тому из полупространств (6), которое содержит \(a \).

К. Множество \(A \) выпукло тогда и только тогда, когда
\[
(\rho + \sigma) A = \rho A + \sigma A \quad \text{для всех} \quad \rho, \sigma \geq 0. \tag{7}
\]
В самом деле, если условие (7) выполнено, то, бери в нем \(\sigma = 1 - \rho \) и \(0 \leq \rho \leq 1 \), получаем (1), так что \(A \) выпукло. Обратно, если \(A \) выпукло, то при \(\rho + \sigma > 0 \) в силу (1) и 3.1.Б имеем
\[
(\rho + \sigma) A = (\rho + \sigma) \left(\frac{\rho}{\rho + \sigma} A + \frac{\sigma}{\rho + \sigma} A \right) = \rho A + \sigma A,
\]
а при \(\rho = \sigma = 0 \) равенство (7) очевидно.

Л. Сумма \(A + B \) выпуклых множеств выпукла. Действительно,
\[
(1 - \rho) (A + B) + \rho (A + B) = [(1 - \rho) A + \rho A] + \\
+ [(1 - \rho) B + \rho B] = A + B.
\]
М. Пересечение \(A = \bigcap_{\alpha \in A} A_\alpha \) любого семейства \((A_\alpha)_{\alpha \in A}\) выпуклых множеств выпукло. В самом деле, если \(a, b \in A \), то \(a, b \in A_\alpha \) для всех \(\alpha \in A \), следовательно, и \([a, b] \subseteq A_\alpha \) для всех \(\alpha \in A \), т. е. \([a, b] \subseteq A \).

В частности, пересечение выпуклого множества с любым аффинным многообразием выпукло.

Н. Для того чтобы подмножество \(A = \bigcap_{\alpha \in A} A_\alpha \) проиондения \(E = \bigcap_{\alpha \in A} E_\alpha \) семейства вещественных или комплексных векторных пространств \((E_\alpha)_{\alpha \in A}\) было выпуклым, необходимо и достаточно, чтобы множество \(A_\alpha \subseteq E_\alpha \) было выпукло для каждого \(\alpha \in A \). Действительно, так как проектирование \(E \) на каждое \(E_\alpha \) есть линейное отображение (пример 6 п. 1 § 4), а \(A_\alpha = \text{пр}_{A} A \) и \(A = \bigcap_{\alpha \in A} \text{пр}_{A}^{-1} A_\alpha \), то справедливость утверждения следует из Ж и М.

В частности, в конечном векторном пространстве \(E \) над \(\mathbb{R} \) с базисом \(\{a_1, \ldots, a_n\} \) множество \(P = \prod_{k=1}^{n} I_k \), где \(I_k \) — интервалы на «координатных осях» \(e_{a_k} \), — выпуклы. Если все \(I_k \) конечны, то \(P \) называют параллелепипедом.

2. Абсолютно выпуклые множества

В настоящем разделе под К будет пониматься \(\mathbb{R} \) или \(\mathbb{C} \).

Определение 3. Пусть \(E \) — векторное пространство над К. Множество \(A \subseteq E \) называется закругленным, если

\[
\omega A = A \text{ для всех } \omega \in K \text{ с } |\omega| = 1, \tag{1}
\]

и абсолютно выпуклым, если

\[
\lambda A + \mu A = A \text{ для всех } \lambda, \mu \in K \text{ с } |\lambda| + |\mu| = 1. \tag{2}
\]

Замечание. При \(K = \mathbb{R} \) множество \(A \) — закругленное, если \(-A = A \), т. е. закругленность есть симметричность. При \(K = \mathbb{C} \) множество \(A \) — закругленное, если \(e^{i\varphi} A = A \) для всех вещественных значений \(\varphi \); и в этом случае закругленность влечет симметричность (при \(\varphi = \pi \)).
§ 7] ВЫПУКЛЫЕ МНОЖЕСТВА 103

А. Для того чтобы множество A в векторном пространстве E над K было абсолютно выпуклым, необходимо и достаточно, чтобы оно было выпуклым и закругленным. Действительно, прежде всего, всякое абсолютно выпуклое множество выпукло, так как в (2) можно взять, в частности, $\lambda = 1 - \rho$, $\mu = \rho$, где $0 \leq \rho \leq 1$. Далее, всякое абсолютно выпуклое множество — закругленное, так как (2) при $\mu = 0$ превращается в (1). Обратно, пусть A — закругленное выпуклое множество и $\lambda, \mu \in K$ таковы, что $|\lambda| + |\mu| = 1$. Если $\lambda \neq 0$ и $\mu \neq 0$, то, применяя 1.(1) и (1), получаем

$$\lambda A + \mu A = |\lambda| \frac{\lambda}{|\lambda|} A + |\mu| \frac{\mu}{|\mu|} A = |\lambda| A + |\mu| A = A;$$

если же, скажем, $\mu = 0$, так что $|\lambda| = 1$, то $\lambda A + \mu A = A$ в силу (1); таким образом, A удовлетворяет условию (2), т. е. абсолютно выпукло.

Б. Пустое множество абсолютно выпукло, ибо оно, очевидно, удовлетворяет условию (2).

В. Непустое абсолютно выпуклое множество A вместе с каждой своей точкой a содержит также все точки λa, где $|\lambda| \leq 1$. Действительно, так как A — закругленное, то вместе с $a \in A$ также $-a \in A$; поскольку A — выпуклое, тогда и $0 = \frac{1}{2} a + \frac{1}{2} (-a) \in A$, так что непустое абсолютно выпуклое множество содержит 0; наконец, каково бы ни было $\lambda \in K$, удовлетворяющее условию $|\lambda| \leq 1$, имеем: $\lambda a = \lambda a + (1 - |\lambda|) 0 \in A$, поскольку a и $0 \in A$, а $|\lambda| + |1 - |\lambda|| = 1$.

Г. Отметим ряд следствий из A и установленных в п. 1 предложений относительно выпуклых множеств:

1° Для того чтобы аффинное многообразие было абсолютно выпуклым, необходимо и достаточно, чтобы оно было подпространством (ср. 1.Д).

2° Образ и преобраз абсолютно выпуклого множества относительно линейного отображения — абсолютно выпуклые множества (ср. 1.Ж).

3° В частности, если A — абсолютно выпуклое множество в векторном пространстве E над K, то λA абсолютно выпукло для любого $\lambda \in K$ (ср. 1.3).

4° Сумма $A + B$ абсолютно выпуклых множеств абсолютно выпукла (ср. 1.Л).
5° Пересечение любого семейства абсолютно выпуклых множеств абсолютно выпукло (ср. 1.М).
6° Для того чтобы подмножество \(A = \prod_{\alpha \in A} A_\alpha \) произведения \(E = \prod_{\alpha \in A} E_\alpha \) семейства векторных пространств \((E_\alpha)_{\alpha \in A} \) над \(K \) было абсолютно выпуклым, необходимо и достаточно, чтобы множество \(A_\alpha \subseteq E_\alpha \) было абсолютно выпукло для каждого \(\alpha \in A \) (ср. 1.Н).

3. Выпуклая оболочка

А. Пусть \(A \) — произвольное множество в векторном пространстве \(E \) над \(R \) или \(C \). \(A \) содержится по крайней мере в одном выпуклом множестве: самом \(E \). Пересечение всех выпуклых множеств, содержащих \(A \), выпуклое в силу 1.М, называют выпуклой оболочкой множества \(A \) и обозначают \(\text{co}(A) \). Это — наименьшее выпуклое множество, содержащее \(A \).

Аналогично определяется абсолютно выпуклая оболочка \(\Gamma(A) \) множества \(A \subseteq E \).

Б. Выпуклая оболочка \(\text{co}(A) \) объединения \(A = \bigcup_{\alpha \in A} A_\alpha \) семейства выпуклых множеств \((A_\alpha)_{\alpha \in A} \) совпадает с множеством \(\tilde{A} \) всех векторов вида

\[
a = \sum_{\alpha \in A} \rho_\alpha a_\alpha, \text{ где } a_\alpha \in A_\alpha, \rho_\alpha > 0 \text{ для всех } \alpha \in A \text{ и } \sum_{\alpha \in A} \rho_\alpha = 1. \tag{1}
\]

Покажем прежде всего, что \(\tilde{A} \) выпукло. В самом деле, пусть \(a' = \sum_{\alpha \in A} \rho'_\alpha a'_\alpha \in \tilde{A}, \quad a'' = \sum_{\alpha \in A} \rho''_\alpha a''_\alpha \in \tilde{A} \text{ и } 0 \leq r \leq 1. \) Положим \((1 - r)\rho'_\alpha + r\rho''_\alpha = \rho_\alpha. \) Тогда \(\rho''_\alpha = \rho_\alpha \text{ и } (1 - r)\rho'_\alpha = = (1 - \sigma)\rho_\alpha, \text{ где } 0 \leq \sigma \leq 1. \) Действительно, при \(\rho_\alpha > 0 \) это очевидно, а при \(\rho_\alpha = 0 \) можно взять любое \(\sigma. \) Отсюда \((1 - r)\rho'_\alpha a'_\alpha + r\rho''_\alpha a''_\alpha = \rho_\alpha a_\alpha, \text{ где } a_\alpha = (1 - \sigma) a'_\alpha + \sigma a''_\alpha \subseteq A_\alpha, \) и следовательно, \((1 - r)a' + ra'' = \sum_{\alpha \in A} \rho_\alpha a_\alpha \in \tilde{A}, \) поскольку все \(\rho_\alpha > 0 \) и \(\sum_{\alpha \in A} \rho_\alpha = 1. \) Далее, \(\tilde{A} \) содержит во всяком выпуклом множестве \(A', \) содержащем \(A. \) В самом деле,
пусть $N(a)$ — наименьшее число ненулевых коэффициентов ρ_a в представлении вектора $a \in \tilde{A}$ в виде (1). Если $N(a) = 1$ и, скажем, $\rho_{a_n} = 0$, то $\rho_a = 1$ и $a = a_n \in A'$. Пусть уже доказано, что все векторы $a \in \tilde{A}$, для которых $N(a) \leq n - 1$, принадлежат A'. Рассмотрим произвольный вектор $a' \in \tilde{A}$, для которого $N(a') = n$, так что

$$a' = \sum_{k=1}^{n} \rho_k a_k,$$

где

$$a_k \in A_k, \quad \rho_k > 0 \ (k = 1, \ldots, n) \quad \text{и} \quad \sum_{k=1}^{n} \rho_k = 1.$$

Положим $a = \sum_{k=1}^{n-1} \frac{\rho_k}{1 - \rho_n} a_k$. Очевидно, $a \in \tilde{A}$ и $N(a) \leq n - 1$, так что, по предположению, $a \in A'$. Но $a' = (1 - \rho_n) a + \rho_n a_n$. Так как и $a_n \in A'$, а A' выпукло, то заключаем, что $a' \in A'$. Тем самым, по индукции, $\tilde{A} \subseteq A'$. Так как, очевидно, $A \subseteq \tilde{A}$, то заключаем, что $\tilde{A} = \text{co}(A)$.

В. В частности, выпуклая оболочка объединения выпуклых множеств A и B совпадает с множеством всех векторов вида $c = (1 - \rho) a + \rho b$, где $a \in A$, $b \in B$ и $0 \leq \rho \leq 1$.

Г. Выпуклой (абсолютно выпуклой) оболочной семейства точек $A = (a_n)_{n \in A}$ называют выпуклую (абсолютно выпуклую) оболочку множества A точек этого семейства. Из Б следует, что выпуклая оболочка семейства точек $A = (a_n)_{n \in A}$ совпадает с множеством всех векторов вида

$$a = \sum_{a \in A} \rho a_n, \quad \text{где все} \quad \rho \geq 0 \quad \text{и} \quad \sum_{a \in A} \rho = 1. \quad (2)$$

Д. Выпуклая оболочка аффинно независимого семейства точек $A = (a_n)_{n \in A}$ вещественного векторного пространства (3.5.П) называют симплексом с вершинами a_n, а $A = 1$ — его размерностью. Так, нулевой симплекс — это одночочное множество; одномерный — отрезок, не сходящийся к точке; двумерный — выпуклая оболочка семейства трех точек, не лежащих на одной прямой, т. е. треугольник; трехмерный — выпуклая оболочка семейства четырех точек, не лежащих на одной двумерной плоскости, т. е. тетраэдр.
Из 3.5.П следует, что каждый вектор симплекса, т. е. выпуклой оболочки $\mathfrak{C}(\mathfrak{A})$ аффинно независимого семейства точек $\mathfrak{A} = \{a_\alpha\}_{\alpha \in \Lambda}$, обладает единственным разложением (2) по вершинам a_α, т. е. однозначно определенными барицентрическими координатами. Напротив, если семейство \mathfrak{A} аффинно зависимо, так что имеет место равенство $\sum_{\alpha \in \Lambda} \lambda_\alpha a_\alpha = 0$, где $\sum_{\alpha \in \Lambda} \lambda_\alpha = 0$, но не все $\lambda_\alpha = 0$, то, полагая

$$\lambda_\alpha^+ = \max(\lambda_\alpha, 0), \quad \lambda_\alpha^- = \max(-\lambda_\alpha, 0),$$

получаем $\sum_{\alpha \in \Lambda} \lambda_\alpha^+ a_\alpha = \sum_{\alpha \in \Lambda} \lambda_\alpha^- a_\alpha$ и $\rho = \sum_{\alpha \in \Lambda} \lambda_\alpha^+ = \sum_{\alpha \in \Lambda} \lambda_\alpha^- > 0$; а это показывает, что в $\mathfrak{C}(\mathfrak{A})$ существует вектор, допускающий два различных разложения вида (2), а именно $a = \sum_{\alpha \in \Lambda} \rho_\alpha a_\alpha = \sum_{\alpha \in \Lambda} \rho'_\alpha a_\alpha$, где $\rho_\alpha = \lambda_\alpha^+/\rho$, $\rho'_\alpha = \lambda_\alpha^-/\rho$.

Е. Выпуклая оболочка $\mathfrak{C}(\mathfrak{A})$ объединения $A = \bigcup_{\alpha \in \Lambda} A_\alpha$ семейства абсолютно выпуклых множеств $(A_\alpha)_{\alpha \in \Lambda}$ абсолютно выпукла. Действительно, согласно Б, каждый вектор $a \in \mathfrak{C}(\mathfrak{A})$ представим в виде (1), откуда $\omega a = \sum_{\alpha \in \Lambda} \rho_\alpha \omega a_\alpha$; но если $|\omega| = 1$, то, в силу предположения, $\omega a_\alpha \in A_\alpha$ для каждого $\alpha \in \Lambda$ и, следовательно, по Б, $\omega a \in \mathfrak{C}(\mathfrak{A})$. Тем самым $\mathfrak{C}(\mathfrak{A})$ — закругленное выпуклое, и значит, согласно 2.А, абсолютно выпуклое множество. Таким образом, абсолютно выпуклая оболочка объединения абсолютно выпуклых множеств совпадает с его выпуклой оболочкой.

Ж. Абсолютно выпуклой оболочкой одноточечного множества $\{a\} \subseteq E$ служит множество $\{\lambda a: |\lambda| \leq 1\}$ (т. е. отрезок $[-a, a]$) в случае вещественного E и образ круга $\{\lambda \in \mathbb{C}: |\lambda| \leq 1\}$ при отображении $\lambda \mapsto \lambda a$ в E в случае комплексного E). Действительно, это множество абсолютно выпукло и, согласно 2.В, содержит во всяком абсолютно выпуклом множестве, содержащем $\{a\}$.

З. Абсолютно выпуклая оболочка $\Gamma(\mathfrak{A})$ семейства точек $\mathfrak{A} = \{a_\alpha\}_{\alpha \in \Lambda}$ совпадает с множеством всех векторов вида

$$a = \sum_{\alpha \in \Lambda} \lambda_\alpha a_\alpha, \quad \text{где} \quad \sum_{\alpha \in \Lambda} |\lambda_\alpha| \leq 1.$$ (3)
В самом деле, очевидно, $\Gamma(\mathcal{A})$ содержит все множества $\Gamma\{a_a\}$ и совпадает с абсолютно выпуклой оболочкой объединения этих множеств. Таким образом, в силу Б, Е и Ж, $\Gamma(\mathcal{A})$ есть множество всех векторов вида

$$a = \sum_{a \in A} \rho_a u_a a, \text{ где } |u_a| < 1, \rho_a > 0$$

для всех $a \in A$ и $\sum_{a \in A} \rho_a = 1$. (4)

Но каждый вектор вида (4) есть, очевидно, вектор вида (3), и, с другой стороны, каждый вектор вида (3) можно представить в виде (4), положив, например, $\rho_a = |\lambda_a|/\sum_{a \in A} |\lambda_a|$.

И. Если A абсолютно выпукло, то $\mathcal{B}_A = \bigcup_{n=1}^{\infty} nA$. Действительно, очевидно $\bigcup_{n=1}^{\infty} nA \subset \mathcal{B}_A$. С другой стороны, согласно 3.2.Ж вский вектор $x \in \mathcal{B}_A$ представим в виде линейной комбинации $\sum_{a \in A} \lambda_a x_a$ семейства векторов $x_a \in A$.

Беря целое $n > \sum_{a \in A} |\lambda_a|$, получаем $x = \sum_{a \in A} \lambda_a x_a = n \sum_{a \in A} \frac{\lambda_a}{n} x_a$,

где в силу 3 $\sum_{a \in A} \frac{\lambda_a}{n} x_a \in A$, поскольку $\sum_{a \in A} |\frac{\lambda_a}{n}| < 1$; таким образом, $x \in nA$.

4. Конусы

Определение 4. Конусом в векторном пространстве E над R или C будет называться всякое множество $C \subset E$, удовлетворяющее следующим двум условиям:

1) $\rho C \subset C$ для всех $\rho > 0$, т. е. если $x \in C$ и $\rho > 0$, то $\rho x \in C$;

2) $C + C \subset C$, т. е. если $x, y \in C$, то $x + y \in C$.

Строгоим конусом будет называться всякий конус C, удовлетворяющий, кроме того, условию

3) $C \cap (\neg C) = \phi$, т. е. если $x \in C$, то $\neg x \notin C$.

Примеры. Всякий луч (т. е. открытая полупрямая) с началом 0 есть строгий конус. Всякое подпространство
есть нестрогий конус. Совокупность всех ненулевых векторов, имеющих относительно некоторого фиксированного базиса неотрицательные вещественные координаты, является строгим конусом.

А. Отметим некоторые простейшие следствия определения 4.

1° Конус есть выпуклое множество. Действительно, для всех \(\rho \in (0, 1) \) имеем

\[
(1 - \rho)C + \rho C \subseteq C + C \subseteq C.
\]

2° Конус \(C \) вместе с любым семейством \((c_a)_{a \in A} \) своих точек содержит и всевозможные их линейные комбинации \(c = \sum_{a \in A} \rho_a c_a \), в которых все \(\rho_a > 0 \) и \(\rho = \sum_{a \in A} \rho_a > 0 \).

В самом деле, пусть \(A' \) — множество тех \(a \in A \), для которых \(\rho_a \neq 0 \). Так как \(A' \) конечно (см. определение 2 § 3), то \(c \in \sum_{a \in A'} \rho_a c \subseteq \sum_{c \in A'} C \subseteq C \).

3° Пересечение \(C \) любого семейства \((C_a)_{a \in A} \) конусов есть конус. Действительно, \(\rho C = \bigcap_{a \in A} \rho C_a \subseteq \bigcap_{a \in A} C_a = C \) для всех \(\rho > 0 \); далее, \(C + C \subseteq C + C \subseteq C \) для всех \(a \in A \), откуда \(C + C \subseteq \bigcap_{a \in A} C_a = C \).

4° Образ конуса \(C \) при линейном отображении \(\varphi \) есть конус. В самом деле, \(\rho \varphi(C) = \varphi(\rho C) \subseteq \varphi(C) \) для всех \(\rho > 0 \) и \(\varphi(C) + \varphi(C) = \varphi(C + C) \subseteq \varphi(C) \).

5° Очевидно, строгий конус не содержит нулевого вектора. Обратно, каждый конус \(C \), не содержащий нулевого вектора, — строгий. Действительно, если \(x \in C \) и \(-x \in C \), то и \(0 = x + (-x) \in C \).

6° Если \(C \) — конус, то \(\rho C \subseteq C \) для каждого \(\rho > 0 \).

В самом деле, заменяя в условии 1 определения 4 \(\rho \) на \(\rho^{-1} \) и умножая затем на \(\rho \), получаем, что наряду с включением \(\rho C \subseteq C \) имеет место также включение \(C \subseteq \rho C \).

7° Если \(C \) — конус, то \(C + C = C \). Действительно, в силу 6° и 3.1 Б, наряду с включением \(C + C \subseteq C \) имеет место также включение \(C = 2C \subseteq C + C \).

Б. Объединение \(C \) лучей с началом 0, проходящих через всевозможные точки выпуклого множества \(A \), не
содержащего 0, есть строгий конус. В самом деле,
\[\rho C = \bigcup_{\sigma > 0} \sigma A = \bigcup_{\sigma > 0} \rho \sigma A = C \]
для каждого $\rho > 0$.

Далее, в силу 1.К
\[C + C = \bigcup_{\sigma' > 0} \sigma' A + \bigcup_{\sigma'' > 0} \sigma'' A = \bigcup_{\sigma', \sigma'' > 0} (\sigma' A + \sigma'' A) = \bigcup_{\sigma', \sigma'' > 0} (\sigma' + \sigma'') A = C. \]

Наконец, так как по построению $0 \notin C$, то конус C, в силу $A B_0$, --- строгий.

Определение 5. Упорядоченным векторным пространством называют вещественное векторное пространство E, в котором определено отношение порядка \leq, удовлетворяющее следующим двум условиям:

1) если $x \leq y$, то $\rho x \leq \rho y$ для каждого $\rho > 0$,
2) если $x \leq y$, то $x + z \leq y + z$ для каждого $z \in E$.

Элементы $x > 0$ упорядоченного векторного пространства называются строго положительными.

В. Нетрудно показать, что множество всех строго положительных элементов упорядоченного векторного пространства есть строгий конус, и, обратно, если C --- строгий конус в векторном пространстве E над R, то в E существует однозначно определенное отношение порядка, превращающее E в упорядоченное векторное пространство, конусом строго положительных элементов которого служит C (а именно отношение $x \leq y$, означающее, что $y - x \in C \cup \{0\}$, откуда $x < y$ означает, что $y - x \in C$).

5. Окруженные точки

Определение 6. Пусть E --- векторное пространство над R или C. Окруженной (относительно окруженной) точкой множества $A \subseteq E$ будет называться точка $a \in A$, обладающая тем свойством, что, каков бы ни был вектор $t \in E$ ($t \in \mathcal{F}_A - a$), некоторый отрезок $[a, a + \varepsilon t]$, где $\varepsilon > 0$, содержится в A. Совокупность всех окруженных точек множества A будет обозначаться \hat{A}. Если $\hat{A} = A$, т. е. все точки множества A окруженные, то A будет называться алгебраически открытым множеством.
А. Множество $A \subseteq E$, обладающее окружённой точкой a, аффинно порождает E (см. 3.3.Д). Действительно, какова бы ни была точка $x \in E \setminus \{a\}$, прямая $\mathcal{L}_{\{a, x\}}$, проходящая через a и x (3.3.И), содержит некоторую точку $a + \varepsilon (x - a) \in A$, отличную от a, и потому вся содержится в \mathcal{L}_A (3.3.К), откуда $x \in \mathcal{L}_A$.

Б. Если f — аффинное отображение пространства E на F и a — окружённая точка множества $A \subseteq E$, то $f(a)$ — окружённая точка множества $f(A)$. Действительно, по условию, для всякого $s \in F$ существует $t \in E$ такое, что $f(t) = s$. Далее, так как $a \in A$, то существует $\varepsilon > 0$ такое, что $[a, a + \varepsilon t] \subseteq A$. Но тогда в силу 1.В $[f(a), f(a) + \varepsilon s] = f([a, a + \varepsilon t]) \subseteq f(A)$.

В. Из Б следует, что если A алгебраически открыто, то и $f(A)$ алгебраически открыто.

В. Из определения Б непосредственно следует, что окружённая точка выпуклого множества A — это его точка, содержащаяся внутри всех интервалов, по которым проходящие через неё вещественные прямые пересекают A.

Г. Если A выпукло, то для того, чтобы $a \in A$, (необходимо и) достаточно, чтобы для каждого $t \in E$ существовало $\varepsilon > 0$ такое, что $a + \varepsilon t \in A$. Действительно, беря, в частности, $t = 0$, видим, что $a \in A$, а тогда, каково бы ни было $t \in E$, вместе с $a + \varepsilon t$ весь отрезок $[a, a + \varepsilon t]$ содержится в A.

Д. Всякий n-мерный симплекс S в вещественном векторном пространстве E (см. 3.3Д) обладает относительно окружёнными точками; это — те и только те его точки, все барицентрические координаты которых отличны от нуля. В самом деле, пусть s_0, s_1, \ldots, s_n — вершины симплекса S и $L = \mathcal{L}_S = \mathcal{L}_{\{s_0, s_1, \ldots, s_n\}}$. Так как $F = L - s_0 = \mathcal{L}_{\{s_1 - s_0, s_2 - s_0, \ldots, s_n - s_0\}}$ (см. 3.3.1)), то каждый вектор $t \in F$ представим в виде

$$t = \sum_{k=0}^{n} \lambda_k s_k, \quad \text{где} \quad \sum_{k=0}^{n} \lambda_k = 0. \quad (1)$$

Пусть $s \in S$, так что $s = \sum_{k=0}^{n} p_k s_k$, где все $p_k \geq 0$ и $\sum_{k=0}^{n} p_k = 1$. Если все $p_k > 0$, то для каждого вектора (1) существует $\varepsilon > 0$ такое, что
все $\rho_k + \varepsilon \lambda_k \geq 0$; так как при этом $\sum_{k=0}^{n} (\rho_k + \varepsilon \lambda_k) = 1$, то заключаем, что $s + \varepsilon t \in S$, т. е. s — относительно окружная точка. Если же некоторое $\rho_{k_0} = 0$, то $s + \varepsilon (s - s_{k_0})$ не принадлежит S ни при каком $\varepsilon > 0$, т. е. s не является относительно окружной точкой. В самом деле, при $s + \varepsilon (s - s_{k_0}) \in S$ мы имели бы $s + \varepsilon (s - s_{k_0}) = \sum_{k=0}^{n} \sigma_k s_k$, где все $\sigma_k \geq 0$ и $\sum_{k=0}^{n} \sigma_k = 1$, откуда для s получилось бы

граничное разложение $s = \sum_{k=0}^{n} \frac{\sigma_k + \delta_{k_0} \varepsilon}{1 + \varepsilon} s_k$, отличное от $s = \sum_{k=0}^{n} \rho_k s_k$, поскольку $\rho_{k_0} = 0$, а $\frac{\sigma_k + \delta_{k_0} \varepsilon}{1 + \varepsilon} > 0$; но в силу 3.5.П это невозможно.

Из сказанного следует, что каждое выпуклое множество $A \subset E$, порождающее n-мерное аффинное многообразие, обладает относительно окружными точками. Действительно, A должно содержать аффинное независимое семейство $(s_k)_{0 \leq k \leq m}$ в вместе с ним и симплекс S с вершинами s_0, s_1, \ldots, s_n. В частности, в конечноммерном вещественном векторном пространстве каждое аффинно порождающее его выпуклое множество обладает окружными точками.

Е. Напротив, во всяком бесконечноммерном векторном пространстве E над \mathbb{R} существует выпуклое множество, аффинно порождающее E, но не обладающее окружными точками. Таким будет, например, множество P всех векторов $x \in E$, имеющих относительно некоторого фиксированного базиса $A = (a_a)_{a \in A}$ только координаты $x_a > 0$. Действительно, так как A бесконечно, то у каждого $x \in P$ некоторая координата $x_{a_0} = 0$, а тогда $x - \varepsilon a_{a_0}$ не содержится в P ни при каком ε.

В пространстве $l^1_\mathbb{R}$ таким же свойством обладает множество P тех последовательностей $c = (\gamma_n) \in l^1_\mathbb{R}$, у которых все $\gamma_n > 0$. В самом деле, положим $\rho_n = \sum_{k=n}^{\infty} \gamma_k$ и $\delta_n = \sqrt{\rho_n} - \sqrt{\rho_{n+1}}$. Тогда $d = (\delta_n) \in P$, и так как $\frac{\gamma_n}{\sqrt{\rho_n} + \sqrt{\rho_{n+1}}} \to \infty$, то $c - \varepsilon d$ не содержится в P ни при каком $\varepsilon > 0$.

Ж. Пусть E — векторное пространство над K, где $K = \mathbb{R}$ или C. Если $A \subset E$ выпукло, то и \hat{A} выпукло. Если A — закругленное, то и \hat{A} — закругленное. Действительно, пусть $x,, y \in \hat{A}$, так что для каждого $t \in E$ существуют $\varepsilon > 0$ и
\(\delta > 0 \) такие, что \(x + \varepsilon t, y + \delta t \in A \), и пусть \(z = (1 - \rho) x + \rho y \), где \(0 < \rho < 1 \). Если \(A \) выпукло, то \(z + [(1 - \rho) e + \rho \delta] t = (1 - \rho) (x + \varepsilon t) + \rho (y + \delta t) \in A \) и тем самым, по \(\Gamma, z \in \hat{A} \), т. е. \(\hat{A} \) выпукло. Пусть, далее, \(A \) — закругленное и \(\omega \in K \) таково, что \(|\omega| = 1 \). Если \(x \in \hat{A} \), то для каждого \(t \in E \) существует \(\varepsilon > 0 \) такое, что \([x, x + \varepsilon \omega^{-1} t] \subset A \). Но тогда
\[
[\omega x, \omega x + \varepsilon t] = \omega [x, x + \varepsilon \omega^{-1} t] \subset \omega A = A
\]
и, значит, \(\omega x \in \hat{A} \), т. е. \(\hat{A} \) — закругленное.

Ж'. В силу 2.А из Ж следует, что если \(A \) абсолютно выпукло, то и \(\hat{A} \) абсолютно выпукло.

3. Если \(C \) — конус, то и \(\hat{C} \) — конус, притом строгий, за исключением того случая, когда \(C \) совпадает со всем пространством \(E \). Действительно, пусть \(c \in \hat{C} \), т. е. для каждого \(t \in E \) существует \(\varepsilon > 0 \) такое, что \([c, c + \varepsilon t] \subset C \). Тогда для каждого \(\rho > 0 \) имеем
\[
[\rho c, \rho c + \rho \varepsilon t] = \rho [c, c + \varepsilon t] \subset \rho C \subset C,
\]
так что \(\rho C \subset \hat{C} \). Далее, пусть также \(d \in \hat{C} \) и \(\delta > 0 \) таково, что \(d + \delta t \in \hat{C} \). Тогда \((c + d) + (\varepsilon + \delta) t = (c + \varepsilon t) + (d + \delta t) \in C \) и, значит, в силу \(\Gamma \) и 4.А 1.°, \(c + d \in \hat{C} \). Тем самым \(\hat{C} \) — конус.

Если он не строгий, то, по 4.А 5.°, \(0 \in \hat{C} \), так что для всяческого \(t \in E \) существует \(\varepsilon > 0 \) такое, что \(\varepsilon t \in C \); но тогда \(t \in C \), так что \(C = E \).

И. Пусть \(E \) — векторное пространство над \(R \) или \(C \). Если \(a_0 \) — окружённая точка выпуклого множества \(A \subset E \), то и все внутренние точки интервалов, соединяющих ее с произвольными другими точками \(a \in A \), — окружённые. При этом
\[
\hat{A} = \bigcup_{a \in A \setminus \{a_0\}} [a_0, a).
\]
Действительно, пусть \(a_1 \in (a_0, a) \), так что \(a_1 = (1 - \rho) a_0 + \rho a \), где \(0 < \rho < 1 \). Поскольку \(a_0 \in \hat{A} \), для каждого \(t \in E \) существует \(\varepsilon > 0 \) такое, что \(a_0 + \varepsilon t \in A \). Но тогда \(a_1 + (1 - \rho) \varepsilon t = (1 - \rho) (a_0 + \varepsilon t) + \rho a \in A \) и, значит, по \(\Gamma \), \(a_1 \in \hat{A} \). При этом каждая точка \(a_1 \in \hat{A} \setminus \{a_0\} \) принадлежит некоторому проме-
жнуту \((a_0, a)\), где \(a \in A\). В самом деле, так как \(a_1 \in \hat{A}\), то существует \(\delta > 0\) такое, что \(a = a_1 + \delta (a_1 - a_0) \in A\) и, значит, \(a_1 = \frac{a + \delta a_0}{1 + \delta} \in (a_0, a)\).

К. Если \(A \subset E\) выпукло, то \(\hat{A}\) алгебраически открыт. Действительно, если \(a_0 \in \hat{A}\) и \(t \in E\), то существует \(\varepsilon > 0\) такое, что \(a = a_0 + \varepsilon t \in A\), а тогда, в силу И, \(a_0 + \frac{\varepsilon}{2} t \in \hat{A}\), так что, по Ж и Г, \(a_0\) — окружная точка в \(\hat{A}\).

Л. Пусть \(A\) — выпуклое множество, не содержащее нулевой точки. Объединение \(\bar{C}\) лучей с началом 0, проходящих через всевозможные окруженные точки множества \(A\), есть строгий алгебраически открытый конус. В самом деле, в силу Ж и 4.Б, \(\bar{C}\) — конус. При этом каждая точка \(c \in \bar{C}\), по построению, есть внутренняя точка интервала, соединяющего некоторые точки \(a \in \hat{A}\) и \(c' \in C\). Но так как \(\hat{A} \subset C\), то тогда \(a \in C\). Значит, в силу И \(c \in C\), т. е. \(C = \bar{C}\). Принимая во внимание К и 4.А 1°, заключаем, что \(C\) — алгебраически открытное множество. Наконец, так как, по построению, \(0 \notin C\), то конус \(C\) — строгий (4.А 5°).

М. Пусть \(A\) — выпуклое множество в вещественном векторном пространстве \(E\), обладающее окруженной точкой \(a\). Если гиперплоскость \(X\) пространства \(E\) не содержит окруженных точек множества \(A\), то \(A\) лежит по одну сторону от \(X\). Действительно, пусть \(f(x) = \xi\) — уравнение гиперплоскости \(X\). В силу 1.И \(\hat{A}\) лежит строго по одну сторону от \(X\), так что для всех \(x \in \hat{A}\) имеем, скажем, \(f(x) < \xi\). Так как, по И, \((a, x) \in \hat{A}\) для всякого \(x \in A\), то тогда \((1 - \rho)f(a) + \rho f(x) = f(1 - \rho) a + \rho x < \xi\) для всех \(\rho \in [0, 1]\) и \(x \in A\); беря \(\rho \to 1\), получаем, что \(f(x) \leq \xi\) для всех \(x \in A\), т. е. \(A\) лежит по одну сторону от \(X\).

6. Функционал Минковского

Определение 7. Множество \(A\) в векторном пространстве \(E\) над \(R\) или \(C\) называется поглощающим, если для каждого \(x \in E\) существует \(\alpha > 0\) такое, что \(x \in \rho A\) для всех \(\rho \geq \alpha\).
А. Для того чтобы множество $A \subseteq E$ было поглощающим, необходимо и достаточно, чтобы оно содержало 0 в качестве окружённой точки. Действительно, если A — поглощающее, то, прежде всего, $0 \in xA$ для некоторого $x > 0$, откуда $0 \in A$; далее, условие определения 7 означает, что $\sigma x \in A$ для всех $\sigma \in (0, x^{-1}]$; таким образом, для каждого $x \in E$ существует $\varepsilon > 0$ (равное x^{-1}) такое, что $[0, \varepsilon x] \subseteq A$, так что $0 \in A$. Обратно, из $[0, \varepsilon x] \subseteq A$ следует, что $x \in pA$ для всех $p \geq x = x^{-1}$ и, значит, если $0 \in A$, то A — поглощающее.

Б. Для того чтобы выпуклое множество $A \subseteq E$ было поглощающим, (необходимо и) достаточно, чтобы для каждого $x \in E$ существовало $x > 0$ такое, что $x \in Ax$. Действительно, как и в А, тогда $0 \in A$, поэтому при $p > x > 0$ имеем $xA \subseteq xA + (p - x)A = pA$ (1.1), так что $x \in xA$ влечет $x \in pA$ для всех $p \geq x$.

Определение 8. Пусть E — векторное пространство над K, где $K = R$ или C. Функционалом Минковского поглощающего выпуклого множества $A \subseteq E$ называют функцию

$$\quad p_A(x) = \inf \{x \in R: a > 0 \text{ и } x \in xA\}.$$

Примеры. 1. Очевидно, $p_E(x) = 0$.

2. Пусть $A = \{x \in E: f(x) \leq 1\}$, где $f \in E^*$, если $K = R$, и $f \in E_R^*$, если $K = C$. A выпукло (1.1). Пусть $a > 0$; $x \in xA$, или $\frac{x}{a} \in A$. означает, что $f\left(\frac{x}{a}\right) \leq 1$, т. е. $f(x) \leq a$. Так как для каждого $x \in E$ такое $a > 0$ существует, то, согласно Б, A — поглощающее; при этом $p_A(x) = \max \{f(x), 0\}$. 3. Пусть $A = \{x \in E: |f(x)| \leq 1\}$, где $f \in E^*$. Так как $|f((1 - p)x + py)| \leq (1 - p)|f(x)| + p|f(y)| \quad (0 \leq p \leq 1),$

то из $x, y \in A$ следует $[x, y] \subseteq A$, т. е. A выпукло. Пусть $a > 0$; $x \in xA$ означает, что $|f(x)| \leq a$. Поэтому A, согласно Б, — поглощающее и $p_A(x) = |f(x)|$. 4. Пусть $E = l^\infty$ (или l^∞_R) и $B = \{x = (\xi_k) \in E: |\xi_k| \leq 1 \quad (k = 1, 2, \ldots)\}$. Так как

$$|1 - p)| \xi_k| + p|\xi_k| \leq (1 - p)|\xi_k| + p|\eta_k| \quad (0 \leq p \leq 1).$$
§ 7] ВЫПУКЛЫЕ МНОЖЕСТВА

то B выпукло, $x \in aB$, где $a > 0$, означает, что $|\xi_k| \leqslant \alpha$ $(k = 1, 2, \ldots)$. Поэтому B — поглощающее и $p_B(x) = \sup_k |\xi_k|$.

5. Пусть $E = l^1$ (или l^1_R) и

$$B = \left\{ x = (\xi_k) \in E: \sum_{k=1}^{\infty} |\xi_k| \leqslant 1 \right\}.$$

Так как

$$\sum_{k=1}^{\infty} |(1 - p) \xi_k + p \eta_k| \leqslant (1 - p) \sum_{k=1}^{\infty} |\xi_k| + p \sum_{k=1}^{\infty} |\eta_k|$$

$(0 \leqslant p \leqslant 1)$,

то B выпукло. $x \in aB$, где $a > 0$, означает, что $\sum_{k=1}^{\infty} |\xi_k| \leqslant \alpha$.

Потому B — поглощающее и $p_B(x) = \sum_{k=1}^{\infty} |\xi_k|$.

6. Пусть $E = l^p$ (или l^p_R), где $1 < p < \infty$, и

$$B = \left\{ x = (\xi_k) \in E: \sum_{k=1}^{\infty} |\xi_k|^p \leqslant 1 \right\}.$$

Полагая в формуле 5.1.2 $n = 2$, $p_1 = 1 - p$ $(0 < p < 1)$, $p_2 = p$, $t_1 = |\xi_k|$ и $t_2 = |\eta_k|$, получаем

$$|(1 - p) \xi_k + p \eta_k|^p \leqslant [(1 - p) |\xi_k| + p |\eta_k|]^p \leqslant (1 - p) |\xi_k|^p + p |\eta_k|^p,$$

откуда

$$\sum_{k=1}^{\infty} |(1 - p) \xi_k + p \eta_k|^p \leqslant (1 - p) \sum_{k=1}^{\infty} |\xi_k|^p + p \sum_{k=1}^{\infty} |\eta_k|^p.$$

Следовательно, B выпукло. $x \in aB$, где $a > 0$, означает, что $\sum_{k=1}^{\infty} |\xi_k|^p \leqslant a^p$, т. е. $\left(\sum_{k=1}^{\infty} |\xi_k|^p\right)^{1/p} \leqslant a$. Поэтому B — поглощающее и $p_B(x) = \left(\sum_{k=1}^{\infty} |\xi_k|^p\right)^{1/p}$.

В. $p_A(0) = 0$. Если $x \neq 0$, то $p_A(x) = 0$ тогда и только тогда, когда весь луч $0x$ содержится в A. Действительно, $p_A(x) = 0$ означает, что $x \in aA$ для всех $a > 0$, т. е. $px \in A$.

8*
для всех $\rho > 0$. При $x = 0$ это имеет место в силу A, а при $x \neq 0$ означает, что $\overrightarrow{0x} \subset A$.

Г. Если $p_A(x) > 0$, то луч $\overrightarrow{0x}$ пересекает A по конечному интервалу $(0, x_A)$ или $(0, x_A]$, где $x_A \neq 0$ и $p_A(x) = x : x_A$, т. е. $x = p_A(x) x_A$. Действительно, в силу $1E$, $M I = 0x \cap A$ — интервал; в силу A этот интервал не пуст и имеет начало 0; так как в силу $B I \neq 0\overrightarrow{x}$. Таким образом, I — интервал вида $(0, x_A)$ или $(0, x_A]$, где $x_A \neq 0$. Обратно, $x \in A$ для тех и только тех $\alpha > 0$, для которых $x \in 0x \cap A = I = (0, \alpha x_A)$ или $(0, \alpha x_A]$, т. е. для которых $x : x_A < \alpha$ или $\leq \alpha$. Следовательно, $p_A(x) = x : x_A$.

Д. Если $p_A(x) < \rho$, то $x \in \rho A$. Действительно, в силу определения 8 существует $\alpha < \rho$ такое, что $x \in \alpha A$; а отсюда в силу B следует, что $x \in \rho A$.

Теорема 1. Для того чтобы функция $p(x)$ на E была функционалом Манковского некоторого поглощающего выпуклого множества $A \subseteq E$, необходимо и достаточно, чтобы она обладала свойствами:

I. $p(\lambda x) = \lambda p(x)$ для всех $x \in E$ и $\lambda > 0$,

II. $p(x + y) \leq p(x) + p(y)$ для всех $x, y \in E$,

III. $0 \leq p(x) \leq +\infty$ для всех $x \in E$,

причем тогда

$$\tilde{P} = \{x \in E: p(x) < 1\} \subset A \subset \{x \in E: p(x) \leq 1\} = \overline{P}$$

(1)

и A может быть любым выпуклым множеством, удовлетворяющим этому условию.

Доказательство. 1) Пусть $p(x) = p_A(x)$, где A — поглощающее выпуклое множество. Так как при $\lambda > 0$ соотношения $x \in \alpha A$ и $\lambda x \in \lambda A$, а также $\alpha > 0$ и $\lambda x \geq 0$ равносильны, то, полагая $\lambda = \beta$, имеем

$$\lambda p(x) = \lambda \inf \{x \in R: \alpha > 0 \text{ и } x \in \alpha A\} =$$

$$= \inf \{\beta \in R: \beta > 0 \text{ и } \lambda x \in \beta A\} = p(\lambda x),$$

так что $p(x)$ обладает свойством I. Пусть, далее, x, y — произвольные фиксированные векторы из E. Положим $\gamma = p(x) + \varepsilon$ и $\beta = p(y) + \varepsilon$, где $\varepsilon > 0$. В силу D тогда $x \in \alpha A$, $y \in \beta A$, откуда в силу $1E$ $x + y \in \alpha A + \beta A = \ldots$
§ 7] ВЫПУКЛЫЕ МНОЖЕСТВА 117

\[(\alpha + \beta) A \text{ и, следовательно, } p(x + y) \leq \alpha + \beta = p(x) + p(y) + 2\varepsilon; \text{ так как } \varepsilon > 0 \text{ произвольно, то заключаем отсюда, что } p(x) \text{ обладает свойством II. Из определения 8 непосредственно следует, что } p(x) \text{ обладает и свойством III, причем если } x \in A, \text{ то } p(x) \leq 1, \text{ так что } A \subseteq \overline{P}. \text{ Наконец, согласно Д, } p(x) \leq 1 \text{ влечет } x \in A, \text{ так что } \hat{P} \subseteq A. \]

2) Обратно, пусть \(p(x) \) — функция на \(E \), обладающая свойствами I, II и III. В силу свойств II и I, для всех \(x, y \in E \) и \(p \in (0, 1) \) имеем

\[p((1 - p) x + p y) \leq p((1 - p) x + p y) =
\]

отсюда следует, что если \(x, y \in \hat{P} \), то и \([x, y] \subseteq \hat{P} \), т. е. \(\hat{P} \) и \(\overline{P} \) выпуклы. Далее,

\[p\left(\frac{x}{p(x) + 1}\right) = \frac{p(x) + 1}{p(x) + 1} < 1, \text{ откуда } p(x) + 1 < 1, \text{ следовательно, согласно Б, } \hat{P} \text{ — поглощающее, а тогда и } \overline{P} \supseteq \hat{P} \text{ — поглощающее. Наконец, пусть } A \text{ — произвольное выпуклое множество, удовлетворяющее условию (1) (и потому, в силу первого включения, — поглощающее). Тогда для любых } x \in E \text{ и } \varepsilon > 0, \text{ в силу свойства III, имеем, с одной стороны,}
\]

\[\frac{x}{p(x) + 1} \in \hat{P} \text{ и, значит, } x \in [p(x) + \varepsilon] \hat{P} \subseteq [p(x) + \varepsilon] A, \text{ откуда } p_A(x) \leq p(x) + \varepsilon, \text{ а с другой, в силу Д, } x \in [p_A(x) + \varepsilon] A \subseteq [p_A(x) + \varepsilon] \overline{P}, \text{ откуда } p\left(\frac{x}{p_A(x) + 1}\right) \leq 1, \text{ т. е. } p(x) \leq p_A(x) + \varepsilon. \text{ Так как } \varepsilon > 0 \text{ произвольно, то заключаем, что } p(x) = p_A(x), \text{ и теорему полностью доказана.}
\]

Для функционала Минковского, рассмотренного выше в примере 6, свойство II есть не что иное, как неравенство Минковского

\[\left(\sum_{k=1}^{\infty} |\xi_k + \eta_k|^p\right)^{1/p} \leq \left(\sum_{k=1}^{\infty} |\xi_k|^p\right)^{1/p} + \left(\sum_{k=1}^{\infty} |\eta_k|^p\right)^{1/p}, \]

справедливое для всех \(p > 1 \) (и, очевидным образом, также для \(p = 1 \)).

Е. Если \(p(x) \) — функционал Минковского множества \(A \), то \(\hat{A} = \{ x \in E: p(x) < 1 \} \). Действительно, если \(x \in \hat{A} \), то существует \(\varepsilon > 0 \), для которого \((1 + \varepsilon) x =
\]
\(= x + \varepsilon x \in A, \) откуда, в силу свойства I и (1), \((1 + \varepsilon) p(x) = = p((1 + \varepsilon) x) \leq 1, \) так что \(x \in \tilde{P} \). Обратно, если \(x \in \tilde{P}, \) то в силу свойств I, II и III для каждого \(t \in E \) существует \(\varepsilon > 0 \) такое, что \(p(x + \varepsilon t) \leq p(x) + \varepsilon p(t) < 1, \) откуда в силу (1) \(x + \varepsilon t \in A, \) так что \(x \in A. \)

Ж. Отметим следующие свойства функционала Минковского, очевидным образом вытекающие из определения 8 или В и Г.

1° \(p_{\tilde{A}}(x) = \frac{1}{p} p_A(x) \) для всех \(p > 0. \)

2° Если \(A \subset B, \) то \(p_A(x) \geq p_B(x). \)

3° Если \(A = \bigcap_{x \in A} A_x - \) поглощающее множество, то \(p_A(x) = \sup_{x \in A} p_A(x). \)

7. Преднормы и нормы

Определение 9. Пусть \(E \) — векторное пространство над \(K, \) где \(K = \mathbb{R} \) или \(\mathbb{C}. \) Преднормой на \(E \) называется всякая вещественная функция \(p(x) \) на \(E, \) обладающая свойствами:

I. \(p(\lambda x) = |\lambda| p(x) \) для всех \(x \in E \) и \(\lambda \in K . \)

II. \(p(x + y) \leq p(x) + p(y) \) для всех \(x, y \in E. \)

Ядром преднормы \(p(x) \) называется множество \(K_p = \{ x \in E: p(x) = 0 \}. \)

Так, функционалы Минковского, полученные в примерах 1 и 3 — непрерывные. В примере I \(K_p = E, \) в примере 3 \(K_p = K_f, \) в примерах 4 — 6 \(K_p = \{0\}. \)

А. Отметим некоторые простейшие свойства преднормы.

1° Беря в I \(\lambda = 0, \) получаем

\[p(0) = 0. \] \hspace{1cm} (1)

2° Из I следует также, что

\[p(\omega x) = p(x) \] для всех \(\omega \in K \) с \(|\omega| = 1 \) и всех \(x \in E; \) \hspace{1cm} (2)

в частности,

\[p(-x) = p(x) \] для всех \(x \in E. \) \hspace{1cm} (3)

3° Беря в II \(y = -x \) и принимая возвышение (1) и (3), получаем \(0 \leq 2p(x), \) т. е.

\[p(x) \geq 0 \] для всех \(x \in E. \) \hspace{1cm} (4)
§ 7] ВЫПУКЛЫЕ МНОЖЕСТВА 119

Б. Преднорму можно охарактеризовать как функционал Минковского поглощающего абсолютно выпуклого множества. Действительно, пусть \(p(x) \) — преднорма. Свойства I, II и (4) означают, что \(p(x) \) удовлетворяет условиям теоремы I и, значит, является функционалом Минковского поглощающего выпуклого множества \(A = \overline{P}\{x \in E: p(x) \leq 1\}; \) а (2) показывает, что \(\omega A = A, \) если \(|\omega| = 1, \) т. е. \(A \) — закругленное и, следовательно, в силу 2.A, абсолютно выпуклое. Обратно, если \(A \) — поглощающее абсолютно выпуклое множество, то \(x \in \omega A \) равносильно \(\omega x \in \omega A, \) и потому \(p_A(\omega x) = p_A(x), \) при любом \(\omega \in K \) с \(|\omega| = 1; \) но каждое \(\lambda \in K \) представимо в виде \(\lambda = |\lambda|\omega, \) где \(|\omega| = 1 \) (а именно \(\omega = \frac{\lambda}{|\lambda|}, \) если \(\lambda \neq 0, \) и \(\omega = 1, \) если \(\lambda = 0); \) пользуясь свойством I функции \(p_A(x), \) установленным в теореме 1, получаем поэтому \(p_A(\lambda x) = |\lambda| p_A(\omega x) = |\lambda| p_A(x), \) так что \(p_A(x) \) обладает свойством I определения 9; следовательно (обладая по теореме 1 также свойством II), \(p_A(x) \) — преднорма.

В. Если \(p(x) — \) преднорма, то

\[|p(x) - p(y)| \leq p(x - y) \] для всех \(x \in E. \) (5)

Действительно, в силу свойства II \(p(x) \leq p(x - y) + p(y), \) откуда

\[p(x) - p(y) \leq p(x - y). \] (51)

Точно так же \(p(y) \leq p(y - x) + p(x), \) откуда

\[p(y) - p(x) \leq p(y - x). \] (52)

Но в силу (3) \(p(y - x) = p(x - y). \) А тогда (51) и (52) в совокупности дают (5).

Г. Ядро \(K_p \) преднормы \(p(x) \) совпадает с наибольшим подпространством, содержащимся в множестве \(\overline{P} = \{x \in E: p(x) \leq 1\} \) (функционалом Минковского которого, согласно сказанному в Б, служит \(p(x)). \) В самом деле, в силу (1) \(K_p \neq \phi. \) Далее, если \(x \in K_p, \) то \(p(\lambda x) = |\lambda| p(x) = 0, \) т. е. \(\lambda x \in K_p, \) для всех \(\lambda \in K. \) Наконец, если \(x, y \in K_p, \) то \(p(x + y) \leq p(x) + p(y) = 0, \) и так как \(p(x + y) \geq 0, \) то \(p(x + y) = 0, \) т. е. \(x + y \in K_p. \) Таким образом, согласно 3.2.В, \(K_p — \) подпространство. С другой стороны, если \(x \in F, \) где \(F — \) подпространство, содержащееся в \(\overline{P}, \) то \(\lambda x \in \overline{P}, \) т. е.
\[|\lambda| p(x) = p(\lambda x) \leq 1, \] для всех \(\lambda \in K \), откуда \(p(x) \leq \frac{1}{\lambda} \) для всех \(\lambda > 0 \), и так как \(p(x) \geq 0 \), то \(p(x) = 0 \), т. е. \(x \in K_p \).

Тем самым \(K_p \) — наибольшее подпространство, содержащееся в \(P \).

Определение 10. Пусть \(E \) — векторное пространство над \(K \), где \(K \equiv \mathbb{R} \) или \(\mathbb{C} \). Нормой на \(E \) называют преднорму, имеющую своим ядром нулевое подпространство, т. е. норма — это функция \(p(x) = \|x\| \) на \(E \), удовлетворяющая следующим трем условиям:

1. \(\|\lambda x\| = |\lambda| \|x\| \) для всех \(x \in E \) и \(\lambda \in K \).
2. \(\|x + y\| \leq \|x\| + \|y\| \) для всех \(x, y \in E \).
3. \(\|x\| = 0 \) влечет \(x = 0 \).

Так, функционалы Минковского, полученные в примерах 4—6 п. 6, являются нормами.

Д. Из Б и В следует, что норму можно охарактеризовать как функционал Минковского поглощающего абсолютно выпуклого множества, пересекающего каждый луч \(0x \) по конечному интервалу.

Е. Преднорма \(p(x) \) постоянна на каждом смежном классе \(x \in E/K_p \) и

\[\dot{p}(X) = p(x), \] \(\tag{6} \)

где \(x \) — произвольный элемент из \(X \), есть норма на \(E/K_p \), (что и оправдывает наименование \(p(x) \) преднормой). Действительно, если \(x_1, x_2 \in X \), то \(x_1 - x_2 \in K_p \), т. е. \(p(x_1 - x_2) = 0 \), откуда в силу (5) следует, что \(p(x_1) = p(x_2) \). Таким образом, \(p(X) \) определяется формулой (6) однозначно. Для любых \(X, Y \in E/K_p \) и \(\lambda \in K \), выбирая произвольно \(x \in X \) и \(y \in Y \), имеем

\[p(\lambda X) = |\lambda| p(x) = |\lambda| \dot{p}(X) \]

и

\[p(X + Y) = p(x + y) \leq p(x) + p(y) = \dot{p}(X) + \dot{p}(Y). \]

Наконец, \(\dot{p}(X) = 0 \) влечет \(p(x) = 0 \), т. е. \(x \in K_p \) и, значит, \(X = K_p \). Тем самым \(\dot{p}(X) \) — норма.

Мы будем называть \(\dot{p}(X) \) факторнормой преднормы \(p(x) \) по ее ядру \(K_p \).
§ 8. ПРОДОЛЖЕНИЕ ЛИНЕЙНЫХ ФУНКЦИЙ

1. Сублинейные функции

Определение 1. Пусть \(E \) — векторное пространство над \(\mathbb{R} \) или \(\mathbb{C} \). Сублинейной функцией на \(E \) называется функция \(p(x) \) на \(E \) со значениями из \((-\infty, +\infty) \), обладающая следующими свойствами:

I. \(p(\lambda x) = \lambda p(x) \) для всех \(x \in E \) и \(\lambda > 0 \),

II. \(p(x + y) \leq p(x) + p(y) \) для всех \(x, y \in E \).

А. Таким образом, функционалы Минковского — это не что иное, как конечные неотрицательные сублинейные функции (теорема 1 § 7), а преднормы — конечные сублинейные функции, удовлетворяющие условию 7.7.2 (см. 7.7.Б). С другой стороны, очевидно, каждая вещественная линейная функция на \(E \) сублинейна. Таким образом, существуют сублинейные функции, имеющие также и отрицательные значения.

Б. Отметим некоторые простейшие свойства сублинейной функции \(p(x) \).

1° Полагая в I \(x = 0 \), получаем, что если \(p \) конечна, то

\[
p(0) = 0.
\]

(1)

Если \(p \) не всюду конечна, то возможно еще, что \(p(0) = +\infty \). Но тогда, как легко видеть, можно, не нарушая сублинейности, заменить значение \(+\infty \) в точке 0 значением 0, что всегда и делают.

2° В силу (1) и II

\[
0 \leq p(x + (\neg x)) \leq p(x) + p(\neg x)
\]

(2)

для любого \(x \in E \).

Это неравенство показывает, между прочим, что если \(p(x) < 0 \), то невозможно \(p(\neg x) > 0 \). Таким образом, в то время как непрерывные сублинейные функции, принимающие только значения \(\geq 0 \), существуют (функционалы Минковского), единственной сублинейной функцией, принимающей только значения \(\leq 0 \), является тождественный нуль.

3° \(\lambda p(x) \leq p(\lambda x) \) для всех \(x \in E \) и \(\lambda \in \mathbb{R} \). Действительно, при \(\lambda > 0 \) это вытекает из свойства I, при \(\lambda = 0 \) — из (1).
если же $\lambda \leq 0$, то, подставляя в (2) λx вместо x, получаем

$$0 \leq p(\lambda x) = p(\lambda x) + |\lambda| p(x),$$

откуда $\lambda p(x) = -|\lambda| p(x) \leq p(\lambda x)$.

В. Если $p(x)$ и $q(x)$ — сублинейные функции и $\rho > 0$, то, очевидно, $\rho p(x)$ и $p(x) + q(x)$ — также сублинейные функции. Далее, если $\{p_\alpha(x)\}_{\alpha \in A}$ — семейство сублинейных функций, то и

$$p(x) = \sup_{\alpha \in A} p_\alpha(x)$$

— сублинейная функция. Действительно, если $\lambda \geq 0$, то $p(\lambda x) = \sup_{\alpha \in A} p_\alpha(\lambda x) = \sup_{\alpha \in A} \lambda p_\alpha(x) = \lambda p(x)$; далее, для любого $\alpha \in A$ имеем $p_\alpha(x + y) \leq p_\alpha(x) + p_\alpha(y) \leq p(x) + p(y)$, откуда и $p(x + y) \leq p(x) + p(y)$.

Г. Из А и В следует, что верхняя грань

$$p(x) = \sup_{f \in K} f(x)$$

любого непустого множества K вещественных линейных функций на E есть сублинейная функция. Мы будем называть $p(x)$ опорной функцией множества K (ср. определение 1 § 11).

Пример. В примере 6 п. 6 § 7 было показано, что на l^p, где $p > 1$,

$$\|x\|_p = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p}$$

является функционалом Минковского некоторого поглощающего выпуклого множества и, значит, сублинейной функцией. Покажем, что сублинейность функции $\|x\|_p$ можно установить также, основываясь на Г. Действительно, как было показано в примере 4 п. 1 § 5, ряд

$$(x, y) = \sum_{k=1}^{\infty} \xi_k \eta_k$$

сходится для каждого $y = (\eta_k) \in l^q$, где $\frac{1}{p} + \frac{1}{q} = 1$, и представляет линейную функцию от x. Так как при этом, в силу неравенства Гельдера (там же), $|\Re(x, y)| \leq \|x\|_p \|y\|_q$, то, беря $K = \{y \in l^q: \|y\|_q \leq 1\}$, имеем $\sup_{y \in K} \Re(x, y) \leq \|x\|_p$. Но, с другой
стороны, \(\|x\|_p = \langle x, y \rangle \) при \(y = (\eta_k) \), где \(\eta_k = \frac{|\xi_k|^{p-1} \text{sgn} \xi_k}{\|x\|_p^{p-1}} \), причем \(y \in K \). Таким образом, \(\|x\|_p = \sup_{y \in K} \langle x, y \rangle \), и следовательно, в силу \(\Gamma \), \(\|x\|_p \) — сублинейная функция.

В следующем разделе мы увидим, что всякая конечная сублинейная функция на \(E \) является опорной функцией некоторого множества \(K \subset E^* \), т. е. может быть представлена в виде (3) (см. следствие 2 теоремы 1).

2. Теоремы продолжения (алгебраическое изложение)

Определение 2. Пусть \(E \) — векторное пространство, \(F \) и \(G \) — его подпространства и \(F \subset G \). Линейную функцию \(g \in G^* \) мы будем называть продолжением линейной функции \(f \in F^* \) на \(G \), если \(f \) есть сужение \(g \) на \(F \).

Определение 3. Пусть \(E \) — векторное пространство над \(R \). Мы будем говорить, что линейная функция \(g \in E^* \) мажорируется сублинейной функцией \(p(x) \) на \(E \), если \(f(x) \leq p(x) \) для всех \(x \in E \).

Теорема 1 (Банах **)). Пусть \(E \) — векторное пространство над \(R \), \(F \subset E \) и \(p(x) \) — конечная сублинейная функция на \(E \). Всякая линейная функция \(f_F \) на \(F \), мажорируемая функцией \(p \) на \(F \), обладает продолжением \(f \in E^* \), мажорируемым функцией \(p \) на всем \(E \).

Доказательство. 1° Покажем сначала, что если \(G \) — собственное подпространство пространства \(E \) и \(g \) — линейная функция на \(G \), мажорируемая функцией \(p \), то для каждого \(x_0 \in E \setminus G \) существует продолжение \(g \) на \(G + \xi x_0 \), также мажорируемое функцией \(p \). Действительно, так как всякий вектор \(z \in G + \xi x_0 \) однозначно представим в виде \(z = x + \lambda x_0 \), где \(x \in G \) и \(\lambda \in R \), то всякая линейная функция \(f \) на \(G + \xi x_0 \), служащая продолжением для \(g \), имеет вид

\[
f(z) = f(x + \lambda x_0) = g(x) + \lambda f(x_0)
\]

*) \(\text{sgn} \xi = \begin{cases} 0, & \text{если } \xi = 0, \\ \frac{\xi}{|\xi|}, & \text{если } \xi \neq 0. \end{cases} \)

и, значит, определяется выбором значения \(c = f(x_0) \). Для того чтобы \(f \) мажорировалась функцией \(p \), необходимо и достаточно, чтобы

\[
g(x) + \lambda c \leq p(x + \lambda x_0) \quad \text{для всех } x \in G \text{ и } \lambda \in \mathbb{R},
\]

т. е., поскольку при \(\lambda = 0 \) это условие выполнено по предположению, — чтобы

\[
c \leq \frac{p(x + \sigma x_0) - g(x)}{\sigma} \quad \text{для всех } x \in G \text{ и } \sigma > 0
\]

и

\[
c \geq \frac{g(y) - p(y - \rho x_0)}{\rho} \quad \text{для всех } y \in G \text{ и } \rho > 0.
\]

Но

\[
\frac{g(y) - p(y - \rho x_0)}{\rho} \leq \frac{p(x + \sigma x_0) - g(x)}{\sigma}
\]

для всех \(x, y \in G \) и \(\rho, \sigma > 0 \).

Действительно, это неравенство равносильно неравенству

\[
\rho g(x) + \sigma g(y) \leq \rho p(x + \sigma x_0) + \sigma p(y - \rho x_0),
\]

последнее же справедливо, поскольку \(\rho x + \sigma y \in G \), откуда

\[
\rho g(x) + \sigma g(y) = g(\rho x + \sigma y) \leq p(\rho x + \sigma y)
\]

для всех \(x, y \in G \) и \(\rho, \sigma > 0 \)

и в свою очередь

\[
p(\rho x + \sigma y) = p((\rho x + \rho \sigma x_0) + (\sigma y - \sigma \rho x_0)) \leq \leq \rho p(x + \sigma x_0) + \sigma p(y - \rho x_0).
\]

А из (5), в силу конечности функции \(p \), следует, что \(\alpha = \sup_{\rho > 0} g(y) - p(y - \rho x_0) \) и \(\beta = \inf_{\sigma > 0} \frac{p(x + \sigma x_0) - g(x)}{\sigma} \) конечны

и \(\alpha \leq \beta \). Но тогда условиям (3) и (4), а значит условию (2), удовлетворяет любое \(c \in [\alpha, \beta] \), так что требуемое продолжение (1) функции \(g \) существует.

2° Рассмотрим теперь совокупность всех продолжений \(f_\alpha \) функции \(f_F \), мажорируемых функцией \(p \). Эта совокупность, упорядоченная отношением \(f_\alpha \leq f_H \), означающим, что \(G \subset H \) и \(f_H \) — продолжение \(f_\alpha \) на \(H \), очевидно, индуктивна. Поэтому \(f_F \) обладает максимальным продолжением \(f_M \), мажо-
рируемым функцией \(p \). Но тогда в силу 1° \(M = E \), и тео-

рema доказана.

Следствие 1. Пусть \(E \) — векторное пространство
над \(\mathbb{R} \) и \(p(x) \) — конечная сублинейная функция на \(E \).
Для каждого \(x_0 \in E \) существует линейная функция \(f \in E^* \),
мажорируемая функцией \(p \) и удовлетворяющая условию
\[
f(x_0) = p(x_0).
\] (6)

Доказательство. Пусть \(F = \{ x_0 \in E : x = \lambda x_0 \}
(\lambda \in \mathbb{R}) \). Положим \(f_F(x) = f_F(\lambda x_0) = \lambda p(x_0) \).
Очевидно, \(f_F \in F^* \), а в силу 1.Б 3°
\[
f_F(x) = \lambda p(x_0) \leq p(\lambda x_0) = p(x).
\]
Таким образом, \(f_F \) удовлетворяет условиям теоремы 1 и,
следовательно, обладает продолжением \(f \) на \(E \), мажориуме-
ным функцией \(p \); так как при этом \(f_F(x_0) = p(x_0) \), то \(f \)
удовлетворяет и условию (6).

Следствие 2. Пусть \(E \) — векторное пространство
над \(\mathbb{K} \), где \(\mathbb{K} = \mathbb{R} \) или \(\mathbb{C} \), \(p(x) \) — конечная сублинейная
функция на \(E \) и \(P^* = \{ f \in E^* : \Re f(x) \leq p(x) \text{ для всех } x \in E \} \).
Тогда
\[
p(x) = \sup_{f \in P^*} \Re f(x).
\] (7)

Доказательство. При \(\mathbb{K} = \mathbb{R} \) \(P^* \) — совокупность
всех \(f \in E^* \), мажорируемых функцией \(p \), и формула (7), при-
нимающая вид \(p(x) = \sup_{f \in P^*} f(x) \), непосредственно вытекает из
следствия 1. При \(\mathbb{K} = \mathbb{C} \) надо вместо \(E \) рассмотреть \(E_{\mathbb{R}} \) и
принять во внимание сказанное в 5.1.Е.

Теорема 2 (Хан *)). Пусть \(E \) — векторное пространство
над \(\mathbb{K} \), где \(\mathbb{K} = \mathbb{R} \) или \(\mathbb{C} \), \(F \subset E \) и \(p(x) \) — преднорма
на \(E \). Всякая линейная функция \(f_F \in F^* \), удовлетворяющая
неравенству
\[
|f_F(x)| \leq p(x) \text{ для всех } x \in F,\] (8)
обладает продолжением \(f \in E^* \), удовлетворяющим неравенству
\[
|f(x)| \leq p(x) \text{ для всех } x \in E.
\] (9)

*) Hahn H., Über lineare Gleichungen in linearen Räumen,
Journ. für die reine und angewandte Mathematik, 157 (1927), 214—229.
Доказательство. 1° Пусть $K = R$. Из (8) вытекает, что f_F мажорируется функцией p, и следовательно, по теореме 1, обладает продолжением $f \in E^\ast$, удовлетворяющим неравенству

$$f(x) \leq p(x) \text{ для всех } x \in E.$$ \hspace{1cm} (10)

Заменяя в (10) x на $-x$ и принимая во внимание 7.7.(3), получаем

$$-f(x) = f(-x) \leq p(-x) = p(x) \text{ для всех } x \in E,$$

что в соединении с (10) дает (9).

2° Пусть $K = C$. Из (8) вытекает, что вещественная линейная функция $\Re f_F$ на F мажорируется функцией p, и следовательно, в силу теоремы 1, существует вещественная линейная функция g на E, мажорируемая функцией p и служащая продолжением $\Re f_F$ на E. Но в силу 5.1.E $g(x) = \Re f(x)$, где f — комплексная линейная функция на E, определяемая формулой $f(x) = g(x) - ig(ix)$. Таким образом,

$$\Re f(x) \leq p(x) \text{ для всех } x \in E,$$ \hspace{1cm} (11)

и так как для $x \in F$ также $f_F(x) = \Re f_F(x) - i\Re f_F(ix) = g(x) - ig(ix)$, то f является продолжением f_F на E. Пусть теперь x — произвольный вектор из E и $f(x) = pe^{i\varphi}$. В силу (11) и 7.7.(2) имеем тогда

$$|f(x)| = p = f(e^{-i\varphi}x) = \Re f(e^{-i\varphi}x) \leq p(e^{-i\varphi}x) = p(x),$$

t. e. f удовлетворяет неравенству (9).

Замечание. Попутно мы установили, что неравенства (9) и (11) (превращающиеся при $K = R$ в (10)) равносильны.

Следствие. Пусть E — векторное пространство над R или C и $p(x)$ — преднорма на E. Для каждого $x_0 \in E$ существует линейная функция $f \in E^\ast$, удовлетворяющая неравенству (9) и условию (6).

Доказательство. Как и в доказательстве следствия 1 теоремы 1, берем $F = E_{x_0}$ и $f_F(\lambda x_0) = \lambda p(x_0)$. Тогда $|f_F(x)| \leq p(x)$ и остается применить теорему 2.

3. Теоремы продолжения (геометрическое изложение)

Лемма. Если ненулевое вещественное векторное пространство E неодномерно, то для всякого алгебраически открытого конуса $C \subseteq E$, отличного от E, существует не пересекающее его одномерное подпространство.
Доказательство. Пусть $c \in C$, так что, в силу 7.5.3 и 7.4.A5°, $c \neq 0$. Так как, в силу условия леммы, $E \notin \mathfrak{G}_c$, то существует вектор $t \in E$, не зависящий линейно от c. Далее, поскольку $C = \hat{C}$, существует $\varepsilon > 0$ такое, что $d = -c + \varepsilon t \in C$. Таким образом, C содержит пару линейно независимых векторов c, d. Рассмотрим прямую l, проходящую через c и $-d$ (3.3.1). Выберем на ней в качестве положительного направления возрастания параметра x при задании ее параметрическим уравнением $x = c + \alpha (c + d)$. Луч (c, \rightarrow) этой прямой, образованный точками $c + \rho (c + d) = (1 + \rho) c + \rho d$, где $\rho > 0$, содержится в C. С другой стороны, в силу 7.5.3 $-d \notin C$. Поэтому (7.4.A1° и 7.1.Д, М, Е) $C \cap l$ есть полупрямая с началом $e \in [-d, c]$, идущая в положительном направлении. Но тогда $e \notin C$, ибо $e + \varepsilon (-d - c)$ не принадлежит C ни при каком $\varepsilon > 0$, а C алгебраически открыто. Точно так же $e \notin C$, т. е. $e \notin C$, ибо $e + \varepsilon (c + d)$ для всех $\varepsilon > 0$ принадлежит C и, значит, в силу 7.5.3 не принадлежит \hat{C}. Наконец, $e \neq 0$, поскольку l, вследствие линейной независимости векторов c и d, не проходит через 0. Но в таком случае \mathfrak{G}_e есть одномерное подпространство, не пересекающееся с C. В самом деле, из $\lambda e \in C$ при $\lambda > 0$ следовало бы, что $e \in C$, а при $\lambda < 0$, что $-e \notin C$, нулевой же вектор не содержится в C в силу 7.5.3.

Теорема 3. Если C — конус в вещественном векторном пространстве E, обладающий окружной точкой, то всякое подпространство F пространства E, не содержащее окружных точек конуса \hat{C}, содержится в гиперпространстве H, обладающем тем же свойством.

Доказательство. Множество всех подпространств пространства E, содержащих F и не пересекающихся с \hat{C}, упорядоченное по возрастанию, очевидно, индуктивно. Следовательно, по принципу максимального элемента, в E существует максимальное подпространство $H \supseteq F$, не пересекающееся с \hat{C}. Так как $\hat{C} \neq \emptyset$, то $H \neq E$. Пусть φ — каноническое наложение E на E/H. В силу 7.4.A1°, 4° и 7.5.3, K, B, $\varphi(\hat{C})$ — алгебраически открытый конус. При этом, так как $H \cap \hat{C} = \emptyset$, то $0 \notin \varphi(\hat{C})$ и поэтому конус $\varphi(\hat{C})$, в силу 7.4.A5°, строгий. Если бы теперь E/H было неодномерно, то в силу
леммы в E/H существовал бы ненулевой элемент $w = \varphi(u)$, для которого $\mathcal{E}_w = \varphi(\mathcal{E}_u)$ не пересекалось бы с $\varphi(\mathcal{C})$. Но так как $\varphi(H + \mathcal{E}_u) = \mathcal{E}_w$, то тогда $H + \mathcal{E}_u$ не пересекалось бы с \mathcal{C}, что, однако, противоречило бы максимальности H, поскольку $u \notin H$. Таким образом, E/H одномерно и, следовательно (3.7 Е), H — собственное гиперподпространство.

Теорема 4. Если A — выпуклое множество в вещественном векторном пространстве E, обладающее окруженной точкой a_0, то всякое аффинное многообразие L, не содержащее окруженных точек множества A, содержит в гиперплоскости X, обладающей тем же свойством.

Доказательство. Пусть F — подпространство, параллельное L. Согласно 3.3 Б 2°, $F = L - x_0$, где x_0 — произвольная фиксированная точка из L. Положим $B = \hat{A} - x_0$. Так как $x_0 \notin \hat{A}$, то $0 \notin \mathcal{B}$. В силу 7.5Ж, К, Б' и 7.1Ж, B — алгебраически открытое выпуклое множество. Поэтому $C = \bigcup_{\rho > 0} \rho B$ в силу 7.5Л есть строгий алгебраически открытый конус. При этом $F \cap C = \phi$. В самом деле, если $x \in F \cap C$, то $x = \rho (a - x_0)$, где $a \in \hat{A}$ и $\rho > 0$, а тогда $a = \rho^{-1}x + x_0 \in F + x_0 = L$, т.е. $a \in L \cap \hat{A}$, что противоречит условию теоремы. Тем самым C и F удовлетворяют условиям теоремы 3 и, значит, существует гиперподпространство H, содержащее F и не пересекающееся с C. Но в таком случае гиперплоскость $X = H + x_0$ содержит $L = F + x_0$ и не пересекается с $C + x_0$, а тем самым и с \hat{A} (содержащимся в $C + x_0$).

Замечание. Согласно 7.5М A лежит по одну сторону от X.

А. Теорема 1 есть следствие теоремы 3. Действительно, пусть E — векторное пространство над R, $p(x)$ — конечная сублинейная функция на E, $F \subset E$ и f_F — линейная функция на F, удовлетворяющая условию

$$f_F(x) \leq p(x) \text{ для всех } x \in \Gamma.$$ \hspace{1cm} (1)

Положим

$$C = \{ (x, x) \in E \times R^1: p(x) < x \}.$$
Так как \(p(0) = 0 < 1 \), то

\[
(0, 1) \in C,
\]
(2)

так что \(C \neq \phi \). Пусть \((x, \alpha) \in C\). Так как \(p(x) < \alpha \), то для всякого \(t \in E \) существует \(\varepsilon > 0 \) такое, что \(p(x + \delta t) < \varepsilon p(t) < \alpha \) для всех \(\delta \in [0, \varepsilon] \), т. е. \([x, \alpha + \varepsilon] \subseteq C\).

Тем самым \(C = C \). При этом в силу 1. Б 2° \(p(-x) \geq p(x) > -\alpha \), так что \(-(x, \alpha) = (-x, -\alpha) \notin C\). Далее, если \(\rho > 0 \), то \(p(\rho x) = \rho p(x) < \rho \alpha \) и, значит, \(\rho \cdot (x, \alpha) = (\rho x, \rho \alpha) \in C\). Наконец, если и \((y, \beta) \in C\), то \(p(x + y) \leq p(x) + p(y) < \alpha + \beta \) и, значит, \((x, \alpha) + (y, \beta) = (x + y, \alpha + \beta) \in C\). Таким образом, \(C \) — непустой строгий алгебраически открытый конус в \(E \times R^1 \). Положим, далее,

\[
\varphi(x, \alpha) = f_F(x) - \alpha \quad \text{для всех } (x, \alpha) \in F \times R^1.
\]
(3)

Очевидно, \(\varphi \) — линейная функция на \(F \times R^1 \). Пусть \(G = K_\varphi \), т. е.

\[
G = \{ (x, \alpha) \in F \times R^1 : f_F(x) = \alpha \}.
\]

Так как \(F \times R^1 \subseteq E \times R^1 \), то в силу 4.1. Г и \(G \subseteq E \times R^1 \), При этом \(G \cap C = \phi \), ибо, в силу (1), для всех \((x, \alpha) \in G\) имеем \(p(x) \geq f_F(x) = \alpha \). Таким образом, \(C \) и \(G \) удовлетворяют условиям теоремы 3 и, значит, в \(E \times R^1 \) существует гиперподпространство \(H \), содержащее \(G \) и не пересекающееся с \(C \). Так как тогда в силу (2) \((0, 1) \notin H\), то, по 5.3. Е, на \(E \times R^1 \) существует линейная функция \(\psi \), имеющая своим ядром \(H \) и удовлетворяющая условию \(\psi(0, 1) = -1 \). Так как в силу (3) и \(\varphi(0, 1) = -1 \), а \(K_\varphi = G \subseteq H = K_\psi \), то, снова по 5.3. Е, \(\psi \) есть продолжение \(\varphi \) с \(F \times R^1 \) на всё \(E \times R^1 \). Следовательно, линейная функция \(f(x) = \psi(x, 0) \) есть продолжение линейной функции \(f_F(x) = \varphi(x, 0) \) с \(F \) на всё \(E \). Далее, так как \(H \cap C = \phi \), то для всех \((x, \alpha) \in H\) имеем \(\alpha \leq p(x) \).

Но

\[
H = K_\varphi = \{ (x, \alpha) \in E \times R^1 : f(x) = \alpha \}.
\]

Следовательно,

\[
f(x) \leq p(x) \quad \text{для всех } x \in E,
\]

и теорема 1 доказана.

Б. Теорема 4 есть следствие теоремы 1. Действительно, пусть \(A \) — выпуклое множество в векторном пространстве \(E \) над \(R \), \(a_0 \in A \) и \(L \) — аффинное многообразие.
в \(E \), не пересекающееся с \(\mathcal{A} \). Положим \(B = \mathcal{A} - a_0 \), \(M = L - a_0 \) и пусть \(x_0 \) — произвольная фиксированная точка из \(M, G \) — подпространство, параллельное \(M, F = G + \mathcal{E}x_0 \) и \(f_F \) — линейная функция на \(F \), определяемая условиями \(K_f = G \) и \(f_F(x_0) = 1 \) (5.3.E). Так как \(a_0 \) — окружённая точка множества \(\mathcal{A} \) (7.5.K), то 0 — окружённая точка множества \(B \) (7.5.B). В силу 7.5.K, \(B' \) и 7.1.K \(B \) — алгебраически открытое выпуклое множество. Пусть \(p_B \) — его функционал Мипковского. Согласно 7.6.E

\[
B = \{ x \in E : p_B(x) < 1 \}. \tag{4}
\]

Покажем, что

\[
f_F(x) \leq p_B(x) \text{ для всех } x \in F. \tag{5}
\]

В самом деле, пусть \(x \in F \), так что \(x = g + ax_0 \), где \(g \in G \) и \(a \in \mathbb{R} \), и значит, \(f_F(x) = a \). Если \(a < 0 \), то \(f_F(x) \leq p_B(x) \), поскольку \(p_B(x) > a \). Пусть \(a \geq 0 \). В силу 3.3.Б \(3^\circ a^{-1}g + x_0 \in G + x_0 = M \). Но так как \(L \cap \mathcal{A} = \phi \), то \(M \cap B = \phi \). Поэтому в силу (4) \(p_B(a^{-1}g + x_0) \geq 1 \). А тогда

\[
f_F(x) = a \leq ap_B(a^{-1}g + x_0) = p_B(g + ax_0) = p_B(x)
\]

(см. теорему 1 § 7). Так как \(p_B(x) \) — конечная сублинейная функция (1.А), то, по теореме 1, из (5) следует, что \(f_F \) обладает продолжением \(f \in E^* \), удовлетворяющим условию

\[
f(x) \leq p_B(x) \text{ для всех } x \in E. \tag{6}
\]

Пусть \(Y \) — гиперплоскость, определяемая уравнением \(f(x) = 1 \). Так как \(M = G + x_0 \), то для всех \(x \in M \) имеем \(f(x) = f_F(x) = f_F(x_0) = 1 \) и, значит, \(Y \supseteq M \). С другой стороны, в силу (6) для всех \(x \in Y \) имеем \(p_B(x) \geq 1 = f(x) \) и потому \(Y \cap B = \phi \) (см. (4)). Но тогда \(X = Y + a_0 \) есть гиперплоскость, содержащая \(L = M + a_0 \) и не пересекающаяся с \(\mathcal{A} = B + a_0 \); теорема 4 доказана.

В. Так как теорема 3 является очевидным следствием теоремы 4 (см. 7.4.А 1° и 3.3.Б 1°), то заключаем из А и Б, что теоремы 1, 3 и 4 равносильны.

Теорема 5. Если \(A \) — выпуклое множество в вещественном векторном пространстве \(E \), обладающее окруженной точкой, то для каждой точки \(x_0 \in E \setminus \mathcal{A} \) сущес-
существует ненулевая линейная функция \(f \in E^* \) такая, что
\[
\sup_{x \in A} f(x) \leq f(x_0).
\] (7)

Доказательство. Так как \(A \) и \(L = \{ x_0 \} \) удовлетворяют условиям теоремы 4, то существует гиперплоскость \(X \), содержащая точку \(x_0 \) и не пересекающаяся с \(A \). В силу 7.5.М, тогда \(A \) лежит по одну сторону от \(X \), т. е. (см. 7.1.И) уравнение \(f(x) = \xi \) гиперплоскости \(X \) можно выбрать так, что все точки \(x \in A \) будут удовлетворять неравенству \(f(x) \leq \xi \). Но \(\xi = f(x_0) \), поскольку \(x_0 \in X \).

Замечание. Пусть \(a \in A \). Если \(x_0 \) не совпадает с концом \(x_1 \) интервала, по которому \([a, x_0] \) пересекает \(A \), то \(f \) можно выбрать так, чтобы в (7) имело место строгое неравенство. Действительно, так как \(x_1 \notin \bar{A} \), то, по теореме 5, существует \(f \in E^* \) такое, что
\[
\sup_{x \in A} f(x) \leq f(x_1),
\] причем \(f(a) < f(x_1) \), поскольку гиперплоскость \(f(x) = f(x_1) \) не содержит \(a \). Но так как \(x_1 \in (a, x_0) \), то \(x_1 = (1 - \rho) a + \rho x_0 \), где \(0 < \rho < 1 \). Тогда \(f(x_1) = (1 - \rho) f(a) + \rho f(x_0) < (1 - \rho) f(x_1) + \rho f(x_0) \), откуда \(f(x_1) < f(x_0) \).

Следствие. Всякое выпуклое множество \(A \) в вещественном векторном пространстве \(E \), обладающее окруженной точкой и не совпадающее с \(E \), содержит в полупространстве.

Г. Как легко видеть, последнее утверждение сохраняет силу и при ослабленном предположении, что \(A \) обладает относительно окруженной точкой. Принимая во внимание сказанное в 7.5.Д, заключаем отсюда, что в конечномерном вещественном векторном пространстве каждое выпуклое собственное подмножество содержится в полупространстве. Напротив, во всяком бесконечномерном векторном пространстве \(E \) над \(\mathbb{R} \) существует выпуклое множество, отличное от \(E \), не содержащее ни в каком полупространстве. Действительно, пусть \(A \) — базис пространства \(E \). Из теоремы Цермело, в силу бесконечности множества \(A \), легко следует, что в \(A \) имеется отношение порядка, при котором \(A \) является совершенно упорядоченным множеством без последнего элемента. Требуемым свойством обладает тогда множество тех векторов, у которых последняя (при указанном упорядочении) непулемая координата положительна, в чем легко убедиться, воспользовавшись общим видом линейных функций на векторном пространстве с заданным базисом (см. 5.1.Б).
Д. Пусть C — конус в вещественном векторном пространстве E. Линейная функция $f \in E^*$ называется положительной относительно C, если $f(x) \geq 0$ для всех $x \in C$. Если f — ненулевая положительная линейная функция относительно конуса C, то $f(x_0) > 0$ для всякой его окружненной точки x_0. Действительно, так как $f \neq 0$, то существует вектор $t \in E$, для которого $f(t) < 0$. Но, поскольку $x_0 \in C$, $x_0 + \varepsilon t \in C$ при достаточно малом $\varepsilon > 0$. А тогда $f(x_0 + \varepsilon t) > 0$, откуда $f(x_0) = -\varepsilon f(t) > 0$.

Теорема 6 (М. Крейн [*]). Пусть C — конус в вещественном векторном пространстве E и G — подпространство, содержащее окружненную точку x_0 этого конуса. Тогда всякая линейная функция $f_G \in G^*$, положительная относительно конуса $C_G = C \cap G$, обладает продолжением $f \in E^*$, положительным относительно C.

Доказательство. При $f_G = 0$ утверждение очевидно. Пусть $f_G \neq 0$ и $F = Kf_G$. В силу $D F \cap C_G = \phi$, и так как, очевидно, $C \cap F = C_G$, то, тем более, $F \cap C = \phi$. Следовательно, по теореме 3, в E существует гиперподпространство H, содержащее F и не пересекающееся с C. Так как $x_0 \in C_G$ и, значит, по D, $f_G(x_0) > 0$, то тогда в силу 5.3.Е существует $f \in E^*$ такая, что $Kf = H$ и $f(x_0) = f_G(x_0)$. Но в таком случае, снова по 5.3.Е, $f(x) = f_G(x)$ для всех $x \in G$, т. е. f — продолжение f_G. С другой стороны, так как $f(x_0) > 0$, то, в силу 7.5.М, $f(x) \geq 0$ для всех $x \in C$, т. е. f положительна относительно C.

Следствие. Для всякого конуса C в вещественном векторном пространстве E, обладающего окружненной точкой x_0 и не совпадающего с E, существуют линейные функции, положительные относительно C.

Доказательство. Достаточно взять в теореме $G = \mathbb{E}x$, и $f_G(ax_0) = a$.

[*] М. Г. Крейн, Про позитивні адитивні функціонали в лінійних нормованих просторах, Записки наук. досл. інст. математики і механіки ХДУ і Харківск. Матем. тов., 14 (1937), 227 — 237.
ГЛАВА III

L-ПРОСТРАНСТВА

§ 9. ОСНОВНЫЕ ПОНЯТИЯ

1. Понятие L-пространства

Определение 1. Пусть E — векторное пространство над K и $(X_k)_{1 \leq k \leq n}$ — произвольное конечное семейство его гиперплоскостей с непустым пересечением $L = \bigcap_{k=1}^{n} X_k$. Совокупность всех гиперплоскостей пространства E, содержащих L, будет называться пучком гиперплоскостей, порожденным семейством $(X_k)_{1 \leq k \leq n}$, и обозначаться $[X_1, \ldots, X_n]$.

Определение 2. Пусть E — векторное пространство над K. L-структурой в E будет называться всякое непустое множество \mathcal{L} его гиперподпространств, которое вместе с каждыми двумя входящими в него гиперподпространствами содержит весь порожденный ими пучок. Пространство E, наделенное L-структурой \mathcal{L}, будет называться L-пространством и обозначаться $E_{\mathcal{L}}$ или (E, \mathcal{L}). L-пространство (E, \mathcal{L}) и его структура \mathcal{L} будут называться отдеями, если для каждого $x_0 \in E \setminus \{0\}$ существует $H_0 \in \mathcal{L}$ такое, что $x_0 \notin H_0$, т. е. когда $\bigcap_{H \in \mathcal{L}} H = \emptyset$. Если \mathcal{L}_1 и \mathcal{L}_2 — L-структуры в E и $\mathcal{L}_1 \subseteq \mathcal{L}_2$, то мы будем говорить, что \mathcal{L}_2 мажорирует \mathcal{L}_1. Если при этом $\mathcal{L}_1 \neq \mathcal{L}_2$, то мы будем говорить, что \mathcal{L}_2 сильнее \mathcal{L}_1 или \mathcal{L}_1 слабее \mathcal{L}_2.

Примеры. 1. $\mathcal{L}_0 = \{E\}$ есть слабейшая из всех L-структур в E. Если E — ненулевое, то (E, \mathcal{L}_0) неотделимо.
2. Множество \mathcal{L}_ω всех гиперподпространств пространства E есть сильнейшая из всех L-структур в E. В силу следствия 3 (или 4) теоремы 1 § 3, (E, \mathcal{L}_ω) отделимо.

3. Так как единственное собственное гиперподпространство в \mathbb{K}^1 — ненулевое, то в \mathbb{K}^1 имеется только две различные L-структуры: $\mathcal{L}_o = \{E\}$ и $\mathcal{L}_\omega = \{E, \{0\}\}$. Рассматривая \mathbb{K}^1 как L-пространство, мы всегда будем считать его наделенным L-структурой \mathcal{L}_ω и тем самым — отделимым.

4. В нулевом векторном пространстве имеется только одна L-структура: $\mathcal{L}_o = \mathcal{L}_\omega$.

Теорема 1. Пусть E — векторное пространство над \mathbb{K}, \mathcal{L} — L-структура в E и $E' \subset E^*$. Тогда:

1° Совокупность $E'_\mathcal{L}$ всех линейных функций на E, ядра которых принадлежат \mathcal{L}, является векторным пространством.

2° Обратно, совокупность \mathcal{L}_E ядер всех $f \in E'$ является L-структурой в E.

3° $E' = E'_\mathcal{L}$.

4° $\mathcal{L}_E = \mathcal{L}$.

5° \mathcal{L} отделима тогда и только тогда, когда $E'_\mathcal{L}$ достаточно.

Доказательство. 1° По условию,

$$E'_\mathcal{L} = \{f \in E^*: K_f \in \mathcal{L}\}.$$ (1)

В силу 5.3.Б $E'_\mathcal{L} \neq \emptyset$. Далее, так как $K_{\lambda f} = K_f$ при $\lambda \neq 0$ и $K_0f = E \in \mathcal{L}$, то $f \in E'_\mathcal{L}$ влечет $\lambda f \in E'_\mathcal{L}$ для всех $\lambda \in \mathbb{K}$. Наконец, так как $K_{f_1 + f_2} = K_{f_1} \cap K_{f_2}$, то при $K_{f_1}, K_{f_2} \in \mathcal{L}$ также $K_{f_1 + f_2} \in \mathcal{L}$ и потому $f_1, f_2 \in E'_\mathcal{L}$ влечет $f_1 + f_2 \in E'_\mathcal{L}$.

Следовательно, в силу 3.2.В $E'_\mathcal{L} \subset E^*$.

2° По условию,

$$\mathcal{L}_E = \{K_f: f \in E'\}.$$ (2)

Ядра K_f всех $f \in E'$ — гиперподпространства (5.3.А). Пусть $H_1, H_2 \in \mathcal{L}_E$, так что $H_1 = K_{f_1}, H_2 = K_{f_2}$, где $f_1, f_2 \in E'$, пусть, далее, $H \in [H_1, H_2]$ и f — линейная функция на E с ядром $K_f = H$ (5.3.Б). Так как $K_f \supseteq K_{f_1} \cap K_{f_2}$, то в силу теоремы 4' § 5 $f = \lambda_1 f_1 + \lambda_2 f_2$, где $\lambda_1, \lambda_2 \in \mathbb{K}$. Поэтому $f \in E'$, $H = K_f \in \mathcal{L}_E$ и, следовательно, \mathcal{L}_E — L-структура.
3° В силу (1) и (2) $E_{F'} = \{ f \in E^* : K_f \in \mathcal{L}_{E'} \} = E'$.
4° В силу (2) и (1) $\mathcal{L}_{E'_2} = \{ K_f : f \in E'_2 \} = \mathcal{L}$.
5° Пусть $x_0 \in E \setminus \{0\}$. Если \mathcal{L} отделима, то существует $H_0 \in \mathcal{L}$ такое, что $x_0 \notin H_0$. Но в силу 5.3.Б существует $f_0 \in E^*$, для которой $K_{f_0} = H_0$; и тогда $f_0 \in E'_2$ и $f_0(x_0) \neq 0$, т. е. E'_2 достаточно. Обратно, если E'_2 достаточно, то существует $f_0 \in E'_2$ такое, что $f_0(x_0) \neq 0$. Но тогда $x_0 \notin K_{f_0}$, и так как $K_{f_0} \in \mathcal{L}$, то \mathcal{L} отделима.

А. $E_{E'_2} = E_{E'_2}$ тогда и только тогда, когда $\mathcal{L}_1 = \mathcal{L}_2$. Действительно, первая часть утверждения очевидна. Если же $E_{E'_2} = E_{E'_2}$, то, по теореме 1, $\mathcal{L}_1 = \mathcal{L}_{E_{E'_2}} = \mathcal{L}_{E_{E'_2}} = \mathcal{L}_2$.

Б. Согласно определению 3 § 6, достаточность $E_{E'_2}$ означает отделимость дуальной пары $(E, E_{E'_2})$. Поэтому из теоремы 1 и 6.2.А вытекает, что L-структура \mathcal{L} в E отделима тогда и только тогда, когда $E_{E'_2} = \{0\}$ (где $E_{E'_2} = \{0\}$ — аннулятор $E_{E'_2}$ в E).

В. L-структура \mathcal{L} в E вместе с каждым конечным семейством $(H_k)_{1 \leq k \leq n}$ своих гиперподпространств содержит весь порожденный им пучок. В самом деле, пусть $H \subseteq [H_1, \ldots, H_n]$ и f — линейная функция на E с ядром $K_f = H$ (5.3.Б). По условию $H_k \in \mathcal{L}$, так что $H_k = K_{f_k}$, где $f_k \in E_{E'_2}$ ($k = 1, \ldots, n$). Так как $K_f = \bigcap_{k=1}^n K_{f_k}$, то по теореме 4' § 5 $f = \sum_{k=1}^n \lambda_k f_k$, где $\lambda_1, \ldots, \lambda_n \in K$. Следовательно, в силу теоремы 1 $f \in E_{E'_2}$, т. е. $H = K_f \in \mathcal{L}$.

Г. В конечномерном векторном пространстве E имеется только одна отделимая L-структура — сильнейшая. Действительно, если $\mathcal{L} = \mathcal{L}$ отделимая L-структура в E, то, по теореме 1, E и $E_{E'_2}$ образуют отделимую дуальную пару. Но тогда в силу 6.1.Ж $E_{E'_2} = E^*$, и следовательно, в силу 5.3.Б $\mathcal{L} = \mathcal{L}_\omega$.

Г'. Из теоремы 1, А и 6.1.Ж следует, что в бесконечномерном векторном пространстве имеется бесконечное множество различных отделимых L-структур.
Д. Пусть Λ_E — множество всех L-структур в векторном пространстве E, упорядоченное отношением \subseteq, означающим, что \mathcal{L}_2 мажорирует \mathcal{L}_1 (так что $\mathcal{L}_1 \subset \mathcal{L}_2$, или, что то же, $\mathcal{L}_2 \supset \mathcal{L}_1$, означает, что \mathcal{L}_1 слабее \mathcal{L}_2, или, что то же, \mathcal{L}_2 сильнее \mathcal{L}_1). Каждое непустое множество $\Lambda \subseteq \Lambda_E$ обладает в Λ_E нижней и верхней границами, а именно $\inf \Lambda = \bigcap_{\mathcal{L} \in \Lambda} \mathcal{L}$, а $\sup \Lambda = \inf \Lambda'$, где Λ' — множество всех верхних границ множества Λ. Действительно, очевидно, $E \subseteq \bigcap_{\mathcal{L} \in \Lambda} \mathcal{L}$, и если $H_1, H_2 \in \bigcap_{\mathcal{L} \in \Lambda} \mathcal{L}$, так что $H_1, H_2 \in \mathcal{L}$ для всех $\mathcal{L} \in \Lambda$, то также $[H_1, H_2] \subseteq \mathcal{L}$ для всех $\mathcal{L} \in \Lambda$, т. е. $[H_1, H_2] \subseteq \bigcap_{\mathcal{L} \in \Lambda} \mathcal{L}$. С другой стороны, $\mathcal{L}_0 \in \Lambda'$, так что $\Lambda' \neq \emptyset$, а тогда, очевидно, $\inf \Lambda' = \sup \Lambda$.

Е. В силу теоремы 1 и $\Lambda \xrightarrow{\mathcal{L}} E_{\mathcal{L}'}$ есть отображение подобия множества Λ_E всех L-структур в векторном пространстве E, упорядоченного отношением \subseteq, на множество всех подпространств векторного сопряженного E^*, упорядоченное по возрастанию.

Ж. Из Е, в частности, следует, что для любого непустого множества $\Lambda \subseteq \Lambda_E$

$$E_{\inf \Lambda'} = \bigcap_{\mathcal{L} \in \Lambda} E_{\mathcal{L}'}$$

и

$$E_{\sup \Lambda'} = \bigcup_{\mathcal{L} \in \Lambda} E_{\mathcal{L}'}$$

(см. Д и 3.2.3).

2. L-отображения

А. Прообраз $\varphi^{-1}(G)$ всякого гиперподпространства G пространства F относительно отображения $\varphi \in \mathcal{P}(E, F)$ есть гиперподпространство пространства E, притом собственное, если $R_\varphi \subseteq G$, и несобственное — в противном случае. Действительно, если $R_\varphi \subseteq G$, то $\varphi^{-1}(G) = E$. Пусть $R_\varphi \subseteq G$, так что существует $x_0 \in E$ такое, что $y_0 = \varphi(x_0) \in G$. Так как тогда гиперподпространство G — собственное, то
§ 9] основные понятия

$F = G + \mathcal{E}_{y_0} = G + \varphi(\mathcal{E}_{x_0})$ (см. 3.4.Д). Поэтому, в силу 2.2.И, $E = \varphi^{-1}(F) = \varphi^{-1}(G) + \mathcal{E}_{x_0}$, и так как $x_0 \notin \varphi^{-1}(G)$, то $\varphi^{-1}(G)$ — собственное гиперпоздропространство пространства E (см. 4.1.Б и 3.4.Е).

Б. Прообраз $\varphi^{-1}(\mathcal{M})$ всейкой L-стуктуры \mathcal{M}, заданной в пространстве F, относительно отображения $\varphi \in \mathcal{L}(E, F)$ есть L-стуктура в E, причем

$$E_{\varphi^{-1}(\mathcal{M})}' = \{g \circ \varphi: g \in F_{\mathcal{M}}'\}.$$

Действительно, $H \in \varphi^{-1}(\mathcal{M})$ означает, что $H = \varphi^{-1}(G)$, где $G \in \mathcal{M}$. Но последнее означает, что $G = K_g$, где $g \in F_{\mathcal{M}}'$ (см. теорему 1), и тем самым $H = \varphi^{-1}(K_g) = \varphi^{-1}(g^{-1}(0)) = K_f$, где $f = g \circ \varphi^*$. Таким образом, $\varphi^{-1}(\mathcal{M}) = \{K_g \varphi^*: g \in F_{\mathcal{M}}'\}$. Но, по теореме 1, $F_{\mathcal{M}}'$ — векторное пространство. Следовательно, в силу 3.2.Б и $E' = \{g \circ \varphi: g \in F_{\mathcal{M}}'\}$ — векторное пространство, ибо если $g_1, g_2 \in F_{\mathcal{M}}'$, то $g_1 + g_2 \in F_{\mathcal{M}}'$, так что $g_1 \circ \varphi + g_2 \circ \varphi = (g_1 + g_2) \circ \varphi \in E'$, и так же $\lambda \cdot (g \circ \varphi) = (\lambda g) \circ \varphi \in E'$ для всех скаляров λ. А тогда, согласно теореме 1, $\varphi^{-1}(\mathcal{M}) = \mathcal{L}_{E'}$ — L-структура в E и $E' = E \cup E' = E_{\varphi^{-1}(\mathcal{M})}'$.

Б. Если \mathcal{M} — отдельная L-структура в F и φ — вложение E в F, то L-структура $\varphi^{-1}(\mathcal{M})$ в E отдельна. Действительно, пусть $x_0 \in E \setminus \{0\}$. Так как φ — вложение, то $y_0 = \varphi(x_0) \neq 0$. В силу отдельности \mathcal{M} тогда существует $G \in \mathcal{M}$ такое, что $y_0 \notin G$. Но в таком случае $x_0 \notin \varphi^{-1}(G)$, и следовательно, $\varphi^{-1}(\mathcal{M})$ отдельна.

Определение 3. Пусть E_{φ} и $F_{\mathcal{M}}$ — L-пространства над одним и тем же полем K, а φ — отображение E в F. φ называется L-отображением E_{φ} в $F_{\mathcal{M}}$, если $\varphi \in \mathcal{L}(E, F)$ и $\varphi^{-1}(\mathcal{M}) \subseteq \mathcal{L}$, т. е. $\varphi^{-1}(G) \in \mathcal{L}$ для каждого $G \in \mathcal{M}$. Совокупность всех L-отображений E_{φ} в $F_{\mathcal{M}}$ будет обозначаться $L(E_{\varphi}, F_{\mathcal{M}})$.

Примеры. 1. Пусть E и F — векторные пространства над одним и тем же полем K. Так как прообразом всякого подпространства пространства F относительно нулевого отображения E в F служит E, то нулевое отображение E в F

*) Здесь попутно получено еще одно доказательство для A.

*
является L-отображением при наделении E и F любыми L-структурами.

2. Пусть $\mathcal{L}_1, \mathcal{L}_2 \in \Lambda_E$ (см. 1.Д). Очевидно, $\mathcal{L}_1 \subseteq \mathcal{L}_2$ тогда и только тогда, когда тождественное отображение E на себя есть L-отображение (E, \mathcal{L}_2) в (E, \mathcal{L}_1). В частности, тождественное отображение любого L-пространства на себя есть L-отображение.

Г. Согласно определению 3, f есть L-отображение E_φ в K^1 тогда и только тогда, когда $f \in \mathcal{L}(E, K^1) = E^\pi$ и $K_f = f^{-1}(0) \subseteq \mathcal{L}$, т.е. когда $f \in E_{\varphi}$ (см. пример 3 и 1).

Определение 4. L-отображения E_φ в K^1 будут называться линейными функционалами на E_φ, a образом E_φ — пространством, сопряженным к E_φ. Вместо E_{φ} мы будем писать также $(E, \mathcal{L})'$, а вместо $f(x)$, где $x \in E$, имеем $f \in E_{\varphi}'$, — также $\langle x, f \rangle$.

Д. Композиция L-отображений есть L-отображение. Действительно, пусть $\varphi \in L(E_\varphi, F_{\varphi'})$, $\psi \in L(F_{\varphi'}, G_{\psi'})$ и $\omega = \psi \circ \varphi$. В силу 4.3.Г $\omega \in \mathcal{L}(E, G)$. С другой стороны, для любого $H \in \mathcal{M}$ мы имеем $\varphi^{-1}(H) \subseteq \mathcal{L}$ и потому $\omega^{-1}(H) = \varphi^{-1}(\psi^{-1}(H)) \subseteq \mathcal{L}$. Следовательно, $\omega \in L(E_\varphi, G_{\psi'})$.

Д'. Из Д, в частности, следует, что если $\varphi \in L(E_\varphi, F_{\varphi'})$ и $g \in F_{\varphi'}$, то $g \circ \varphi \in E_{\varphi}$.

Е. Пусть $\varphi \in \mathcal{L}(E, F)$. Для того чтобы $\varphi \in L(E_\varphi, F_{\varphi'})$, необходимо и достаточно, чтобы

$$g \circ \varphi \in E_{\varphi'} \text{ для всех } g \in F_{\varphi'}.$$ \hspace{1cm} (2)

Действительно, необходимость условия (2) установлена в Д'. Если же (2) выполнено, то для произвольного $G = K_g \in \mathcal{M}$ имеем $\varphi^{-1}(G) = \varphi^{-1}(g^{-1}(0)) = K_f$, где $f = g \circ \varphi \in E_{\varphi'}$, и следовательно, $\varphi \in L(E_\varphi, F_{\varphi'})$.

Ж. $L(E_\varphi, F_{\varphi'})$ есть векторное пространство. Действительно, $L(E_\varphi, F_{\varphi'})$ не пусто, ибо во всяком случае содержит нулевое отображение E в F (пример 1). Далее, если $\varphi_1, \varphi_2 \in L(E_\varphi, F_{\varphi'})$ и $f_1 = g \circ \varphi_1, f_2 = g \circ \varphi_2$, где $g \in F_{\varphi'}$, то, по Д', $f_1 + f_2 \in E_{\varphi'}$, значит, и $f_1 + f_2 = g \circ (\varphi_1 + \varphi_2) \in E_{\varphi'}$, и так как это верно для всех $g \in F_{\varphi'}$, то, по Е, $\varphi_1 + \varphi_2 \in L(E_\varphi, F_{\varphi'})$. Совершенно так же, $\lambda \varphi \in L(E_\varphi, F_{\varphi'})$ для всех скаляров λ, и остается применить 3.2.В.

3. Пусть E_φ и $F_{\varphi'}$ — L-пространства, $\varphi \in \mathcal{L}(E, F)$ и $\varphi^* = \varphi$ приведение φ, так что $\varphi = \pi \circ \varphi^*$, где π — кано-
ническое вложение \(G = R_{\phi} \) в \(F \) (см. 4.2.А). \(\varphi \in L(E_2, F_2) \) тогда и только тогда, когда \(\varphi^* \in L(E_2^*, F_2^*) \), где \(\varphi^* = \pi^{-1}(M) \). В самом деле, если \(\varphi \in L(E_2, F_2) \), то \(\varphi^{-1}(M) = \pi^{-1}(M) \varphi^{-1}(M) \subseteq \mathcal{L} \), так что \(\varphi^* \in L(E_2, G_2^*) \). Обратно, если \(\varphi^* \in L(E_2, G_2^*) \), то в силу \(\varphi \in L(E_2, F_2) \), поскольку \(\pi \in L(G_2^*, F_2) \).

3. Конечномерные \(L \)-отображения

А. Любое линейное отображение \(\varphi \) отдельного конечномерного \(L \)-пространства \(E_2 \) в произвольное \(L \)-пространство \(F_2 \) является \(L \)-отображением. Действительно, согласно 1.Г \(\mathcal{L} \) — сильнейшая \(L \)-структура в \(E \) и потому \(\varphi^{-1}(M) \subseteq \mathcal{L} \).

Б. Из А, в частности, следует, что всякая линейная функция на отдельном конечномерном \(L \)-пространстве \(E_2 \) является линейным функционалом, так что \(E_2^* = E^* \). Принимая во внимание 5.2.А, заключаем, что сопряженное к отдельному \(n \)-мерному \(L \)-пространству \(n \)-мерно.

Б'. Так как, по 1.Г, всякая \(L \)-структура в конечномерном векторном пространстве мажорируется отдельной, то из Б, 1.Е и 3.7.Н1° следует, что сопряженное к конечномерному \(L \)-пространству \(E_2 \) конечномерно, причем \(\dim E_2^* \leq \dim E \).

Теорема 2. Пусть \(E \) и \(F \) — векторные пространства над одним и тем же полем \(K \), \(\mathcal{L} \) — \(L \)-структура в \(E \), \(f_1, \ldots, f_n \in E_2^* \) и \(y_1, \ldots, y_n \in F \). Тогда

\[x \rightarrow \varphi(x) = \sum_{k=1}^{n} f_k(x) y_k \quad (1) \]

есть (очевидно, конечномерное) \(L \)-отображение \(E_2 \) в пространство \(F \), наделенное любой \(L \)-структурой \(M \).

2° Если \(f_1, \ldots, f_n \) линейно независимы, то \(R_\varphi = \mathcal{E}y \), где \(y = (y_k)_{k < n} \), так что если и \(y_1, \ldots, y_n \) линейно независимы, то \(\varphi \) \(n \)-мерно.

3° Если \(E_2 \) отдельно, то для каждого конечного репера \(X = \{ x_1, \ldots, x_n \} \subseteq E \) можно выбрать \(f_1, \ldots, f_n \in E_2^* \) так, чтобы \(\varphi \) переводило векторы \(x_1, \ldots, x_n \) соответственно в векторы \(y_1, \ldots, y_n \) в \(\mathcal{E}y \).
Доказательство. 1° Очевидно, \(\varphi \in L(E, F) \). Пусть \(G = K_E \subseteq M \). Тогда

\[
\varphi^{-1}(G) = \{ x \in E : \varphi(x) \in G \} = \left\{ x \in E : \sum_{k=1}^{n} f_k(x) g(y_k) = g(\varphi(x)) = 0 \right\} = K_f,
\]

где \(f = \sum_{k=1}^{n} g(y_k) f_k \in E'_E \). Но в таком случае \(\varphi^{-1}(G) \in \mathcal{L} \), и следовательно, \(\varphi \in L(E_E, F_M) \).

2° Если \(f_1, \ldots, f_n \) линейно независимы, то, по теореме 2 § 5, система линейных уравнений

\[
f_k(x) = \lambda_k \quad (k = 1, \ldots, n)
\]

совместна при любых \(\lambda_k \in \mathbb{K} \), и следовательно, \(R_\varphi = \mathcal{E}_Y \).

3° Если \(E_E \) отделимо, то, по теореме 1, \(E'_E \) достаточно и, следовательно, в силу 6.3.Г существуют \(f_1, \ldots, f_n \in E'_E \) такие, что

\[
f_k(x_l) = \delta_{kl} \quad (k, l = 1, \ldots, n).
\]

Но тогда для \(\varphi \), построенного по этим \(f_k \), имеем \(\varphi(x_l) = y_l \) \((l = 1, \ldots, n)\), откуда \(\varphi(\mathcal{E}_X) = \mathcal{E}_Y \); так как \(\varphi(\mathcal{E}_X) \subseteq R_\varphi \subseteq \mathcal{E}_Y \), то заключаем, что \(R_\varphi = \mathcal{E}_Y \).

Теорема 2'. Если \(F_M \) отделимо, то каждое \(n \)-мерное \(L \)-отображение \(E_E \) в \(F_M \) представимо в виде (1), где \(f_1, \ldots, f_n \) — линейно независимые линейные функционалы на \(E_E \), a \(y_1, \ldots, y_n \) — линейно независимые векторы из \(F \).

Доказательство. Пусть \(\varphi \in n \)-мерное \(L \)-отображение \(E_E \) в \(F_M \) и \(Y = \{ y_1, \ldots, y_n \} \) — базис его противобраста \(G = R_\varphi \). Тогда для каждого \(x \in E \) имеем

\[
\varphi(x) = \sum_{k=1}^{n} g_k(\varphi(x)) y_k = \sum_{k=1}^{n} g_k(\varphi^*(x)) y_k,
\]

где \(g_1, \ldots, g_n \) — координатные линейные функции на \(G \), порожденные базисом \(Y \) (5.1.В), а \(\varphi^* \) — приведение \(\varphi \) (см. 4.2.А). Положим \(f_k = g_k \circ \varphi^* \), так что \(\varphi(x) = \sum_{k=1}^{n} f_k(x) y_k \).

Очевидно, \(f_k \in E^* \). Далее, так как \(G = \mathcal{E}_Y \), то система (2) совместна при любых правых частях и, значит, \(f_1, \ldots, f_n \), по теореме 2 § 5, линейно независимы. Наконец, пусть \(M = \pi^{-1}(\mathcal{M}) \), где \(\pi \) — каноническое вложение \(G \) в \(F \), так
чтобы в силу 2.3 $\varphi^* \in L(E, G_{\varphi'})$. Так как $F_{\text{кр}}$ отделимо, то и $G_{\varphi'}$ отделимо (2.2), а значит, поскольку G конечно-мерно, $g_k \in G_{\varphi'}$ (см. B). Но тогда в силу 2.Д $f_k \in E_{\varphi'}$.

4. L-структуры, определяемые линейными отображениями

A. Пусть $\varphi \in L(E, F)$. Из определения L-отображения непосредственно следует:

1^o Если L_{φ} — сильнейшая L-структура в E, то $\varphi \in L(E_{\varphi}, F_M)$ при наделении F любой L-структурой M. Если M_{φ} — слабейшая L-структура в F, то $\varphi \in L(E_{\varphi}, F_{M_{\varphi}})$ при наделении E любой L-структурой \mathcal{L}.

2^o Если $\varphi \in L(E, F_M)$, то $\varphi \in L(E_{\varphi}, F_M)$ при любых $L_1 \supseteq L$ и $M_1 \subseteq M$.

3^o $\varphi^{-1}(M)$ есть слабейшая из L-структур \mathcal{L} в E, при которых $\varphi \in L(E, F_M)$.

B. Пусть E — векторное пространство над K, $(E_{\varphi_a})_{\alpha \in \Lambda}$ — семейство L-пространств над K и φ_a — линейное отображение E в E_a для каждого $\alpha \in \Lambda$. $\mathcal{L} = \sup_{\alpha \in \Lambda} \varphi^{-1}(\mathcal{L}_a)$ есть слабейшая из L-структур \mathcal{L}' в E_a, при которых все $\varphi_a \in L(E_{\varphi}, E_{\varphi_a})$. Действительно, в силу $A1^o$ множество Λ всех таких L-структур \mathcal{L}' не пусто. Далее, если $\mathcal{L}' \in \Lambda$, так что $\varphi^{-1}(\mathcal{L}_a) \subseteq \mathcal{L}'$ для всех $\alpha \in \Lambda$, то $\mathcal{L} \subseteq \mathcal{L}'$. Наконец, $\mathcal{L} \in \Lambda$, так как $\varphi^{-1}(\mathcal{L}_a) \subseteq \mathcal{L}$ для всех $\alpha \in \Lambda$.

B. Пусть E — векторное пространство над K, $(E_{\varphi_a})_{\alpha \in \Lambda}$ — семейство L-пространств над K, $\varphi_a \in L(E, E_a)$ для каждого $\alpha \in \Lambda$ и \mathcal{L} — слабейшая из L-структур \mathcal{L}' в E, при которых все $\varphi_a \in L(E_{\varphi_a}, E_{\varphi_a})$. Тогда E_{φ_a} образовано всем возможными суммами виды $\sum_{\alpha \in \Lambda} f_{\alpha} \circ \varphi_a$, где $f_{\alpha} \in E_{\varphi_a}'$ и лишь конечное число слагаемых отлично от нуля. Действительно, так как, по B, $\mathcal{L} = \sup_{\alpha \in \Lambda} \varphi^{-1}(\mathcal{L}_a)$, то в силу 1.(4) $E_{\varphi_a} = \mathcal{L} \cup \bigcup_{\alpha \in \Lambda} \varphi^{-1}(\mathcal{L}_a)'$, т. е. E_{φ_a} образовано суммами линейных функционалов $g_{\alpha} \in E_{\varphi^{-1}(\mathcal{L}_a)}$ при любых конечных наборах индексов α. Но в силу 2.Б $E_{\varphi^{-1}(\mathcal{L}_a)}' = \{f_{\alpha} \circ \varphi_a : f_{\alpha} \in E_{\varphi_a}'\}$.
Г. Пусть \((M_a)_{a \in A} \) — семейство L-структур в \(F \),
\(M = \sup \{ M_a \}_{a \in A} \) (1.1) и \(\varphi \in L(E_x, E_{M_a}) \) для всех \(a \in A \). Тогда
\(\varphi \in L(E_{x'}, F_{M_a}) \). Действительно, по 2.2, \(f_x = g_x \circ \varphi \in E_{x'} \)
для всех \(g_x \in F_{M_a}' \) и \(a \in A \). Но в силу 1.(4) \(F_{M'} = \bigcup_{a \in A} F_{M_a}' \),
т. е. \(F_{M'} \) есть совокупность всевозможных сумм вида
\[g = \sum_{k=1}^{n} g_{x_k}, \text{ где } g_{x_k} \in F_{M_{a_k}}'. \]
Поэтому \(f = g \circ \varphi \in E_{x'} \) для \(g \in F_{M'} \), а отсюда, по 2.2, следует, что \(\varphi \in L(E_x, F_{M}) \).
Поскольку, обратно, из \(\varphi \in L(E_x, F_{M}) \) в силу 2.2 следует, что \(\varphi \in L(E_x, F_{M_a}) \) для всех \(a \in A \), то заключаем, что
\[L(E_x, F_{\sup M}) = \bigcap_{a \in A} L(E_x, F_{M_a}). \]

Д. Пусть \(E \) — векторное пространство над \(K \), \((E_x^a)_{a \in A} \)
— семейство L-пространств над \(K \), \(\varphi_a \in \mathcal{L}(E, E^a) \) для каждого \(a \in A \) и \(\mathcal{L} \) — слабейшая из L-структур \(\mathcal{L}' \) в \(E \), при которых все \(\varphi_a \in L(E_{x'}, E_{x_a}). \) \(\varphi \in L(F_{M}, E_{x_a}) \) тогда и только тогда, когда \(\varphi \circ \varphi \in L(F_{M_a}, E_{x_a}) \) для всех \(a \in A \). Действительно, в силу 2.2 и 2.3 \(\varphi \in L(F_{M}, E_{x_a}) \) тогда и только тогда, когда \(\varphi \in L(F_{M_a}, E_{x_a}). \) т. е. \(\varphi^{-1}(\varphi^{-1}(\mathcal{L}_a)) \leq M \)
или, что то же, \(\varphi_a \circ \varphi \in L(F_{M_a}, E_{x_a}) \), для всех \(a \in A \).

Замечание. В силу 3.3, \(D \) содержит как частный случай 2.3.

Е. Пусть \(\varphi \in \mathcal{L}(E, F) \), \(\mathcal{L} \) — L-структура в \(E \) и \(\Lambda \) — множество всех L-структур \(N \) в \(F \), для которых \(\varphi \in L(E_x, F_{x}) \).
В силу 2.3, \(\lambda \neq \varphi \). Так как \(\varphi \in L(E_x, F_{x}) \) для всех \(x \in \Lambda \), то в силу 2.3 \(\varphi \in L(E_x, F_{\sup \Lambda}). \) Тем самым среди L-структур \(N \) в \(F \), для которых \(\varphi \in L(E_x, F_{x}) \), имеется сильнейшая; мы будем обозначать ее \(\varphi(\mathcal{L}) \). Очевидно, для L-структур \(N \) в \(F \) соотношения \(N \leq \varphi(\mathcal{L}) \) и \(\varphi^{-1}(N) \leq \mathcal{L} \) равносильны.

\(\mathcal{L}' \) совпадает с совокупностью \(M \) всех тех гиперпространств \(G \) пространства \(F \), для которых \(\varphi^{-1}(G) \in \mathcal{L} \). Действительно, если \(G_1, G_2 \in M \) и \(G \in [G_1, G_2] \), то \(\varphi^{-1}(G) \supseteq \varphi^{-1}(G_1) \cap \varphi^{-1}(G_2) \), и так как \(\varphi^{-1}(G_1), \varphi^{-1}(G_2) \in \mathcal{L} \),
а \(\varphi^{-1}(G) \), в силу 2.2, есть гиперпространство, то \(\varphi^{-1}(G) \in \mathcal{L} \), т. е. \(G \in \mathcal{M} \). Тем самым \(M \) — L-структура.
Так как $\varphi^{-1}(M) \subseteq L$, то $M \leq \varphi(L)$. Но, с другой стороны, $\varphi^{-1}(\varphi(L)) \subseteq L$ и потому $\varphi(L) \subseteq M$. Следовательно, $\varphi(L) = M$.

В силу 5.3 А,Б отсюда вытекает, что линейная функция g на F принадлежит $F_{\varphi(L)}$ тогда и только тогда, когда $(g \circ \varphi)^{-1}(0) = \varphi^{-1}(K_g) \subseteq L$, т. е. когда $g \circ \varphi \in E_L$. Тем самым

$$F_{\varphi(L)} = \{g \in F^*: g \circ \varphi \in E_L\}.$$ (1)

Ж. Пусть E — векторное пространство над K, $(E_{\alpha})_{\alpha \in A}$ — семейство L-пространств над K и φ_{α} — линейное отображение $E_{\alpha} \to E$ для каждого $\alpha \in A$. $L = \inf_{\alpha \in A} \varphi_{\alpha}(L_{\alpha})$ есть сильнейшая из L-структур L' в E, при которых все $\varphi_{\alpha} \in L(E_{\alpha}, E_L)$. Действительно, в силу $A10$ множество A всех таких L-структур L' не пусто. Далее, если $L' \in A$, так что $\varphi_{\alpha}^{-1}(L') \subseteq L_{\alpha}$, или, что согласно E равносило этому, $L' \subseteq \varphi_{\alpha}(L_{\alpha})$, для всех $\alpha \in A$, то $L' \subseteq L$. Наконец, $L \in A$, так как $L \subseteq \varphi_{\alpha}(L_{\alpha})$, или, что по E равносило этому, $\varphi_{\alpha}^{-1}(L) \subseteq L_{\alpha}$ для всех $\alpha \in A$.

З. Пусть E — векторное пространство над K, $(E_{\alpha})_{\alpha \in A}$ семейство L-пространств над K, $\varphi_{\alpha} \in L(E_{\alpha}, E)$ для каждого $\alpha \in A$ и L — сильнейшая из L-структур L' в E, при которых все $\varphi_{\alpha} \in L(E_{\alpha}, E_L)$. Тогда

$$E_L = \{f \in E^*: f \circ \varphi_{\alpha} \in E_{\alpha} \text{ для всех } \alpha \in A\}.$$ Действительно, это непосредственно следует из Ж, (1) и 1.(3).

И. Пусть $(L_{\alpha})_{\alpha \in A}$ — семейство L-структур в E, $L = \inf_{\alpha \in A} L_{\alpha}$ (1.А) и $\varphi \in L(E_L, F_M)$ для всех $\alpha \in A$. Тогда $\varphi \in L(E_L, F_M)$. В самом деле, так как $\varphi^{-1}(M) \subseteq L_{\alpha}$ для всех $\alpha \in A$, то $\varphi^{-1}(M) \subseteq \inf_{\alpha \in A} L_{\alpha} = L$.

Поскольку, обратно, из $\varphi \in L(E_L, F_M)$ в силу $A2^-$ следует, что $\varphi \in L(E_{\inf\alpha\in\Lambda\alpha}, F_M)$ для всех $\alpha \in A$, то заключаем, что

$$L(E_{\inf\alpha\in\Lambda\alpha}, F_M) = \bigcap_{\alpha \in A} L(E_{\alpha}, F_M).$$

Отсюда, в частности, снова следует формула 1.(3).
5. Замкнутые подпространства L-пространства

Определение 5. Подпространством (аффинным многообразием) L-пространства E_2 будет называться любое подпространство (аффинное многообразие) векторного пространства E; замкнутым подпространством — всякое подпространство, являющееся пересечением гиперподпространств из \mathcal{L}; замкнутым аффинным многообразием — всякое аффинное многообразие, параллельное замкнутому подпространству.

А. Кlass всех замкнутых подпространств L-пространства E_2 совпадает с классом всех замкнутых по Макки подпространств пространства E, рассматриваемого в двуальной паре с E_2' (см. 6.2.И). Действительно, $M \subset E_2$ замкнуто, по определению 5, тогда и только тогда, когда $M = \bigcap_{f \in N} K_f$, где $N \subset E_2'$, или, в силу 6.2.Б 3°, когда $M = \bigcap_{f \in N} \{ f \}^\perp = \left(\bigcup_{f \in N} \{ f \} \right)^\perp = N^\perp$; но, согласно 6.2.И, равенство $M = N^\perp$ означает не что иное, как утверждение, что M — замкнутое по Макки подпространство пространства E (рассматриваемого в двуальной паре с E_2').

Б. Из определения 5 непосредственно следует:

1° Замкнутые гиперподпространства в E_2 — это гиперподпространства из \mathcal{L} и только они; замкнутые гиперплоскости в E_2 — это гиперплоскости, параллельные гиперподпространствам из \mathcal{L} и только они.
§ 9] основные понятия 145

2° Пересечение любого семейства замкнутых подпространств есть замкнутое подпространство (ср. 6.2.Н).
Из определений 5 и 1 следует также
3° E_2 отдельно тогда и только тогда, когда его нулевое подпространство замкнуто (ср. 6.2.М).

В. Прообраз замкнутого подпространства относительно L-отображения есть замкнутое подпространство. Действительно, это непосредственно следует из определений 3 и 5, поскольку прообраз пересечения множеств относительно любого отображения есть пересечение их прообразов. В частности (см. Б 3°), ядро всякого L-отображения в отдельно L-пространство замкнуто.

В'. Из В и 4.1.В' следует, что непустой прообраз замкнутого аффинного многообразия относительно L-отображения есть замкнутое аффинное многообразие.

Г. Из А и 6.2.П' вытекает, что сумма $F + K$ замкнутого подпространства F L-пространства E_2 и конечномерного подпространства K замкнута.

Д. Из Г и БЗ° вытекает, что всякое конечномерное подпространство отдельно L-пространства замкнуто.

Е. Замкнутые аффинные многообразия в E_2 можно охарактеризовать как непустые пересечения замкнутых гиперплоскостей. Действительно, если L — замкнутое аффинное многообразие в E_2, то, по определению 5, $L = F + x_0$, где F — пересечение семейства $(H_a)_{a \in \Lambda}$ гиперподпространств $H_a \subseteq \mathcal{L}$; но тогда $L = \bigcap_{a \in \Lambda} (H_a + x_0)$, т. е. L является пересечением семейства замкнутых гиперплоскостей. Обратно, если $(X_a)_{a \in \Lambda}$ — семейство замкнутых гиперплоскостей с непустым пересечением L, то в силу 3.3.В L есть аффинное многообразие, параллельное пересечению гиперподпространств $H_a \subseteq \mathcal{L}$, которым параллельны X_a; тем самым L — замкнутое аффинное многообразие.

Е'. Из Е, в частности, следует, что всякое непустое пересечение замкнутых аффинных многообразий есть замкнутое аффинное многообразие.

Ж. Всякое подпространство F L-пространства E_2 содержится по крайней мере в одном замкнутом подпространстве: самом E. Пересечение всех замкнутых подпространств, содержащих F, являющееся, согласно Б 2°, замкнутым
подпространством, будет называться замыкание F и обозначаться \overline{F}. В силу Б 2° \overline{F} есть пересечение всех гиперподпространств из \mathcal{L}, содержащих F. Примем во внимание теорему 1, видим, что если $F \subset \subset E_\mathcal{L}$, то \overline{F} есть пересечение ядер всех линейных функционалов из $E_\mathcal{L}'$, аннулирующих на F, т. е. бианнулятор F в E, рассматриваемом в дуальной паре с $E_\mathcal{L}'$, и, значит, совпадает с замыканием F в смысле, определенном в 6.2.Л.

\mathcal{J}'. Точно так же пересечение всех замкнутых аффинных многообразий, содержащих данное аффинное многообразие L, является замкнутым аффинным многообразием; оно будет называться замыканием L и обозначаться \overline{L}. В силу $E - E'$, \overline{L} есть пересечение всех замкнутых гиперплоскостей, содержащих L.

3. Из сказанного в \mathcal{J} и \mathcal{J}', в частности, следует:

1° Аффинное многообразие (и, в частности, подпространство) L L-пространства замкнуто тогда и только тогда, когда $\overline{L} = L$.

2° Если X — незамкнутая гиперплоскость L-пространства $E_\mathcal{L}$, то $\overline{X} = E$.

3° $\overline{\{0\}} = \bigcap_{x \in E_\mathcal{L}'} K_x$.

И. Операция замыкания аффинного многообразия перестановочна с переносами, т. е. $\overline{L + x} = \overline{L} + x$ для всякого аффинного многообразия L в $E_\mathcal{L}$ и всякого $x \in E$. Действительно, будучи замкнутым аффинным многообразием, \overline{L}, по определению 5, параллельно замкнутому подпространству; но тогда также $\overline{L + x}$ параллельно ему и, значит, является замкнутым аффинным многообразием. Так как $L + x \subset \overline{L} + x$, то заключаем, что $\overline{L + x} \subset \overline{L} + x$. Но тогда, на том же основании, и $\overline{L} = (L + x) - x \subset L + x - x$, откуда $\overline{L} + x \subset L + x$.

Аналогично доказывается, что операция замыкания аффинного многообразия перестановочна с гомотетиями.

6. L-подпространства

Определение 6. L-подпространством L-пространства $E_\mathcal{L}$ будет называться подпространство, наделенное слабейшей из L-структур, при которых его каноническое вло-
§ 9] основные понятия

жение в \(E \) есть \(L \)-отображение. Для обозначения того, что \(L \)-пространство \(G \) есть \(L \)-подпространство \(L \)-пространства \(E \), мы будем пользоваться записью \(G \subset \subset E \).

А. Пусть \(G \subset \subset E \) и \(\pi \) — каноническое вложение \(G \) в \(E \).

В силу 4.А 3° \(\delta'^{1} = \pi^{-1}(\mathcal{L}) \). т. е. \(\delta'^{1} \) есть след \(\mathcal{L} \cap G \) \(L \)-структуры \(\mathcal{L} \) на \(G \), иными словами, \(\delta'^{1} \) образовано пересечениями с \(G \) всевозможных гиперподпространств из \(\mathcal{L} \).

А'. Очевидно, само \(E \) и его нулевое подпространство, наделенное своей единственной \(L \)-структурой, являются в \(E \) \(L \)-подпространствами.

Б. Из А следует, что замкнутые подпространства в \(G \subset \subset E \) — это пересечения с \(G \) всевозможных замкнутых подпространств \(L \)-пространства \(E \).

В. В силу А и 2.В всякое \(L \)-подпространство отдельного \(L \)-пространства отдельно.

Г. Если \(\varphi \in L(E, F) \), \(G \subset \subset E \) и \(\varphi_{G} \) — сужение \(\varphi \) на \(G \), то \(\varphi_{G} \in L(G, F) \). Действительно, \(\varphi_{G} = \varphi \circ \pi \), где \(\pi \) — каноническое вложение \(G \) в \(E \), и так как \(\pi \in L(G, E) \), то \(\varphi_{G} \in L(G, F) \).

Д. Сопряженное к \(L \)-пространству \(G \subset \subset E \) совпадает с совокупностью сужений всевозможных линейных функционалов \(f \in E \) на \(G \). В самом деле, пусть \(\pi \) — каноническое вложение \(G \) в \(E \). Так как, по А, \(\delta'^{1} = \pi^{-1}(\mathcal{L}) \), то в силу 2.Б

\[G \subset \subset = \{ f \circ \pi : f \notin E \} \]

но \(f \circ \pi \) — сужение \(f \) на \(G \).

Д'. В Д установлено, в частности, что, каково бы ни было \(G \subset \subset E \), каждый линейный функционал \(g \in G \) обладает продолжением до линейного функционала на всем \(E \).

7. Гомоморфизмы \(L \)-пространств

А. Если \(\varphi \in \mathcal{L}(E, F) \) — наложение и \(H \) — гиперподпространство пространства \(E \), по \(\varphi(H) \) — гиперподпространство пространства \(F \), притом собственное тогда и только тогда, когда \(H \) — собственное, а \(K \subset H \). Действительно, \(\varphi(H) \subset \subset F \) (4.1.В). Пусть \(\varphi(H) \subset \subset G \), где \(G \subset \subset F \). Тогда \(H \subset \subset \varphi^{-1}(\varphi(H)) \subset \subset \varphi^{-1}(G) \), и так как \(\varphi^{-1}(G) \subset \subset E \) (4.1.В),
то $\varphi^{-1}(G) = H$ или E, откуда $G = \varphi(\varphi^{-1}(G)) = \varphi(H)$ или F. Тем самым $\varphi(H)$ — гиперподпространство. При этом, если $H \neq E$ и $K_\varphi \subset H$, то, по 2.3.Г, $H = \varphi^{-1}(\varphi(H))$ и потому $\varphi(H) \neq F$. Обратно, если $\varphi(H) \neq F$, то $\varphi^{-1}(\varphi(H)) \neq E$ (ибо иначе мы имели бы $\varphi(H) = \varphi(\varphi^{-1}(\varphi(H))) = \varphi(E) = F$), и так как $\varphi^{-1}(\varphi(H)) \subset E$ (4.1.В), а $H \subset \varphi^{-1}(\varphi(H))$, то $H = \varphi^{-1}(\varphi(H))$, так что $H \neq E$ и, согласно 2.3.Г, $K_\varphi \subset H$.

Б. Если $\varphi \in \mathcal{P}(E, F)$ — наложение, то образ $\varphi(\mathcal{P})$ всякой L-структуры \mathcal{L}, заданной в E, совпадает с $\varphi(\mathcal{P})$, т. е. является сильнойшей из L-структур \mathcal{M}' в F, при которых $\varphi \in L(E_\varphi, F_{\mathcal{M}'})$ (см. 4.Е). Действительно, если $H \in \mathcal{L}$, то, в силу А, $\varphi(H)$ есть гиперподпространство; при этом $\varphi^{-1}(\varphi(H))$, как подпространство, содержащее H, есть либо E, либо H и, значит, принадлежит \mathcal{L}, но тогда в силу 4.Е $\varphi(H) \in \mathcal{L}$. Таким образом, $\varphi(\mathcal{L}) \subset \varphi(\mathcal{L})$. С другой стороны, так как $\varphi \in L(E_\varphi, F_{\mathcal{M}'})$, то $\varphi^{-1}(\varphi(\mathcal{L})) \subset \mathcal{L}$, откуда $\varphi(\mathcal{L}) = \varphi(\varphi^{-1}(\varphi(\mathcal{L}))) \subset \varphi(\mathcal{L})$. Следовательно, $\varphi(\mathcal{L}) = \varphi(\mathcal{L})$.

Определение 7. Пусть E_φ и $F_{\mathcal{M}}$ — L-пространства над одним и тем же полем K. $\varphi \in \mathcal{P}(E, F)$ называется гомоморфизмом E_φ на $F_{\mathcal{M}}$, если φ — наложение и $\varphi(\mathcal{L}) = \mathcal{M}$. Взаимно однозначный гомоморфизм E_φ на $F_{\mathcal{M}}$ называется изоморфизмом E_φ на $F_{\mathcal{M}}$. φ называется гомоморфизмом (изоморфизмом) E_φ в $F_{\mathcal{M}}$, если φ — гомоморфизм (изоморфизм) E_φ на R_φ, наделенное L-структурой L-подпространства L-пространства $F_{\mathcal{M}}$.

Пример. Так как подпространства векторного пространства E инвариантны относительно гомотетий, то всякая гомотетия в E есть изоморфизм E, наделенного любой L-структурой, на себя.

В. Из Б следует, что $\varphi \in \mathcal{P}(E, F)$ есть гомоморфизм E_φ на $F_{\mathcal{M}}$ тогда и только тогда, когда \mathcal{M} есть сильнейшая из L-структур \mathcal{M}' в F, при которых $\varphi \in L(E_\varphi, F_{\mathcal{M}'})$.

В'. Принимая во внимание 4.(1), заключаем из В, что $\varphi \in \mathcal{P}(E, F)$ есть гомоморфизм E_φ на $F_{\mathcal{M}}$ тогда и только тогда, когда

$$F_{\mathcal{M}'} = \{ g \in F^* : g \circ \varphi \in E_\varphi' \}.$$

Г. В силу 6.А $\varphi \in \mathcal{P}(E, F)$ есть гомоморфизм E_φ в $F_{\mathcal{M}}$ тогда и только тогда, когда $\varphi(\mathcal{L}) = \mathcal{M} \cap R_\varphi$.
Д. Согласно Б гомоморфизм E_φ на F_M есть L-отображение.

Д'. Более общим образом, всевозможный гомоморфизм E_φ в F_M есть L-отображение. Действительно, это непосредственно следует из Д в силу 2.3.

Е. Из определения 7 в силу 4.3.Г следует, что композиция гомоморфизмов E_φ на F_M и гомоморфизм F_M на G_φ есть гомоморфизм E_φ на G_φ; точно так же композиция изоморфизмов есть изоморфизм.

Ж. Пусть φ — гомоморфизм E_φ на F_M и $\psi \in \mathcal{L}(F, G)$. Для того чтобы ψ было гомоморфизмом F_M на G_φ, необходимо и достаточно, чтобы $\psi \circ \varphi$ было гомоморфизмом E_φ на G_φ. Действительно, необходимость условия следует из Е. Обратно, если $\psi \circ \varphi$ — гомоморфизм E_φ на G_φ, то $\varphi(\mathcal{M}) = \varphi (\varphi (\mathcal{L})) = \mathcal{L}$ и, значит, φ — гомоморфизм F_M на G_φ.

Ж'. Пусть φ — гомоморфизм E_φ на F_M и $\psi \in \mathcal{L}(F, G)$. Для того чтобы $\psi \in L(F_M, G_\varphi)$, необходимо и достаточно, чтобы $\psi \circ \varphi \in L(E_\varphi, G_\varphi)$. Действительно, необходимость условия следует из Д и 2.Д. Обратно, если $\psi \circ \varphi \in L(E_\varphi, G_\varphi)$, то $\varphi^{-1}(\psi^{-1}(\mathcal{L})) \subseteq \mathcal{L}$, откуда $\varphi^{-1}(\mathcal{L}) = \varphi^{-1}(\psi^{-1}(\mathcal{L})) = \mathcal{M}$ и, значит, $\varphi \in L(F_M, G_\varphi)$.

Замечание. В силу В Ж' есть частный случай 4.К.

З. Если φ — гомоморфизм E_φ на F_M и G — замкнутое подпространство L-пространства E_φ, содержащее K_φ, то $\varphi(G)$ — замкнутое подпространство L-пространства F_M. Действительно, так как $G = \bigcap_{H \in \varphi} H$, а $H \supseteq G$ влечет $H \supseteq K_\varphi$, то в силу 2.3.Г и принимая во внимание, что φ — наложение, имеем:

$$
\varphi(G) = \varphi \left(\bigcap_{H \supseteq G} H \right) = \varphi \left(\bigcap_{H \in \varphi} \varphi^{-1}(\varphi(H)) \right) =
$$

$$
= \varphi \left(\varphi^{-1} \left(\bigcap_{H \in \varphi} \varphi(H) \right) \right) = \bigcap_{H \in \varphi} \varphi(H),
$$

и так как все $\varphi(H) \in \mathcal{M}$, то $\varphi(G)$ замкнуто в F_M.

И. Если φ — гомоморфизм E_φ на F_M, $G_\varphi \subseteq E_\varphi$ и $G \supseteq K_\varphi$, то сужение φ на G есть гомоморфизм G_φ в F_M.
В самом деле, так как \(\Phi = \mathcal{L} \cap \mathcal{O} \) (6.А), то, согласно Г, нужно доказать, что \(\varphi (\mathcal{L} \cap \mathcal{O}) = \varphi (\mathcal{L}) \cap \varphi (\mathcal{O}) \), т. е. \(\varphi (H \cap \mathcal{O}) = \varphi (H) \cap \varphi (\mathcal{O}) \) для каждого \(H \in \mathcal{L} \). Но если \(y \in \varphi (H) \cap \varphi (\mathcal{O}) \), то существуют \(h \in H \) и \(g \in \mathcal{O} \) такие, что \(y = \varphi (h) = \varphi (g) \). Последнее равенство показывает, что \(h - g \in K \), откуда \(h \in \varphi (h) + g \subset \mathcal{O} + g \subset \mathcal{O} \), и, значит, \(h \in H \cap \mathcal{O} \), так что \(y \in \varphi (H \cap \mathcal{O}) \). Тем самым \(\varphi (H) \cap \varphi (\mathcal{O}) \subset \varphi (H \cap \mathcal{O}) \); обратное же включение всегда справедливо.

К. Для того чтобы \(\varphi \in \mathcal{L}(E, F) \) было изоморфизмом \(E \varphi \) на \(F \varphi \), необходимо и достаточно, чтобы \(\varphi \) было изоморфизмом \(E \) на \(F \), \(\varphi \in \mathcal{L}(E \varphi, F \varphi) \) и \(\varphi^{-1} \in \mathcal{L}(F \varphi, E \varphi) \). Действительно, третье из этих условий (включающее первое) означает, что \(\varphi (\varphi) \leq M \), а второе — что \(\varphi^{-1} (M) \leq \varphi \), откуда \(M = \varphi (\varphi^{-1} (M)) = \varphi (\varphi) \); но тогда \(\varphi (\varphi^{-1} (M)) \leq \varphi \), и \(\varphi \) — изоморфизм \(E \varphi \) на \(F \varphi \). Так как \(\varphi \in \mathcal{L}(E, F) \), \(\varphi (E) = F \) и \(\varphi \) взаимно однозначно, то \(\varphi \) — изоморфизм \(E \) на \(F \). Далее, так как \(\varphi (\varphi) = M \), то \(\varphi^{-1} \in \mathcal{L}(F \varphi, E \varphi) \). Наконец, так как \(K = \{0\} \), то в силу 2.3.1 \(\varphi^{-1} (\varphi (H)) = H \) для всех \(H \in \mathcal{L} \), т. е. \(\varphi^{-1} (M) = \varphi^{-1} (\varphi (\varphi)) = \varphi \), откуда \(\varphi \in \mathcal{L}(E \varphi, F \varphi) \).

К. В К попутно доказано, что если \(\varphi \) — изоморфизм \(E \varphi \) на \(F \varphi \), то \(\varphi^{-1} \) — изоморфизм \(F \varphi \) на \(E \varphi \), так что изоморфизм \(L \)-пространств обладает свойством симметричности. Легко проверить, что он обладает также свойствами рефлексивности и транзитивности (см. Е и 3.1.Д). \(L \)-пространства \(E \varphi \) и \(F \varphi \), для которых существует изоморфизм \(E \varphi \) на \(F \varphi \) (а значит, и изоморфизм \(F \varphi \) на \(E \varphi \)), будут называться изоморфными, для обозначения чего мы будем пользоваться прежним символом \(\sim \).

Л. Для того чтобы \(\varphi \in \mathcal{L}(E \varphi, F \varphi) \) было изоморфизмом \(E \varphi \) на \(F \varphi \), необходимо и достаточно, чтобы существовало \(\psi \in \mathcal{L}(F \varphi, E \varphi) \) такое, что \(\psi \circ \varphi = \varphi \) и \(\varphi \circ \psi = \psi \), где \(\varphi \) и \(\psi \) — тождественные отображения соответственно \(E \) и \(F \) на себя. Действительно, необходимость условия следует из \(K \) (при \(\varphi = \varphi^{-1} \)). Обратно, пусть условие выполнено. Согласно 4.1.3 \(\varphi \) — изоморфизм \(E \) на \(F \), а \(\psi = \varphi^{-1} \) — изоморфизм \(F \) на \(E \). При этом, так как \(\psi^{-1} (\varphi) \leq M \), то \(\varphi = \psi (\psi^{-1} (\varphi)) \leq \psi (M) \) и, следовательно, \(\varphi (\varphi) \leq \varphi (\psi (M)) = \varphi (M) \); с другой стороны, так как \(\varphi^{-1} (M) \leq \varphi \), то \(\varphi = \varphi^{-1} (\varphi (M)) \leq \varphi (\varphi (M)) \); тем самым \(\varphi (\varphi) = M \).
§ 91. Основные понятия

М. Если \mathcal{L} и \mathcal{M} — сильнейшие L-структуры в E и F, то всякое наложение φ пространства E на F есть гомоморфизм E_φ на F_M, и в частности, всякий изоморфизм E на F есть изоморфизм E_φ на F_M. В самом деле, так как $\varphi^{-1}(\mathcal{M}) \subseteq \mathcal{L}$, а φ — наложение, то $\mathcal{M} \subseteq \varphi(\mathcal{L})$ и, значит, $\varphi(\mathcal{L}) = \mathcal{M}$.

Н. Всякое линейное отображение φ отдельного конечномерного L-пространства E_φ в отдельное L-пространство F_M есть гомоморфизм E_φ в F_M. Действительно, в силу 1.Г \mathcal{L} есть сильнейшая L-структура в E. С другой стороны, так как \mathcal{M} отдельно, а R_φ конечномерно, то в силу 6.В и 1.Г $M \cap R_\varphi$ есть сильнейшая L-структура в R_φ. Следовательно, по М, $\varphi(\mathcal{L}) = \mathcal{M} \cap R_\varphi$, и остается применить Г.

Н'. Из Н, в частности, следует, что если E_φ и F_M — отдельные конечномерные L-пространства одинаковой размерности над одним и тем же полем K, то всякий изоморфизм E на F есть изоморфизм E_φ на F_M. Так как E и F изоморфны (3.7.Г), то заключаем, что все отдельные конечномерные L-пространства одинаковой размерности над одним и тем же полем K изоморфны.

8. Факторпространства L-пространства

Определение 8. Факторпространством E_φ/G L-пространства E_φ по его подпространству G называется факторпространство E/G, наделенное сильнейшей L-структурой $\mathcal{M} = \mathcal{L}/G$, при которой каноническое наложение ω пространства E_φ на E/G есть L-отображение.

А. Согласно 7.Б $\mathcal{L}/G = \omega(\mathcal{L})$, так что каноническое наложение L-пространства на его факторпространство есть гомоморфизм.

А'. В силу А и 7.А

$$\mathcal{L}/G = \{\omega(H): G \subset H \in \mathcal{L}\}.$$

Б. $\varphi \in \mathcal{L}(E, F)$ есть гомоморфизм E_φ на F_M тогда и только тогда, когда отображение φ, ассоциированное с φ, есть изоморфизм E_{φ}/K_φ на F_M. Действительно, это непосредственно следует из 7.Ж в силу А и 4.2.В.

В. В силу А из 7.Ж' следует, что для того, чтобы $\varphi \in \mathcal{L}(E_\varphi/G, F_M)$, необходимо и достаточно, чтобы
\(\varphi \in \mathcal{L}(E/G, F) \) и \(\varphi \circ \omega \in L(E_\varphi, F_M) \), где \(\omega \) — каноническое наложение \(E \) на \(E/G \). В частности (при \(F_M = K^1 \)),

\[
(E_\varphi|G)' = \{ h \in (E/G)^*: h \circ \omega \in E_\varphi' \}.
\]

Г. Для того чтобы \(E_\varphi|G \) было отделимым, необходимо и достаточно, чтобы \(G \) было замкнуто в \(E_\varphi \). Действительно, пусть \(\omega \) — каноническое наложение \(E \) на \(E/G \). Если \(E_\varphi|G \) отделено, то (5.Б З) \(\omega(G) \) замкнуто в нем, и так как \(\omega \in L(E_\varphi, E_\varphi|G) \) (А и 7.Д), то (2.3.Г и 5.B) \(G = \omega^{-1}(\omega(G)) \) замкнуто в \(E_\varphi \). Обратно, если \(G \) замкнуто в \(E_\varphi \), то в силу A и 7.3 \(\omega(G) = \{0\} \) замкнуто в \(E_\varphi|G \) и, значит, \(E_\varphi|G \) отделено.

Д. Пусть \(\{0\} \) — замыкание нулевого подпространства \(\{0\} \) \(L \)-пространства \(E_\varphi \) (см. 5.Ж). Согласно Г \(E_\varphi|\{0\} \) отделено; введя обозначение \(E/\{0\} = E' \) и \(\mathcal{L}/\{0\} = \mathcal{L}' \), мы будем называть \(E_\varphi|\{0\} = E' \) отделенным \(L \)-пространством, ассоциированным с \(E_\varphi \). В силу 5.Б З \(\{0\} = \{0\} \) тогда и только тогда, когда \(E_\varphi \) отделено; в этом случае \(E_\varphi \) отождествимо с \(E_\varphi \).

Е. Если \(\varphi \) — гомоморфизм \(E_\varphi \) на \(F_M \) и \(G \) — замкнутое подпространство \(L \)-пространства \(E_\varphi \), содержащее \(K_\varphi \), то отображение \(\varphi \) относящее каждому классу \(G+x \in E/G \) класс \(\varphi(G) + \varphi(x) \in F/\varphi(G) \) есть изоморфизм \(E_\varphi|G \) на \(F_M/\varphi(G) \). Действительно, согласно 4.1.И \(\varphi \) есть изоморфизм \(E/G \) на \(F/\varphi(G) \). Пусть \(\omega \) — каноническое наложение \(E \) на \(E/G \) и \(\omega \) — каноническое наложение \(F \) на \(F/\varphi(G) \). Как легко видеть, диаграмма

\[
\begin{array}{ccc}
E & \to & E/G \\
\downarrow \varphi & & \downarrow \varphi \\
F & \to & F/\varphi(G)
\end{array}
\]

коммутативна, т. е. \(\omega \circ \varphi = \varphi \circ \omega \), и потому \(\varphi(M)|\varphi(G) = \varphi(M) = \varphi(\varphi(M)) = \varphi(\varphi(G)) = \varphi(G) \). Следовательно, \(\varphi \) — изоморфизм \(E_\varphi|G \) на \(F_M/\varphi(G) \).

Ж. Отделенное \(L \)-пространство, ассоциированное с \(E_\varphi|G \), изоморфно \(E_\varphi|\bar{G} \), где \(G \) — замыкание \(G \) в \(E_\varphi \). Действительно, пусть \(\varphi \) — каноническое наложение \(E \) на \(E/G \). Так как, согласно А, \(\varphi \) — гомоморфизм \(E_\varphi \) на \(E_\varphi/G \), то в силу \(A \) \(E_\varphi|\bar{G} \approx (E_\varphi|G)/\varphi(\bar{G}) \). На основании Д остается показать, что \(\varphi(\bar{G}) = \varphi(\bar{G}) \) (ибо \(\varphi(G) \) —
нулевое подпространство пространства $E(G)$. Но так как \overline{G} — замкнутые подпространства L-пространства E_{φ}, содержащее $K_{\varphi} = G$, то в силу 7.3 $\varphi(G)$ замкнуто. С другой стороны, если F — замкнутое подпространство факторпространства E_{φ}/G, то $\varphi^{-1}(F)$ замкнуто (5.В); так как $\varphi^{-1}(F) \supseteq G$, то заключаем отсюда, что $\varphi^{-1}(F) \supseteq \overline{G}$ и, значит, $F = \varphi(\varphi^{-1}(F)) \supseteq \varphi(G)$. Следовательно, $\varphi(G) = \varphi(G).

9. Произведения и суммы L-пространств

Определение 9. Произведением $\prod_{x \in \Lambda} E_{\varphi}^{x}$ семейства L-пространств $(E_{\varphi}^{x})_{x \in \Lambda}$ называется произведение $E = \prod_{x \in \Lambda} E^{x}$ векторных пространств E^{x}, наделенного слабейшей L-структурой \mathcal{L}, при которой его проектирования pr_{x} на все E_{φ}^{x} (см. 4.1, пример 6) являются L-отображениями. Произведение семейства отдельных одномерных L-пространств называется произведением прямых.

А. В силу 4.Б если

$$E_{\varphi} = \prod_{x \in \Lambda} E_{\varphi}^{x}, \text{ то } \mathcal{L} = \sup \text{ pr}_{x}^{-1}(\mathcal{L}_{x}).$$

Б. В силу 4.Д $\varphi \in L\left(\prod_{x \in \Lambda} E_{\varphi}^{x}\right)$ тогда и только тогда, когда $\text{pr}_{x} \circ \varphi \subseteq L\left(F_{\Lambda}, E_{\varphi}^{x}\right)$ для всех $x \in \Lambda$.

В. Если $E_{\varphi} = \prod_{x \in \Lambda} E_{\varphi}^{x}$, то E_{φ} в силу 4.В, образовано всем возможными суммами вида $\sum_{x \in \Lambda} f_{x} \circ \text{pr}_{x}$, где $f_{x} \in E_{\varphi}^{x}$ и лишь конечное число слагаемых отлично от нуля. Таким образом, линейные функционалы $f \in \left(\prod_{x \in \Lambda} E_{\varphi}^{x}\right)$ — это функционалы, представимые в виде

$$\langle x, f \rangle = \sum_{x \in \Lambda} \langle x_{x}, f_{x} \rangle,$$

где $x_{x} = \text{pr}_{x} x$, $f_{x} \in E_{\varphi}^{x}$ и лишь конечное число $f_{x} \neq 0$.

В'. Определение $f \rightarrow \varphi(f) = \sum_{x \in \Lambda} E_{\varphi}^{x}$ в E_{φ}, определяемое для каждого $f = (f_{x}) \in \sum_{x \in \Lambda} E_{\varphi}^{x}$ формулой (1),
т. е. задаваемое равенством \(\varphi(f) = \sum_{\alpha \in \Lambda} f_\alpha \circ \text{pr}_\alpha \), есть изоморфизм \(\sum_{\alpha \in \Lambda} E^\alpha \)' на \(E^\prime \). Действительно, очевидно, \(\varphi \) линейно и, значит, в силу В, есть наложение. С другой стороны, если \(\bar{f} = \varphi(f) = 0 \), то, относя каждому \(x_\alpha \in E^\alpha \) вектор \(x^\alpha \in E \) такой, что

\[
\text{pr}_\beta x^\alpha = \begin{cases} x_\alpha & \text{при } \beta = \alpha, \\ 0 & \text{при } \beta \neq \alpha,
\end{cases}
\]

имеем, на основании формулы (1),

\[
\langle x_\alpha, f_\alpha \rangle = \langle x^\alpha, \bar{f} \rangle = 0,
\]

откуда \(f = (f_\alpha) = 0 \) и, значит, \(\varphi \) — вложение.

Г. \(E^\prime = \prod_{\alpha \in \Lambda} E^\alpha \), отделимо тогда и только тогда, когда отделимы все \(E^\alpha_{\alpha_0} \). В самом деле, пусть \(x = (x_\alpha) \in E \setminus \{0\} \), так что \(x_{\alpha_0} \neq 0 \) для некоторого \(\alpha_0 \in \Lambda \). Если все \(E^\alpha_{\alpha_0} \) отделены, то, по теореме 1, существует \(f_{\alpha_0} \in E^\alpha_{\alpha_0} \) такое, что \(\langle x_{\alpha_0}, f_{\alpha_0} \rangle \neq 0 \). Положив

\[
f_\alpha = \begin{cases} f_{\alpha_0} & \text{при } \alpha = \alpha_0, \\ 0 & \text{при } \alpha \neq \alpha_0,
\end{cases}
\]

мы для линейного функционала \(\bar{f} \in E^\prime \), определяемого формулой (1), будем иметь \(\langle x, \bar{f} \rangle = \langle x_{\alpha_0}, f_{\alpha_0} \rangle = 0 \). Следовательно, \(E^\prime \) отделено. Обратно, пусть \(x_{\alpha_0} \in E^\alpha_{\alpha_0} \setminus \{0\} \), где \(\alpha_0 \) — произвольный фиксированный индекс из \(\Lambda \). Положим \(x_0 = (x_\alpha) \), где

\[
x_\alpha = \begin{cases} x_{\alpha_0} & \text{при } \alpha = \alpha_0, \\ 0 & \text{при } \alpha \neq \alpha_0,
\end{cases}
\]

так что \(x_0 \in E \setminus \{0\} \). Если \(E^\prime \) отделено, то существует \(\bar{f} \in E^\prime \) такое, что \(\langle x_0, \bar{f} \rangle \neq 0 \). Положив в (1) \(x = x_0 \), получим тогда \(\langle x^\alpha_0, f_{\alpha_0} \rangle = \langle x_0, \bar{f} \rangle \neq 0 \). Следовательно, \(E^\alpha_{\alpha_0} \) отделено.
§ 9. основные понятия

Д. Проектирование pr_{x_0} произведения $E_{x} = \prod_{a \in A} E_{x_a}$ на
каждое $E_{x_{x_0}}$ является гомоморфизмом. Действительно,
в силу 7.В" достаточно доказать, что
$$E_{x_{x_0}}' = \{ f_{x_0} \in E_{x_{x_0}}': f_{x_0} \circ pr_{x_0} \in E_{x}' \}.$$

Но если $f_{x_0} \in E_{x_{x_0}}'$, то $f_{x_0} \circ pr_{x_0} \in E_{x}'$ (2.Д'). Обратно, если
$f_{x_0} \in E_{x_{x_0}}$ и $\overline{f} = f_{x_0} \circ pr_{x_0} \in E_{x}'$, то для каждого $x \in E$, у кото-
рого $x_a = 0$ при всех $a \neq x_0$, в силу (1) имеем
$$\langle x_{x_0}, f_{x_0} \rangle = \langle x, \overline{f} \rangle = \langle x_{x_0}, f_{x_0} \rangle,$$
а так как здесь x_{x_0} может быть любым вектором из $E_{x_{x_0}}$, то
$f_{x_0} = f_{x_0}$, т. е. $f_{x_0} \in E_{x_{x_0}}'$.

Определение 10. Суммой $\sum_{a \in A} E_{x_a}$ семейства L-пространств $(E_{x_a})_{a \in A}$ называется сумма $E = \sum_{a \in A} E_{x}$ векторных
пространств E_{x}, наделенная сильнейшей L-структурой \mathcal{L},
при которой инжектирования in_a всех E_{x_a} в E (см. 4.1,
пример 7) являются L-отображениями.

Е. В силу 4.Ж, если $E_{x} = \sum_{a \in A} E_{x_a}$, то $\mathcal{L} = \text{inf}_{a \in A} (\mathcal{L}_a)$.

Ж. В силу 4.К $\varphi \in L \left(\sum_{a \in A} E_{x_a}, F_M \right)$ тогда и только
тогда, когда $\varphi \circ \text{in}_a \in L \left(E_{x_a}, F_M \right)$ для всех $a \in A$.

3. Пусть $E_{x} = \sum_{a \in A} E_{x_a}$. Тогда, в силу Ж или 4.3,
$$E_{x}' = \{ \overline{f} \in E_{x}: \overline{f} \circ \text{in}_a \in E_{x_a}' \text{ для всех } a \in A \}. \quad (2)$$

Но каждое $x = (x_a) \in E$ представимо в виде $x = \sum_{a \in A} \text{in}_a x_a$.

Потому для любого $\overline{f} \in E_{x}'$ имеем
$$\langle x, \overline{f} \rangle = \sum_{a \in A} \langle \text{in}_a x_a, \overline{f} \rangle = \sum_{a \in A} \langle x_a, \overline{f} \circ \text{in}_a \rangle = \sum_{a \in A} \langle x_a, f_a \rangle,$$
где в силу (2) $f = (f_a) \in \prod_{a \in A} E_{x_a}'$. Обратно, каково бы ни
было $f = (f_a) \in \prod_{a \in A} E_{x_a}'$, функция \overline{f} на E, определенная
формулою

$$\langle x, f \rangle = \sum_{\alpha \in \Lambda} \langle x^\alpha, f_\alpha \rangle, \quad (1')$$

очевидно, линейна; и так как, беря в (1') $x = \text{in}_\alpha x^\alpha$, где x^α — произвольный вектор из E^α, имеем

$$\langle x^\alpha, f \circ \text{in}_\alpha \rangle = \langle \text{in}_\alpha x^\alpha, \ f \rangle = \langle x^\alpha, f_\alpha \rangle, \quad (3)$$

tо $f \circ \text{in}_\alpha \in E^\alpha_{\bar{f} \alpha}$ для всех $\alpha \in \Lambda$ и, значит, в силу (2), $f \in E^\prime_{\bar{f}}$. Таким образом, линейные функционалы $f \in \left(\bigoplus_{\alpha \in \Lambda} E^\alpha_{\bar{f} \alpha} \right)'$ — это функционалы, представимые в виде (1'), где $f = (f_\alpha)$ — произвольные векторы из $\prod_{\alpha \in \Lambda} E^\alpha_{\bar{f} \alpha}$.

З'. Отображение $f \mapsto \psi(f) = f$ пространства $E^\prime_{\bar{f}}$ в $\prod_{\alpha \in \Lambda} E^\alpha_{\bar{f} \alpha}$, определяемое для каждого $f \in E^\prime_{\bar{f}}$ формулой (1'), т. е. задаваемое равенством $\psi(f) = (f \circ \text{in}_\alpha)_{\alpha \in \Lambda}$, есть изоморфизм $E^\prime_{\bar{f}}$ на $\prod_{\alpha \in \Lambda} E^\alpha_{\bar{f} \alpha}$. Действительно, очевидно, ψ линейно и, значит, в силу З есть наложение. С другой стороны, если $\psi(f) = 0$, то $\langle x, f \rangle = \sum_{\alpha \in \Lambda} \langle x^\alpha, f \circ \text{in}_\alpha \rangle = 0$ для всех $x \in E^\prime_{\bar{f}}$, откуда $f = 0$ и, следовательно, ψ — вложение.

И. $E^\prime_{\bar{f}} = \sum_{\alpha \in \Lambda} E^\alpha_{\bar{f} \alpha}$ определенно тогда и только тогда, когда определены все $E^\alpha_{\bar{f} \alpha}$. Для доказательства нужно лишь дословно повторить рассуждение, проведенное в Г.

К. Каждое инъективирование in_α является изоморфизмом $E^\alpha_{\bar{f} \alpha}$ в $E^\alpha = \sum_{\alpha \in \Lambda} E^\alpha_{\bar{f} \alpha}$. Действительно, пусть π_α — каноническое вложение пространства $\text{in}_\alpha E^\alpha$ в E. Так как $\text{in}_\alpha = \pi_\alpha \circ \text{in}_\alpha^\prime$, то из (3) следует, что для любых $x^\alpha \in E^\alpha$ и $f \in E^\prime_{\bar{f}}$ имеет место равенство

$$\langle \text{in}_\alpha^\prime x^\alpha, f \circ \pi_\alpha \rangle = \langle x^\alpha, f_\alpha \rangle, \quad (3')$$

gде f_α — линейный функционал на $E^\alpha_{\bar{f} \alpha}$, порождаемый по формуле (1') функционалом f. Из (3') вытекает, что $K_{f \circ \pi_\alpha} = \text{in}_\alpha(K_f)$. Так как в силу сказанного в З f_α пробегает
всё E_{α}^2, когда \bar{f} пробегает E_{α}', то имеем поэтому

$$\mathcal{S} \cap \text{in}_a E^a = \{K_{\bar{f}} \cap \text{in}_a E^a : \bar{f} \in E_{\alpha}' \} = \{K_{\bar{f} \circ \pi_a} : \bar{f} \in E_{\alpha}' \} =$$

$$= \text{in}_a \left(\{K_{\bar{f}_a} : f_a \in E_{\alpha_a}' \} = \text{in}_a (\mathcal{S}_a). \right)$$

Но в силу 7.Г это означает, что вложение in_a есть изоморфизм $E_{\alpha_a}^2$ в E_{α}^2.

Л. Пусть $(E_{\alpha}^2)_{\alpha \in \Lambda}$ — семейство L-пространств. Каноническое вложение ω суммы $\sum_{a \in \Lambda} E^a$ в произведение $\prod_{a \in \Lambda} E^a$ (см. 3.4.3) есть L-отображение $\sum_{a \in \Lambda} E_{\alpha_a}^2$ в $\prod_{a \in \Lambda} E_{\alpha_a}^2$. Действительно, пусть ι_a — тождественное отображение E^a на себя. Так как, очевидно,

$$\text{pr}_b \circ \omega \circ \text{in}_a = \begin{cases} \iota_a, & \text{если } \delta = \gamma, \\ 0, & \text{если } \delta \neq \gamma, \end{cases}$$

то $\text{pr}_b \circ \omega \circ \text{in}_a \in L(\prod_{a \in \Lambda} E_{\alpha_a}^2, E_{\alpha_b}^2)$ для всех $\gamma, \delta \in \Lambda$ (см. п. 2, примеры 1 и 2). В силу Б отсюда вытекает, что $\omega \circ \text{in}_a \in L(\sum_{a \in \Lambda} E_{\alpha_a}^2, \prod_{a \in \Lambda} E_{\alpha_a}^2)$ для всех $\gamma \in \Lambda$, а тогда в силу Ж

$$\omega \in L\left(\sum_{a \in \Lambda} E_{\alpha_a}^2, \prod_{a \in \Lambda} E_{\alpha_a}^2\right).$$

Л'. Если Λ конечно, так что $\sum_{a \in \Lambda} E^a = \prod_{a \in \Lambda} E^a$, то L-структуры пространств $\sum_{a \in \Lambda} E_{\alpha_a}^2$ и $\prod_{a \in \Lambda} E_{\alpha_a}^2$ совпадают.

В самом деле, в этом случае ω есть тождественное отображение, и тем самым изоморфизм, $\sum_{a \in \Lambda} E^a$ на $\prod_{a \in \Lambda} E^a$. При этом, согласно Л, $\omega \in L\left(\sum_{a \in \Lambda} E_{\alpha_a}^2, \prod_{a \in \Lambda} E_{\alpha_a}^2\right)$. В силу же конечности Λ

$$\omega^{-1} = \omega = \sum_{a \in \Lambda} \text{in}_a \circ \text{pr}_a,$$ так что $\omega^{-1} \in L\left(\prod_{a \in \Lambda} E_{\alpha_a}^2, \sum_{a \in \Lambda} E_{\alpha_a}^2\right)$

(см. 2.Д, Ж), и остается применить 7.К.

М. L-структура суммы прямых $E_{\alpha}^2 = \sum_{a \in \Lambda} E_{\alpha_a}^2$ совпадает с сильнейшей L-структурой \mathcal{S}_ω в E (см. п. 1, пример 2). Действительно, согласно определению 10, \mathcal{S} есть сильнейшая из L-структур в E, при которых все инъектирования in_a являются
L-пространства

L-отображениями. Но в силу 3.А они — L-отображения при наде-лении Е любой L-структурой.

М'. Обратно, всякое L-пространство, обладающее сильнейшей L-структурой, изоморфно сумме прямых. Действительно, пусть $(a_a)_{a \in \Lambda}$ — базис векторного пространства E над K (теорема 2 § 3) и φ — отображение, относящее каждому вектору $x = \sum_{a \in \Lambda} x_a a_a \in E$ вектор $(x_a)_{a \in \Lambda} \in K^{(\Lambda)}$. Согласно определению 11 § 3 $K^{(\Lambda)} = \sum_{a \in \Lambda} E^a$, где все $E^a = K^1$. Пусть \mathcal{L}_a — единственная отделяемая L-структура в E^a (1.Г) и $K^{(\Lambda)}_{\mathcal{L}_a} = \sum_{a \in \Lambda} E^a_{\mathcal{L}_a}$. Очевидно, φ — изоморфизм E на $K^{(\Lambda)}$.

Так как \mathcal{M}, в силу M, — сильнейшая L-структура в $K^{(\Lambda)}$, то из 7.М следует, что φ — изоморфизм $E_{\mathcal{L}_a}$ на сумму прямых $K^{(\Lambda)}_{\mathcal{L}_a}$.

10. Разложение L-пространства в прямую сумму его L-подпространств

Определение 11. L-пространство $E_{\mathcal{L}}$ будет называться прямой суммой своих L-подпространств $E^k_{\mathcal{L}}$ ($k = 1, \ldots, n$), если отображение φ произведения $\prod_{k=1}^{n} E^k$ в E, определяемое для каждого $x = (x_k) \in \prod_{k=1}^{n} E^k$ формулой

$$\varphi(x) = \sum_{k=1}^{n} x_k,$$

есть изоморфизм $\prod_{k=1}^{n} E^k_{\mathcal{L}}$ на $E_{\mathcal{L}}$. Для обозначения этого мы будем пользоваться записью

$$E_{\mathcal{L}} = E^1_{\mathcal{L}} \oplus \ldots \oplus E^n_{\mathcal{L}}.$$

Если $E_{\mathcal{L}} = F_{\mathcal{M}} \oplus G_{\mathcal{N}}$, то каждое из подпространств F, G будет называться L-дополнением другого.

Теорема 3. Для того чтобы $E_{\mathcal{L}} = E^1_{\mathcal{L}} \oplus \ldots \oplus E^n_{\mathcal{L}}$, необходимо и достаточно, чтобы $E = E^1 \oplus \ldots \oplus E^n$ и порождаемые этим разложением проекторы π_k пространства E на его подпространства E^k были L-отображениями $E_{\mathcal{L}}$ в себя.

Доказательство. 1° Необходимость. Так как отображение φ, определяемое формулой (1), есть изомор-
физм $\prod_{k=1}^{n} E^k$ на E, то каждое $x \in E$ однозначно представимо в виде $x = \sum_{k=1}^{n} x_k$, где $x_k \in E^k$ ($k = 1, \ldots, n$), т. е. $E = E^1 \oplus \ldots \oplus E^n$. Пусть φ_k — каноническое вложение E^k в E.

Так как φ — изоморфизм $\prod_{k=1}^{n} E^k$ на E, то $\varphi^{-1} \in L \left(E_\varphi, \prod_{k=1}^{n} E^k_k \right)$ (7.К) и потому $\pi_k = \varphi_k \circ \text{pr}_k \circ \varphi^{-1} \in L \left(E_\varphi, E^k \right)$ (2.Д).

2° Достаточность. Так как $E = E^1 \oplus \ldots \oplus E^n$, то φ — изоморфизм $\prod_{k=1}^{n} E^k$ на E. Далее, $\varphi = \sum_{k=1}^{n} \varphi_k \circ \text{pr}_k$, поэтому (2.Д, Ж) $\varphi \in L \left(\prod_{k=1}^{n} E^k_k, E_\varphi \right)$. Наконец, так как $\pi_k \in L \left(E_\varphi, E^k \right)$, то $\pi_k = \varphi^{-1} \circ \text{pr}_k \circ \varphi^{-1} \in L \left(E_\varphi, E^k_{\varphi} \right)$ (2.3). Но

$$\pi_k = \text{pr}_k \circ \varphi^{-1} \quad (k = 1, \ldots, n).$$ (2)

Следовательно, $\varphi^{-1} \in L \left(E_\varphi, \prod_{k=1}^{n} E^k_k \right)$ (9.Б), и остается приведение 7.К.

А. Если $E_\varphi = E^1_\varphi \oplus \ldots \oplus E^n_\varphi$, то определяемые этим разложением проекторы π_k пространства E на его подпространства E^k являются гомоморфизмами E_φ в себя. Действительно, это непосредственно следует из (2) и 7.Е, поскольку φ^{-1} — изоморфизм (7.К'), а pr_k — гомоморфизм (9.Д).

Б. Если $E_\varphi = E^1_\varphi \oplus \ldots \oplus E^n_\varphi$ отдельно, то каждое «прямое слагаемое» E^k замкнуто. В самом деле, пусть t — тождественное отображение E на себя. В силу теоремы 3 $t = \pi_k \in L \left(E_\varphi, E_\varphi \right)$. Но по теореме 3 § 4 и 4.4.В $E^k = \text{R}_{\pi_k} = K_{1-\pi_k}$. Следовательно, E^k замкнуто (5.В).

В. p-мерное отдельное L-пространство E_φ есть прямая сумма своих п одномерных L-подпространств. Действительно, пусть $\{a_1, \ldots, a_n\}$ — базис пространства E и $E^k = \mathcal{E} a_k$ ($k = 1, \ldots, n$), так что $E = E^1 \oplus \ldots \oplus E^n$. Так как E_φ — отдельное конечномерное L-пространство, то
порождаемые этим разложением проекторы \(\pi_k \) в силу 3. А являются \(L \)-отображениями, и остается применить теорему 3.

Г. Для того чтобы \(E_\varphi = F_\varphi \bigoplus G_\varphi \), необходимо и достаточно, чтобы \(E = F \bigoplus G \) и каноническое отображение \(\varphi \) подпространства \(G \) на факторпространство \(E/F \), относимое каждому вектору \(z \in G \) содержащий его класс \(F + z \), было изоморфизмом \(G_\varphi \) на \(E_\varphi/F \). В самом деле, пусть \(E_\varphi = F_\varphi \bigoplus G_\varphi \), \(\pi_F \) — проектор \(E \) на \(F \) параллельно \(\bar{G} \), \(\pi_G \) — проектор \(E \) на \(G \) параллельно \(F \) и \(\omega \) — каноническое наложение \(E \) на \(E/F \). Так как

\[
\omega(x) = F + x = F + \pi_F(x) + \pi_G(x) = F + \pi_F(x) = F + \pi_G(x),
\]

то \(\pi_G = \varphi^{-1} \circ \omega \). Но \(\omega \) — гомоморфизм \(E_\varphi \) на \(E_\varphi/F \) (8.A), а \(\pi_G \), в силу A, — гомоморфизм \(E_\varphi \) на \(G_\varphi \). Принимая во внимание, что \(\varphi^{-1} \) — изоморфизм \(E/F \) на \(G \), заключаем на основании 7.Ж, что \(\varphi^{-1} \) — изоморфизм \(E_\varphi/F \) на \(G_\varphi \) и, значит, по 7.К', \(\varphi \) — изоморфизм \(G_\varphi \) на \(E_\varphi/F \). Обратно, пусть \(E = F \bigoplus G \) и \(\varphi \) — изоморфизм \(G_\varphi \) на \(E_\varphi/F \). В силу 7.К \(\varphi^{-1} \in L(E_\varphi/F, G_\varphi) \), и так как \(\pi_G = \varphi^{-1} \circ \omega \), то \(\pi_G \in L(E_\varphi, E_\varphi) \) (2.Д, 3). Так как тогда и \(\pi_F = 1 - \pi_G \in L(E_\varphi, E_\varphi) \), то на основании теоремы 3 заключаем, что \(E_\varphi = F_\varphi \bigoplus G_\varphi \).

Д. Если \(F \) — замкнутое подпространство \(L \)-пространства \(E_\varphi \), имеющее конечную факторразмерность, то каждое подпространство \(G \), дополнительное к \(F \), является его \(L \)-дополнением. Действительно, пусть \(M = L \cap F \) и \(M' = L \cap G \), так что \(F \subset M \subset E_\varphi \) и \(G \subset M' \subset E_\varphi \) (см. 6.А). Так как \(E = F \bigoplus G \), то \(F \cap G = \{0\} \). Поскольку \(F \) замкнуто, это показывает, что нуловое подпространство в \(G_\varphi \) замкнуто (6.Б) и, следовательно, \(G_\varphi \) отделимо (5.Б 3'). Замкнутость \(F \) влечет также отделимость \(E_\varphi/F \) (8.Г). Принимая во внимание конечномерность \(E/F \), заключаем на основании 7.Н', что канонический изоморфизм \(G \) на \(E/F \) есть также изоморфизм \(G_\varphi \) на \(E_\varphi/F \), а тогда \(E_\varphi = F_\varphi \bigoplus G_\varphi \) в силу Г.

Легко видеть, что проектор \(E \) на \(G \) параллельно \(F \) задается формулой

\[
\pi_G(x) = \sum_{k=1}^{n} g_k(\omega(x)) x_k = \sum_{k=1}^{n} f_k(x) x_k,
\]

*) См. замечание к теореме 2 § 4.
где \(\{ x_1, \ldots, x_n \} \) — базис подпространства \(G \), \(\omega \) — каноническое отображение \(E \) на \(E/F \) и \(g_1, \ldots, g_n \) — координатные линейные функции на \(E/F \), определяемые базисом \(X_1 = F + x_1, \ldots, X_n = F + x_n \). Опираясь на это, можно получить другое доказательство предложения \(D \).

Е. Каждое конечномерное подпространство \(G \) отделенного \(L \)-пространства \(E \) обладает в \(E \) \(L \)-дополнением. Действительно, пусть \(\{ x_1, \ldots, x_n \} \) — базис подпространства \(G \). Так как \(E \) отделено, то в силу теоремы \(2 \) существуют линейные функционалы \(f_1, \ldots, f_n \subseteq E' \) такие, что

\[
x \rightarrow \pi_G(x) = \sum_{k=1}^{n} f_k(x) x_k
\]

есть \(L \)-отображение \(E \) в \(E \) с противообластью \(G \), оставляющее векторы \(x_k \), а потому и все векторы \(x \in \mathbb{G} \) на месте. Но это означает, что \(\pi_G \) есть проектор \(E \) на \(G \), а тогда, по \(4.4.B \), \(\pi_F = 1 - \pi_G \) есть проектор \(E \) на \(F = K \pi_G \) и, по теореме \(2 \) § 4, \(E = F \oplus G \). Так как \(\pi_G \) и \(\pi_F \) — \(L \)-отображения, то на основании теоремы \(3 \) заключаем, что \(F \) есть \(L \)-дополнение к \(G \).

§ 10. ДВОЙСТВЕННОСТЬ

1. Сопряженное \(L \)-пространство

Определение 1. \(L \)-пространством, сопряженным к \(E \), мы будем называть пространство \(E' \), наделенное \(L \)-структурий

\[
\mathcal{L}' = \{ K(x, \cdot)_{\mathcal{L}} : x \in E \},
\]

где \(\langle \cdot, \cdot \rangle_{\mathcal{L}} \) — сужение на \(E \times E' \) канонической билинейной функции, определенной на \(E \times E^* \). Вторым сопряженным к \(E \) мы будем называть пространство \(E'' = E'_{\mathcal{L}}, \) сопряженное к \(E_{\mathcal{L}} \), наделенное \(L \)-структурой

\[
\mathcal{L}'' = \{ K(f, \cdot)_{\mathcal{L}'} : f \in E_{\mathcal{L}} \},
\]

где \(\langle \cdot, \cdot \rangle_{\mathcal{L}'} \) — сужение на \(E' \times E'' \) канонической билинейной функции, определенной на \(E'_{\mathcal{L}'} \times E''_{\mathcal{L}''} \).

II Зак. 2011. Д. А. Райков
А. Так как \(K(x, \cdot)_{\mathcal{L}} = \{ f \in E_{\mathcal{L}} : \langle x, f \rangle = 0 \} \), то
\[
\bigcap_{x \in E} K(x, \cdot)_{\mathcal{L}} = \{ f \in E_{\mathcal{L}}' : f(x) = 0 \} = \{ 0 \}.
\]
Таким образом, каково бы ни было \(E_{\mathcal{L}} \), сопряженное \(L \)-пространство \(E'_{\mathcal{L}} \), отделимо.

Б. Отображение \(\alpha \), относящее каждому вектору \(x \in E \) линейную функцию \(\langle x, \cdot \rangle_{\mathcal{L}} \) на \(E'_{\mathcal{L}} \), есть гомоморфизм \(E_{\mathcal{L}} \) на \(E''_{\mathcal{L}} \). Действительно, линейность \(\alpha \) очевидна. Далее, в силу теоремы 1 § 9
\[
E''_{\mathcal{L}} = \{ (x, \cdot)_{\mathcal{L}} : x \in E \},
\]
(1)
так что \(\alpha(E_{\mathcal{L}}) = E''_{\mathcal{L}} \). Наконец, в силу (1), принимая во внимание, что
\[
\langle f, (x, \cdot) \rangle = \langle x, f \rangle,
\]
имеем
\[
K(f, \cdot)_{\mathcal{L}}' = \{ (x, \cdot)_{\mathcal{L}} : x \in E \text{ и } \langle x, f \rangle = 0 \} = \alpha(\{ x \in E : \langle x, f \rangle = 0 \}) = \alpha(K_f),
\]
откуда \(\mathcal{L}'' = \{ \alpha(K_f) : f \in E'_{\mathcal{L}} \} = \alpha(\mathcal{L}) \).

Мы будем называть \(\alpha \) каноническим отображением \(E_{\mathcal{L}} \) на \(E''_{\mathcal{L}} \).

В. Если \(E_{\mathcal{L}} \) отделимо, то его каноническое отображение \(\alpha \) на \(E''_{\mathcal{L}} \) есть изоморфизм. Это следует из Б, поскольку
\[
K_{\alpha} = \{ x \in E : \langle x, \cdot \rangle_{\mathcal{L}} = 0 \} = \bigcap_{f \in E'_{\mathcal{L}}} K_f,
\]
(2)
так что при отделимости \(E_{\mathcal{L}} \) \(K_{\alpha} = \{ 0 \} \).

В'. В общем же случае из (2) следует, что \(K_{\alpha} = \{ 0 \} \) (9.5.3 3'), так что из Б в силу 9.9.Б. Д вытекает, что если \(\alpha \) — каноническое отображение \(E_{\mathcal{L}} \) на \(E''_{\mathcal{L}} \), то ассоциированное с \(\alpha \) отображение \(\alpha \) есть изоморфизм ассоциированного с \(E_{\mathcal{L}} \) отделимого \(L \)-пространства \(\hat{E}_{\mathcal{L}} \) на \(E''_{\mathcal{L}} \).

Г. Из А и В следует, что
\[
E''''_{\mathcal{L}} (:= E''''''_{\mathcal{L}}) \sim E'_{\mathcal{L}}.
\]
2. Сопряженное L-отображение

Определение 2. Отображением, сопряженным к L-отображению $\varphi \in L(E_2, F_{\mathcal{M}})$, называется отображение φ' пространства $F_{\mathcal{M}}'$ в E_2', относящее каждому $g \in F_{\mathcal{M}}'$ композицию $g \circ \varphi$ (принадлежащую E_2' вследствие 9.2.Д'), так что

$$\langle \varphi(x), g \rangle = \langle x, \varphi'(g) \rangle$$

для всех $x \in E$ и $g \in F_{\mathcal{M}}'$. (1)

Примеры. 1. Если φ — нулевое отображение E_2 в $F_{\mathcal{M}}$, то в силу (1) $\varphi'(g) = 0$ для всех $g \in F_{\mathcal{M}}'$, т. е. $\varphi' = 0$. Таким образом, отображение, сопряженное к нулевому, — нулевое.

2. Пусть ι — тождественное отображение E_2 на себя. Имеем

$$\langle x, \iota'(f) \rangle = \langle \iota(x), f \rangle = \langle x, f \rangle$$

для всех $x \in E$ и $f \in E_2'$, откуда $\iota'(f) = f$ для всех $f \in E_2'$. Таким образом, отображением, сопряженным к тождественному отображению E_2 на себя, служит тождественное отображение E_2' на себя.

3. Пусть φ — n-мерное L-отображение E_2 в $F_{\mathcal{M}}$, причем $F_{\mathcal{M}}$ отделимо. По теореме 2' § 9

$$\varphi(x) = \sum_{k=1}^{n} \langle x, f_k \rangle y_k$$

для всех $x \in E$,

где $\{y_1, \ldots, y_n\}$ — базис R_{φ}, а $\{f_1, \ldots, f_n\}$ — репер в E_2', т. е. (в обозначениях определения 1)

$$\varphi = \sum_{k=1}^{n} \langle \cdot, f_k \rangle y_k.$$

Для любых $x \in E$ и $g \in F_{\mathcal{M}}'$ имеем

$$\langle \varphi(x), g \rangle = \left\langle \sum_{k=1}^{n} \langle x, f_k \rangle y_k, g \right\rangle =$$

$$= \sum_{k=1}^{n} \langle x, f_k \rangle \langle y_k, g \rangle = \left\langle x, \sum_{k=1}^{n} \langle y_k, g \rangle f_k \right\rangle,$$

а потому в силу (1)

$$\varphi'(g) = \sum_{k=1}^{n} \langle y_k, g \rangle f_k$$

для всех $g \in F_{\mathcal{M}}'$.

11*
\[\varphi' = \sum_{k=1}^{n} \langle y_k, \cdot \rangle_{\mathcal{M}} f_k. \]

Так как векторы \(y_k \) линейно независимы, а \(F_{\mathcal{M}} \) отдельно, то в силу теоремы 1 § 9, 6.1. В и 4.2. Б линейные функции \(\langle y_k, \cdot \rangle_{\mathcal{M}} \) линейно независимы. Согласно 1.Б они являются линейными функционалами на \(F_{\mathcal{M}'} \). Принимая во внимание теорему 2 § 9, заключаем, что отображение, сопряженное к \(\eta \)-мерному \(L \)-отображению в отдельное \(L \)-пространство, \(\eta \)-мерно.

4. Пусть \(G_{\eta'} \subset \subset E_{\mathcal{M}} \) и \(\pi \) — каноническое вложение \(G \) в \(E \). Согласно определению 6 § 9 \(\pi \in L(G_{\mathcal{M}'}, E_{\mathcal{M}'}) \). При этом, обозначая через \(f_G \) сужение линейного функционала \(f \in E_{\mathcal{M}'} \) на \(G \), для всех \(x \in G \) и \(f \in E_{\mathcal{M}'} \) имеем

\[\langle x, f_G \rangle = \langle \pi x, f \rangle = \langle x, \pi' f \rangle, \]

tак что \(\pi' f = f_G \) для всех \(f \in E_{\mathcal{M}'} \). Таким образом, отображением, сопряженным к каноническому вложению \(L \)-пространства \(G_{\mathcal{M}'} \) в \(L \)-пространства \(E_{\mathcal{M}'} \) в \(E_{\mathcal{M}} \), служит операция сужения линейных функционалов \(f \in E_{\mathcal{M}'} \) на \(G \).

5. Пусть \(G \subset \subset E_{\mathcal{M}} \) и \(\omega \) — каноническое наложение \(E \) на \(E/G \). Каждый линейный функционал \(h \) на \(E_{\mathcal{M}}/G \) порождает линейный функционал \(\omega' (h) = h \circ \omega \) на \(E_{\mathcal{M}} \) (см. 9.8.А, 9.7.Д и 9.2.Д'). Мы будем называть \(h \circ \omega \) перенесением \(h \) на \(E_{\mathcal{M}} \). Таким образом, отображением, сопряженным к каноническому наложению \(E_{\mathcal{M}} \) на \(E_{\mathcal{M}}/G \), служит операция перенесения линейных функционалов \(E_{\mathcal{M}} \) на \(E_{\mathcal{M}}/G \).

А. Если \(\varphi \in L(E_{\mathcal{M}}, F_{\mathcal{M}}) \), то \(\varphi' \in L(F_{\mathcal{M}'}, E_{\mathcal{M}'}) \). Действительно, линейность \(\varphi' \) очевидна. При этом для каждого \(K(x, \cdot \rangle_{\mathcal{M}} \subset \mathcal{L}' \) в силу (1) имеем

\[\varphi'^{-1}(K(x, \cdot \rangle_{\mathcal{M}}) = \{ g \in F_{\mathcal{M}'} : \varphi'(g) \in K(x, \cdot \rangle_{\mathcal{M}} \} = \{ g \in F_{\mathcal{M}'} : \langle x, \varphi'(g) \rangle = 0 \} = \{ g \in F_{\mathcal{M}'} : \langle g, \varphi(x) \rangle = 0 \} = K(x, \cdot \rangle_{\mathcal{M}} \subset M'. \]

tак что \(\varphi'^{-1}(\mathcal{L}') \subset M' \).

Б. Если \(F_{\mathcal{M}} \) отдельно, то для каждого \(\psi \in L(F_{\mathcal{M}'}, E_{\mathcal{M}'}) \) существует однозначно определенное \(\varphi \in L(E_{\mathcal{M}}, F_{\mathcal{M}}) \), такое, что

\[\psi = \varphi' \]. Действительно, согласно 1.В, каково бы ни было \(x \in E \), \(\langle x, \cdot \rangle_{\mathcal{M}} \in E_{\mathcal{M}}' \) и потому \(\langle x, \psi(\cdot) \rangle_{\mathcal{M}} = \langle x, \cdot \rangle_{\mathcal{M}} \circ \psi \in F_{\mathcal{M}'} \). Тогда, согласно 1.В, вследствие отделимости \(F_{\mathcal{M}} \) существует однозначно опре-
деленный вектор \(y = \varphi(x) \in F \) такой, что

\[
\langle \varphi(x), \cdot \rangle_{\mathcal{M}} = \langle x, \psi(\cdot) \rangle_{\mathcal{Q}}
\]

для каждого \(x \in E \), т. е.

\[
\langle \varphi(x), g \rangle_{\mathcal{M}} = \langle x, \psi(g) \rangle_{\mathcal{Q}}
\]

для всех \(x \in E \) и \(g \in F_{\mathcal{M}} \).

(1')

Из (2) следует, что, каковы бы ни были \(x_1, x_2 \in E \),

\[
\langle \varphi(x_1 + x_2) - \varphi(x_1) - \varphi(x_2), \cdot \rangle_{\mathcal{M}} = 0,
\]

откуда в силу отдельности \(F_{\mathcal{M}} \) \(\varphi(x_1 + x_2) = \varphi(x_1) + \varphi(x_2) \); аналогично проверяется и однородность \(\varphi \). Таким образом, \(\varphi \in \mathcal{L}(E, F) \). Так как (1') означает, что \(g \circ \varphi = \psi(g) \in E_{\mathcal{Q}}' \) для всех \(g \in F_{\mathcal{M}}' \), то на основании 9.2.Е заключаем, что \(\varphi \in L(E_{\mathcal{Q}}, F_{\mathcal{M}}) \). Но тогда сравнение (1) и (1') показывает, что \(\psi = \varphi' \).

В. Из А и Б следует, что если \(F_{\mathcal{M}} \) отдельно, то \(\varphi \to \varphi' \) есть изоморфизм \(L(E_{\mathcal{Q}}, F_{\mathcal{M}}) \) на \(L(F_{\mathcal{M}}' ; E_{\mathcal{Q}}') \).

Г. Из равенства (1) непосредственно вытекает, что если \(\varphi, \psi \in L(E_{\mathcal{Q}}, F_{\mathcal{M}}) \), то

\[
(\varphi + \psi)' = \varphi' + \psi'
\]

и

\[
(\lambda \varphi)' = \lambda \varphi'
\]

для любого скаляра \(\lambda \).

Д. Если \(\varphi \in L(E_{\mathcal{Q}}, F_{\mathcal{M}}) \) и \(\psi \in L(F_{\mathcal{M}}, G_{\mathcal{N}}) \), то

\[
(\psi \circ \varphi)' = \varphi' \circ \psi'.
\]

Действительно, для всех \(x \in E \) и \(h \in G_{\mathcal{N}}' \) имеем

\[
\langle \psi(\varphi(x)), h \rangle = \langle \varphi(x), \psi'(h) \rangle = \langle x, \varphi'(\psi(h)) \rangle.
\]

Е. В силу А вместе с \(\varphi \in L(E_{\mathcal{Q}}, F_{\mathcal{M}}) \) определено также отображение \(\varphi'' \) пространства \(E_{\mathcal{Q}}'' \) в \(F_{\mathcal{M}}'' \), сопряженное к \(\varphi' \), причем \(\varphi'' \in L(E_{\mathcal{Q}}'', F_{\mathcal{M}}'', F_{\mathcal{M}}''_{\mathcal{M}}) \). Мы будем называть \(\varphi'' \) вторым сопряженным к \(\varphi \). Пусть \(\alpha \) — каноническое отображение \(E \) на \(E_{\mathcal{Q}}'' \) и \(\beta \) — каноническое отображение \(F \) на \(F_{\mathcal{M}}'' \).

Диаграмма

\[
\begin{array}{ccc}
E & \overset{\varphi}{\longrightarrow} & F \\
\downarrow{\alpha} & & \downarrow{\beta} \\
E_{\mathcal{Q}}'' & \overset{\varphi''}{\longrightarrow} & F_{\mathcal{M}}''
\end{array}
\]

коммутативна, т. е.

\[
\varphi'' \circ \alpha = \beta \circ \varphi.
\]

(4)

В самом деле, для всех \(x \in E \) и \(g \in F_{\mathcal{M}}' \) имеем

\[
\langle \varphi(x), g \rangle_{\mathcal{M}} = \langle x, \varphi'(g) \rangle_{\mathcal{Q}} = \langle \varphi'(g), \alpha(x) \rangle_{\mathcal{Q}} = \langle g, \varphi''(\alpha(x)) \rangle_{\mathcal{M}}',
\]

(3)
так что $\beta(\varphi(x)) = \varphi''(\alpha(x))$ для каждого $x \in E$. Из коммутативности диаграммы (3) ясствует, что если E_φ и F_φ отде-лимы, то отождествление, по 1.В, $E_\varphi E_{\varphi''}$ и $F_\varphi F_{\varphi''}$ сопровождается отождествлением φ с φ'', так что тогда можно считать

$$\varphi'' = \varphi.$$

Ж. Если φ — изоморфизм E_φ на F_φ, то φ' — изоморфизм $F_{\varphi'}$ на $E_{\varphi'}$, так что изоморфные L-пространства обладают изоморфными сопряженными L-пространства-ми. Действительно, так как $\varphi^{-1} \circ \varphi = \iota_E$ и $\varphi \circ \varphi^{-1} = \iota_F$, где ι_E и ι_F — тождественные отображения E и F на себя, то, в силу Д,

$$(\varphi^{-1})' \circ \varphi' = \varphi^{-1}.$$

(5)

Но ι_E и ι_F — тождественные отображения $E_{\varphi'}$ и $F_{\varphi'}$ на себя (пример 2). Принимая во внимание А и 9.7.Л, заключаем из (5), что φ' — изоморфизм $F_{\varphi'}$ на $E_{\varphi'}$. Одновременно мы установили, что если φ — изоморфизм E_φ на F_φ, то

$$\varphi^{-1} = \varphi^{-1}.$$

Ж'. Если φ' — изоморфизм $F_{\varphi'}$ на $E_{\varphi'}$, а E_φ и F_φ отде-лимы, то φ — изоморфизм E_φ на F_φ. Действительно, тогда в (4) α, β и φ'', в силу 1.В и Ж, — изоморфизм, следовательно, $\varphi = \beta^{-1} \circ \varphi'' \circ \alpha$ — изоморфизм (см. 9.7.Е, К').

3. Так как, по 1.В', $E_{\varphi'} \sim E_{\varphi''}$, то в силу Ж $E_{\varphi'} \varphi' \sim E_{\varphi''} \varphi''$. Принимая во внимание 1.Г, заключаем, что

$$E_{\varphi'} \varphi' \sim E_{\varphi'} \varphi'.

И. Равенство (1) показывает, что $\varphi'(g) = 0$ тогда и только тогда, когда $\langle \varphi(x), g \rangle = 0$ для всех $x \in E$. Тем самым *)

$$K_{\varphi'} = R_{\varphi'},$$

откуда, на основании 9.5.Ж,

$$\overline{R_{\varphi}} = K_{\varphi'}.$$

(6')

*) Здесь и дальше аннунаторы берутся относительно дуальной пары (F, $F_{\varphi'}$) или соответственно (E, $E_{\varphi'}$).
§ 10] двойственность

Из (6'), в частности, следует, что \(R_\varphi \subseteq K_\varphi^\perp \). На языке уравнений это означает, что уравнение \(\varphi(x) = 0 \) может иметь решение, лишь если его правая часть у ортогональна ко всем решениям «сопряженного» однородного уравнения \(\varphi'(g) = 0 \).

К. Если в (1) \(\varphi(x) = 0 \), то \(\langle x, \varphi'(g) \rangle = 0 \) для всех \(g \in F_m' \). Тем самым

\[
K_\varphi \subseteq R_\varphi^\perp. \tag{7}
\]

При отделимости \(F_m \) справедливо и обратное включение. В самом деле, если \(x \in R_\varphi^\perp \), то вследствие (1) \(\langle \varphi(x), g \rangle = 0 \) для всех \(g \in F_m' \), т. е. \(\varphi(x) \in F_m'^\perp \); но отделимость \(F_m \) означает, по 9.1.Б, что \(F_m'^\perp = \{0\} \). Таким образом, если \(F_m \) отделено, то

\[
K_\varphi = R_\varphi^\perp \tag{8}
\]

и, значит,

\[
\overline{R_\varphi'} = K_\varphi^\perp. \tag{8'}
\]

Л. Отметим некоторые следствия формул, полученных в И и К.

1° Если \(\varphi = \) наложение, то \(\varphi' = \) вложение. Действительно, в силу (6) тогда \(K_\varphi' = F^\perp = \{0\} \).

2° Если \(\varphi' = \) вложение, то \(\overline{R_\varphi} = F \). Это следует из (6'), поскольку тогда \(K_\varphi = \{0\} \).

3° Если \(\varphi' = \) наложение, а \(E_\varphi \) отделено, то \(\varphi = \) вложение. Действительно, в силу (7) и 9.1.Б тогда \(K_\varphi \subseteq E_\varphi'^\perp = \{0\} \).

4° Если \(\varphi = \) вложение, а \(F_m \) отделено, то \(\overline{R_\varphi'} = E_\varphi' \). Это следует из (8'), поскольку тогда \(K_\varphi = \{0\} \).

Теорема 1. \(\varphi \in L(E_\varphi, F_m) \) есть гомоморфизм \(E_\varphi \) в \(F_m \) тогда и только тогда, когда \(R_\varphi = K_\varphi^\perp \). Таким образом, для того чтобы \(\varphi \) было гомоморфизмом \(E_\varphi \) в \(F_m \), необходимо и при отделённости \(F_m \) достаточно, чтобы \(R_\varphi \) было замкнуто в \(E_\varphi'^\perp \).

Доказательство. Из равенства (1) следует, что \(\varphi(x) \in K_g \) тогда и только тогда, когда \(x \in K_\varphi'(g) \). Тем самым

\[
\varphi(K_\varphi'(g)) = K_g \cap R
\]
и, значит,

\[M \cap R_\varphi = \{ K_\varphi \cap R_\varphi : g \in F_m \} = \varphi (L_{R_\varphi}) \]

где:

\[L_{R_\varphi} = \{ K_f : f \in R_\varphi \} \]

С другой стороны, в силу 9.7 А \(\varphi (K_f) = \varphi (K_f) \neq R_\varphi \) тогда и только тогда, когда \(K_f \supseteq K_\varphi = K_\varphi \) и \(f \neq 0 \), т. е. когда \(f \in K_\varphi \setminus \{ 0 \} \); следовательно,

\[\varphi (L) = \{ \varphi (K_f) : f \in E_2 \} = \{ \varphi (K_f) : f \in K_\varphi \} = \varphi (L_{K_\varphi}) \]

где

\[L_{K_\varphi} = \{ K_f : f \in K_\varphi \} \]

Принимая во внимание 9.7.Г и (9), заключаем, что \(\varphi \) есть гомоморфизм \(E_2 \) в \(F_m \) тогда и только тогда, когда

\[\varphi (L_{K_\varphi}) = \varphi (L_{R_\varphi}) \]

Однако (10) имеет место, лишь если

\[K_\varphi \perp = R_\varphi \]

Действительно, из (10) следует, что для каждого \(f \in K_\varphi \) существует \(f_1 \in R_\varphi \) такое, что \(\varphi (K_f) = \varphi (K_{f_1}) \); при этом в силу 9.7.А и 5.3.Б

\[\varphi (K_f) = \varphi (K_{f_1}) = K_g \]

где \(g \in R_\varphi \). Но из (12) следует, что \(f (x) \neq 0 \) влечет \(g (\varphi (x)) = 0 \), так что в силу 5.3.Г

\[g \circ \varphi = \lambda f \]

Так как и \(\varphi (K_{f_1}) = K_g \), то, совершенно так же,

\[g \circ \varphi = \lambda_1 f_1 \]

При этом, если \(f \neq 0 \), то в силу 9.7.А (поскольку \(K_f \supseteq K_\varphi \)) \(\varphi (K_f) - \) собственное гиперподпространство в \(R_\varphi \) и из (12) следует, что \(g \neq 0 \), так что в (13) \(\lambda \neq 0 \). Сравнение (13) и (13₁) показывает тогда, что \(f = \frac{\lambda}{\lambda_1} f_1 \) и, значит, \(f \in R_\varphi \). Тем самым (10) влечет \(K_\varphi \perp \subseteq R_\varphi \); обратное же включение вытекает из (7)
в силу 6.2. Б 1°, 2°. Таким образом, φ есть гомоморфизм E_2 в F_M тогда и только тогда, когда $R_\varphi = K_\varphi$. Так как K_φ замкнуто, то заключаем, что если φ — гомоморфизм E_2 в F_M, то R_φ замкнуто. Обратно, если R_φ замкнуто, а F_M отдельно, то (8'), имеющее место при отдельности F_M, совпадает с (11) и, следовательно, φ — гомоморфизм E_2 в F_M.

Следствие. Для того чтобы φ было изоморфизмом E_2 в F_M, необходимо и при отдельности E_2 достаточно, чтобы φ' было наложением.

Доказательство. Если φ — изоморфизм E_2 в F_M, то в силу теоремы 1 имеем: $R_\varphi = K_\varphi = \{0\} = E_2'$. Обратно, если φ' — наложение, а E_2 отдельно, то по Л 3° φ — вложение, а так как тогда $R_\varphi = E_2' = K_\varphi$, то в силу теоремы 1 φ — изоморфизм E_2 в F_M.

Замечание. Пусть $\varphi \in L(E_2, F_M)$. Назовем φ' нормально разрешимым, если уравнение $\varphi'(g) = f$ разрешимо в том и только в том случае, когда его правая часть f ортогональна ко всем решениям уравнения $\varphi(x) = 0$, т. е. если $R_\varphi = K_\varphi$. Теорема 1 означает, что φ' нормально разрешим тогда и только тогда, когда φ — гомоморфизм E_2 в F_M.

Теорема 1'. Пусть $\varphi \in L(E_2, F_M)$. Для того чтобы φ' было гомоморфизмом F_M' в E_2', достаточно и при отдельности F_M необходимо, чтобы R_φ было замкнуто в F_M.

Доказательство. Так как, по 1.А, $E_2' \not\subset L'$, отдельно, то в силу теоремы 1 φ' есть гомоморфизм F_M' в E_2' тогда и только тогда, когда R_φ замкнуто в $E_{2, M}$. Пусть α — канонический гомоморфизм E_2 на E_2', и β — канонический гомоморфизм F_M на F_M'. В силу 1.Б и (4)

$$R_\varphi = \varphi''(E_2') = \varphi''(\alpha(E)) = \beta(\varphi(E)) = \beta(R_\varphi).$$

Принимая во внимание 9.7.3, заключаем, что если R_φ замкнуто в F_M, то R_φ замкнуто в F_M'', и значит, φ' — гомоморфизм F_M' в E_2'; обратно, если φ' — гомоморфизм $F_M M'$ в E_2', так что R_φ замкнуто в F_M'', и если F_M отдельно, то R_φ замкнуто в F_M, поскольку в силу 1.В и 9.7.К $R_\varphi = \beta^{-1}(R_\varphi)$, где β^{-1} — изоморфизм F_M'' на F_M.

\[\text{§ 10] Двойственность 169}\]
Следствие. Для того чтобы \(\varphi' \) было изоморфизмом \(F_M' \cdot M \) в \(E_{x'}\cdot x' \), достаточно и при отделности \(F_M \) необходимо, чтобы \(\varphi \) было налаженим.

Доказательство. Если \(\varphi \) — наложение, то \(R_\varphi (\varphi = F) \) замкнуто в \(F_M \) и, следовательно, \(\varphi' \) по теореме 1' — гомоморфизм \(F_M' \cdot M \) в \(E_{x'}\cdot x' \), а по \(\Pi 1^0 \) — вложение. Обратно, если \(\varphi' \) — изоморфизм \(F_M' \cdot M \) в \(E_{x'}\cdot x' \), а \(F_M \) отделено, то по теореме 1' \(R_\varphi = \check{R}_\varphi \) и, значит, в силу \(\Pi 2^0 \) \(R_\varphi = F \).

Замечание. Назовем \(\varphi \in L(E_x, F_M) \) нормально разрешимым, если уравнение \(\varphi(x) = y \) разрешимо в том и только в том случае, когда его правая часть уортгональна ко всем решениям сопряженного однородного уравнения \(\varphi'(x) = 0 \). т. е. если \(R_\varphi = K_\varphi \) (см. И). Теорема 1' означает при отделности \(F_M \), что \(\varphi \) нормально разрешимо тогда и только тогда, когда \(\varphi' \) есть гомоморфизм \(F_M' \cdot M \) в \(E_{x'}\cdot x' \).

Теорема 2. Для того чтобы \(\varphi \in L(E_x, F_M) \) было изоморфизмом \(E_x \) на замкнутое \(L \)-подобпространство \(L \)-пространства \(F_M \), необходимо при отделности \(E_x \) и \(F_M \) достаточно, чтобы \(\varphi' \) было гомоморфизмом \(F_M' \cdot M \) на \(E_{x'}\cdot x' \).

Доказательство. Если \(R_\varphi \) замкнуто и \(\varphi \) — изоморфизм \(E_x \cdot L \cdot F_M \), то \(\varphi' \) по теореме 1' — гомоморфизм \(F_M' \cdot M \) в \(E_{x'}\cdot x' \), а по следствию теоремы 1 — наложение. Обратно, если \(\varphi' \) — гомоморфизм \(F_M' \cdot M \) на \(E_{x'}\cdot x' \), а \(F_M \) и \(E_x \) отделены, то \(R_\varphi \) по теореме 1' замкнуто, а \(\varphi \) по следствию теоремы 1 — изоморфизм \(E_x \) в \(F_M \).

Теорема 2'. Для того чтобы \(\varphi \in L(E_x, F_M) \) было гомоморфизмом \(E_x \cdot L \cdot F_M \), необходимо при отделности \(F_M \) достаточно, чтобы \(\varphi' \) было изоморфизмом \(F_M' \cdot M \) на \(R_\varphi = K_\varphi \), рассматриваемое как (замкнутое) \(L \)-подобпространство \(L \)-пространства \(E_{x'}\cdot x' \).

Доказательство. Если \(\varphi \) — гомоморфизм \(E_x \cdot L \cdot F_M \), то по теореме 1 \(R_\varphi = K_\varphi \), а по следствию теоремы 1' \(\varphi' \) — изоморфизм \(F_M' \cdot M \) в \(E_{x'}\cdot x' \). Обратно, если \(R_\varphi \) замкнуто и \(\varphi' \) — изоморфизм \(F_M' \cdot M \) в \(E_{x'}\cdot x' \), то при отделности \(F_M \) \(\varphi \) по теореме 1 — гомоморфизм \(E_x \) в \(F_M \), а по следствию теоремы 1' — наложение, причем в силу (8') \(R_\varphi = \check{R}_\varphi = K_\varphi \).

Следствие. Если \(\varphi \) — гомоморфизм \(E_x \cdot L \cdot F_M \), то

\[(R_\varphi, M \cap R_\varphi)'(M \cap R_\varphi)' \sim (R_\varphi', L' \cap R_\varphi'). \]
Изоморфизм осуществляется отображением $g \to g \circ \varphi'$, сопряженным к φ'.

Доказательство. Условие, что φ — гомоморфизм E_{φ} в F_φ, означает, по определению 7 § 9, что φ' есть гомоморфизм $E_{\varphi'}$ на $(R_\varphi, M \cap R_\varphi)$. По теореме 2' отсюда следует, что φ'' есть изоморфизм $(R_\varphi, M \cap R_\varphi)'(M \cap R_\varphi)'$ на $(K_{\varphi''}, L' \cap K_{\varphi''})$. Но $K_{\varphi''} = K_{\varphi''}$, а по теореме 1 $K_{\varphi''} = R_\varphi$.

3. Сопряженные к L-подпространству, факторпространству L-пространства и прямой сумме L-подпространств

А. Пусть $G_{\varphi} \subset E_{\varphi}$ и π — каноническое вложение G в E. Как мы видели в примере 4 п. 2, π' есть операція сужения линейных функционалов $f \in E_{\varphi'}$ на G. Но так как π — изоморфизм G_{φ} в E_{φ}, то, по следствию теоремы 1, π' — наложение. Тем самым мы вновь получаем (см. 9.6.Đ), что $G_{\varphi'}$ совпадает с совокупностью сужений всевозможных линейных функционалов $f \in E_{\varphi'}$ на G.

Если G замкнуто, то в силу теоремы 2 π' — гомоморфизм $E_{\varphi'}$ на $G_{\varphi'}$. Таким образом, если G_{φ} — замкнутое L-подпространство L-пространства E_{φ}, то отображение π', относящее каждому линейному функционалу $f \in E_{\varphi'}$ его сужение $f|_G$ на G, есть гомоморфизм $E_{\varphi'}$ на $G_{\varphi'}$. Теорема 3. Если G_{φ} — замкнутое L-подпространство L-пространства E_{φ}, то

$$G_{\varphi'} \sim E_{\varphi'} | G^\perp,$$

где G^\perp — аннулятор G в $E_{\varphi'}$. Изоморфизм осуществляется отнесением каждому линейному функционалу $g \in G_{\varphi'}$ смежного класса $E_{\varphi'}$ по G^\perp, образованного всеми продолжениями g до линейного функционала на E_{φ}.

Доказательство. Пусть π — каноническое вложение G в E. В силу A сопряженное отображение π' есть гомоморфизм $E_{\varphi'}$ на $G_{\varphi'}$. Вследствие 2.(6) его ядро $K_{\pi'} = R\pi = G^\perp$. Поэтому в силу 9.8.Б отображение π', ассоциированное с π', есть изоморфизм $E_{\varphi'} | G^\perp$ на $G_{\varphi'}$ и,
значит, \(\pi'^{-1} \) — изоморфизм \(G_{\omega'} \to E_{2'} / G \). При этом, так как \(\pi' \) относит каждому \(f \in E_{2} \) его сужение на \(G \), то \(\pi'^{-1} \) относит каждому \(g \in G_{\omega'} \) класс всех его продолжений до линейного функционала на \(E_{2} \) (являющийся классом \(E \) по \(G \)).

Мы будем называть \(\pi'^{-1} \) каноническим изоморфизмом \(G_{\omega'} \to E_{2'} / G \).

Теорема 3'. Л-пространство, сопряженное к факторпространству \(E_{2} / G \) L-пространства \(E_{2} \) по его подпространству \(G \), изоморфно аннihilатору \(G \) этого подпространства в \(E_{2} \), рассматриваемому как L-подпространство сопряженного L-пространства \(E_{2'} \), т. е.

\[
(E_{2} / G)'_{(E_{2}, G)} \sim G_{G} \cap G \cdot (2)
\]

Изоморфизм осуществляется операцией перенесения линейных функционалов с \(E_{2} / G \) на \(E_{2} \).

Доказательство. Пусть \(\omega \) — каноническое наложение \(E \) на \(E / G \). Согласно терминологии, введенной в примере 5 п. 2, \(\omega' \) — операция перенесения линейных функционалов с \(E_{2} / G \) на \(E_{2} \). А так как \(\omega \) — гомоморфизм \(E_{2} \) на \(E_{2} / G \) (9.8.A), то в силу теоремы 2' \(\omega' \) — изоморфизм \((E_{2} / G)'_{(E_{2}, G)} \) на \(K_{\omega} \cdot G \), рассматриваемое как L-подпространство L-пространства \(E_{2} \). Но \(K_{\omega} = G \).

Мы будем называть \(\omega \) каноническим изоморфизмом \((E_{2} / G)'_{(E_{2}, G)} \) в \(E_{2} \).

Замечание. Так как в силу 9.5, 6.2. В \(G = G \cap G = G \), то, заменив в (2) \(G \) на \(\bar{G} \), получаем

\[
(E_{2} / \bar{G})'_{(E_{2}, \bar{G})} \sim G_{\bar{G}} \cap G
\]

так что

\[
(E_{2} / \bar{G})'_{(E_{2}, \bar{G})} \sim (E_{2} / G)'_{(E_{2}, G)}.
\]

В частности, при \(G = \{0\} \), принимая во внимание 9.8, имеем

\[
E_{2} / E_{2} \sim E_{2} / E_{2}.
\]

Эта формула была получена другим способом в 2.3. Обратно, в силу 9.8.2 из нее следует (3).

В. Пусть \(\pi \) — проектор, определенный на векторном пространстве \(E \). Если \(\pi \in L(E_{2}, E_{2}) \), то \(\pi' \) — проектор,
Действительно, так как, по 4.4.Б, $π' ◦ π' = π'$ и, значит, $π'$, по 4.4.Б, — проектор. Далее, в силу 4.4.В $R_{π'} = K_{π ◦ π'} = K_{π ◦ π'}$, (см. п. 2, пример 2, и 2.Г) и $R_{π ◦ π'} = K_{π}$. Но согласно формуле 2.6) $K_{π ◦ π'} = R_{π ◦ π'}$. Следовательно, $R_{π'} = K_{π}$.

Г. Из формулы (4) в силу теоремы 1 снова следует, что если $π$ — проектор, определенный на векторном пространстве E, и $π ∈ L(E_{2}, E_{2})$, то $π$ — гомоморфизм E_{2} в E_{2} (см. 9.10.А).

Теорема 4. Если $E_{2} = E_{2}^{1} ⊕ ... ⊕ E_{2}^{n}$, то, обозначая через $π_{1}, ..., π_{n}$ проекторы E на $E^{1}, ..., E^{n}$, порождаемые по теореме 3 § 4 разложением $E = E^{1} ⊕ ... ⊕ E^{n}$, имеем

$$E_{2}' = (K_{π_{1}} ⊕ L' ∩ K_{π_{1}}) ⊕ ... ⊕ (K_{π_{n}} ⊕ L' ∩ K_{π_{n}}),$$

причем $f_{k} ⇒ f_{k} ◦ π_{k}$, где f_{k} пробегает E_{2}^{k}, есть изоморфизм E_{2}' на $(K_{π_{k}} ⊕ L' ∩ K_{π_{k}})$.

Доказательство. Пусть i — тождественное отображение E на себя. Согласно теореме 3 § 4

$$i = \sum_{k=1}^{n} π_{k}, \text{ причем } π_{k} ◦ π_{i} = 0, \text{ если } l ≠ k,$$

В силу 2.Г, Д тогда

$$i' = \sum_{k=1}^{n} π_{k}′, \text{ причем } π_{i}' ◦ π_{k}' = 0, \text{ если } l ≠ k.$$

Так как i' — тождественное отображение E_{2}' на себя (п. 2, пример 2), то, принимая во внимание В, заключаем на основании теоремы 3 § 4, что

$$E_{2}' = R_{π_{1}} ⊕ ... ⊕ R_{π_{n}} = K_{π_{1}} ⊕ ... ⊕ K_{π_{n}},$$

и значит, по теореме 3 § 9,

$$E_{2}' = (K_{π_{1}} ⊕ L' ∩ K_{π_{1}}) ⊕ ... ⊕ (K_{π_{n}} ⊕ L' ∩ K_{π_{n}}).$$
Наконец, в силу 3 и следствия теоремы 2',

\[E^k_{L_k} \cong (K^1 \circ \pi_k, \mathcal{L} \cap K^1_\circ), \]

причем изоморфизм осуществляется отображением \(f_k \to f_k \circ \pi_k \)
(\(f_k \in E^k_{L_k} \)).

4. Сопряжённые к произведению и сумме семейства \(L \)-пространств

A. Пусть \(E_\mathcal{L} = \bigoplus_{\alpha \in \Lambda} E^\alpha_{L_\alpha} \), так что, по определению 9 § 9, \(\mathcal{L} \) есть слабейшая \(L \)-структура в \(E \), при которой его проектирования \(\text{pr}_\alpha \) на все \(E^\alpha_{L_\alpha} \) являются \(L \)-отображениями. Тогда \(\mathcal{L}' \) совпадает с сильнейшей \(L \)-структурой \(\mathcal{L}' \) в \(E_\mathcal{L} \), при которой сопряжённые отображения \(\text{pr}_\alpha' \) всех \(E^\alpha_{L_\alpha}' \) в \(E_\mathcal{L}' \) являются \(L \)-отображениями. Действительно, согласно 9.4.3,

\[E^\alpha_\mathcal{L}' = \{ g \in E_\mathcal{L}' : g \circ \text{pr}_\alpha' \in E^\alpha_{L_\alpha}' \text{ для всех } \alpha \in \Lambda \}. \tag{1} \]

Но если \(g \circ \text{pr}_\alpha' \in E^\alpha_{L_\alpha}' \), то в силу 1.(1) существует вектор \(x_\alpha \in E^\alpha_{L_\alpha} \) такой, что

\[\langle f_\alpha, g \circ \text{pr}_\alpha' \rangle = \langle x_\alpha, f_\alpha \rangle \text{ для всех } f_\alpha \in E^\alpha_{L_\alpha}'. \tag{2} \]

Пусть \(x \) — элемент из \(E_\mathcal{L} \), проекцией которого на каждое \(E^\alpha \) служит вектор \(x_\alpha \), удовлетворяющий условию (2). Тогда для всех \(\alpha \in \Lambda \) и \(f_\alpha \in E^\alpha_{L_\alpha}' \) будем иметь

\[\langle f_\alpha \circ \text{pr}_\alpha, g \rangle = \langle f_\alpha, g \circ \text{pr}_\alpha \rangle = \langle \text{pr}_\alpha x, f_\alpha \rangle = \langle x, f_\alpha \circ \text{pr}_\alpha \rangle. \]

Так как, по 9.9.В, \(E_\mathcal{L}' \) совпадает с совокупностью всевозможных сумм вида \(\sum_{\alpha \in \Lambda} f_\alpha \circ \text{pr}_\alpha \), где лишь конечное число \(f_\alpha \neq 0 \), то в таком случае

\[\langle f, g \rangle = \langle x, \bar{f} \rangle \text{ для всех } \bar{f} \in E_\mathcal{L}'. \]

t. е. \(g = \langle x, \cdot \rangle_\mathcal{L} \in E_\mathcal{L}' \). Тем самым из (1) следует, что \(E_\mathcal{L}' \subseteq E_\mathcal{L}'' \). С другой стороны, в силу 2.А все \(\text{pr}_\alpha' \in L_\mathcal{L}(E^\alpha_{L_\alpha}', E_\mathcal{L}' \mathcal{L}') \), значит, каково бы ни было \(g \in E_\mathcal{L}'', \)
§ 10] двойственность 175

\[g \circ \text{pr}_a' \in E_{\mathcal{L}_a}'' \] для всех \(\alpha \in \Lambda \) (9.2.Д') и тем самым, в силу (1), \(E_{\mathcal{L}}'' \subset E_{\mathcal{L}_a}' \). Следовательно, \(E_{\mathcal{L}_a}' = E_{\mathcal{L}}'' = E_{\mathcal{L}_a}' \), откуда, по 9.1.А, \(\mathcal{L}' = \mathcal{L} \).

Теорема 5. Если \(E_{\mathcal{L}} = \prod_{\alpha \in \Lambda} E_{\mathcal{L}_a}^a \), то \(\sum_{\alpha \in \Lambda} E_{\mathcal{L}_a}' \mathcal{L}_a' \sim E_{\mathcal{L}_a}' \), причем изоморфизм осуществляется отображением \(f \to \varphi(f) = \bar{f} \), определяемым для каждого \(f = (f_\alpha) \in \sum_{\alpha \in \Lambda} E_{\mathcal{L}_a}' \mathcal{L}_a' \) формулой

\[\langle x, \bar{f} \rangle = \sum_{\alpha \in \Lambda} \langle x_\alpha, f_\alpha \rangle. \]

м. е. задаваемым равенством

\[\varphi(f) = \sum_{\alpha \in \Lambda} f_\alpha \circ \text{pr}_a. \quad (3) \]

Доказательство. Согласно 9.9.В' \(\varphi \) есть изоморфизм \(\sum_{\alpha \in \Lambda} E_{\mathcal{L}_a}' \) на \(E_{\mathcal{L}_a}' \). Пусть \(\text{in}^a \) — каноническое вложение \(E_{\mathcal{L}_a}' \) в \(\sum_{\alpha \in \Lambda} E_{\mathcal{L}_a}' \). Из (3) следует, что, каковы бы ни были \(\alpha \in \Lambda \) и \(f_\alpha \in E_{\mathcal{L}_a}' \), \(\varphi(\text{in}^a(f_\alpha)) = f_\alpha \circ \text{pr}_a = \text{pr}_a'(f_\alpha) \). Таким образом, для всех \(\alpha \in \Lambda \) имеем

\[\varphi \circ \text{in}^a = \text{pr}_a' \quad (4) \]

или, что то же,

\[\varphi^{-1} \circ \text{pr}_a' = \text{in}^a. \quad (4') \]

Так как \(\text{pr}_a' \) для всех \(\alpha \in \Lambda \) — \(L \)-отображение, то из (4) в силу 9.9.Ж следует, что \(\varphi \in L\left(\sum_{\alpha \in \Lambda} E_{\mathcal{L}_a}' \mathcal{L}_a', E_{\mathcal{L}_a}' \mathcal{L}_a' \right) \). С другой стороны, так как все \(\text{in}^a \) — \(L \)-отображения, а \(\mathcal{L}' \), по \(\Lambda \), — сильнейшая \(L \)-структура в \(E_{\mathcal{L}}' \), при которой все \(\text{pr}_a' \) являются \(L \)-отображениями, то из (4') в силу 9.4.К следует, что \(\varphi^{-1} \in L\left(E_{\mathcal{L}_a}' \mathcal{L}_a', \sum_{\alpha \in \Lambda} E_{\mathcal{L}_a}' \mathcal{L}_a' \right) \). Тем самым, на основании 9.7.К, \(\varphi \) — изоморфизм \(\sum_{\alpha \in \Lambda} E_{\mathcal{L}_a}' \mathcal{L}_a' \) на \(E_{\mathcal{L}_a}' \).

Б. Пусть \(E_{\mathcal{L}} = \sum_{\alpha \in \Lambda} E_{\mathcal{L}_a}^a \), так что, по определению 10 § 9, \(\mathcal{L} \) есть сильнейшая \(L \)-структура в \(E \), при которой
инъекция инъ в E является L-отображениями. Тогда \(\mathcal{P}' \) совпадает со слабейшей L-структурой \(\mathcal{P} \) в E, при которой его сопряженные отображения инъ во все \(E_{x}^{\alpha} \) являются L-отображениями. Действительно, пусть \(g \in E_{x}'' \), так что, по 1.Б, \(g = \langle x, \cdot \rangle_{x} \), где \(x = (x_{a}) \in E \). Пусть, далее, \(g_{a} = \langle x_{a}, \cdot \rangle_{x_{a}} \), так что, по 1.Б, \(g_{a} \in E_{x}^{\alpha} \). Так как \(x = \sum_{a \in A} \text{in}_{a} x_{a} \), то для всех \(\bar{f} \in E_{x} \) имеем

\[
\langle f, g \rangle = \langle x, \bar{f} \rangle = \sum_{a \in A} \langle \text{in}_{a} x_{a}, \bar{f} \rangle = \sum_{a \in A} \langle x_{a}, \text{in}_{a} \bar{f} \rangle = \sum_{a \in A} \langle \text{in}_{a} \bar{f}, g_{a} \rangle,
\]

так что

\[
g = \sum_{a \in A} g_{a} \circ \text{in}_{a}.
\] (5)

Но согласно 9.4 В E_{x} \mathcal{P}' совпадает с совокупностью всех возможных сумм вида (5). Тем самым E_{x}'' E_{x} \mathcal{P}''. С другой стороны, так как, по 2.А, \(\text{in}_{a} \in L(E_{x}^{\alpha}, E_{x}^{\alpha} \mathcal{P}_{a}) \) и, значит, согласно 9.2.Д \(g_{a} \circ \text{in}_{a} \in E_{x}'' \), если \(g_{a} \in E_{x}^{\alpha} \), то все суммы вида (5) принадлежат E_{x}''', так что E_{x}'' \mathcal{P}'' E_{x}''' \mathcal{P}', откуда, по 9.1.А, \(\mathcal{P} \equiv \mathcal{P}' \).

Теорема 5'. Если E_{x} = \sum_{a \in A} E_{x}^{\alpha}, то E_{x} \mathcal{P} \equiv \prod_{a \in A} E_{x}^{\alpha} \mathcal{P}_{a}, причем изоморфизм осуществляется отображением \(\bar{f} \mapsto \phi(\bar{f}) = f = (f_{a}) \), определяемым для каждого \(f \in E_{x} \) формулой

\[
\langle x, \bar{f} \rangle = \sum_{a \in A} \langle x_{a}, f_{a} \rangle,
\]

т. е. задаваемым равенством

\[
\psi(\bar{f}) = (f \circ \text{in}_{a})_{a \in A}.
\] (6)

Доказательство. Согласно 9.9.З', \(\phi \) есть изоморфизм E_{x} на \(\prod_{a \in A} E_{x}^{\alpha} \mathcal{P}_{a} \). Пусть \(\text{pr}^{a} \) — проекция \(\prod_{a \in A} E_{x}^{a} \mathcal{P}_{a}'' \) на E_{x}^{a} \mathcal{P}_{a}'' .

Из (6) следует, что, каковы бы ни были \(a \in A \) и \(\bar{f} \in E_{x} \),
§ 101 двойственность

\[\text{pr}^a (\mathcal{f}(\bar{f})) = \bar{f} \circ \text{in}_a = \text{in}_a' (\bar{f}). \]

Таким образом, для всех \(\alpha \in \Lambda \), имеем

\[\text{pr}^a \circ \psi = \text{in}_a' \]

или, что то же,

\[\text{in}_a' \circ \psi^{-1} = \text{pr}^a. \]

Так как \(\text{in}_a' \) для всех \(\alpha \in \Lambda \) — \(L \)-отображение, то из (7) в силу 9.9.Б следует, что \(\psi \in L \left(\prod_{\alpha \in \Lambda} E_{\varphi, \bar{e}}', \prod_{\alpha \in \Lambda} E_{\varphi, \overline{\varphi}}' \right). \) С другой стороны, так как все \(\text{pr}^a \) — \(L \)-отображения, а \(\mathcal{L}' \), по Б, — слабейшая \(L \)-структура в \(E_{\varphi, \bar{e}}' \), при которой все \(\text{in}_a' \) являются \(L \)-отображениями, то из (7') в силу 9.4.Д следует, что \(\psi^{-1} \in L \left(\prod_{\alpha \in \Lambda} E_{\varphi, \bar{e}}', \prod_{\alpha \in \Lambda} E_{\varphi, \overline{\varphi}}' \right). \) Тем самым, на основании 9.7.К, \(\psi \) — изоморфизм \(E_{\varphi, \bar{e}}' \) на \(\prod_{\alpha \in \Lambda} E_{\varphi, \bar{e}}'. \)

В. \(L \)-пространство, сопряженное к произведению прямых, изоморфно сумме прямых. Действительно, пусть \(E_\varphi' \) — произведение прямых, т. е., согласно определению 9 § 9, \(E_\varphi' = \prod_{\alpha \in \Lambda} E_{\varphi, \bar{e}}', \) где \(E_{\varphi, \bar{e}}' \) — отделимые одномерные \(L \)-пространства. В силу 1.4 и 9.3.Б тогда \(E_{\varphi, \bar{e}}' \) — также отделимые одномерные \(L \)-пространства, и остается применить теорему 5.

В'. Совершенно так же (на основании теоремы 5') \(L \)-пространство, сопряженное к сумме прямых, изоморфно произведению прямых.

Г. Произведение прямых обладает минимальной отделимой \(L \)-структурой. В самом деле, пусть \(E_\varphi = \prod_{\alpha \in \Lambda} E_{\varphi, \bar{e}}, \) произведение прямых и \(\mathcal{L}_1 \subset \mathcal{L}. \) В силу 9.1.В \(E_\varphi, \bar{e} \) есть собственное подпространство пространства \(E_\varphi'. \) Поэтому, в силу следствия 2 теоремы 1 § 3, \(E_\varphi, \bar{e} \) содержится в некотором собственном гиперпространстве \(H \) пространства \(E_\varphi'. \) Но так как согласно В \(E_{\varphi, \overline{\varphi}}' \) изоморфно сумме прямых, а сумма прямых, по 9.3.Б, обладает сильнейшей \(L \)-структурой, то в силу 9.7.М и \(E_{\varphi, \overline{\varphi}}' \) обладает сильнейшей \(L \)-структурой. Отсюда следует, что \(H \in \mathcal{L}', \) и, значит, \(H = \{ x \} \), где \(x \in E_\varphi \setminus \{ 0 \}. \) Но в силу 6.2.Б 1°, 2° тогда \(x \in E_{\varphi, \bar{e}}', \) и так как \(x \neq 0 \), то (9.1.Б) \(\mathcal{L}' \) не отделима.

Г'. Обратно, всякое \(L \)-пространство \(E_\varphi, \) обладающее минимальной отделимой \(L \)-структурой, изоморфно произведению прямых. Действительно, пусть \(H \) — гиперпространство сопряженного пространства \(E_\varphi'. \) Так как \(\mathcal{L}_H = \{ K; f \in H \} \subset \mathcal{L}, \) а \(\mathcal{L} \) — минимальной отделимой \(L \)-структурой, то \(\mathcal{L}_H \) не отделима и, значит, по 9.1.В, \(H' \neq \{ 0 \}. \) С другой стороны, так как \(\mathcal{L} \) отделима,

12 Зак. 2941. Д. А. Райков
т.о. по 9.1.Б, \(E_2 \perp = \{0\} \). Следовательно, в силу 6.2.В \(H \perp = E_2 \), так что, по 9.5.3 2°, \(H \) замкнуто в \(E_2 \). Вследствие произвольности \(H \) это означает, что \(E_2 \) — сильнейшая \(L \)-структура в \(E_2 \) и, следовательно, по 9.9.М', \(E_2 \), изоморфно сумме прямых. Но в таком случае, вследствие 2.Ж, \(E_2 \) изоморфно произведению прямых. А так как \(E_2 \) отдельно, то в силу 1.В и \(E_2 \) изоморфно произведению прямых.

5. Связки гиперплоскостей

Определение 3. Связкой гиперплоскостей в \(L \)-пространстве будет называться всякая максимальная центрированная система замкнутых гиперплоскостей.

А. В силу 1.4.Г всякая центрированная система замкнутых гиперплоскостей содержится в связке гиперплоскостей.

Б. Совокупность \(S_{x_0} \) всех замкнутых гиперплоскостей \(L \)-пространства \(E_2 \), проходящих через фиксированную точку \(x_0 \in E \), есть связка гиперплоскостей. Действительно, центрированность \(S_{x_0} \) очевидна, максимальность же следует из того, что никакая замкнутая гиперплоскость \(X \), не проходящая через \(x_0 \), не может входить в \(S_{x_0} \), поскольку она не пересекается с параллельной ей (и потому замкнутой) гиперплоскостью, проходящей через \(x_0 \) и тем самым содержащейся в \(S_{x_0} \). Обратно, каждая связка гиперплоскостей \(S \), имеющая непустое пересечение, есть связка указанного типа. В самом деле, если \(x_0 \in \bigcap_{x \in S} X \), то \(S \subset S_{x_0} \), и так как \(S_{x_0} \) — центрированная система замкнутых гиперплоскостей, а \(S \) — максимальная такая система, то \(S = S_{x_0} \).

В. Пучок \(\{X_1, \ldots, X_n\} \), порожденный замкнутыми гиперплоскостями \(X_1, \ldots, X_n \) \(L \)-пространства \(E_2 \), имеющими непустое пересечение \(L = \bigcap_{k=1}^n X_k \), состоит из замкнутых гиперплоскостей. Действительно, пусть \(X \in \{X_1, \ldots, X_n\} \), \(H, H_1, \ldots, H_n \) — гиперподпространства, параллельные гиперплоскостям \(X, X_1, \ldots, X_n \), и \(x_0 \) — фиксированный вектор из \(L \). В силу 3.3.Б 2°

\[
H = X - x_0 \supset L - x_0 = \bigcap_{k=1}^n (X_k - x_0) = \bigcap_{k=1}^n H_k.
\]
§ 10] двойственность 179

tак что \(H \subseteq \{ H_1, \ldots, H_n \} \). Но так как все \(X_k \) замкнуты, то все \(H_k \subseteq \mathcal{L} \). В силу 9.1. В тогда и \(H \subseteq \mathcal{L} \), и следовательно, \(X \) замкнуто.

В'. Из равенства \(\bigcap_{k=1}^{n} H_k = L - x_0 \) следует также, что если \(H \subseteq \{ H_1, \ldots, H_n \} \), т. е. \(H \supseteq \bigcap_{k=1}^{n} H_k \), то \(X = H + x_0 \supseteq L \), т. е. \(X \subseteq \{ X_1, \ldots, X_n \} \). Таким образом, мы установили попутно, что если \((X_k)_{1 \leq k \leq n} \) — конечное семейство гиперплоскостей, имеющее непустое пересечение \(L = \bigcap_{k=1}^{n} X_k \), то гиперподпространства, параллельные всевозможным гиперплоскостям из пучка \(\{ X_1, \ldots, X_n \} \), образуют пучок \(\{ H_1, \ldots, H_n \} \), где \(H_k \) — гиперподпространства, параллельные гиперплоскостям \(X_k \).

Г. Связка гиперплоскостей \(S \) вместе с любым конечным семейством входящих в нее гиперплоскостей \((X_k)_{1 \leq k \leq n} \) содержит и весь порождаемый им пучок \(\{ X_1, \ldots, X_n \} \). Действительно, так как \(S \) центрирована, то для каждого \(X \subseteq \{ X_1, \ldots, X_n \} \) и каждого конечного семейства гиперплоскостей \((X_k)_{n+1 \leq k \leq n+m} \) из \(S \) имеем

\[
X \cap \bigcap_{k=n+1}^{n+m} X_k \supseteq \bigcap_{k=1}^{n+m} X_k \neq \phi.
\]

Но тогда \(X \subseteq S \), ибо иначе \(X \) (которое, по В, замкнуто) можно было бы присоединить к \(S \) без нарушения ее центрированности, в противоречие с максимальностью \(S \).

Т е о р е м а 6. Для того чтобы центрированная система замкнутых гиперплоскостей в \(E_\mathcal{L} \) была максимальной (т. е. связкой гиперплоскостей), необходимо и достаточно, чтобы она содержала по одной гиперплоскости, параллельной каждому замкнутому гиперподпространству.

Д о к а з а т е л ь с т в о. Достаточность условия очевидна: каждая замкнутая гиперплоскость, по самому своему определению, параллельна некоторому \(H \subseteq \mathcal{L} \), а двух разных гиперплоскостей, параллельных одному и тому же \(H \subseteq \mathcal{L} \) и
помому не пересекающихся, центрированная система гиперплоскостей содержать не может.

Пусть теперь S — связка гиперплоскостей в $E_{\mathcal{L}}$ и $H \in \mathcal{P}$. Возможны два случая:

а) H пересекается с пересечением любого конечного семейства гиперплоскостей из S. Тогда $H \subseteq S$, ибо иначе H можно было бы присоединить к S без нарушения центрированности, в противоречие с максимальностью S.

б) H не пересекается с пересечением L некоторого конечного семейства гиперплоскостей $(X_i)_{1 \leq k \leq n}$ из S. Взяв произвольный вектор $x_0 \in L$ (существующий в силу центрированности S), мы получим гиперплоскость $X = H + x_0$, параллельную H и содержащую L. В самом деле, так как, очевидно, $H \neq E$, то X — собственная гиперплоскость. При этом $X \subseteq H + L$, где $H + L$, по 3.3.1, — аффинное многообразие. Но $H + L \neq E$, ибо иначе существовали бы $h \in H$ и $x \in L$ такие, что $h + x = 0$, откуда $x = -h \in H \cap L$, в противоречие с предположением. Следовательно, $X = H + L$ и, значит, $X \supset L$. Но тогда $X \subseteq S$ в силу G.

Теорема 7. Пусть S — связка гиперплоскостей в $E_{\mathcal{L}}$. Отнесем каждому $f \in E_{\mathcal{L}}'$ гиперплоскость $X_f \subseteq S$, параллельную K_f (существование и единственность которой гарантируются теоремой 6). Тогда

$$s(f) = f(X_f)$$

(где $f(X_f)$ — постоянное значение, принимаемое f на X_f) есть линейная функция на $E_{\mathcal{L}}'$. Обратно, пусть $s(f)$ — линейная функция на $E_{\mathcal{L}}'$. Отнесем каждому $f \in E_{\mathcal{L}}'$ аффинное многообразие

$$X_f = f^{-1}(s(f)),$$

(2)

Тогда $S = \{X_f; f \in E_{\mathcal{L}}'\}$ есть связка гиперплоскостей и $s(f)$ определяется ею по формуле (1).

Доказательство. 1° Пусть S — связка гиперплоскостей в $E_{\mathcal{L}}$ и s — функция на $E_{\mathcal{L}}'$, определяемая ею по формуле (1). Для любого $f \in E_{\mathcal{L}}'$ и любого скаляра λ имеем

$$s(\lambda f) = \lambda f(X_f) \text{ и } s(\lambda f) = \lambda f(X_f).$$

Но

$$\lambda f(X_f) = \lambda f(X_f).$$
Действительно, при $\lambda = 0$ это очевидно, если же $\lambda \neq 0$, то $K_{\lambda f} = K_f$ и потому $X_{\lambda f} = X_f$. Следовательно,

$$s(\lambda f) = \lambda s(f).$$

С другой стороны, для любых $f_1, f_2 \in E_{\mathcal{F}}'$ имеем

$$s(f_1) + s(f_2) = f_1(X_{f_1}) + f_2(X_{f_2}) =$$

$$= f_1(X_{f_1} \cap X_{f_1} \cap X_{f_2}) + f_2(X_{f_1} \cap X_{f_1} \cap X_{f_2}) =$$

$$= (f_1 + f_2)(X_{f_1} \cap X_{f_1} \cap X_{f_2}) = s(f_1 + f_2).$$

Тем самым s линейна.

2° Пусть $s \in E_{\mathcal{F}}^*$ и $S = \{X_f : f \in E_{\mathcal{F}}'\}$, где X_f для любого $f \in E_{\mathcal{F}}'$ определено формулой (2), т. е. представляет собой множество всех решений линейного уравнения

$$f(x) = s(f).$$

Пусть $(f_k)_{1 \leq k \leq n}$ — любое конечное семейство линейных функционалов на $E_{\mathcal{F}}$. В силу только что сказанного $\bigcap_{k=1}^{n} X_{f_k}$ есть множество всех решений системы линейных уравнений

$$f_1(x) = s(f_1), \ldots, f_n(x) = s(f_n).$$

Но так как s линейно, то всякое соотношение $\sum_{k=1}^{n} \lambda_k f_k = 0$ влечет соотношение $\sum_{k=1}^{n} \lambda_k s(f_k) = s\left(\sum_{k=1}^{n} \lambda_k f_k\right) = 0$. Поэтому система (4), по теореме 1 § 5, совместна, т. е. $\bigcap_{k=1}^{n} X_{f_k} \neq \emptyset$.

Тем самым S центрировано. Далее, так как, в частности, уравнение (3) совместно, то, согласно 5.4.В, $X_f = K_f + x_0$, где x_0 — любое решение уравнения (3). Тем самым X_f — замкнутые гиперплоскости, и так как каждое $H \in \mathcal{P}$ представляет в виде K_f, где $f \in E_{\mathcal{F}}'$, то S содержит по одной (в силу центрированности) гиперплоскости, параллельной каждому $H \in \mathcal{P}$. На основании теоремы 6 заключаем, что S — свяжка гиперплоскостей, а из (2) следует, что $f(X_f) = f\left(f^{-1}(s(f))\right) = s(f)$.

13 Зак. 2941. Д. А. Райков
§ 11. L-ПРОСТРАНСТВА НАД R И C

Все L-пространства, рассматриваемые в этом параграфе, предполагаются вещественными или комплексными.

1. Регулярно выпуклые множества

Определение 1. Пусть \((E, F; u)\) — двойная пара векторных пространств над \(R\) или \(C\). Опной функцией множества \(A \subseteq E\) относительно \(u\) будет называться функция \(q_A\) на \(F\), определяемая для всех \(y \in F\) формулой

\[
q_A(y) = \sup_{a \in A} \Re u(a, y),
\]

а опорной функцией множества \(B \subseteq F\) — его опорная функция \(q_B\) на \(E\) относительно транспонированной билинейной функции \(u^t\), т. е. функция

\[
q_B(x) = \sup_{b \in B} \Re u(x, b).
\]

В соответствии с этим опорной функцией множества \(A \subseteq E\) мы будем (рассматривая, как обычно, \(E\) в дуальной паре с \(E^t\)) называть функцию \(q_A\) на \(E^t\), определяемую формулой

\[
q_A(f) = \sup_{a \in A} \Re \langle a, f \rangle. \tag{1}
\]

А. Если \(A \neq \emptyset\), то \(-\infty < q_A(y) < +\infty\) и, по 8.1.Г, \(q_A\) — сублинейная функция на \(F\). С другой стороны, согласно 1.2.В

\[
q_\emptyset = -\infty. \tag{1'}
\]
§ 111

L-пространства над \mathbb{R} и \mathbb{C}

A'. Из определения 1 непосредственно следует, что если $A_1 \subseteq A_2$, то $q_{A_1} \leq q_{A_2}$.

Из (1) видно, что, каково бы ни было $A \subseteq E_\varphi$,

\[x \in A \text{ влечет } \Re \langle x, f \rangle \leq q_A(f) \text{ для всех } f \in E_\varphi'. \quad (2) \]

Определение 2. Множество $A \subseteq E_\varphi$ называется регулярно выпуклым, если, обратно,

\[\Re \langle x, f \rangle \leq q_A(f) \text{ для всех } f \in E_\varphi' \text{ влечет } x \in A. \quad (2') \]

Б. Из (2') непосредственно следует, что множество $A \subseteq E_\varphi$ регулярно выпукло тогда и только тогда, когда для каждого $x_0 \notin A$ существует $f_0 \in E_\varphi'$ такое, что

\[q_A(f_0) < \Re \langle x_0, f_0 \rangle. \]

Б'. Из (2) и (2') видно также, что регулярно выпуклые множества в E_φ — это множества $A \subseteq E_\varphi$, удовлетворяющие условия

\[A = \{ x \in E : \Re \langle x, f \rangle \leq q_A(f) \text{ для всех } f \in E_\varphi' \}. \quad (3) \]

В. И E регулярно выпуклы. Действительно, ϕ удовлетворяет условию (3) в силу (1'), а E — поскольку

\[q_E(f) = \begin{cases} +\infty, & \text{если } f \neq 0, \\ 0, & \text{если } f = 0 \end{cases} \quad (4) \]

(см. для комплексного случая 5.1.Е').

Г. Всякое регулярно выпуклое множество $A \subseteq E_\varphi$ выпукло. В самом деле, если $a_1, a_2 \in A$ и $a_0 = (1 - \rho)a_1 + \rho a_2$, где $0 < \rho < 1$, то, каково бы ни было $f \in E_\varphi'$,

\[\Re \langle a_0, f \rangle = (1 - \rho)\Re \langle a_1, f \rangle + \rho \Re \langle a_2, f \rangle \leq \]

\[\leq (1 - \rho)q_A(f) + \rho q_A(f) = q_A(f), \]

так что, по (2'), $a_0 \in A$.

Д. Пересечение любого семейства регулярно выпуклых множеств $(A_\alpha)_{\alpha \in A}$ регулярно выпукло. Действительно, пусть $A = \bigcap_{\alpha \in A} A_\alpha$. Если $x_0 \notin A$, то $x_0 \notin A_\alpha$ для некоторого $\alpha \in A$, значит, по Б, существует $f_0 \in E_\varphi'$, для которого $q_{A_\alpha}(f_0) <$
< M(x_0, f_0). Но тогда (см. А'), тем более, q_A(f_0) < M(x_0, f_0), и остается снова применить Б.

Определение 3. Замкнутыми полупространствами вещественного L-пространства Eₓ будут называться все его полупространства

\[E_f, \xi = \{ x \in E : M(x, f) \leq \xi, \text{ где } f \in E' \setminus \{0\} \text{ и } \xi \in R \} \]

(см. 7.1.И).

Замечание. Так как неравенства M(x, f) > \xi и M(x, -f) < -\xi равносильны, то также все полупространства \(\{ x \in E : M(x, f) \geq \xi \} \), где \(f \in E' \setminus \{0\} \), — замкнутые.

Е. Каждое замкнутое полупространство регулярно выпукло. Действительно, \(x_0 \notin E_{f_0, \xi_0} \) означает, что \(\xi_0 < M(x_0, f_0) \). Но так как \(f_0 \neq 0 \), то (в комплексном случае — на основании 5.1.Е') существует \(x_1 \in E \), для которого \(M(x_1, f_0) = \xi_0 \), и потому \(\xi_0 = \sup_{x \in E_{f_0, \xi_0}} M(x, f_0) = q_{E_{f_0, \xi_0}}(f_0) \). Таким образом, \(\xi \in E_{f_0, \xi_0} \), для каждого \(x_0 \notin E_{f_0, \xi_0} \) имеем \(q_{E_{f_0, \xi_0}}(f_0) < M(x_0, f_0) \) и, значит, \(E_{f_0, \xi_0} \), по Б, регулярно выпукло.

Ж. Из Д и Е вытекает, что пересечение любого семейства замкнутых полупространств регулярно выпукло. Обратно, из Б' и (4) следует, что всякое непустое регулярно выпуклое множество \(A \neq \emptyset \) есть пересечение семейства замкнутых полупространств, а именно тех \(E_f, q_A(f) \) (\(f \in E' \setminus \{0\} \)), в которых \(q_A(f) \neq -\infty \). Если же \(E' \) — не нулевое, то и \(\phi \) есть пересечение замкнутых полупространств, например \(E_{f, -1} \) и \(E_{-f, -1} \), где \(f \in E' \setminus \{0\} \). Таким образом, в L-пространстве, обладающем не нулевым сопряженным, класс регулярно выпуклых множеств совпадает с классом пересечений семейств замкнутых полупространств, дополненным всем пространством.

З. Пробраз замкнутого полупространства относительно L-отображения является замкнутым полупространством. Действительно, если \(\varphi \in L(E_x, F_M) \), то, каковбы ни были \(g \in F_M \) и \(\xi \in R \),

\[\varphi^{-1}(F_g, \xi) = \{ x \in E : M(\varphi(x), g) \leq \xi \} = \{ x \in E : M(x, \varphi'(g)) \leq \xi \} = E_{\varphi'(g), \xi} \]
Принимая во внимание $\mathbf{Ж}$, заключаем, что прообраз регулярно выпуклого множества относительно L-отображения является регулярно выпуклым множеством.

II. Пусть $A \subseteq E'_2$. A содержится по крайней мере в одном регулярно выпуклом множестве; самом E. Пересечение всех регулярно выпуклых множеств, содержащих A, являющееся, по $\mathbf{Д}$, регулярно выпуклым множеством, будет называться регулярно выпуклой оболочкой множества A и обозначаться $\overline{\text{co}}(A)$. Очевидно, $\overline{\text{co}}(A)$ — наименьшее регулярно выпуклое множество, содержащее A, и A регулярно выпукло тогда и только тогда, когда оно совпадает со своей регулярно выпуклой оболочкой $\overline{\text{co}}(A)$. Ясно также, что $\text{co}(\overline{\text{co}}(A)) = \overline{\text{co}}(A)$ и если $A \subseteq B$, то $\overline{\text{co}}(A) \subseteq \text{co}(B)$.

K. Каково бы ни было $A \subseteq E'_2$, $\overline{\text{co}}(A) = \{ x \in E : \mathcal{R}(x, f) \leq q_A(f) \text{ для всех } f \in E'_2 \}$. (3')

Действительно, пусть $A' — множество, стоящее в правой части, т. е. $A' = \bigcap_{f \in E'_2} E_{f, q_A(f)}$, где

$$E_{f, q_A(f)} = \{ x \in E : \mathcal{R}(x, f) \leq q_A(f) \}.$$

Так как $E_{f, q_A(f)}$ есть либо всё E (если $q_A(f) = +\infty$ или $f = 0$), либо замкнутое полупространство, либо ϕ (если $q_A(f) = -\infty$, т. е. $A = \phi$), то в силу \mathbf{B}, E и \mathbf{D}, A' регулярно выпукло и, значит, $\overline{\text{co}}(A) \subseteq A'$. С другой стороны, так как $A \subseteq \overline{\text{co}}(A)$, то $q_{\overline{\text{co}}(A)} \leq q_A$ и потому, принимая во внимание $\mathbf{B'}$, $A' \subseteq \{ x \in E : \mathcal{R}(x, f) \leq q_{\overline{\text{co}}(A)}(f) \text{ для всех } f \in E'_2 \} = \overline{\text{co}}(A)$.

Тем самым $\overline{\text{co}}(A) = A'$.

K'. Из (3') непосредственно следует, что $q_{\overline{\text{co}}(A)} \leq q_A$; так как, с другой стороны, $q_A \leq q_{\overline{\text{co}}(A)}$, то заключаем, что, каково бы ни было $A \subseteq E'_2$, $q_{\overline{\text{co}}(A)}(f) = q_A(f)$ для всех $f \in E'_2$, (5)

t. е. опорная функция множества совпадает с опорной функцией его регулярно выпуклой оболочки.
Л. Если \(q_A \leq q_B \), то \(\overline{\text{co}}(A) \subseteq \overline{\text{co}}(B) \). Действительно, если бы существовало \(x_0 \in \overline{\text{co}}(A) \setminus \overline{\text{co}}(B) \), то по Б существовало бы \(f_0 \in E_{q_{(B)}} \), для которого \(q_{\overline{\text{co}}(B)}(f_0) < \Re \langle x_0, f_0 \rangle \), а по (2) мы имели бы \(\Re \langle x_0, f_0 \rangle \leq q_{\overline{\text{co}}(A)}(f_0) \); но из этих двух неравенств, в силу (5), вытекало бы, что \(q_B(f_0) < q_A(f_0) \), в противоречие с предположением.

Л''. Из Л непосредственно следует, что если \(q_A = q_B \), то \(\overline{\text{co}}(A) = \overline{\text{co}}(B) \). Так как в силу (5) верно и обратное, то заключаем, что множества в \(E_q \) имеют одинаковые опорные функции тогда и только тогда, когда регулярно выпуклые оболочки этих множеств совпадают, и, в частности, регулярно выпуклое множество однозначно определяется своей опорной функцией.

М. Каждая замкнутая гиперплоскость в \(E_q \) регулярно выпукла. Действительно, собственная замкнутая гиперплоскость \(X \) в \(E_q \) задается уравнением вида \(f(x) = \xi \), где \(f \in E_{q_0}' \setminus \{0\} \). Значит, в вещественном случае \(X = E_{f_0} \cap E_{-f_0} \), а в комплексном (см. 5.1.(12'))

\[
X = E_{f_0} \cap E_{-f_0} = E_{f_0}(\{0\}) \cap E_{f_0}(\{0\}) = E_{f_0}(\{0\})
\]

так что \(X \) регулярно выпукла в силу Е и Д. Регулярная же выпуклость \(E \) установлена в В.

Н. Регулярно выпуклая оболочка аффинного многообразия совпадает с его замыканием. В самом деле, пусть \(L \) — аффинное многообразие в \(E_q \), а \(L \) — пересечение всех содержащих его замкнутых гиперплоскостей. В силу М и Д \(L \) регулярно выпукло и потому \(\overline{\text{co}}(L) \subseteq L \). С другой стороны, если \(x_0 \notin \overline{\text{co}}(L) \), то, по Б, существует \(f_0 \in E_{q_0}', \) для которого \(q_{\overline{\text{co}}(L)}(f_0) = \Re \langle x_0, f_0 \rangle \). Тем самым, прежде всего, \(q_L(f_0) < \pm \infty \), откуда, в силу 5.1.Д, следует, что \(\Re f_0 \) постоянно на \(L \), так что \(L \subseteq K_{f_0} + x_1 \), где \(x_1 \in L \), и \(q_L(f_0) = \Re \langle x_1, f_0 \rangle \). Так как тогда \(\Re \langle x_1, f_0 \rangle < \Re \langle x_0, f_0 \rangle \), то \(x_0 \notin K_{f_0} + x_1 \). Но \(K_{f_0} + x_1 \) есть замкнутая гиперплоскость, содержащая \(L \), а тем самым и \(L \). В самом деле, в вещественном случае это уже установлено; если же \(E_q \) — комплексное, то постоянство \(\Re f_0 \) на \(L \) влечет, в силу 5.1.(12'), постоянство \(\Im f_0 \) на \(-iL \); но, полагая \(F = L - x_1 \) и принимая во внимание 3.3.Б 2° и 3.2.Б, имеем \(-iL = -iF - ix_1 = \)
$= F - i x_1$, так что $- i L$ есть аффинное многообразие, параллельное L; поэтому вместе с $R f_0$ также $S f_0$, а значит, и f_0 постоянно на L, и тем самым $L \subseteq K f_0 + x_1$. Таким образом, $x_0 \notin \overline{\co(L)}$ влечет $x_0 \notin \overline{L}$. В соединении с установленным выше включением $\overline{\co(L)} \subseteq \overline{L}$ это показывает, что $\overline{\co(L)} = \overline{L}$.

Но согласно 9.5.Ж' \overline{L} есть замыкание L.

Н. Из N вытекает, что для аффинных многообразий понятия замкнутости и регулярной выпуклости равноценны. В частности, одноточечные множества в E_2 регулярно выпуклы тогда и только тогда, когда E_2 отдельно.

О. Если регулярно выпукло множество $A \subseteq E_2$ содержится аффинное многообразие L, то все параллельные L аффинные многообразия, проходящие через точки множества A, содержатся в A. Действительно, в силу 3.3.Б \(2^o \text{ и } 3^o\), аффинное многообразие, параллельное L, проходящее через точку $x_0 \in A$, представимо в виде $L - x_1 + x_0$, где $x_1 \in L$.

Пусть $f \in E'_2$. Если $R f$ не постоянно на L, то в силу 5.1.Д $q_L(f) = + \infty$, и так как $L \subseteq A$, то также $q_A(f) = + \infty$.

Если же $R f$ постоянно на L, то оно постоянно на $L - x_1 + x_0$ и потому $q_{L - x_1 + x_0}(f) = \mathfrak{R}(x_0, f) \leq q_A(f)$. Таким образом, $q_{L - x_1 + x_0}(f) \leq q_A(f)$ для всех $f \in E'_2$. Принимая во внимание Н, Л и 9.5.И, заключаем, что $\overline{L - x_1 + x_0} = \overline{L - x_1 + x_0} \subseteq A$, т. е. аффинное многообразие, параллельное L, проходящее через любую точку $x_0 \in A$, содержится в A.

П. Пусть $(E, F; u)$ — двуяная пара векторных пространств над \mathbb{R} или \mathbb{C}. Каковы бы ни были $A \subseteq E$, скаляр λ и $z \in E$,

$$q_{\lambda A} = q_A \circ \lambda$$

(6)

и

$$q_{A + z} = q_A + Ru(z, \cdot).$$

(7)

Действительно, для любого $y \in F$ имеем

$$\sup_{a \in \lambda A} Ru(a, y) = \sup_{a \in A} Ru(\lambda a, y) = \sup_{a \in A} Ru(a, \lambda y)$$

и

$$\sup_{a \in A + z} Ru(a, y) = \sup_{a \in A} Ru(a + z, y) = \sup_{a \in A} [Ru(a, y) + Ru(z, y)] = \sup_{a \in A} Ru(a, y) + Ru(z, y).$$
П. Если $A \subset E_2$ регулярно выпукло, то λA и $A + z$ регулярно выпуклы при любых $\lambda \neq 0$ и $z \in E$. Действительно, если $x_0 \notin \lambda A$, где $\lambda \neq 0$, то $\lambda^{-1}x_0 \notin A$, значит, в силу Б существуют $f_0 \in E_2'$, для которого $q_A(\lambda f_0) < \mathfrak{R} \langle \lambda^{-1}x_0, \lambda f_0 \rangle$, т. е., принимая во внимание (6), — такое, что $q_{\lambda A}(f_0) < \mathfrak{R} \langle x_0, f_0 \rangle$. Точно так же, если $x_0 \notin A + z$, так что $x_0 - z \notin A$, то, по Б, существует $f_0 \in E_2'$, для которого $q_A(f_0) < \mathfrak{R} \langle x_0 - z, f_0 \rangle$, т. е., принимая во внимание (7), — такое, что $q_{A + z}(f_0) < \mathfrak{R} \langle x_0, f_0 \rangle$. Остается в обоих случаях снова применить Б.

Р. Операция образования регулярно выпуклой оболочки перестановочна с гомотетиями, т. е.

$$\text{co} (\lambda A) = \lambda \text{co} (A) \text{ для всех } A \subset E_2 \text{ и } \lambda \neq 0. \quad (6')$$

В самом деле, в силу (3') и (6) имеем

$$\text{co} (\lambda A) = \{ x \in E: \mathfrak{R} \langle x, f \rangle \leq q_{\lambda A}(f) \text{ для всех } f \in E_2' \} =$$
$$= \{ x \in E: \mathfrak{R} \langle \lambda^{-1}x, \lambda f \rangle \leq q_A(\lambda f) \text{ для всех } f \in E_2' \} =$$
$$= \lambda \{ x \in E: \mathfrak{R} \langle x, f \rangle \leq q_A(f) \text{ для всех } f \in E_2' \} = \lambda \text{co} (A).$$

Аналогично доказывается, что операция образования регулярно выпуклой оболочки перестановочна с переносами, т. е.

$$\text{co} (A + z) = \text{co} (A) + z \text{ для всех } A \subset E_2 \text{ и } z \in E. \quad (7')$$

С. Каково бы ни было $A \subset E_2$,

$$\text{co}(A) = \text{co}(\text{co}(A))$$

(см. 7.3 А). Действительно, в силу И, Г и 7.3 А

$$\text{co}(A) = \text{co}(\text{co}(A)) = \text{co}(\text{co}(A)) = \text{co}(A).$$

Т. Регулярно выпуклая оболочка абсолютно выпуклого множества $A \subset E_2$ абсолютно выпукла. Действительно, если $|\omega| = 1$, то, по 7.2 А, $\omega A = A$ и потому в силу (6') $\omega \text{co}(A) = \text{co}(\omega A) = \text{co}(A)$. С другой стороны, по И и Г, $\text{co}(A)$ выпукло. Следовательно, в силу 7.2 А $\text{co}(A)$ абсолютно выпукло.
§ 11] Л-ПРОСТРАНСТВА НАД R И C 189

У. Если $(E, F; u)$ — дуальная пара векторных пространств над R или C и множество A в выпукло, то

$$q_A(y) = \sup_{a \in A} |u(a, y)|.$$

Действительно, так как $\Re u(x, y) \leq |u(x, y)|$, то $q_A(y) \leq \sup_{a \in A} |u(a, y)|$. С другой стороны, полагая $\theta = \arg u(a, y)$ и принимая во внимание, что, по 7.2. А, $a \in A$ влечет $e^{-i\theta}a \in A$, имеем при $a \in A$:

$$|u(a, y)| = u(e^{-i\theta}a, y) = \Re u(e^{-i\theta}a, y) \leq q_A(y),$$

откуда $\sup_{a \in A} |u(a, y)| \leq q_A(y)$.

В частности, если множество $A \subset E_2$ абсолютно выпукло, то

$$q_A(f) = \sup_{a \in A} |\langle a, f \rangle|.$$

2. Поляры

Определение 4. Пусть $(E, F; u)$ — дуальная пара векторных пространств над R или C. Полярой множества $A \subset E$ в F относительно u будет называться множество

$$A^\circ = \{y \in F: \Re u(a, y) \leq 1 \text{ для всех } a \in A\}, \quad (1)$$

а полярой множества $B \subset F$ — его поляра в E относительно транспонированной билинейной функции u', т. е. множество

$$B^\circ = \{x \in E: \Re u(x, b) \leq 1 \text{ для всех } b \in B\}.$$

Под C^{∞} и $C^{\infty,0}$, где $C \subset E$ (F), будет пониматься соответственно $(C^\infty)^\circ$ и $(C^{\infty,0})^\circ$. C° будет называться биполярой множества C. В соответствии с этим полярой множества $A \subset E_2'$ мы будем называть (рассматривая, как обычно, E_2' в дуальной паре с E_2') множество

$$A^\circ = \{f \in E_2': \Re \langle a, f \rangle \leq 1 \text{ для всех } a \in A\}, \quad (2)$$

а биполярой — множество

$$A^{\infty} = \{x \in E: \Re \langle x, f \rangle \leq 1 \text{ для всех } f \in A^\circ\}. \quad (3)$$

А. Очевидно, $0 \in C^\circ$ для любого $C \subset E$ (F).

Б. Из определения 4 непосредственно следует:
1° $C \subset D$ влечет $D' \subset C'$.
2° $C \subset C^\infty$.
3° $\left(\bigcup_{a \in A} C_a \right)^\circ = \bigcap_{a \in A} C_a^\circ$.
Повторно применяя 1°, получаем
4° $C \subset D$ влечет $C^\infty \subset D^\infty$.
В. $C^{\infty\infty} = C'$. Для доказательства нужно лишь заменить
в 6.2.В аннунтары поляри.

В'. Для того чтобы множество $C \subset E (F)$ было полярой какого-нибудь множества из $F (E)$, необходимо и
достаточно, чтобы оно совпадало со своей биполярой.
Действительно, достаточность условия очевидна; если же
$C = D^\circ$, то в силу В $C^{\infty} = D^{\infty\infty} = D^\circ = C$.

Г. Если $C \subset E (F)$, то C^∞ — наименьшее из множеств
$M \subset E (F)$, для которых $M^\circ = C^\circ$ (и, равным образом, — из тех M, для которых $M^\circ \supset C^\circ$). Для доказательства нужно
лишь заменить в 6.2.Г аннунтары поляри.

Д. Пользуясь опорными функциями (см. определение 1),
можно заполнить формулы (1) (соответственно (2)) и (3) в виде

$$A^\circ = \{y \in F: q_A (y) \leq 1\} \quad \quad (A^\circ = \{f \in E: q_A (f) \leq 1\})$$

или

$$A^\circ = q_A^{-1} (]-\infty, 1[).$$

и

$$A^{\infty} = \{x \in E: q_{A^\circ} (x) \leq 1\}.$$

Е. Если $\lambda \neq 0$; то $(\lambda C)^\circ = \lambda^{-1} C^\circ$. Действительно, пусть,
скажем, $C \subset E$. В силу (5) и 1.(6) имеем

$$(\lambda C)^\circ = q_{\lambda C}^{-1} (]-\infty, 1[) = (q_C^{-1} \circ \lambda) (]-\infty, 1[) =$$

$$= \lambda^{-1} q_C^{-1} (]-\infty, 1[) = \lambda^{-1} C^\circ.$$

Ж. Если $A \subset \lambda B$, где $\lambda \neq 0$, то $B^\circ \subset \lambda A^\circ$. Действительно,
в силу Е и Б $\lambda^{-1} A^\circ = (\lambda B)^\circ \subset A^\circ$.

З. Поляра множества $C \subset E (F)$, инвариантного относительно всех гомотетий, совпадает с его аннунтаром.
В самом деле, пусть $x \in C$, $y \in C^\circ$ и $p > 0$. Так как, по условию,
$\pm p x \in C$, то $\mathcal{H} u (\pm p x, y) \leq 1$, т. е. $-\frac{1}{p} \leq \mathcal{H} u (x, y) \leq \frac{1}{p}$.
Ввиду произвольности p заключаем, что $\mathcal{H} u (x, y) = 0$ для
всех $x \in C$. Примем во внимание, что в комплексном
случае вместе с x также $-lx \in C$, получаем (см. 5.1.6),
что тогда и $\exists u (x, y) = R u (-lx, y) = 0$ для всех $x \in C$.
Тем самым $y \in C^1$, т. е. $C^o \subset C^1$. Обратное же включение
очевидно.

З'. В частности, поляра подпространства совпадает
с его аннулятором.

И. Поляра выпукла. Действительно, если, скажем, $C \subset E$,
то для любых $y_1, y_2 \in C^o$ и $\rho \in (0, 1)$ в силу 1.А и (4) имеем
$q_C ((1-\rho) x_1 + \rho x_2) \leq (1-\rho) q_C (x_1) + \rho q_C (x_2) \leq (1-\rho) + \rho = 1$.

К. Поляра абсолютно выпуклого множества A абсо-
лотно выпукла. В самом деле, если $|\omega| = 1$, то, по 7.2.А,
$\omega^{-1} A = A$ и потому в силу $E \omega A^o = (\omega^{-1} A)^o = A^o$. С дру-
гой стороны, по И, A^o выпукло. Следовательно, по 7.2.А,
A^o абсолютно выпукло.

Л. Если множество $A \subset E$ абсолютно выпукло, то
определение (1) или (2) его поляры может быть пред-
ставлено в форме

$$A^o = \{ y \in F: |u (a, y)| \leq 1 \text{ для всех } a \in A \} \quad (1')$$
или соответственно

$$A^o = \{ f \in E^*_x: |\langle a, f \rangle| \leq 1 \text{ для всех } a \in A \}. \quad (2')$$

Действительно, это непосредственно следует из 1.У.

М. Пусть E и F — векторные пространства над одним
и тем же полем K и u — билинейная функция на $E \times F$.
В силу 6.1.Б' и теоремы 1 § 9 в E и F существуют одно-
значно определенные L-структуры \mathcal{L} и \mathcal{M} такие, что

$$E^*_x = \{ u \cdot y: y \in F \} \text{ и } F^*_x = \{ u \cdot x: x \in E \},$$

т. е.

$$\mathcal{L} = \{ K_{u,y}: y \in F \} \text{ и } \mathcal{M} = \{ K_{u,x}: x \in E \}.$$
пару L-пространств относительно билинейной функции (x, f).

Теорема 1. Пусть $(E_2, F_\mathcal{M}, u)$ — дуальная пара L-пространств. Для того чтобы множество $B \subseteq F(E)$ было полярой какого-нибудь множества $A \subseteq E(F)$, т. е. (по B') совпадало со своей биполярой, необходимо и достаточно, чтобы B было регулярно выпуклым в $F_\mathcal{M}(E_2)$ и содержало нулевой вектор.

Доказательство. 1) Пусть, скажем, $A \subseteq E$. Если $y_0 \notin A^\circ$, то, согласно (1), существует $x_0 \in A$ такое, что $\Re u(x_0, y_0) > 1$. Но в силу Б 2) и (6) $q_{A^\circ}(x_0) \leq 1$. Принимая во внимание М, заключаем, что для каждого $y_0 \notin A^\circ$ существует $g_0 \in F_\mathcal{M}'$, а именно $g_0 = u_{x_0}$, для которого

$q_{A^\circ}(g_0)(= q_{A^\circ}(x_0)) < \Re \langle y_0, g_0 \rangle(= \Re u(x_0, y_0)).$

Но это означает, по 1.Б, что A° регулярно выпукло в $F_\mathcal{M}$.

При этом согласно А 0 $0 \in A^\circ$.

2) Пусть B — регулярно выпуклое множество в $F_\mathcal{M}$, содержащее нулевой вектор, и $y_0 \notin B$. По М и 1.Б, существует $g_0 = u_{x_0} \in F_\mathcal{M}'$, для которого

$q_B(x_0)(= q_B(g_0)) < \Re u(x_0, y_0)(= \Re \langle y_0, g_0 \rangle).$

Возьмем произвольное число ρ, удовлетворяющее неравенствам

$q_B(x_0) < \rho < \Re u(x_0, y_0).$ (7)

Так как $0 \notin B$, то $q_B(x_0) \geq 0$ и потому $\rho > 0$. Деля (7) на ρ, получаем

$q_B\left(\frac{x_0}{\rho}\right) < 1 < \Re u\left(\frac{x_0}{\rho}, y_0\right).$

Первое из этих неравенств показывает, что $\frac{x_0}{\rho} \notin B^\circ$. Но тогда из второго следует, что $y_0 \notin B^{\circ\circ}$. Итак, мы показали, что $y_0 \notin B$ влечет $y_0 \notin B^{\circ\circ}$, т. е. что $B^{\circ\circ} \subseteq B$. Принимая во внимание Б 2), заключаем, что $B = B^{\circ\circ}$ и тем самым B — поляра.

Из теоремы 1 в силу М' непосредственно следует

Теорема 1'. Множество $B \subseteq E_2'(E)$ является полярой некоторого множества $A \subseteq E(E_2')$, т. е. (по B') совпадает со своей биполярой, тогда и только тогда,
§ 11]

Л-пространства над \mathbb{R} и \mathbb{C}

когда оно регулярно выпукло в $E'_2 (E_2)$ и содержит нулевой вектор.

Н. Пусть $(E_2, F_M; u)$ — двуальная пара L-пространств. Для любого $A \subseteq E_2 (F_M)$ имеет место равенство

$$A^{\infty} = \overline{\text{co} (A \cup \{0\})},$$

t. е. биполяра множества в L-пространстве совпадает с регулярно выпуклой оболочкой объединения его с нулевым вектором. В самом деле, будучи, в силу теоремы 1, регулярно выпуклым множеством в $E_2 (F_M)$, содержащим нулевой вектор, $A^{\infty} \supseteq \overline{\text{co} (A \cup \{0\})}$. С другой стороны, так как $\overline{\text{co} (A \cup \{0\})}$ — регулярно выпуклое множество, содержащее нулевой вектор, то в силу теоремы 1 и $\mathcal{B}^{\infty} \overline{\text{co} (A \cup \{0\})} = (\overline{\text{co} (A \cup \{0\})})^{\infty} \supseteq A^{\infty}$.

О. Пусть $(E_2, F_M; u)$ — двуальная пара L-пространств. Полагая в $F_M (E_2)$ пересечения семейства регулярно выпуклых множеств $(A_\alpha)_{\alpha \in \Lambda}$ из $E_2 (F_M)$, содержащих нулевой вектор, совпадает с регулярно выпуклой оболочкой объединения их полляр. Действительно, в силу теоремы 1, \mathcal{B}^{∞} и \mathcal{N} имеем

$$\left(\bigcap_{\alpha \in \Lambda} A_\alpha \right)^{\circ} = \left(\bigcap_{\alpha \in \Lambda} A_\alpha^{\infty} \right)^{\circ} = \left(\bigcup_{\alpha \in \Lambda} A_\alpha \right)^{\circ} = \overline{\text{co} \left(\bigcup_{\alpha \in \Lambda} A_\alpha \right)}.$$

Определение 5. Бочкой в L-пространстве будет называться всякое его регулярно выпуклое поглощающее подмножество.

П. Пусть $(E_2, F_M; u)$ — двуальная пара L-пространств. Функционал Минковского всякой бочки $A \subseteq E_2 (F_M)$ совпадает с опорной функцией ее поляр $F_M (E_2)$. Действительно, в силу теоремы 1 и (6)

$$p_A (x) = \{ \inf \rho: \rho > 0 \text{ и } x \in \rho A \} = \{ \inf \rho: \rho > 0 \text{ и } p^{-1} x \in A^{\infty} \} = \{ \inf \rho: \rho > 0 \text{ и } q_{A^{\circ}} (p^{-1} x) \leq 1 \}.$$

Но

$$\{ \inf \rho: \rho > 0 \text{ и } q_{A^{\circ}} (p^{-1} x) \leq 1 \} = q_{A^{\circ}} (x).$$

В самом деле, так как $0 \in A^{\circ}$, то $p_x = q_{A^{\circ}} (x) \geq 0$ для всех $x \in E$, и потому

$$q_{A^{\circ}} (p^{-1} x) \begin{cases} < 1, & \text{если } \rho > p_x, \\ > 1, & \text{если } 0 < \rho < p_x. \end{cases}$$
Тем самым
\[p_A(x) = q_{A^o}(x). \]

Р. Из (4) и 1.(5) следует, что
\[(\text{co}(A))^o = A^o. \]

C. Пусть \(\varphi \in L(\mathcal{E}_x, \mathcal{F}_m) \).
1° Если \(A \subseteq E \), то
\[(\varphi(A))^o = \varphi^{-1}(A^o). \] \hspace{1cm} (8)

В самом деле,
\[(\varphi(A))^o = \{ g \in F_m' : \Re \langle a, \varphi'(g) \rangle = \Re \langle \varphi(a), g \rangle \leqslant 1 \text{ для всех } a \in A \} = \{ g \in F_m' : \varphi'(g) \in A^o \}. \]

В силу следствия теоремы 1 § 10 из (8) вытекает, что если \(\varphi \) — изоморфизм \(\mathcal{E}_x \) в \(F_m \), то \(\varphi'((\varphi(A))^o) = A^o \).

2° Если \(D \subseteq F_m' \), то
\[(\varphi'(D))^o = \varphi^{-1}(D^o). \] \hspace{1cm} (8')

Действительно,
\[(\varphi'(D))^o = \{ x \in E : \Re \langle \varphi(x), g \rangle = \Re \langle x, \varphi'(g) \rangle \leqslant 1 \text{ для всех } g \in D \} = \{ x \in E : \varphi(x) \in D^o \}. \]

Из (8') вытекает, что если \(\varphi \) — наложение, то \(\varphi(\varphi'(D))^o = D^o \).

3° Если \(\varphi(A) \subseteq B \), то \(\varphi'(B^o) \subseteq A^o \). Действительно, в силу Б 1° и 1° \(B^o \subseteq (\varphi(A))^o = \varphi^{-1}(A^o) \), откуда \(\varphi'(B^o) \subseteq \varphi(\varphi^{-1}(A^o)) \subseteq A^o \).

4° Если \(\varphi'(D) \subseteq C \), то \(\varphi(C^o) \subseteq D^o \). В самом деле, в силу Б 1° и 2° \(C^o \subseteq (\varphi'(D))^o = \varphi^{-1}(D^o) \), откуда \(\varphi(C^o) \subseteq \varphi(\varphi^{-1}(D^o)) \subseteq D^o \).

5° Если \(A \subseteq E_x \), \(B \subseteq F_m \) — регулярно выпуклое множество, содержащее нулевой вектор, и \(\varphi'(B^o) \subseteq A^o \), то \(\varphi(A) \subseteq B \). Действительно, в силу Б 2° и 4°, \(\varphi(A) \subseteq \varphi(A^o) \subseteq B^o \), а по теореме 1° \(B^{oo} = B \).
3. L-ограниченные множества

Определение 6. Множество $A \subseteq E_2$ будет называться L-ограниченным, если на нем ограничен каждый линейный функционал, т. е.

$$\tilde{q}_A(f) = \sup_{a \in A} |\langle a, f \rangle| < +\infty$$

для всех $f \in E_2'$.

А. Очевидно, каждое конечное множество в E_2 L-ограниченно.

Б. Из определения 6 непосредственно следует:

1° Всякое подмножество L-ограниченного множества L-ограниченно.

2° L-ограниченность сохраняется при гомотетиях и переносах.

3° Объединение конечного семейства L-ограниченных множеств L-ограниченно.

1° Сумма $A + B$ L-ограниченных множеств A и B L-ограничена.

В. Абсолютно выпуклая оболочка $\Gamma(A)$ L-ограниченного множества A L-ограничена. Действительно, согласно 7.3.3 всякое $a \in \Gamma(A)$ представимо в виде $a = \sum_{a \in A} \lambda_a a_a$, где все $a_a \in A$ и $\sum_{a \in A} |\lambda_a| \leq 1$. Но тогда

$$|\langle a, f \rangle| \leq \sum_{a \in A} |\lambda_a| |\langle a_a, f \rangle| \leq \tilde{q}_A(f) \sum_{a \in A} |\lambda_a| \leq \tilde{q}_A(f)$$

и потому $\tilde{q}_{\Gamma(A)}(f) \leq \tilde{q}_A(f) < +\infty$ для всех $f \in E_2'$, т. е. $\Gamma(A)$ L-ограниченно.

В'. Из В и Б 1° следует, что выпуклая оболочка L-ограниченного множества L-ограничена.

Г. Образ L-ограниченного множества при L-отображении L-ограничен. Действительно, если A — L-ограниченное множество в E_2 и $\varphi \in L(E_2, F_m)$, то

$$\tilde{q}_{\varphi(A)}(g) = \sup_{a \in A} |\langle \varphi(a), g \rangle| = \sup_{a \in A} |\langle a, \varphi'(g) \rangle| = \tilde{q}_A(\varphi'(g)) < +\infty$$

для всех $g \in F_m'$.

Г'. Из Г, в частности, следует, что при каноническом наложении L-пространства на его факторпространство
каждое L-ограниченное множество переходит в L-ограниченное множество.

Д. Если $G_{x'} \subseteq E_x$, то множество $A \subseteq G_{x'}$ L-ограниченно в $G_{x'}$, тогда и только тогда, когда оно L-ограниченно в E_x. В самом деле, если A L-ограниченно в $G_{x'}$, то оно L-ограничено в E_x в силу Γ, поскольку каноническое вложение $G_{x'}$ в E_x, по определению 6 § 9, есть L-отображение. Обратно, если A L-ограничено в E_x, то оно L-ограничено в $G_{x'}$, поскольку каждый линейный функционал $g \in G_{x'}$, согласно 9.6.Д', является сужением на G некоторого линейного функционала $f \in E_x'$ и потому ограничен на A.

Е. Для того чтобы непустое множество $A \subseteq E_x$ было L-ограниченным, необходимо и достаточно, чтобы его опорная функция $q_A(f)$ была конечна для всех $f \in E_x'$. Действительно, необходимость условия следует из того, что $q_A \leq \tilde{q}_A$. С другой стороны, так как в вещественном случае

$$|\langle x, f \rangle| = \max \{ |\langle x, f \rangle|, |\langle x, -f \rangle| \},$$

а в комплексном, в силу 5.1.(12'),

$$|\langle x, f \rangle| \leq |\Re \langle x, f \rangle| + |\Im \langle x, f \rangle| =$$

$$= |\Re \langle x, f \rangle| + |\Re \langle x, -f \circ l \rangle| =$$

$$= \max \{ \Re \langle x, f \rangle, \Re \langle x, -f \rangle \} +$$

$$+ \max \{ \Re \langle x, -f \circ l \rangle, \Re \langle x, f \circ l \rangle \},$$

то в вещественном случае

$$\tilde{q}_A(f) \leq \max \{ q_A(f), q_A(-f) \},$$

а в комплексном

$$\tilde{q}_A(f) \leq \max \{ q_A(f), q_A(-f) \} + \max \{ q_A(-f \circ l), q_A(f \circ l) \}.$$

Потому, если q_A всюду конечно, то в обоих случаях и \tilde{q}_A всюду конечно, а значит, A L-ограниченно.

Ж. Регулярно выпуклая оболочка L-ограниченного множества L-ограничена. Это непосредственно следует из E в силу 1.К'. Принимая во внимание В, заключаем, что если множество A L-ограничено, то и его «регулярно абсолютно выпуклая оболочка» $\mathrm{co}(\Gamma(A))$ L-ограничена.
§ 11]

Л-пространства над \(\mathbb{R} \) и \(\mathbb{C} \)

Ж'. Так как \(A \cup \{0\} \subseteq \Gamma(A) \), то из Ж, в силу 2.Н, вытекает, что биполяр \(L \)-ограниченного множества \(L \)-ограничен.

3. Пусть \((E_\mathcal{L}, F_\mathcal{M}; u) \) — дуальная пара \(L \)-пространств. Для того чтобы множество \(A \subseteq E (F) \) было \(L \)-ограниченным в \(E_\mathcal{L} \), необходимо и достаточно, чтобы его поляр \(A^\circ \) в \(F_\mathcal{M} \) была бочкой. Действительно, когда у пробегает \(F \), то, согласно 2.М, \(f_y = u \cdot y \) пробегает \(E_\mathcal{L}' \). Поэтому \(L \)-ограниченность \(A \) означает конечность \(q_A(y) = q_A(f_y) \) для всех \(y \in F \). Но, как следует из 2.(4), каково бы ни было \(y \in F \), тогда \(y \in \rho A^\circ \) для всех \(\rho > \max \{q_A(y), 0\} \), так что \(A^\circ \) — поглощающее множество в \(F \). Принимая во внимание теорему 1, заключаем, что \(A^\circ \) — бочка в \(F_\mathcal{M} \). Обратно, если \(A^\circ \) — бочка в \(F_\mathcal{M} \), то для каждого \(y \in F \) существует \(\rho > 0 \) такое, что \(y \in \rho A^\circ \), откуда следует, на основании 2.(4), что \(q_A(f_y) = q_A(y) \leq \rho \); но в силу \(E \) это означает, что \(A \) \(L \)-ограничен в \(E_\mathcal{L} \).

И. \(L \)-ограниченность есть свойство счетного характера, т. е. множество \(A \subseteq E_\mathcal{L} \) \(L \)-ограниченно тогда и только тогда, когда каждое его счетное подмножество \(L \)-ограничено. Действительно, «только тогда» следует из 3.1; если же \(A \) не \(L \)-ограничено, то существует линейный функционал \(f \in E_\mathcal{L}' \), не ограниченный на \(A \), и, значит, последовательность попарно различных элементов \(x_n \in A \), для которой \(\langle x_n, f \rangle \to \infty \), а тогда счетное подмножество \(\{x_1, \ldots, x_n, \ldots\} \subseteq A \) не \(L \)-ограничено.

К. Пусть \((E_\mathcal{L}^a)_{a \in A} \) — семейство вещественных (комплексных) \(L \)-пространств, \(E \) — вещественное (комплексное) векторное пространство, \(\varphi_a \in \mathcal{L}(E, E^a) \) для каждого \(a \in A \) и \(\mathcal{L} \) — слабейшая из \(L \)-структур \(\mathcal{L}' \) в \(E \), при которых все \(\varphi_a \in \mathcal{L}(E_\mathcal{L}^a, E_\mathcal{L}^a) \). Множество \(A \subseteq E \) \(L \)-ограничено в \(E_\mathcal{L} \) тогда и только тогда, когда каждое \(\varphi_a(A) \) \(L \)-ограничено в \(E_\mathcal{L}^a \). Действительно, «тогда» следует из 9.4.В, а «только тогда» — из \(\Gamma \).

К'. Из И и определения 9 § 9 непосредственно вытекает, что множество \(A \subseteq \bigcap_{a \in A} E^a \) \(L \)-ограниченно в \(\bigcap_{a \in A} E_\mathcal{L}^a \) тогда и только тогда, когда каждая его проекция \(\text{pr}_a(A) \) \(L \)-ограничена в \(E_\mathcal{L}^a \).
Пусть $E_{x} = \sum_{a \in \Lambda}^{E_{x}^{a}}$ и ω — каноническое вложение $\sum E^{a}$ в $\prod_{a \in \Lambda} E^{a}$. Множество $A \subset E$ L-ограничено в E_{x} тогда и только тогда, когда множество A_{x} всех $x^{a} \in E^{a}$, для которых существует $x \in E$ с $x_{x} = x^{a}$, L-ограничено для каждого $a \in \Lambda$ и при том множество A'_{x} всех $x \in \Lambda$, для которых $A_{x} \setminus \{0\} \neq \emptyset$, конечно. Действительно, пусть эти условия выполнены. В силу 9.9.3 тогда для всех $x \in A$ и $\bar{f} \in E_{x}'$ имеем

$$\langle x, \bar{f} \rangle = \sum_{a \in \Lambda'} \langle x_{a}, \bar{f} \circ \text{in}_{a} \rangle,$$

откуда

$$\tilde{q}_{A} (\bar{f}) \leqslant \sum_{a \in \Lambda'} \tilde{q}_{A_{x}} (\bar{f} \circ \text{in}_{a}) < + \infty.$$

и значит, A L-ограниченно. Обратно, пусть A L-ограничено, а E_{x} отделено. Так как $A_{x} = \text{pr}_{x}(\omega(A))$, то в силу 9.9 Л каждое A_{x} L-ограничено. Пусть, впроки утверждению, Λ' бесконечно. Так как у каждого $x \in E$ лишь конечное число $x_{a} \neq 0$, тогда можно индуктивно построить бесконечную последовательность Λ'' попарно различных индексов $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \ldots$ такую, что для каждого n существует $x^{n} \in A_{x}$, у которого $x_{a_{n}}^{n} \neq 0$, а $x_{a_{m}}^{n}$ при всех $m > n$ равно 0. Далее, так как отделимость E_{x} влечет отделимость всех $E_{x_{a}}$ (9.9.Л), то с помощью индукции легко убедиться в том, что для каждого n существует $f_{a} \in E_{x_{a_{n}}}^{a}$, удовлетворяющее неравенству

$$|\langle x_{a_{n}}, f_{a_{n}} \rangle| \geqslant \sum_{k=1}^{n-1} |\langle x_{a_{k}}, f_{a_{k}} \rangle| + n.$$

Взяв $f = (f^{a}) \in \prod_{a \in \Lambda} E_{x_{a}}^{a}$, где

$$f^{a} = \begin{cases} f_{a_{n}} & \text{при } a = \alpha_{n} \quad (n = 1, 2, \ldots), \\ 0 & \text{при } a \notin \Lambda'' \end{cases}$$

мы для линейного функционала $\bar{f} \in E_{x}'$, определяемого формулой

$$\langle x, \bar{f} \rangle = \sum_{a \in \Lambda} \langle x_{a}, f^{a} \rangle$$
(см. 9.9.3), получим

\[|\langle x^n, \vec{f} \rangle| = \left| \sum_{k=1}^{\infty} \langle x^n_k, f_{a_k} \rangle \right| = \left| \sum_{k=1}^{n} \langle x^n_k, f_{a_k} \rangle \right| \geq \]

\[\geq |\langle x^n_n, f_{a_n} \rangle| - \sum_{k=1}^{n-1} |\langle x^n_k, f_{a_k} \rangle| > n, \]

так что \(\vec{f} \) не ограничен на \(A \). Так как это противоречит предположению, что \(A \) \(L \)-ограниченно, то заключаем, что \(A' \) конечно.

4. Совершенно выпуклые множества. Теорема Крейна — Мильмана

В этом разделе рассматриваются только вещественные \(L \)-пространства.

Определение 7. Множество \(A \) в вещественном \(L \)-пространстве \(E_2 \) будет называться совершенно выпуклым, если для всякой линейной функции \(s \in E_2^{\prime \prime} \), мажорируемой опорной функцией множества \(A \), т. е. удовлетворяющей условию

\[\langle f, s \rangle \leq q_A(f) = \sup_{a \in A} \langle a, f \rangle \] для всех \(f \in E_2' \),

существует \(x \in A \) такое, что \(s = \langle x, \cdot \rangle_2 \), т. е.

\[\langle f, s \rangle = \langle x, f \rangle \] для всех \(f \in E_2' \).

А. Сравнение определений 2 и 7 показывает, что всякое совершенно выпуклое множество регулярно выпукло (и тем самым, по 1.Г, выпукло).

А'. В конечном \(L \)-пространстве \(E_2 \) всякое регулярно выпуклое множество совершенно выпукло. Действительно, так как \(E_2^{\prime \prime} \subseteq E_2' \), отсюда (10.1.А) и конечномерно (9.3.Б'), то \(E_2^{\prime \prime} = E_2'' \) (9.3.Б) и потому всякое \(s \in E_2^{\prime \prime} \) представимо в виде \(s = \langle x, \cdot \rangle_2 \), где \(x \in E \) (10.1.Б).

Б. Пересечение совершенно выпуклого множества \(A \) из \(E_2 \) с регулярно выпуклым множеством \(B \) совершенно выпукло. Действительно, если \(s \in E_2^{\prime \prime} \) удовлетворяет условию \(s \leq q_A \cap B \), то для силу 1.А' \(s \leq q_A \), откуда, вследствие совершенно выпуклости множества \(A \), \(s = \langle x, \cdot \rangle_2 \), где \(x \in A \). Но тогда \(\langle x, \cdot \rangle_2 \leq q_A \cap B \leq q_B \), и так как \(B \)
регулярно выпукло, то \(x \in B \). Тем самым \(s \leq q_A \cap B \) влечет \(s = \langle x, \cdot \rangle_{\mathcal{L}} \), где \(x \in A \cap B \), т. е. \(A \cap B \) совершенно выпукло.

В частности, всякое регулярно выпуклое подмножество совершенно выпуклого множества совершенно выпукло.

В. Если \(A = L \)-ограниченное совершенно выпуклое множество в \(E_\mathcal{L} \) и \(\mathcal{L}_1 \subset L \) то \(A = L \)-ограниченное совершенно выпуклое множество также в \(E_\mathcal{L}_1 \). В самом деле, так как \(E_\mathcal{L}_{1} \subset E_\mathcal{L} \) (9.1.E), то \(L \)-ограниченность \(A \) в \(E_\mathcal{L}_{1} \) следует из 3.Е. Пусть \(s_1 \) — линейная функция на \(E_\mathcal{L}_{1} \), удовлетворяющая неравенству \(\langle f_1, s_1 \rangle \leq q_A (f_1) \) для всех \(f_1 \in E_\mathcal{L}_{1} \). Так как в силу \(L \)-ограниченности \(A \) в \(E_\mathcal{L} q_A \) — конечная сублинейная функция на \(E_{\mathcal{L}} \) (см. 1.А), то, по теореме 1 § 8, \(s_1 \) обладает продолжением \(s \in E_{\mathcal{L}}^* \), мажорирующим функцией \(q_A \) на всем \(E_{\mathcal{L}} \). Но в силу совершенно выпуклости множества \(A \) в \(E_\mathcal{L} \) тогда существует \(a \in A \) такое, что \(\langle f, s \rangle = \langle a, f \rangle \) для всех \(f \in E_{\mathcal{L}} \). Значит, в частности, \(\langle f_1, s_1 \rangle = \langle f_1, s \rangle = \langle a, f_1 \rangle \) для всех \(f_1 \in E_\mathcal{L}_{1} \) и тем самым \(A \) совершенно выпукло в \(E_\mathcal{L}_{1} \).

Г. Более общим образом, если \(A = L \)-ограниченное совершенно выпуклое множество в \(E_\mathcal{L} \) и \(\varphi \in L (E_\mathcal{L}, F_{\mathcal{M}}) \), то \(\varphi (A) \) — \(L \)-ограниченное совершенно выпуклое множество в \(F_{\mathcal{M}} \). Действительно, \(L \)-ограниченность \(\varphi (A) \) установлена в 3.Г. Пусть \(t \) — линейная функция на \(F_{\mathcal{M}} \), мажорируемая опорной функцией множества \(\varphi (A) \), т. е.

\[
\langle g, t \rangle \leq \sup_{y \in \varphi (A)} \langle y, g \rangle = \sup_{x \in A} \langle \varphi (x), g \rangle = \sup_{x \in A} \langle x, \varphi' (g) \rangle \text{ для всех } g \in F_{\mathcal{M}}. \quad (1)
\]

Если \(g \in K_{\varphi} \), так что и \(-g \in K_{\varphi} \), то в силу (1) \(\langle g, t \rangle \leq 0 \) и \(\langle -g, t \rangle \leq 0 \), откуда \(g \in K_{t} \). Поэтому в силу теоремы 1 § 4 т = \(s \circ \varphi' \), где \(s \) — линейная функция на \(R_{\varphi} \), так что (1) принимает вид

\[
\langle \varphi' (g), s \rangle \leq \sup_{x \in A} \langle x, \varphi' (g) \rangle \text{ для всех } g \in F_{\mathcal{M}}. \quad (1')
\]

т. е.

\[
\langle h, s \rangle \leq \sup_{x \in A} \langle x, h \rangle \text{ для всех } h \in R_{\varphi}. \quad (1')
\]

Но так как \(R_{\varphi} \subset E_{\mathcal{L}} \), то \(\mathcal{L} R_{\varphi} = \{ K_{h} ; h \in R_{\varphi} \} \leq \mathcal{L} \), так что, согласно В, \(A = L \)-ограниченное совершенно выпуклое множество
и в \((E, \mathcal{L}_{R'})\). Поэтому из \((1')\) следует существование \(a \in A\) такого, что \(\langle h, s \rangle = \langle a, h \rangle\) для всех \(h \in R'\). А тогда
\[
\langle g, t \rangle = \langle \varphi'(g), s \rangle = \langle a, \varphi'(g) \rangle = \langle \varphi(a), g \rangle
\]
для всех \(g \in F_m'\).

Чем и доказано, что \(\varphi(A)\) совершенно выпукло в \(F_m\).

Д. Если \(A\) — бочка в \(E_2\), обладающая тем свойством, что всякая линейная функция \(f \in E_*\), для которой \(q_A(f) \leq +\infty\), является линейным функционалом на \(E_2\), то \(A^0\) — \(L\)-ограниченное совершенно выпуклое множество в \(E_2'\) (теорема Алаоглу). Действительно, так как в силу теоремы 1' \(A = A^0\), то \(L\)-ограниченность \(A^0\) следует из 3.3 (примененного к двум паре, образуемой \(L\)-пространствами \(E_2'\) и \(E_2\)). Пусть \(\varphi\) — линейная функция на \(E_2''\), удовлетворяющая условию
\[
\langle g, \varphi \rangle \leq q_{A^0}(g)\text{ для всех } g \in E_2''.
\]
(2)

В силу 10.1.Б для каждого \(g \in E_2''\) существует \(x \in E\) такое, что \(g = \alpha(x)\), где \(\alpha\) — канонический гомоморфизм \(E_2\) на \(E_2''\). Так как тогда
\[
q_{A^0}(g) = \sup_{f \in A^0} \langle f, g \rangle = \sup_{f \in A^0} \langle x, f \rangle = q_{A^0}(x),
\]
a, в силу 2.И, \(q_{A^0}(x) = p_A(x)\), то (2) означает, что
\[
\langle x, \sigma \circ \alpha \rangle (\equiv \langle g, \varphi \rangle) \leq p_A(x)\text{ для всех } x \in E.
\]
(2')

Но \(p_A(x) \leq 1\) для всех \(x \in A\) (см. 7.6.(1)). Поэтому из (2') следует, что
\[
q_A(\sigma \circ \alpha) \leq 1.
\]
(3)

В силу предположения относительно \(A\) это, прежде всего, означает, что \(\sigma \circ \alpha\) — линейный функционал на \(E_2\). Так как тогда
\[
\langle g, \sigma \rangle = \langle x, \sigma \circ \alpha \rangle = \langle \sigma \circ \alpha, g \rangle\text{ для всех } g \in E_2''
\]
где, снова в силу (3), \(\sigma \circ \alpha \in A^0\), то заключаем, что \(A^0\) — совершенно выпуклое множество в \(E_2'\).

Теорема 2. Всякое множество \(\mathcal{E}\) замкнутых гиперплоскостей в \(E_2\), образующее с \(L\)-ограниченным совершенно выпуклым множеством \(A \subset E_2\) центрированную систему, имеет с \(A\) непустое пересечение.
Доказательство. В силу условия теоремы, каждое конечное семейство \((X_k)_{1 \leq k \leq n} \) гиперплоскостей из \(\mathcal{S} \) имеет непустое пересечение. Пусть \(\mathcal{S}_0 \) — объединение пучков \([X_1, \ldots, X_n] \), порожденных всевозможными такими семействами. Если \(Y_1, \ldots, Y_m \in \mathcal{S}_0 \), так что \(Y_l \in [X_{l_1}, \ldots, X_{l_n}] \), где \(X_{l_1}, \ldots, X_{l_n} \in \mathcal{S} \) (\(l = 1, \ldots, m \)), то

\[
\bigcap_{l=1}^m Y_l \supseteq \bigcap_{i=1}^n X_i \neq \emptyset,
\]

и значит,

\[
[Y_1, \ldots, Y_m] \subset [X_{l_1}, \ldots, X_{l_n}], \ldots, X_{m_1}, \ldots, X_{m_n}] \subset \mathcal{S}_0.
\]

Таким образом, \(\mathcal{S}_0 \) центрировано и вместе с каждым конечным семейством своих гиперплоскостей содержит весь порожденный им пучок. В силу 10.5.В' тем же свойством обладает тогда множество \(\mathcal{L}_0 \) гиперподпространств, параллельных всевозможным гиперплоскостям из \(\mathcal{S}_0 \), т.е. \(\mathcal{L}_0 \) — \(L \)-структура в \(E \). Так как \(\mathcal{S}_0 \) центрировано и содержит по гиперплоскости, параллельной каждому гиперподпространству из \(\mathcal{L}_0 \), то в силу теоремы 6 § 10 \(\mathcal{S}_0 \) есть связка гиперплоскостей в \(E_{\mathcal{L}_0} \). Пусть \(s_0 \) — линейная функция на \(E_{\mathcal{L}_0} \), порождаемая, по теореме 7 § 10, этой связкой, так что для всех \(f_0 \in E_{\mathcal{L}_0} \) имеем

\[
\langle f_0, s_0 \rangle = f_0(X_{f_0}), \quad (4)
\]

где \(X_{f_0} \) — гиперплоскость из \(\mathcal{S}_0 \), параллельная \(K_{f_0} \), а \(f_0(X_{f_0}) \) — постоянное значение, принимаемое функцией \(f_0 \) на \(X_{f_0} \). По построению, каждая гиперплоскость \(X_{f_0} \in \mathcal{S}_0 \) принадлежит некоторому пучку \([X_1, \ldots, X_n] \), где \(X_1, \ldots, X_n \in \mathcal{S} \), и поэтому \(X_{f_0} \cap A \supseteq \bigcap_{k=1}^n (X_k \cap A) \neq \emptyset \), т.е. \(X_{f_0} \) пересекает \(A \). Тогда

\[
f_0(X_{f_0}) \leq q_A(f_0) \text{ и, значит, в силу (4)}
\]

\[
\langle f_0, s_0 \rangle \leq q_A(f_0) \text{ для всех } f_0 \in E_{\mathcal{L}_0}. \quad (5)
\]

Но так как \(\mathcal{S}_0 \) в силу 10.5.В состоит из замкнутых гиперплоскостей, то \(\mathcal{L}_0 \subset \mathcal{L} \) и потому \(E_{\mathcal{L}_0} \subset \subset E_{\mathcal{L}} \). С другой стороны, в силу 1.А и \(L \)-ограниченности множества \(A \), \(q_A \) — конечная сублинейная функция на \(E_{\mathcal{L}} \). Поэтому на ос-
нованні теореми 1 § 8 из (5) следует, что s_0 обладает про-
dолжением $s \in E_{\mathcal{A}}^*$, удовлетворяющим условию

$$\langle f, s \rangle \leq q_A(f)$$ для всех $f \in E_{\mathcal{A}}^*$.

В силу совершенной выпуклости множества A тогда существует $a \in A$ такое, что

$$\langle f, s \rangle = \langle a, f \rangle$$ для всех $f \in E_{\mathcal{A}}^*$,

и в частности

$$\langle f_0, s_0 \rangle = \langle a, f_0 \rangle$$ для всех $f_0 \in E_{\mathcal{A}}^*$.

А в таком случае в силу (4) $\langle a, f_0 \rangle = f_0(X_{f_0})$, т. е. $a \in X_{f_0}$, для всех $X_{f_0} \in \mathcal{A}$. Так как X_{f_0} пробегает всё \mathcal{A}, когда f_0 пробегает всё $E_{\mathcal{A}}^*$, то заключаем, что

$$a \in \bigcap_{X \in \mathcal{A}} (X \cap A) \subseteq \bigcap_{X \in \mathcal{A}} (X \cap A),$$

и теорема доказана.

Определение 8. Опорной гиперплоскостью множества $A \subseteq E_{\mathcal{A}}$ называется всякая гиперплоскость, которая может быть задана уравнением

$$\langle x, f_0 \rangle = q_A(f_0),$$

где $f_0 \in E_{\mathcal{A}}^* \setminus \{0\}$.

Е. Из определения 8 непосредственно следует:

1° Множество $A \subseteq E_{\mathcal{A}}$, обладающее опорной гипер-
плоскостью, не пусто.

2° Всякая опорная гиперплоскость замкнута и собственная.

3° Опорная гиперплоскость множества A ограничивает минимальное замкнутое полупространство, содержащее A; а именно, A содержится в полупространстве $E_{f_0, q_A(f_0)} = \{ x \in E : \langle x, f_0 \rangle \leq q_A(f_0) \}$ и не содержится ни в каком меньшем полупространстве $E_{f_0, q_A(f_0) - \varepsilon}$.

4° Если $A L$-ограничено, то оно обладает опорной гиперплоскостью (6) для каждого $f_0 \in E_{\mathcal{A}}^* \setminus \{0\}$.

Ж. Опорная гиперплоскость $X L$-ограниченного совершенно выпуклого множества A имеет с ним непустое пересечение. Действительно, пусть (6) — уравнение гипер-
плоскости X. В силу E^1 и L-ограниченности множества A q_A есть конечная сублинейная функция на E_2'. Поэтому согласно следствию 1 теоремы 1 § 8 существует линейная функция $s \in E_2'$ такая, что

$$\langle f, s \rangle \leq q_A(f)$$

для всех $f \in E_2'$ (7)

и

$$\langle f_0, s \rangle = q_A(f_0).$$

(8)

Поскольку A совершенно выпукло, из (7) вытекает существование такого $a \in A$, что

$$\langle f, s \rangle = \langle a, f \rangle$$

для всех $f \in E_2'$.

Но из (8) следует тогда, что $\langle a, f_0 \rangle = q_A(f_0)$, т. е. a удовлетворяет уравнению (6) и, значит, $a \in X \cap A$.

Определение 9. Граничным выпуклого множества $G \subset E_2$ мы будем называть всякое его непустое пересечение Γ с каким-нибудь множеством замкнутых собственных гиперплоскостей, обладающее следующим свойством: если $a_0, a_1 \in A$ и $(a_0, a_1) \cap \Gamma \neq \emptyset$, т. е. некоторая внутренняя точка отрезка $[a_0, a_1]$ принадлежит Γ, то $a_0, a_1 \in \Gamma$.

3. В силу 7.1.Д, М грань выпуклого множества выпукла. В силу 1.Д, М грань регулярно выпуклого множества регулярно выпукла. В силу Б и 1.Д, М грань совершенно выпуклого множества совершенно выпукла.

И. Если опорная гиперплоскость X выпуклого множества $G \subset E_2$ имеет с A непустое пересечение Γ, то Γ есть граница множества A. Действительно, пусть $a_0, a_1 \in A$, $a \in (a_0, a_1) \cap \Gamma$ и (6) — уравнение гиперплоскости X. Как внутренняя точка отрезка $[a_0, a_1]$, $a = \rho_0 a_0 + \rho_1 a_1$, где $\rho_0 > 0$, $\rho_1 > 0$ и $\rho_0 + \rho_1 = 1$. Поэтому

$$\rho_0 \langle a_0, f_0 \rangle + \rho_1 \langle a_1, f_0 \rangle = \langle a, f_0 \rangle = q_A(f_0).$$

Обозначая через i произвольное из чисел 0, 1, имеем тогда

$$q_A(f_0) \geq \langle a_i, f_0 \rangle = \frac{q_A(f_0) - \rho_{i-1} \langle a_{i-1}, f_0 \rangle}{\rho_i} \geq \frac{q_A(f_0) - \rho_{i-1} q_A(f_0)}{\rho_i} = q_A(f_0),$$

откуда $\langle a_i, f_0 \rangle = q_A(f_0)$, т. е. a_0 и a_1 удовлетворяют уравнению (6) и тем самым принадлежат $X \cap A = \Gamma$.

§ 11] L-ПРОСТРАНСТВА НАД R И C 205

И. Из Ж и И следует, что опорная гиперплоскость L-ограниченного совершенно выпуклого множества пересекает это множество по его границе. На основании Е 4° заключаем, что, каково бы ни было замкнутое собственное гиперпаципространство H, L-ограниченное совершенно выпуклое множество обладает гранью, лежащей в гиперплоскости, параллельной H.

К. Непустое пересечение Г семейства (Γα)α∈A граней выпуклого множества A также является гранью множества A. Действительно, так как каждое Γα есть пересечение A с некоторым множеством замкнутых собственных гиперплоскостей, то то же самое верно и для Г. При этом, если a₀, a₁ ∈ A и (a₀, a₁) ∩ Г≠ ∅, то тем самым (a₀, a₁) ∩ Гα≠ ∅ для каждого α, следовательно, a₀, a₁ ∈ Гα для каждого α, и, значит, a₀, a₁ ∈ Г.

Л. Всякая грань Γ₀ выпуклого множества A сама есть грань множества A. В самом деле, так как

Γ₀ = A ∩ Ω₀ и Г₀ = Γ₀ ∩ Ω₀, где Ω₀ и Ω₀ — множество замкнутых собственных гиперплоскостей, то Г₀ = A ∩ Ω₀.

Пусть а) a₀, a₁ ∈ A и б) (a₀, a₁) ∩ Г₀≠ ∅. Из б) следует в) (a₀, a₁) ∩ Г₀≠ ∅; а) и в) влекут г) a₀, a₁ ∈ Γ₀; а из г) и б) следует д) a₀, a₁ ∈ Г₀.

Определение 10. Экстремальной точкой выпуклого множества A называется всякая его точка, не являющаяся внутренней точкой никакого отрезка, принадлежащего A.

М. Сравнение определений 9 и 10 показывает, что всякая одноточечная грань выпуклого множества A⊂E₂ образована его экстремальной точкой и, обратно, если E₀ отделимо, то каждая экстремальная точка множества (будучи единственной точкой пересечения всех проходящих через нее замкнутых собственных гиперплоскостей) образует грань этого множества, притом, очевидно, минимальную.

Н. Всякая минимальная грань Г L-ограниченного совершенно выпуклого множества A в отделимом L-пространстве E₂ одноточечна и, значит, согласно М, образована экстремальной точкой. Действительно, если a₁, a₂ ∈ Г
и $a_1 \neq a_2$, то, в силу отделимости E_2, существует $f_0 \in E_2'$, для которого

$$\langle a_1, f_0 \rangle \neq \langle a_2, f_0 \rangle.$$

(9)

Пусть X_0 — опорная гиперплоскость множества Γ, определяемая уравнением $\langle x, f_0 \rangle = q_\Gamma(f_0)$ (см. Е 4). Так как Γ, по З, совершенно выпукло, то $X_0 \cap \Gamma$, по И', есть грань множества Γ и, значит, согласно \mathcal{L}, также грань множества A; поскольку $X_0 \cap \Gamma \subseteq \Gamma$, а Γ — минимальная грань множества A, заключаем, что $X_0 \supseteq \Gamma$. Но это невозможно, ибо в силу (9) хотя бы одна из точек $a_1, a_2 \in \Gamma$ не принадлежит X_0.

О. Всякая опорная гиперплоскость X_0 L-ограниченного совершенно выпуклого множества A в отделении L-пространства E_2 содержит экстремальную точку этого множества. Действительно, согласно И', $\Gamma_0 = X_0 \cap A$ есть грань множества A. Пусть \mathcal{B} — максимальная центрированная система граней множества A, содержащая Γ_0 (1.4.Г), и \mathcal{E} — множество всех замкнутых гиперплоскостей, содержащих каждую некоторую грань из \mathcal{B}. Так как \mathcal{B} — центрированная, то \mathcal{E} образует с A центрированную систему и потому, согласно теореме 2, $\Gamma_\omega = \bigcap (X \cap A) \neq \emptyset$. Но в силу определения 9 всякая грань множества A совпадает с пересечением пересечения всех содержащих ее замкнутых гиперплоскостей с A. Следовательно,

$$\Gamma_\omega = \bigcap_{X \in \mathcal{E}} (X \cap A) = \bigcap_{\Gamma \subseteq \mathcal{E}} \bigcap_{X \in \mathcal{E}} (X \cap A) = \bigcap_{\Gamma \subseteq \mathcal{E}} \Gamma,$$

и, значит, в силу K, Γ_ω — грань множества A. А тогда, в силу максимальности системы \mathcal{B}, Γ_ω — минимальная грань, так что согласно Н $\Gamma_\omega = \{a_\omega\}$, где a_ω — экстремальная точка множества A. Остается заметить, что так как $\Gamma_0 \in \mathcal{B}$, то $a_\omega \in \Gamma_0$ и, значит, $a_\omega \in X_0$.

Теорема 3 (Крейн и Мильман *). Всякое L-ограниченное совершенно выпуклое множество A в отделении

*) Крейн М. и Мильман Д., On extreme points of regularly convex sets, Studia Math. 9 (1940), 133—138.
§ 11] L-пространства над R и C 207

L-пространство E_2 совпадает с регулярно выпуклой оболочкой множества A_ω своих экстремальных точек.

Доказательство. В силу $E4^0$ и O, A_ω непусто. Пусть A' — его регулярно выпуклая оболочка. Так как A регулярно выпукло (A), то $A' \subseteq A$ и потому $q_{A'} \leq q_A (1.A')$. С другой стороны, из O вытекает, что для каждого $f \in E_2'$ существует $a_\omega \in A_\omega$ такое, что $\langle a_\omega, f \rangle = q_A(f)$; поэтому $q_A \leq q_{A_\omega}$ и тем самым $q_A \leq q_{A'}$. Следовательно, $q_{A'} = q_A$ и, значит, в силу A и 1.J' $A' = A$.

УКАЗАТЕЛЬ

Абсолютно выпуклая оболочка 104
— выпуклое множество 102
Аддитивная группа 24
Аддитивные группы чисел 19
Алгебраически открытое множество 109
Алгебраическое дополнение 29
Аннулятор 90
Ассоциированное отделное L-пространство 152
— отображение 68
Аффинно зависимое семейство 51
— независимое семейство 51
Аффинное многообразие 40, 144
— замкнутое 144
— несобственные 40
— однородное 40
— порожденное множеством векторов 41
— семейством векторов 42
— собственные 40
— отображение 66

Базис 53
— аффинный 52
— дуальный 78
— канонический 53
Барицентрические координаты 52
Барицентрическое разложение 52
Бесконечномерное векторное пространство 56
— линейное отображение 65
Вианнулятор 90
Билинейная функция 85
— каноническая 86
— транспонированная 85
Биортогональная система 94
Внеполярная 189
Вектор 32
— направляющий 43
Векторное подпространство 38
— пространство 32
— бесконечномерное 56
— вещественное 32
— ассоциированное 32
— комплексное 32
— коэнтромерное 56
— 3-мерное 56
— сопряженное 75
Векторное пространство упорядоченное 109
Векторы ортогональные 85
Верхняя граница 8
— грань 8
Вершины симплекса 105
Вещественная линейная функция 76
— прямая 97
Вещественное векторное пространство 32
— ассоциированное 32
Вложение 62
— каноническое 63
Внутренняя точка интервала 11
Внеплечно упорядоченное множество 12
Второе сопряженное 161
Выпуклая оболочка 104, 105
Выпуклое множество 99
Гиперплоскость 42
— опорная 203
Гиперподобространство 40
Гомоморфизм группы 21
— L-пространство 148
Гомотетия 32
Граница верхняя 8
— нижняя 8
Граница верхняя 8
— выпуклое множество 204
— нижняя 8
Группа 18
— аддитивная 24
— коммутативная 23

Дополнение алгебраическое 29
Дополнительное подпространство 45
Достаточное пространство линейных функций 89
Дуальная пара векторных пространств 86
— отделенная 86
— по одному из пространств 86
— L-пространства 191
Дуальный базис 78
— рефер 95
Закругленное множество 102
Замкнутое аффинное многообразие 144
— подпространство 92, 144
замкнутое полупространство 184
замкнутый интервал 11
замыкание аффинного многообразия 146
— подпространства 93, 146
изоморфизм векторных пространств 37
— группы 22
— L-пространств 148
изоморфные векторные пространства 37
— группы 23
— L-пространства 150
индуктивное упорядоченное множество 15
интервалы вещественной прямой 99
— совершенно упорядоченного множества 11
инъектирование 63
каноническая билинейная функция 86
канонический базис 53
— изоморфизм подпространства на факторпространство по его дополнению 45
— сопряженного к L-подпространству 172
— факторпространства L-пространств 172
каноническое вложение E в E* 89
— подпространства 63
— суммы векторных пространств в произведение 48
наложение на факторпространство 63
— отображение группы на факторгруппу 27
— L-пространства на второе сопряженное 162
— разложение линейного отображения 68
класс сечения верхний, нижний 10
— смежный 26
коммутативная группа 23
комплексная линейная функция 76
комплексное векторное пространство 32
композиция элементов группы 18, 19
композирование линейных отображений 69
— элементов группы 19
конечномерное векторное пространство 56
— линейное отображение 65
конус 107
— строгий 107
координата вектора 54
координатная линейная функция 75
координаты барицентрические 52
коэффициент гомотетии 32
коэффициенты линейной комбинации 36
L-дополнение 158
левая замена 55
— Цирка 18
линейная зависимость 48, 50
— комбинация 36
— функция 73
— вещественная 76
— комплексная 76
— координатная 75
— положительная 132
линейно зависимое множество 48
— семейство 51
— независимое множество 48
— семейство 51
линейное отображение 62
— бесконечномерное 65
— конечномерное 65
— n-мерное 65
— скалярное 70
линейный функционал 138
L-ограниченное множество 105
L-отображение 137
— сопряженное 163
L-подпространство 146
L-пространство 153
— отдельное 133
— сопряженное 161
L-структура 133
— отдельная 133
— сильнейшая 134
— слабейшая 133
люб 100
любу противоположные 100
мажоранта 8
максимальный элемент 13
минора 8
множество аффинное 40
— несобственное 40
— однородное 40
— собственное 40
множество абсолютно выпуклое 102
— алгебраически открытое 109
— вполне упорядоченное 12
— выпуклое 99
— защищенное 102
— L-ограниченное 195
— ограниченно 8
— сверху, снизу 8
— поглощающее 113
— регулярно выпуклое 183
— симметричное 25
— совершенно выпуклое 199
— совершенно упорядоченное 10
— упорядоченное 7
— индуктивное 15
— по возрастанию 7
— убывающе 8
мульттипликативная центрированная система множеств 17
мульттипликативные группы чисел 19
наибольший элемент 8
наименьший элемент 8
наложение 62
— каноническое 63
направление вещественной прямой 98
УКАЗАТЕЛЬ

Направляющий вектор 43
Нейтральный элемент 19
Неоднородная система линейных уравнений 80
Неопределенно, совершенно упорядоченное множество 10
Неравенство Гельдера 74
— Коши 74
— Мицковского 117
Несобственное аффинное многообразие 40
— подпространство 38
Несовместная система линейных уравнений 80
Нижняя граница 8
— грань 8
п-мерное векторное пространство 56
— линейное отображение 65
Норма 120
Нормально разрешимое L-отображение 169, 170
Нуль коммутативной группы 24
Нулевая подгруппа 24
Нулевое отображение 63
— подпространство 38
Нуль-пространство линейного отображения 65

Область значений отображения 65
Оболочка абсолютно выпуклая 104
— выпуклая 104, 105
— регулярно выпуклая 185
Обратный элемент 19
Ограниченное множество 8
— сверху, снизу множество 8
Однородная система линейных уравнений 80
— — соответствующая неоднородная 80
Однородное аффинное многообразие 40
Окруженная точка 109
Опорная гиперплоскость 203
— функции 122, 182
Ортогональные векторы 85
Отдельная дуальная пара 86
Отдельное L-пространство 133
— ассоциированное 152
Относительно окруженная точка 109
Отношение порядка 7
Отображение ассоциированное 68
— аффинное 66
— линейное 62
— нулевое 63
— подобия 9
Отрезок 98

Параллельные аффинные многообразия 40
Параметрические уравнения прямой 43
Перенос линейного функционала 164
Перенос 25
Поглощающее множество 113
Подгруппа 21
Подгруппа нулевая 24
Подмножество упорядоченного 9
Подобные упорядоченные множества 9
Подпространство 38, 144
— дополнительное 45
— замкнутое 92, 144
— конечной факторразмерности 56
— несобственное 38
— нулевое 38
— порожденное множеством векторов 39
— семейством векторов 39
— собственное 38
Подстановка 19
По одной сторону от гиперплоскости 101
Поле 31
— вещественных чисел 31
— комплексных чисел 31
Положительная линейная функция 132
Полупространства 100
— замкнутые 184
Полупримы 100
Полная 189
Преднорма 118
Преобразование 19
Приведение линейного отображения 66
Принцип выбора 13
— максимального элемента 16
— трансфтинтной индукции 12
Продолжение линейной функции 123
Проектирование 63
Проектор 70
Произведение линейного отображения на скейлер 69
— прямое семейства групп 30
— прямых 153
— семейства векторных пространств 47
— L-пространств 153
— упорядоченных множеств 9
Пространство векторное 32
— бесконечномерное 56
— конечномерное 56
— п-мерное 56
— решений 81
Противообласть 65
Противоположные лучи 100
Противоположный элемент 24
Прямая 43
— вещественная 97
— сумма групп 30
— L-подпространств 158
— подгруппа 28
— подпространств 45
— семейства групп 30
Прямое произведение семейства групп 30
Пучок гиперплоскостей 133

Разложение барицентрическое 52
— вектора по базису 54
— каноническое линейного отображения 68
УКАЗАТЕЛЬ

Свойство конечного пересечения 17
— характера 16
Связка гиперплоскостей 178
Сечение 10
— дедекиндово 10
Симметричное множество 25
Симметрия относительно точки 100
Симплекс 105
Система линейных уравнений 80
— — — неоднородная 80
— — — несовместная 80
— — — однородная 80
— — — совместная 80
— множество центрированная 17
— — — мультитипликативная 17
Скаляр 92
Скалярное линейное отображение 70
Сканчок 10
Следствие системы линейных уравнений 80
Сложение 24
— множество 24
Смежный класс 26
Собственное аффинное многообразие 40
— подпространство 38
Совершенное выпуклое множество 199
— упорядоченное множество 10
Совместная система линейных уравнений 80
Сопряженное векторное 75
— второе 161
— к L-пространству 138
— L-отображение 163
— L-пространство 161
Сравнение элементы упорядоченного множества 10
Строгий конус 107
Строго по одному сторону от гиперплоскости 101
— положительные элементы 109
Структура 8
— полная 9
Сублинейная функция 121
Сумма линейных отображений 69
— множество 24
— прямая группа 30
— L-подпространство 158
— подгруппа 28
— подпространство 45

Сумма прямая семейства групп 30
— семейства векторных пространств 47
— L-пространств 155

Теорема Алоаглу 201
— Банаха 123
— Крейна 132
— и Мильмана 206
— Тюлки — Таихмюллера 16
— Хава 125
— Хаусдорфа 17
Церемело 13
— Цориа 18
Точка векторного пространства 32
— внутренняя интервала 11
— окружения 109
— экстремальная 205
Транспонирование билинейная функция 85

Упорядоченное векторное пространство 109
— множество 7
— индуктивное 15
— подмножество 9
Уравнение гиперплоскости 78

Факторгруппа 27
Факторнорма 120
Факторпространство векторного пространства 44
— L-пространства 151
Факторразмерность 56, 62
Функционал линейный 138
— Минковского 114
Функция билинейная 85
— транспонированная 85
— линейная 73
— опорная 122, 182
— сублинейная 121
— Церемело 13

Центрированная система множеств 17
— — — мультитипликативная 17
Цепь 15

Щель 10

Экстремальная точка 205
Элемент максимальный 13
— наибольший 8
— нижний 8
— нейтральный 19
— обратный 19
— противоположный 24
Ядро гомоморфизма группы 22
— линейного отображения 68
— преднормы 118
Райков Дмитрий Абрамович.
Векторные пространства.
М., Физматгиз, 1962 г., 212 стр.
Редактор И. Е. Морозова.
Техн. редактор В. Н. Крючкова.
Корректор И. С. Цветкова.

Государственное издательство физико-математической литературы.
Москва, В-71, Ленинский проспект, 15.

Типография № 2 им. Евг. Соколовой УПП Ленсовнархоза.
Ленинград, Измайловский пр., 29.